

Recommending Materialized Views and Indexes with the IBM DB2 Design
Advisor

Abstract

Materialized views (MVs) and indexes both
significantly speed query processing in database
systems, but consume disk space and need to be
maintained when updates occur. Choosing the best
set of MVs and indexes to create depends upon the
workload, the database, and many other factors,
which makes the decision intractable for humans and
computationally challenging for computer
algorithms. Even heuristic-based algorithms can be
impractical in real systems. In this paper, we present
an advanced tool that uses the query optimizer itself
to both suggest and evaluate candidate MVs and
indexes, and a simple, practical, and effective
algorithm for rapidly finding good solutions even for
large workloads. The algorithm trades off the cost for
updates and storing each MV or index against its
benefit to queries in the workload. The tool
autonomically captures the workload, database, and
system information, optionally permits sampling of
candidate MVs to better estimate their size, and
exploits multi-query optimization to construct
candidate MVs that will benefit many queries, over
which their maintenance cost can then be amortized
cost-effectively. We describe the design of the system
and present initial experiments that confirm the
quality of its results on a database and workload
drawn from a real customer database.

1. Introduction

Materialized views, or Materialized Query
Tables, or MQTs, as they are called in the IBM®
DB2® Information Management products, can
improve query performance by orders of magnitude,
by avoiding re-computation of a query’s expensive
operations, such as joins, sorts, etc. However, MQTs
redundantly store data that is derivable from other

data, so they consume extra disk space and must be
updated to maintain their consistency with the source
data whenever it changes, either periodically
(deferred or full refresh) or as part of the same
transaction (immediate refresh). Furthermore, an
MQT, as any other stored table, requires its own
indexes for efficient access. The benefit of an MQT
relative to its cost is therefore maximized if the MQT
benefits many queries, particularly costly queries, or
frequently executed queries in the workload.

MQTs, therefore, add many new decisions and
trade-offs that a database administrator (DBA) must
make to optimize performance. What MQTs should
be defined? What indexes on each MQT should be
defined? Without the right indexes, accessing an
MQT might be more expensive than re-deriving the
answer from base tables that do. How often should
each MQT be refreshed? What’s the trade-off
between an index on a base table and an index on an
MQT? Solving these issues is too complex for a
DBA, so we need to automate. The automation must
select a set of MQTs that minimizes the total cost of
query evaluation and MQT maintenance, usually
under the constraint of a limited amount of resource
such as storage space. The large decision space of
this problem makes it computationally intractable
[HRU96], so virtually all efforts to solve it have been
heuristic. Logically, there are two distinct
approaches:
� The MQTs are chosen first with some space

constraint given, and then the indexes are chosen
using the remaining space.

� There may be some iteration between MQT and
index selection steps, or the steps are integrated
into a larger one to suggest MQTs and indexes at
the same time, but with other simplifying
assumptions.
Although the second approach is algorithmically

harder, it generally yields solutions with superior

Guy M. Lohman, Roberta J. Cochrane,
Hamid Pirahesh, Latha Colby

IBM Almaden Research Center

Gary Valentin
IBM Haifa Research Lab

Daniel C. Zilio, Calisto Zuzarte,
Sam Lightstone, Wenbin Ma

IBM Canada Ltd

Eric Alton,
 Dongming Liang,

Jarek Gryz
York University

performance. We chose the integrated version of this
second approach in our design.

This paper describes a new algorithm for
simultaneously determining the optimal set of MQTs
and indexes for a given workload, subject to a disk
space constraint. It is an extension of the approach
used in the IBM DB2 Index Advisor [VZZLS00], and
has been implemented as such. The key idea of our
approach is to extend the database engine’s query
optimizer in order to both: (1) suggest good candidate
objects (MQTs and indexes), and (2) evaluate the
benefit and cost of those candidate objects.
Furthermore, pursuant to (1), we have extended the
optimizer to exploit a sophisticated Multiple Query
Optimization (MQO) technique [LCPZ01] that
discovers common sub-expressions among a
workload of queries for the definition of candidate
MQTs. This approach significantly improves the
benefit-to-cost ratio of MQTs that are recommended
by the optimizer, and, therefore, of the final solution
found by our algorithm.

The remainder of this paper is organized as
follows. The related work is presented in Section 2.
We describe the overall design for the DB2 Design
Advisor in Section 3. Section 4 shows experimental
results. Conclusions and future work are summarized
in Section 5.

2. Related Work

Because of the power of MQTs, there has been
much recent work on the problem of selecting which
views to materialize, particularly in a data warehouse
environment. [HRU96] provides algorithms to select
views to materialize in order to minimize just the
total query response time, for the case of data cubes
or other OLAP applications, when there are only
queries with aggregates over the base relations. In
[GHRU97] these results are extended to the selection
of both views and indexes in data cubes. [Gup97]
presents a theoretical formulation of the general
view-selection problem in a data warehouse. All of
these papers present approximation algorithms for the
selection of a set of MQTs that minimizes the total
query response time under a given space constraint,
but they ignore maintenance costs of those MQTs.
Solutions presented in [RSS96, YKL97, TS97]
provide various frameworks and heuristics for
selection of materialized views in order to optimize
the sum of query evaluation and view maintenance
time, but without any resource constraint, and they
ignore the interaction with indexes. [GM99] first
addresses the view selection problem under the

constraint of a given view maintenance time. The
tools provided by RedBrick/Informix® [RedBrick]
and Oracle 8i [Oracle] exclusively recommend only
materialized views, ignoring their interaction with
indexes [ACN00].

The idea of applying multi-query optimization to
the view selection process has been recently explored
in [MRSR01]. The main focus of that paper is the
efficient maintenance of materialized views by
determining new views to add, both permanent and
transient (the latter being used only during the actual
maintenance process). The authors do not consider
any interaction with indexes, nor do they address how
the initial set of views is chosen.

The prior work closest to ours is [ACN00]. It
provides a tool to simultaneously select materialized
views and indexes for a given SQL workload, subject
to a disk space constraint, and provides a technique to
find common sub-expressions among multiple
queries in that workload. However, there are some
important differences. First of all, [ACN00] limits
the types of materialized views that can be generated
to single-block views only; this excludes complex
views for CUBE and ROLLUP in OLAP
applications, for example. Our algorithm imposes no
such syntactic conditions on the candidate views, and
considers views that may be exploited for queries
requiring “back-joins” (or “compensation”).
Secondly, the algorithm in [ACN00] creates views
that could be exploited by multiple queries by
iteratively “merging” views that have been chosen by
an earlier iteration of their algorithm. It is easy to
find practical cases where this approach might never
produce a good view for two queries because the
component views were individually pruned as
insufficiently cost-effective. Our algorithm creates
common sub-expression views by invoking our MQO
algorithm before any pruning is done. Thirdly,
[ACN00] mentions the impact of maintenance costs
on view selection, but has no explicit cost for
maintenance in their cost metric. Our algorithm
explicitly includes the cost of refreshing MQTs in its
cost metric. Lastly, [ACN00] formulates its views
and indexes outside the optimizer, whereas our
approach uses the optimizer itself to generate
candidates, thereby ensuring candidates that are
guaranteed to be exploited by the optimizer and
avoiding duplication of logic in both the optimizer
and an external program.

Our work is based on [VZZLS00], which
pioneered the concept of having the optimizer itself
both suggest and evaluate candidate indexes. This
paper extends this approach to include the

simultaneous, interdependent selection of MQTs as
well as indexes on both base tables and the MQTs,
and to generate those MQTs using sophisticated
multi-query optimization (MQO) techniques
[LCPZ01]. We also allow for a wide range of MQTs
to be selected and maintained. In particular, we
support full refresh MQTs (which are updated
periodically by the user) and immediate refresh
MQTs (which are updated whenever the base tables
are updated), and impose no restrictions on the
complexity of the queries that define these MQTs.

3. Overview of the DB2 Design Advisor

The problem solved by the DB2 Design Advisor
can be simply stated. For a workload of any number
of SQL statements – which may include UPDATE,
INSERT, and DELETE statements -- and (optionally)
their corresponding frequency of occurrence, find the
set of MQTs and indexes that minimize the total
execution time of the entire workload, subject to an
optional constraint on the disk space consumed by all
indexes and MQTs. The DB2® Universal Database™
offer many ways to automatically gather the queries
in the workload and their frequencies, including: (1)
the cache of recently-executed queries; (2) the Query
Patroller utility for controlling, scheduling, and
prioritizing workloads; (3) statements whose plans
have been analyzed by the EXPLAIN facility (and
hence whose SQL content has been recorded); (4)
static SQL that is embedded in application programs;
and (5) user-provided (i.e., via cut and paste).

Since the DB2 Design Advisor relies upon the
DB2 optimizer to estimate the cost of executing
individual queries, it also requires the following
information, which is automatically gathered by and
already available to the optimizer:
� The database characteristics, including the

schema, statistics such as the cardinalities of
tables and columns, and other physical database
design characteristics (indexes, partitioning,
defined views, and materialized views).

� System configuration information, including: the
estimated processing power of the processor; the
latency, transfer rate, and seek times of the disk
drives; and, in a shared-nothing multi-processor
environment (DB2 UDB Extended Enterprise
Edition), the number of nodes and the bandwidth
of the interconnect network.
Mathematically, this problem is an example of

the Knapsack problem, in which the objects to be
included in the knapsack or not are candidate indexes

and MQTs, each of which has a “benefit” (the
improvement it engenders in the workload, less its
maintenance cost) and a “cost” (the disk space it
consumes). The objective function is to maximize
the sum of the “benefit” of included objects, subject
to a constraint on the “cost” (i.e., disk space) and an
integrality constraint (partial MQTs or indexes
contribute no benefit). By relaxing this integrality
constraint, a provably optimal solution can be
efficiently found (in O(nlogn) time) by ordering all
objects in decreasing benefit-to-cost order, and filling
the knapsack until the constraint is met [VZZSL00].
This solution to the relaxed problem is used to
generate an excellent initial solution to the initial
problem with the integrality constraint. Additional
constraints must be introduced for indexes on MQTs,
however, because it makes no sense to include in the
solution indexes on MQTs that were excluded from
the solution.

What is new in the DB2 Design Advisor is: (1)
the optimizer must be extended to suggest good MQT
candidates, and (2) the algorithm from the DB2 Index
Advisor had to be significantly modified to deal with
the interaction of MQTs and indexes. The overall
design of this new algorithm is presented in Figure 1.
Depending on what the user requests, the DB2
Design Advisor could output: (1) the recommended
MQTs, (2) the recommended indexes, on base tables
only,, or (3) both (1) and (2), including indexes on
MQTs. In the first three steps, a set of good
candidate objects (MQTs and indexes) is generated
by invoking the DB2 optimizer under new EXPLAIN
modes. To estimate the size (e.g., row width,
cardinality, etc.) of each candidate object, the
algorithm by default uses estimates provided by the
optimizer, but optionally the data can be sampled to
obtain much more reliable size estimates.

Next, we execute our selection algorithm to
determine an optimal set of objects. This is where
much of the work is done, starting with the initial
solution suggested by the relaxed Knapsack solution,
and trying different possible feasible solutions by
invoking the DB2 optimizer to evaluate each solution
for the entire workload. After the Knapsack
algorithm, we have a random swapping algorithm as
in {VZZLL00] to iterate between candidate objects
that were not chosen before to find a better candidate
set. The iteration continues either until a time limit is
exceeded or we did not change the result in the last
eight iterations. In the final “filtering” step, the
algorithm examines the query plans that result with
the resulting solution, and it removes any candidate
indexes and MQTs not used anywhere in the

workload. The filtering was needed as the knapsack
algorithm potentially selects indexes or MQTs that
compete in the same optimized query plan, and we
run the winning candidates through the optimizer in
the filtering to determine which subset was finally
chosen. This last step is particularly useful when
making selections for other database systems in a
heterogeneous DBMS environment, whose behavior
is somewhat unpredictable.

3.1 MQT Candidate Generation

This module is used to generate an initial set of
candidate summary tables. These candidates will be
the set of MQTs used by the selection algorithm as
input to determine the subset that gives the best
performance benefits.

We generate MQT candidates using the
following methods:
� Use the queries supplied in the workload

themselves as candidate MQTs. For each query,
all SELECT-FROM-WHERE-GROUP BY
combinations that appear in the query are treated
as MQT candidates (the GROUP BY is
optional). For example, the simplest case is to
define query Q itself as a candidate:
 CREATE SUMMARY TABLE <name> AS <Q>

This is essentially what the Red Brick and Oracle
tools do. We also use an algorithm that analyzes
each query in the workload to change local
predicates so as to generalize the MQT. An

example of this would be to change the predicate
“A=5” in a query to be “GROUP BY A” and add
A to the SELECT clause.

� Use the (non-materialized) logical (shorthand)
views defined by the user as candidate MQTs.
Since users typically create logical views as
shorthand for frequently referenced pieces of a
query, they are likely to be referenced by
multiple queries in the workload, and hence are
excellent candidates for materialization. This
option is easy to implement and inexpensive to
execute, but requires that the user do much of the
work.

� Utilize MQO (Multiple-Query Optimization) to
suggest candidates. We exploit the sophisticated
MQO techniques of [LCPZ01] for finding
common sub-expressions among multiple
queries. The internal graphical representations of
all queries in the workload are merged together
in a single graph. Using a bottom-up traversal,
the operations between query blocks are matched
level by level in terms of the objects referenced,
predicates, grouping expressions, etc. Also,
using the existing MQT matching techniques in
DB2 UDB, suitable compensation for unmatched
portions are added on top of the common sub-
expression (CSE). As many CSEs may compete
with each other, the MQO algorithm has various
stages to reduce the sets of possible candidates.
MQO includes generalizing local predicates in
finding common expressions. We transform
CSEs found in MQO to MQTs. One example of
how MQO works is from using queries Q1 and
Q2, which are shown below. MQO can detect the
commonality in the following distinct queries,
and uses the commonality to produce candidate
MQTs that are usable by both queries. Note that
MQT1 is derived from the common subquery,
and MQT2 combines the two queries.

Q1: SELECT A FROM R WHERE B>5 AND C IN
(SELECT D FROM S WHERE E<10)
Q2: SELECT A FROM R WHERE B<25 AND C IN
(SELECT D FROM S WHERE E<10)
MQT1: SELECT D,E FROM S GROUP BY E
MQT2: SELECT A,B FROM R WHERE C IN
(SELECT D FROM S WHERE E<10) GROUP BY B

In another MQO example, two queries Q3 and
Q4 are matched. There is an extra table "Cust" in
one query. If we assume there is a referential
integrity relationship between Cust and Trans
based on cust_id, the matching algorithm will
use the join of all 3 tables as the CSE. The

Figure 1. Design overview of the DB2
Design Advisor

Generate the initial set of
MQT candidates Workload,

System, and
DB Info

Recommended MQTs and/or indexes

Estimate index/MQT statistics

Filter out unnecessary MQTs and indexes

Generate index candidates

Combinatorial Selection Algorithm

predicates and the grouping expressions are also
matched and compensated accordingly and this
allows us to suggest the CSE shown below as a
suitable MQT candidate. Alternate candidates
may involve the join of Trans and Store only.

Q3: SELECT store_name, cust_name, SUM(sales)
as ss FROM Trans T, Store S, Cust C WHERE
T.store_id = S.store_id AND T.cust_id = C.cust_id
AND T.year = 2001 GROUP BY store_name,
cust_name
Q4: SELECT store_name, year, SUM(sales) as ss
FROM Trans T, Store S WHERE T.store_id =
S.store_id AND T.year >= 1998 GROUP BY
store_name, year
CSE: SELECT store_name, cust_name, year,
SUM(sales) as ss FROM Trans T, Store S, Cust C
WHERE T.store_id = S.store_id AND T.cust_id =
C.cust_id AND T.year >= 1998
GROUP BY store_name, year, cust_name
Compensation for Q3:
SELECT store_name, cust_name, SUM(sales) as ss
FROM CSE WHERE year = 2001
GROUP BY store_name, cust_name

3.2 The Selection Algorithm

As described earlier, the initial feasible solution
is obtained by ordering all objects by decreasing
weight, which is defined as “benefit” divided by
“cost”. High weight suggests that an MQT or an
index with that weight is a good candidate for
selection. The benefit of an MQT is the sum over all
queries of the frequency of a query, times the
performance change to the query (and/or update)
when using the MQT as opposed to not using the
MQT. (The weight of an index is defined in a similar
way.) Formally, the weight w(A) of the MQT A is:

 w(A) =
)(

)(*)(

AD

qBqf
Qq
�
�

where Q is the set of queries in the workload that
make use of the MQT A, f(q) is the frequency of
query q, B(q) is the performance change for the query
q, and D(A) is the disk space consumed by A. These
components are calculated as follows:
1) Use the standard EXPLAIN facility of the

optimizer to compute the original, “status quo”
estimated execution cost E(q) for each query q in
the workload with existing MQTs and indexes.

2) Run each of the queries in the workload in a new
EXPLAIN mode that adds the candidate MQTs
as “virtual MQTs” to the existing MQTs. The

usual exploitation of MQTs by the optimizer will
determine the best MQT for that query from
existing and candidate MQTs. The estimated
cost M(q) from the resulting plan for query q will
represent the minimal cost possible for that
query, since it had all candidate MQTs to choose
from.

3) Estimate the performance change of each query q
as B(q) = E(q) - M(q)

4) Iterate through each MQT A, and compute its
benefit by adding the performance change of any
query q that uses that MQT. Its cost D(A) is its
estimated size, i.e., its estimated cardinality
times its width, in bytes.
As mentioned earlier, we allow the workload to

contain both queries and updates. When more
indexes and MQTs are introduced, queries perform
better, but updates incur a performance penalty for
maintaining them, either on each update statement
(for indexes and immediate refresh MQTs) or
periodically (for deferred refresh MQTs). The
maintenance cost of updates and the benefit to
queries when adding MQTs is included as part of our
overall cost metric. The maintenance cost associated
with an immediate refresh MQT can be determined in
two ways:
� Use the estimated number of rows for all MQTs

and the estimated frequencies and number of
updated rows for each update statement to
calculate a rough update cost. Computing this
increases the number of optimizer calls in our
algorithm by only U, where U is the number of
update statements in the workload.

� For each MQT and update statement, determine
the difference in estimated time for each update
statement between using and not using the MQT.
Computing the update cost this way would
increase the number of calls to the optimizer in
our algorithm by U*(|A|+1), where |A| is the
number of candidate views.
For each full refresh MQT A, we add to the

“benefit” of A a penalty C(A) for materializing all of
A with a frequency of g(A). A default setting for
g(A) is 1, effectively including the cost of at least one
materialization of A during the time interval for
which we are optimizing. Thus, the weight for a full
refresh MQT A, including maintenance, is therefore
estimated by:
 W(A) =

)(

)(*)(

AD

qBqf
Qq

�
�

 - g(A) * C(A)/D(A)

To recommend both indexes and MQTs together,
our ADD_COMBINE algorithm (shown below)

treats both indexes and MQTs as objects in the same
Knapsack problem having a single space constraint.
Note that indexes created on MQTs will be
dependent on them; this dependency is recorded
before entering the selection algorithm. The
algorithm starts with the empty list of candidates. We
repeat the following iteration until we exceed the disk
space constraint. In each iteration, we try to add into
the list the next object with the highest weight. To
consider the dependence between an index and an
MQT, if the object chosen is an index on an MQT,
and that MQT is not in the chosen set, we add the
MQT to the list, so long as it too fits within the space
constraint. Time complexity of ADD_COMBINE is
O(nlogn), where n is the number of candidate MQTs.
This arises from the cost of sorting the candidate
MQTs by weight.

 Algorithm ADD_COMBINE

 /* Input: A – a set of candidate objects (MQTs or
indexes), space – the disk space for
recommendations

 Output: S – the set of objects to be
recommended */

FOR each object o (MQT or index),

Calculate its weight W(o)
 END FOR

Re-order the objects by descending weight W(o)
S = { }
WHILE (space > 0 && A is not empty) DO

 Pick o from A such that o has the highest
weight W(o)

 IF W(o) < 0 THEN space = 0
 ELSE
 C = { o }
 IF (o is an index on MQT a) && (a � S)
 THEN

/* Add in the MQT a, since it is not in
the solution yet */

 C = C � a
 END IF

 IF (space - D(C)) >= 0 THEN
/* There is space for the objects in C,

so add them to the solution. */
 space = space – D(C)

 S = S � C
 A = A – C

 END IF
END IF

END WHILE
Perform iterative random swapping phase where

MQT and index winners in S are randomly
swapped with other candidates in A

RETURN S as the set of objects picked by
ADD_COMBINE

After the selection of the initial feasible solution
by the above algorithm, the selection algorithm uses
an iterative improvement phase that randomly swaps
a few MQTs that are in that solution with a few of
those that are not, as was done in [VZZLS00]. We
execute this phase for either a user-specified time
limit, or until we cannot improve the workload
performance further (over a given number of
consecutive swaps). This phase exists to compensate
for three simplifying assumptions in our algorithm
that could lead to sub-optimal solutions. First, the
performance benefit for a query Q is assigned to all
candidate indexes and MQTs used by the query. This
does not account for how much each candidate itself
contributed to the performance improvement. As
such, the benefit assigned to each candidate is
optimistic. Second, the weighting of competing
candidates is calculated independently. There is no
concept of weighting an MQT A, say, given that
another MQT, B, was not selected. Third, the
ordering by cost/benefit weights is provably optimal
only for the relaxation of the general knapsack
algorithm, but may be sub-optimal under the original
integrality constraint. The random swap phase for
this combined selection algorithm is more
complicated than in [VZZLS00] when we swap a
handful of chosen items with a handful of not chosen
items. If a new index is swapped in, we also have to
add in any MQT on which that index depends. For
similar reasons, if an MQT is swapped out, the
indexes that depend on it also have to be swapped
out.

4. Experiments

We tested our algorithm to determine whether
MQO provided useful MQT candidates, and to
measure the overall quality of its results. The
experiments used a simulation of an IBM DB2 UDB
customer’s database that has an OLAP-type (star)
schema. Though we did not have access to the
customer’s proprietary data, we could simulate their
database and environment by importing its schema
and statistics. The originating system was an IBM
DB2 UDB EEE system with 10 processing nodes,
which is used to keep track of product sales
information for the company in various markets, in
various geographic territories, for various customers,
and for different times. There were more than 15
tables in the database, comprising roughly 400 GB of
data. The workload we used contained 12 OLAP-like
business queries to the star schema, each of which
had an equal frequency of execution.

The purpose of our first set of experiments was
to: 1) measure the actual performance improvement
from MQTs recommended by the Advisor; and 2)
compare the benefit of MQO candidates with the
benefit of candidates drawn from both MQO and the
queries of the workload. To do this, we first executed
the advisor using MQT candidates drawn from both
MQO and directly using the queries of the workload.
In the second run, we limited the MQT candidates to
be only ones from MQO. Each invocation of the
Advisor was limited to at most 5 minutes.

The results of these runs are shown in Table 1.
These results include the total workload estimated
times (WETs) with no MQTs, the total workload
estimated times when MQTs are recommended by
the Advisor, the percentage improvement in the
estimated run time gained by exploiting the
recommended MQTs, and the number of MQTs
recommended by the Advisor. The results indicated
that our Advisor recommends a small set of high-
quality MQTs that improve performance by almost
30%. The results also indicate that MQTs derived by
our MQO algorithm provided most of this benefit,
and MQTs from queries provided surprisingly little
improvement.

Type of
MQT
Selection

WET
without
MQTs

WET
with
MQTs

% diff
in
WETs

Num.
of
MQTs

MQTs from
MQO and
queries

493.7
seconds

353.0
seconds 28.5% 7

MQTs from
MQO only

493.7
seconds

352.0
seconds 28.4% 4

Table 1: Experiment output for MQT-only

selection.

Our second experiment selected MQTs and

indexes together. The purpose of this experiment was
to: 1) measure the combined performance
improvement from MQTs and indexes recommended
by the Advisor; and 2) demonstrate that selecting
MQTs with indexes provides even greater
performance improvements than just selecting only
MQTs. In this experiment, the WET without
recommendations was 493.7 seconds, as before. The
Advisor recommended 7 MQTs and 18 new indexes,
8 of which were on the recommended MQTs. For
this recommended configuration, the WET was only
51.4 seconds, for an 89% improvement. The fact that
the Advisor recommended indexes on base tables as
well as candidate MQTs indicates that the algorithm

correctly handled the interaction of indexes and
MQTs. And exploiting indexes as well as MQTs
recommended by the Advisor gives far better
performance than just MQTs alone, as can be seen by
comparing the results of our second to those of our
first experiment.

5. Conclusion and Future work

This paper has presented a novel and efficient
algorithm for simultaneously determining the set of
MQTs and indexes that minimize the total execution
cost for a given workload of SQL statements, given a
single disk space constraint for both. The execution
cost explicitly includes the maintenance cost that is
due to updates, as well as the time to execute queries.
We also detailed extensions to the database engine’s
optimizer that exploits sophisticated multi-query
optimization techniques to suggest superior candidate
MQTs that will benefit multiple queries.
Incorporating these techniques in the optimizer saves
duplicating the optimizer’s cost model in the design
tool, and ensures consistency with the optimizer’s
choice of MQTs and indexes when the recommended
items are subsequently created. By modeling the
MQT and index selection problem as a variant of the
well-known Knapsack problem, the DB2 Design
Advisor is able to optimize large workloads of
queries in a reasonable amount of time. The new
algorithm, and the extensions to perform multi-query
optimization in the optimizer, have been
implemented in IBM DB2 Universal Database
(UDB) for Linux, UNIX®, and Windows®, , and have
demonstrated significant improvements in the
workloads tested to date.

References

[ACN00] S. Agrawal, S. Chaudhuri, V. Narasayya.

Automated Selection of Materialized Views and
Indexes for SQL Databases. VLDB, 2000.

[BDD+] R. G. Bello, K. Dias, A. Downing, et al.
Materialized Views In Oracle. In Proc. VLDB,
1998.

[BLT86] J. A. Blakeley, P.-A. Larson, and F.W. Tompa.
Efficiently updating materialized views.
SIGMOD, 1986.

[CN99] S. Chaudhuri and V. Narasayya. Index Merging.
ICDE, 1999.
[GHRU97] H. Gupta, V. Harinarayan, A.

Rajaraman, and J. Ullman. Index selection in
OLAP. ICDE, 1997

[GM95] A. Gupta, and I. S. Mumick. Maintenance of
Materialized views: Problems, Techniques, and

Applications, Data Engineering Bulletin, June
1995.

[GM98] A. Gupta, and I. S. Mumick. Editors.
Materialized Views: MIT Press. 1998.

[Gup97] H. Gupta. Selection of views to materialize in a
data warehouse. ICDT, Delphi, Greece, 1997.

[GM99] H. Gupta, and I. S. Mumick. Selection of Views
to Materialize under a Maintenance Cost
Constraint. ICDT, Jerusalam, January 1999

[HGW+95] J. Hammer, H. Carcia-Molina, J.Widom, W.
Labio, and Y. Zhuge. The Stanford Data
Warehouse Project. IEEE Data Eng. Bulletin,
Specail Issue on Materialized Views and Data
Warehousing, 1995.

[HRU96] V. Harinarayan, A. Rajaraman, and J. Ullman.
Implementing data cubes efficiently. SIGMOD,
June 1996.

[Kim96] Kimball, R., The Data Warehouse Toolkit, Join
Wiley, 1996.

[KR99] Y. Kotidis and N. Roussopoulos. DynaMat: A
Dynamic View Management System for Data
Warehouse. SIGMOD, 1999

[LCPZ01] W. Lehner, B. Cochrane, H. Pirahesh, M.
Zaharioudakis. Applying Mass Query
Optimization to Speed up Automatic Summary
Table Refresh. ICDE 2001.

[LQA97] W. J. Labio, D. Quass, and B. Adelberg. Physical
Database Design for Data Warehouse. ICDE,
1997.

[MRSR01] H. Mistry, P. Roy, S. Sudarshan, K.
Ramamritham. Materialized View Selection and
Maintenance Using Multi-Query Optimization.
SIGMOD 2001.

[Mum95] I. Mumick . The Rejuvenation of Materialized
Views. In CISMOD. 1995.

[Oracle] http://www.oracle.com/
[R+95] N. Roussopoulos, et al. The ADMS project:

Views “R” Us. In IEEE Data Engineering
Bulletin, June 1995.

[RedBrick]
http://www.informix.com/informix/solutions/dw/
redbrick/vista/

[RK86] N. Roussopoulos and H. Kang. Preliminary
design of ADMS+-: A workstation-mainframe
integrated architecture for database management
systems. VLDB, 1986.

[Rou91] N. Roussopoulos. An Incremental Access
Method for ViewCache: Concept, Algorithms,
and Cost Analysis. ACM TODS, 1991.

[RSS96] K. A. Ross, Divesh Srivastava, and S. Sudarshan.
Materialized view maintenance and integrity
constraint checking: Trading space for time.
SIGMOD, 1996.

[SSV96] P. Scheuermann, J. Shim, and R. Vingrlek.
WATCHMAN: A Data Warehouse Intelligent
Cache Manager. VLDB, 1996.

[TS97] D. Theodoratos and T. Sellis. Data warehouse
configuration. VLDB, 1997.

[VZZLS00] G. Valentin, M. Zuliani, D. C. Zilio, G.
Lohman, and A. Skelley. DB2 Advisor: An
Optimizer Smart Enough to Recommend its own
Indexes. ICDE, San Diego, CA, Feb. 2000.

[WB97] M. C. Wu, A. P. Buchmann. Research Issues in
Data Warehousing, BTW’97, Ulm, March 1997.

[Wid95] J. Widom. Research problems in data
warehousing. In Proc. Of the Intl. Conf. On
Information and Knowledge Management, 1995.

[YKL97] J. Yang, K. Karlapalem, and Q. Li. Algorithms
for materialized view design in data warehousing
environment. VLDB, 1997.

[ZGHW95] Y. Zhuge, H. Garcia-Molina, J. Hammer, and
J. Widom. View maintenance in a warehousing
environment. ACM SIGMOD 1995, pages 316-
327.

Trademarks

IBM and Informix are registered trademarks of
International Business Machines Corporation in the United
States, other countries, or both.

Windows is a registered trademark of Microsoft
Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the
United States and other countries.

Other company, product, and service names may be
trademarks or service marks of others.

