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Abstract 
 

Materialized views (MVs) and indexes both 
significantly speed query processing in database 
systems, but consume disk space and need to be 
maintained when updates occur.  Choosing the best 
set of MVs and indexes to create depends upon the 
workload, the database, and many other factors, 
which makes the decision intractable for humans and 
computationally challenging for computer 
algorithms.  Even heuristic-based algorithms can be 
impractical in real systems.  In this paper, we present 
an advanced tool that uses the query optimizer itself 
to both suggest and evaluate candidate MVs and 
indexes, and a simple, practical, and effective 
algorithm for rapidly finding good solutions even for 
large workloads. The algorithm trades off the cost for 
updates and storing each MV or index against its 
benefit to queries in the workload. The tool 
autonomically captures the workload, database, and 
system information, optionally permits sampling of 
candidate MVs to better estimate their size, and 
exploits multi-query optimization to construct 
candidate MVs that will benefit many queries, over 
which their maintenance cost can then be amortized 
cost-effectively.  We describe the design of the system 
and present initial experiments that confirm the 
quality of its results on a database and workload 
drawn from a real customer database.  
 
1. Introduction 
 

Materialized views, or Materialized Query 
Tables, or MQTs, as they are called in the IBM® 
DB2® Information Management products, can 
improve query performance by orders of magnitude, 
by avoiding re-computation of a query’s expensive 
operations, such as joins, sorts, etc.  However, MQTs 
redundantly store data that is derivable from other 

data, so they consume extra disk space and must be 
updated to maintain their consistency with the source 
data whenever it changes, either periodically 
(deferred or full refresh) or as part of the same 
transaction (immediate refresh).  Furthermore, an 
MQT, as any other stored table, requires its own 
indexes for efficient access.  The benefit of an MQT 
relative to its cost is therefore maximized if the MQT 
benefits many queries, particularly costly queries, or 
frequently executed queries in the workload. 

MQTs, therefore, add many new decisions and 
trade-offs that a database administrator (DBA) must 
make to optimize performance.  What MQTs should 
be defined?  What indexes on each MQT should be 
defined? Without the right indexes, accessing an 
MQT might be more expensive than re-deriving the 
answer from base tables that do. How often should 
each MQT be refreshed?  What’s the trade-off 
between an index on a base table and an index on an 
MQT?  Solving these issues is too complex for a 
DBA, so we need to automate. The automation must 
select a set of MQTs that minimizes the total cost of 
query evaluation and MQT maintenance, usually 
under the constraint of a limited amount of resource 
such as storage space.  The large decision space of 
this problem makes it computationally intractable 
[HRU96], so virtually all efforts to solve it have been 
heuristic. Logically, there are two distinct 
approaches: 
� The MQTs are chosen first with some space 

constraint given, and then the indexes are chosen 
using the remaining space. 

� There may be some iteration between MQT and 
index selection steps, or the steps are integrated 
into a larger one to suggest MQTs and indexes at 
the same time, but with other simplifying 
assumptions. 
Although the second approach is algorithmically 

harder, it generally yields solutions with superior 
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performance. We chose the integrated version of this 
second approach  in our design. 

This paper describes a new algorithm for 
simultaneously determining the optimal set of MQTs 
and indexes for a given workload, subject to a disk 
space constraint. It is an extension of the approach 
used in the IBM DB2 Index Advisor [VZZLS00], and 
has been implemented as such. The key idea of our 
approach is to extend the database engine’s query 
optimizer in order to both: (1) suggest good candidate 
objects (MQTs and indexes), and (2) evaluate the 
benefit and cost of those candidate objects. 
Furthermore, pursuant to (1), we have extended the 
optimizer to exploit a sophisticated Multiple Query 
Optimization (MQO) technique [LCPZ01] that 
discovers common sub-expressions among a 
workload of queries for the definition of candidate 
MQTs. This approach significantly improves the 
benefit-to-cost ratio of MQTs that are recommended 
by the optimizer, and, therefore, of the final solution 
found by our algorithm. 

The remainder of this paper is organized as 
follows. The related work is presented in Section 2. 
We describe the overall design for the DB2 Design 
Advisor in Section 3. Section 4 shows experimental 
results. Conclusions and future work are summarized 
in Section 5. 
 
2. Related Work  
 

Because of the power of MQTs, there has been 
much recent work on the problem of selecting which 
views to materialize, particularly in a data warehouse 
environment. [HRU96] provides algorithms to select 
views to materialize in order to minimize just the 
total query response time, for the case of data cubes 
or other OLAP applications, when there are only 
queries with aggregates over the base relations. In 
[GHRU97] these results are extended to the selection 
of both views and indexes in data cubes. [Gup97] 
presents a theoretical formulation of the general 
view-selection problem in a data warehouse. All of 
these papers present approximation algorithms for the 
selection of a set of MQTs that minimizes the total 
query response time under a given space constraint, 
but they ignore maintenance costs of those MQTs. 
Solutions presented in [RSS96, YKL97, TS97] 
provide various frameworks and heuristics for 
selection of materialized views in order to optimize 
the sum of query evaluation and view maintenance 
time, but without any resource constraint, and they 
ignore the interaction with indexes. [GM99] first 
addresses the view selection problem under the 

constraint of a given view maintenance time.  The 
tools provided by RedBrick/Informix® [RedBrick] 
and Oracle 8i [Oracle] exclusively recommend only 
materialized views, ignoring their interaction with 
indexes [ACN00]. 

The idea of applying multi-query optimization to 
the view selection process has been recently explored 
in [MRSR01]. The main focus of that paper is the 
efficient maintenance of materialized views by 
determining new views to add, both permanent and 
transient (the latter being used only during the actual 
maintenance process). The authors do not consider 
any interaction with indexes, nor do they address how 
the initial set of views is chosen.   

The prior work closest to ours is [ACN00]. It 
provides a tool to simultaneously select materialized 
views and indexes for a given SQL workload, subject 
to a disk space constraint, and provides a technique to 
find common sub-expressions among multiple 
queries in that workload. However, there are some 
important differences.  First of all, [ACN00] limits 
the types of materialized views that can be generated 
to single-block views only; this excludes complex 
views for CUBE and ROLLUP in OLAP 
applications, for example. Our algorithm imposes no 
such syntactic conditions on the candidate views, and 
considers views that may be exploited for queries 
requiring “back-joins” (or “compensation”). 
Secondly, the algorithm in [ACN00] creates views 
that could be exploited by multiple queries by 
iteratively “merging” views that have been chosen by 
an earlier iteration of their algorithm.  It is easy to 
find practical cases where this approach might never 
produce a good view for two queries because the 
component views were individually pruned as 
insufficiently cost-effective.  Our algorithm creates 
common sub-expression views by invoking our MQO 
algorithm before any pruning is done. Thirdly, 
[ACN00] mentions the impact of maintenance costs 
on view selection, but has no explicit cost for 
maintenance in their cost metric. Our algorithm 
explicitly includes the cost of refreshing MQTs in its 
cost metric. Lastly, [ACN00] formulates its views 
and indexes outside the optimizer, whereas our 
approach uses the optimizer itself to generate 
candidates, thereby ensuring candidates that are 
guaranteed to be exploited by the optimizer and 
avoiding duplication of logic in both the optimizer 
and an external program. 

Our work is based on [VZZLS00], which 
pioneered the concept of having the optimizer itself 
both suggest and evaluate candidate indexes. This 
paper extends this approach to include the 



 
 

 

simultaneous, interdependent selection of MQTs as 
well as indexes on both base tables and the MQTs, 
and to generate those MQTs using sophisticated 
multi-query optimization (MQO) techniques 
[LCPZ01]. We also allow for a wide range of MQTs 
to be selected and maintained. In particular, we 
support full refresh MQTs (which are updated 
periodically by the user) and immediate refresh 
MQTs (which are updated whenever the base tables 
are updated), and impose no restrictions on the 
complexity of the queries that define these MQTs. 
 
3. Overview of the DB2 Design Advisor 
 

The problem solved by the DB2 Design Advisor 
can be simply stated.  For a workload of any number 
of SQL statements – which may include UPDATE, 
INSERT, and DELETE statements -- and (optionally) 
their corresponding frequency of occurrence, find the 
set of MQTs and indexes that minimize the total 
execution time of the entire workload, subject to an 
optional constraint on the disk space consumed by all 
indexes and MQTs.  The DB2® Universal Database™ 
offer many ways to automatically gather the queries 
in the workload and their frequencies, including: (1) 
the cache of recently-executed queries; (2) the Query 
Patroller utility for controlling, scheduling, and 
prioritizing workloads; (3) statements whose plans 
have been analyzed by the EXPLAIN facility (and 
hence whose SQL content has been recorded); (4) 
static SQL that is embedded in application programs; 
and (5) user-provided (i.e., via cut and paste). 

Since the DB2 Design Advisor relies upon the 
DB2 optimizer to estimate the cost of executing 
individual queries, it also requires the following 
information, which is automatically gathered by and 
already available to the optimizer: 
� The database characteristics, including the 

schema, statistics such as the cardinalities of 
tables and columns, and other physical database 
design characteristics (indexes, partitioning, 
defined views, and materialized views).  

� System configuration information, including: the 
estimated processing power of the processor; the 
latency, transfer rate, and seek times of the disk 
drives; and, in a shared-nothing multi-processor 
environment (DB2 UDB Extended Enterprise 
Edition), the number of nodes and the bandwidth 
of the interconnect network.   
Mathematically, this problem is an example of 

the Knapsack problem, in which the objects to be 
included in the knapsack or not are candidate indexes 

and MQTs, each of which has a “benefit” (the 
improvement it engenders in the workload, less its 
maintenance cost) and a “cost” (the disk space it 
consumes).  The objective function is to maximize 
the sum of the “benefit” of included objects, subject 
to a constraint on the “cost” (i.e., disk space) and an 
integrality constraint (partial MQTs or indexes 
contribute no benefit).  By relaxing this integrality 
constraint, a provably optimal solution can be 
efficiently found (in O(nlogn) time) by ordering all 
objects in decreasing benefit-to-cost order, and filling 
the knapsack until the constraint is met [VZZSL00].  
This solution to the relaxed problem is used to 
generate an excellent initial solution to the initial 
problem with the integrality constraint. Additional 
constraints must be introduced for indexes on MQTs, 
however, because it makes no sense to include in the 
solution indexes on MQTs that were excluded from 
the solution. 

What is new in the DB2 Design Advisor is: (1) 
the optimizer must be extended to suggest good MQT 
candidates, and (2) the algorithm from the DB2 Index 
Advisor had to be significantly modified to deal with 
the interaction of MQTs and indexes.  The overall 
design of this new algorithm is presented in Figure 1.  
Depending on what the user requests, the DB2 
Design Advisor could output: (1) the recommended 
MQTs, (2) the recommended indexes, on base tables 
only,, or (3) both (1) and (2),  including indexes on 
MQTs.  In the first three steps, a set of good 
candidate objects (MQTs and indexes) is generated 
by invoking the DB2 optimizer under new EXPLAIN 
modes.  To estimate the size (e.g., row width, 
cardinality, etc.) of each candidate object, the 
algorithm by default uses estimates provided by the 
optimizer, but optionally the data can be sampled to 
obtain much more reliable size estimates. 

Next, we execute our selection algorithm to 
determine an optimal set of objects. This is where 
much of the work is done, starting with the initial 
solution suggested by the relaxed Knapsack solution, 
and trying different possible feasible solutions by 
invoking the DB2 optimizer to evaluate each solution 
for the entire workload.  After the Knapsack 
algorithm, we have a random swapping algorithm as 
in {VZZLL00] to iterate between candidate objects 
that were not chosen before to find a better candidate 
set. The iteration continues either until a time limit is 
exceeded or we did not change the result in the last 
eight iterations. In the final “filtering” step, the 
algorithm examines the query plans that result with 
the resulting solution, and it removes any candidate 
indexes and MQTs not used anywhere in the 



 
 

 

workload. The filtering was needed as the knapsack 
algorithm potentially selects indexes or MQTs that 
compete in the same optimized query plan, and we 
run the winning candidates through the optimizer in 
the filtering to determine which subset was finally 
chosen. This last step is particularly useful when 
making selections for other database systems in a 
heterogeneous DBMS environment, whose behavior 
is somewhat unpredictable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.1 MQT Candidate Generation 
 

This module is used to generate an initial set of 
candidate summary tables. These candidates will be 
the set of MQTs used by the selection algorithm as 
input to determine the subset that gives the best 
performance benefits. 

We generate MQT candidates using the 
following methods: 
� Use the queries supplied in the workload 

themselves as candidate MQTs. For each query, 
all SELECT-FROM-WHERE-GROUP BY 
combinations that appear in the query are treated 
as MQT candidates (the GROUP BY is 
optional).  For example, the simplest case is to 
define query Q itself as a candidate: 
    CREATE SUMMARY TABLE <name> AS <Q> 
 
This is essentially what the Red Brick and Oracle 
tools do.  We also use an algorithm that analyzes 
each query in the workload to change local 
predicates so as to generalize the MQT. An 

example of this would be to change the predicate 
“A=5” in a query to be “GROUP BY A” and add 
A to the SELECT clause.   

� Use the (non-materialized) logical (shorthand) 
views defined by the user as candidate MQTs.  
Since users typically create logical views as 
shorthand for frequently referenced pieces of a 
query, they are likely to be referenced by 
multiple queries in the workload, and hence are 
excellent candidates for materialization. This 
option is easy to implement and inexpensive to 
execute, but requires that the user do much of the 
work.  

� Utilize MQO (Multiple-Query Optimization) to 
suggest candidates. We exploit the sophisticated 
MQO techniques of [LCPZ01] for finding 
common sub-expressions among multiple 
queries. The internal graphical representations of 
all queries in the workload are merged together 
in a single graph. Using a bottom-up traversal, 
the operations between query blocks are matched 
level by level in terms of the objects referenced, 
predicates, grouping expressions, etc. Also, 
using the existing MQT matching techniques in 
DB2 UDB, suitable compensation for unmatched 
portions are added on top of the common sub-
expression (CSE). As many CSEs may compete 
with each other, the MQO algorithm has various 
stages to reduce the sets of possible candidates. 
MQO includes generalizing local predicates in 
finding common expressions. We transform 
CSEs found in MQO to MQTs. One example of 
how MQO works is from using queries Q1 and 
Q2, which are shown below. MQO can detect the 
commonality in the following distinct queries, 
and uses the commonality to produce candidate 
MQTs that are usable by both queries. Note that 
MQT1 is derived from the common subquery, 
and MQT2 combines the two queries. 

 
Q1: SELECT A  FROM R WHERE B>5 AND C IN 
(SELECT  D FROM S WHERE E<10) 
Q2: SELECT A  FROM R WHERE B<25 AND C IN 
(SELECT  D FROM S WHERE E<10)  
MQT1: SELECT  D,E FROM S GROUP BY E 
MQT2: SELECT A,B  FROM R WHERE C IN 
(SELECT  D FROM S WHERE E<10) GROUP BY B  
 

In another MQO example, two queries Q3 and 
Q4 are matched. There is an extra table "Cust" in 
one query. If we assume there is a referential 
integrity relationship between Cust and Trans 
based on cust_id, the matching algorithm will 
use the join of all 3 tables as the CSE. The 

Figure 1. Design overview of the DB2 
Design Advisor 
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predicates and the grouping expressions are also 
matched and compensated accordingly and this 
allows us to suggest the CSE shown below as a 
suitable MQT candidate. Alternate candidates 
may involve the join of Trans and Store only. 

Q3: SELECT store_name, cust_name, SUM(sales) 
as ss FROM Trans T, Store S, Cust C WHERE 
T.store_id = S.store_id  AND T.cust_id = C.cust_id  
AND T.year = 2001 GROUP BY store_name, 
cust_name 
Q4: SELECT store_name, year, SUM(sales) as ss 
FROM Trans T, Store S WHERE  T.store_id = 
S.store_id AND  T.year >= 1998  GROUP BY 
store_name, year 
CSE: SELECT store_name, cust_name, year,   
SUM(sales) as ss FROM Trans T, Store S, Cust C 
WHERE T.store_id = S.store_id  AND T.cust_id = 
C.cust_id  AND T.year >= 1998  
GROUP BY store_name, year, cust_name 
Compensation for Q3: 
SELECT store_name, cust_name, SUM(sales) as ss  
FROM CSE WHERE year = 2001 
GROUP BY store_name, cust_name 

 
3.2 The Selection Algorithm 
 

As described earlier, the initial feasible solution 
is obtained by ordering all objects by decreasing 
weight, which is defined as “benefit” divided by 
“cost”. High weight suggests that an MQT or an 
index with that weight is a good candidate for 
selection. The benefit of an MQT is the sum over all 
queries of the frequency of a query, times the 
performance change to the query (and/or update) 
when using the MQT as opposed to not using the 
MQT. (The weight of an index is defined in a similar 
way.) Formally, the weight w(A) of the MQT A is:  

               w(A) =  
)(

)(*)(

AD

qBqf
Qq
�
�                           

where Q is the set of queries in the workload that 
make use of the MQT A,  f(q) is the frequency of 
query q, B(q) is the performance change for the query 
q, and D(A) is the disk space consumed by A. These 
components are calculated as follows: 
1) Use the standard EXPLAIN facility of the 

optimizer to compute the original, “status quo” 
estimated execution cost E(q) for each query q in 
the workload with existing MQTs and indexes. 

2) Run each of the queries in the workload in a new 
EXPLAIN mode that adds the candidate MQTs 
as “virtual MQTs” to the existing MQTs.  The 

usual exploitation of MQTs by the optimizer will 
determine the best MQT for that query from 
existing and candidate MQTs. The estimated 
cost M(q) from the resulting plan for query q will 
represent the minimal cost possible for that 
query, since it had all candidate MQTs to choose 
from. 

3) Estimate the performance change of each query q 
as B(q) = E(q) - M(q) 

4) Iterate through each MQT A, and compute its 
benefit by adding the performance change of any 
query q that uses that MQT. Its cost D(A) is its 
estimated size, i.e., its estimated cardinality 
times its width, in bytes. 
As mentioned earlier, we allow the workload to 

contain both queries and updates. When more 
indexes and MQTs are introduced, queries perform 
better, but updates incur a performance penalty for 
maintaining them, either on each update statement 
(for indexes and immediate refresh MQTs) or 
periodically (for deferred refresh MQTs). The 
maintenance cost of updates and the benefit to 
queries when adding MQTs is included as part of our 
overall cost metric. The maintenance cost associated 
with an immediate refresh MQT can be determined in 
two ways: 
� Use the estimated number of rows for all MQTs 

and the estimated frequencies and number of 
updated rows for each update statement to 
calculate a rough update cost. Computing this 
increases the number of optimizer calls in our 
algorithm by only U, where U is the number of 
update statements in the workload. 

� For each MQT and update statement, determine 
the difference in estimated time for each update 
statement between using and not using the MQT. 
Computing the update cost this way would 
increase the number of calls to the optimizer in 
our algorithm by U*(|A|+1), where |A| is the 
number of candidate views. 
For each full refresh MQT A, we add to the 

“benefit” of A a penalty C(A) for materializing all of 
A with a frequency of g(A). A default setting for 
g(A) is 1, effectively including the cost of at least one 
materialization of A during the time interval for 
which we are optimizing. Thus, the weight for a full 
refresh MQT A, including maintenance, is therefore 
estimated by:   
      W(A) =  

)(

)(*)(

AD

qBqf
Qq

�
�

   - g(A) * C(A)/D(A) 

To recommend both indexes and MQTs together, 
our ADD_COMBINE algorithm (shown below) 



 
 

 

treats both indexes and MQTs as objects in the same 
Knapsack problem having a single space constraint.  
Note that indexes created on MQTs will be 
dependent on them; this dependency is recorded 
before entering the selection algorithm.  The 
algorithm starts with the empty list of candidates. We 
repeat the following iteration until we exceed the disk 
space constraint. In each iteration, we try to add into 
the list the next object with the highest weight. To 
consider the dependence between an index and an 
MQT, if the object chosen is an index on an MQT, 
and that MQT is not in the chosen set, we add the 
MQT to the list, so long as it too fits within the space 
constraint. Time complexity of ADD_COMBINE is 
O(nlogn), where n is the number of candidate MQTs. 
This arises from the cost of sorting the candidate 
MQTs by weight. 

 
   Algorithm ADD_COMBINE 

  /*  Input: A – a set of candidate objects (MQTs or 
indexes), space – the disk space for 
recommendations 

      Output: S – the set of objects to be 
recommended */ 

 
FOR each object o (MQT or index),  

Calculate its weight W(o) 
   END FOR 

Re-order the objects by descending weight W(o) 
S = { } 
WHILE (space > 0 && A is not empty) DO 

 Pick o from A  such that o has the highest 
weight W(o) 

          IF  W(o)  <  0  THEN space = 0 
          ELSE  
                 C = { o } 
                 IF (o is an index on MQT a) && (a � S)  
                 THEN 

/* Add in the MQT a, since it is not in 
the solution yet  */ 

           C = C � a  
        END IF 

                 IF ( space - D(C) ) >= 0  THEN 
/* There is space for the objects in C, 

so add them to the solution. */ 
                    space  =  space – D( C ) 

                       S  = S  � C 
                    A  = A  –  C 

        END IF 
END IF 

END WHILE 
Perform iterative random swapping phase where 

MQT and index winners in S are randomly 
swapped with other candidates in A 

RETURN S as the set of objects picked by 
ADD_COMBINE 

 

After the selection of the initial feasible solution 
by the above algorithm, the selection algorithm uses 
an iterative improvement phase that randomly swaps 
a few MQTs that are in that solution with a few of 
those that are not, as was done in [VZZLS00]. We 
execute this phase for either a user-specified time 
limit, or until we cannot improve the workload 
performance further (over a given number of 
consecutive swaps). This phase exists to compensate 
for three simplifying assumptions in our algorithm 
that could lead to sub-optimal solutions.  First, the 
performance benefit for a query Q is assigned to all 
candidate indexes and MQTs used by the query. This 
does not account for how much each candidate itself 
contributed to the performance improvement. As 
such, the benefit assigned to each candidate is 
optimistic. Second, the weighting of competing 
candidates is calculated independently. There is no 
concept of weighting an MQT A, say, given that 
another MQT, B, was not selected. Third, the 
ordering by cost/benefit weights is provably optimal 
only for the relaxation of the general knapsack 
algorithm, but may be sub-optimal under the original 
integrality constraint. The random swap phase for 
this combined selection algorithm is more 
complicated than in [VZZLS00] when we swap a 
handful of chosen items with a handful of not chosen 
items. If a new index is swapped in, we also have to 
add in any MQT on which that index depends.   For 
similar reasons, if an MQT is swapped out, the 
indexes that depend on it also have to be swapped 
out. 
 
4. Experiments 
 

We tested our algorithm to determine whether 
MQO provided useful MQT candidates, and to 
measure the overall quality of its results. The 
experiments used a simulation of an IBM DB2 UDB 
customer’s database that has an OLAP-type (star) 
schema. Though we did not have access to the 
customer’s proprietary data, we could simulate their 
database and environment by importing its schema 
and statistics. The originating system was an IBM 
DB2 UDB EEE system with 10 processing nodes, 
which is used to keep track of product sales 
information for the company in various markets, in 
various geographic territories, for various customers, 
and for different times. There were more than 15 
tables in the database, comprising roughly 400 GB of 
data. The workload we used contained 12 OLAP-like 
business queries to the star schema, each of which 
had an equal frequency of execution.  



 
 

 

The purpose of our first set of experiments was 
to: 1) measure the actual performance improvement 
from MQTs recommended by the Advisor; and 2) 
compare the benefit of MQO candidates with the 
benefit of candidates drawn from both MQO and the 
queries of the workload. To do this, we first executed 
the advisor using MQT candidates drawn from both 
MQO and directly using the queries of the workload.  
In the second run, we limited the MQT candidates to 
be only ones from MQO. Each invocation of the 
Advisor was limited to at most 5 minutes. 

The results of these runs are shown in Table 1.  
These results include the total workload estimated 
times (WETs) with no MQTs, the total workload 
estimated times when MQTs are recommended by 
the Advisor, the percentage improvement in the 
estimated run time gained by exploiting the 
recommended MQTs, and the number of MQTs 
recommended by the Advisor. The results indicated 
that our Advisor recommends a small set of high-
quality MQTs that improve performance by almost 
30%. The results also indicate that MQTs derived by 
our MQO algorithm provided most of this benefit, 
and MQTs from queries provided surprisingly little 
improvement. 

 
Type of 
MQT 
Selection 

WET 
without 
MQTs 

WET 
with 
MQTs 

% diff 
in 
WETs 

Num. 
of 
MQTs 

MQTs from 
MQO and 
queries  

493.7 
seconds 

353.0 
seconds 28.5% 7 

MQTs from 
MQO only 

493.7 
seconds 

352.0 
seconds 28.4% 4 

 
Table 1: Experiment output for MQT-only 

selection. 
 
Our second experiment selected MQTs and 

indexes together. The purpose of this experiment was 
to: 1) measure the combined performance 
improvement from MQTs and indexes recommended 
by the Advisor; and 2) demonstrate that selecting 
MQTs with indexes provides even greater 
performance improvements than just selecting only 
MQTs.  In this experiment, the WET without 
recommendations was 493.7 seconds, as before.  The 
Advisor recommended 7 MQTs and 18 new indexes, 
8 of which were on the recommended MQTs.  For 
this recommended configuration, the WET was only 
51.4 seconds, for an 89% improvement.  The fact that 
the Advisor recommended indexes on base tables as 
well as candidate MQTs indicates that the algorithm 

correctly handled the interaction of indexes and 
MQTs.  And exploiting indexes as well as MQTs 
recommended by the Advisor gives far better 
performance than just MQTs alone, as can be seen by 
comparing the results of our second to those of our 
first experiment.  
 
5. Conclusion and Future work 
 

This paper has presented a novel and efficient 
algorithm for simultaneously determining the set of 
MQTs and indexes that minimize the total execution 
cost for a given workload of SQL statements, given a 
single disk space constraint for both. The execution 
cost explicitly includes the maintenance cost that is 
due to updates, as well as the time to execute queries. 
We also detailed extensions to the database engine’s 
optimizer that exploits sophisticated multi-query 
optimization techniques to suggest superior candidate 
MQTs that will benefit multiple queries.  
Incorporating these techniques in the optimizer saves 
duplicating the optimizer’s cost model in the design 
tool, and ensures consistency with the optimizer’s 
choice of MQTs and indexes when the recommended 
items are subsequently created. By modeling the 
MQT and index selection problem as a variant of the 
well-known Knapsack problem, the DB2 Design 
Advisor is able to optimize large workloads of 
queries in a reasonable amount of time.  The new 
algorithm, and the extensions to perform multi-query 
optimization in the optimizer, have been 
implemented in IBM DB2 Universal Database 
(UDB) for Linux, UNIX®, and Windows®, , and have 
demonstrated significant improvements in the 
workloads tested to date. 
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