
 1 

Automating Layout of Relational Databases 
Sanjay Agrawal      Surajit Chaudhuri   Abhinandan Das     Vivek Narasayya 
Microsoft Research      Microsoft Research  Cornell University    Microsoft Research 
 

      
  Abstract 

The choice of database layout, i.e., how database 
objects such as tables and indexes are assigned to disk 
drives can significantly impact the I/O performance of the 
system. Today, DBAs typically rely on fully striping 
objects across all available disk drives as the basic 
mechanism for optimizing I/O performance. While full 
striping maximizes I/O parallelism, when query execution 
involves co-access of two or more large objects, e.g., a 
merge join of two tables, the above strategy may be sub-
optimal due to the increased number of random I/O 
accesses on each disk drive. In this paper, we propose a 
framework for automating the choice of database layout 
for a given database that also takes into account the 
effects of co-accessed objects in the workload faced by the 
system. We formulate the above as an optimization 
problem and present an efficient solution to the problem 
that judiciously takes into account the trade-off between 
I/O parallelism and random I/O accesses. Our 
experiments on Microsoft SQL Server show the superior 
I/O performance of our techniques compared to the 
traditional approach of fully striping each database 
object across all disk drives. 

1. Introduction 

In today’s enterprises, relational database systems 
(RDBMSs) play a crucial role in the back-end for storing 
and retrieving information. As databases continue to get 
larger, achieving good overall performance for queries 
and updates that execute against a database requires good 
I/O performance. The appropriate choice of access 
methods such as indexes and materialized views is an 
integral part of ensuring good I/O performance of queries 
that execute against the RDBMS. However, another 
significant factor affecting I/O performance of queries is 
database layout, i.e., how database objects such as tables, 
indexes, materialized views etc., are assigned to the 
available disk drives in the system.  

Traditionally, enterprise databases have relied on 
solutions that spread out each database object uniformly 
over all available disk drives, thereby obtaining good I/O 
parallelism. A typical solution is to use one or more disk 
drives, each of which may itself be an array of disks (e.g., 
a RAID (Redundant Arrays of Inexpensive Disks) array), 
and then use full striping to spread each database object 
across all disk drives. Such a solution has the advantage 
that it is relatively easy to manage since the database 

administrator (DBA) does not have to be concerned about 
which disk drive(s) each object should be placed on. 
However, as the following example shows, for queries in 
which multiple large objects (tables or indexes) are 
accessed together during execution (e.g., queries in DSS 
applications), a solution that spreads each object over all 
available disk drives may perform sub-optimally.  

Example 1. Consider queries Q3 and Q10 of the TPC-H 
benchmark [15]. The execution plan of both these queries 
accesses the tables lineitem and orders together and 
performs a Merge Join. We measured the execution time 
of these queries on a 1GB TPC-H database on Microsoft 
SQL Server 2000 for the following two database layouts 
over a set of 8 disk drives: (1) Full striping: Each table 
was spread uniformly across every disk drive (2) lineitem 
was spread uniformly on 5 disk drives, orders was spread 
uniformly on the 3 other disk drives. Q3 executed about 
44% faster on the database layout (2) as compared to (1), 
and Q10 similarly executed about 36% faster. In both 
queries, the key factor that made the second database 
layout faster was that the objects that were co-accessed 
during the execution of each query (lineitem and orders) 
were on different disk drives, thereby eliminating a large 
number of random access I/Os that were incurred in the 
first database layout.♦♦♦♦  

As illustrated by the above example, a database layout 
such as full striping, that is optimized for I/O parallelism 
may suffer in performance when the workload consists of 
queries and updates having significant co-access among 
objects. Thus, when determining a good database layout, 
there is a need to take into account the trade-off between 
benefit due to I/O parallelism and overhead due to 
random I/O accesses introduced by co-locating objects 
that are co-accessed during query execution. For 
workloads containing queries that co-access multiple 
objects, the gain in I/O performance by choosing an 
appropriate database layout other than full striping can be 
significant.  

While the specific problem of high random I/O 
accesses due to large co-accessed objects could be 
reduced by modifying the query execution strategy inside 
the server (e.g., by issuing larger reads), in this paper we 
consider an alternative approach that allows us to also 
incorporate other aspects of database layout such as 
manageability and availability requirements, which are 
crucial for practical deployment of any solution. This 
paper makes the following contributions. We present a 
framework for specifying the database layout problem – 
i.e., the problem of automatically choosing a database 
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layout that is appropriate for the workload faced by a 
database system, while satisfying manageability and 
availability requirements. We develop a cost model for 
quantitatively capturing the above trade-off between I/O 
parallelism and random I/O accesses for a given 
workload. Such a cost model is essential to allow us to 
compare the relative “goodness” of two different database 
layouts for the workload. We show that the database 
layout problem can be formulated as an optimization 
problem, and establish that this problem is provably hard. 
We present a principled approach for solving the database 
layout problem that judiciously addresses the above based 
on characteristics of the workload. Finally, we 
demonstrate via experiments on Microsoft SQL Server 
2000 that the database layouts chosen by our solution 
result in superior I/O performance than the solution of full 
striping (which only maximizes I/O parallelism).  

This work was done in the context of the AutoAdmin 
project [1] at Microsoft Research. The goal of the 
AutoAdmin project is to reduce the total cost of owning a 
RDBMS by automating important and challenging 
database administrative tasks. The rest of this paper is 
structured as follows. In Section 2, we formulate the 
database layout problem as an optimization problem, and 
describe the architecture of our solution in Section 3. In 
Section 4, we show how we exploit information about the 
workload in our solution. Section 5 presents our model of 
the I/O performance of the workload, which is the metric 
that we wish to optimize. We describe the strategy for 
solving the optimization problem in Section 6, and in 
Section 7 we present results of experiments comparing 
our solution to the approach of full striping. We discuss 
related work in Section 8 and conclude in Section 9.   

2. Problem Formulation  

In this section, we present a framework for specifying 
the database layout problem. We first describe the two 
key concepts in our framework: (1) A database layout, 
and how it can be specified in today’s commercial 
database systems. (2) Our model of the workload. We 
then present a formulation of the database layout problem 
and show how to include manageability and availability 
requirements into the formulation.  

2.1 Database Layout 

We assume that a relational database consists of a set 
of tables and physical design structures defined on the 
tables. The database objects that we consider include 
tables, indexes, materialized views, and in principle, other 
access methods that may be present in the database.  We 
denote the set of n database objects in a database by {R1, 
… Rn}. The DBA is responsible for determining the 
placement of the database objects on the available set of 

m disk drives {D1, … Dm}. Each disk drive is a single 
addressable entity that itself could be comprised of a set 
of disks bound together into a disk array. For our 
purposes, the following properties of a disk drive Dj are 
relevant: capacity Cj (e.g., 8GB), average seek time Sj 
(e.g., 10msec), average read transfer rate TRj (e.g., 
10MB/sec) and average write transfer rate TWj, and 
availability property AVAILj which can take on one of 
the following values: {None, Parity, Mirroring}. For 
example, AVAIL property of a RAID 0 disk drive or a 
stand alone disk is None; AVAIL property of a RAID5 
disk drive is Parity; and AVAIL property of a RAID 1 
disk drive is Mirroring. We discuss the relevance of the 
availability property to the database layout problem in 
Section 2.3. 

 
Today’s commercial database systems allow the DBA 

the flexibility of allocating each object over multiple disk 
drives. For example, in Microsoft SQL Server 2000, an 
object can be allocated on multiple disk drives by 
defining a filegroup, and assigning the object to the 
filegroup as shown in Figure 1. A filegroup is a collection 
of files that are present on one or more disk drives (The 
concept of filegroups is similar to tablespaces in Oracle 
and IBM DB2). Each object can be assigned to exactly 
one filegroup, although it is possible to assign more than 
one object to a given filegroup. Finally, any set of 
filegroups may overlap in the set of disk drives over 
which they are defined. For example, in the figure, we 
note that disk drive D2 is common to filegroups FG1 and 
FGk.  

When an object is assigned to a filegroup that is 
defined over more than one disk drive, the storage engine 
component of the database system distributes the pages of 
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Figure 1: A Database Layout. 
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the object in a particular manner (e.g., round robin 
fashion) across the disk drives. The allocation is done not 
at the granularity of a page, but at the granularity of a 
block, (e.g., 8 pages in Microsoft SQL Server 2000). 
Furthermore, we can control the fraction of the total 
number of blocks of an object that is allocated to each 
disk drive. Thus, a database layout is an assignment of 
each database object to a filegroup, along with a 
specification of the fraction of the object that is allocated 
to each file in that filegroup. Since, for our purposes, each 
filegroup can itself be viewed as the set of disk drives on 
which it is defined, we equivalently define a database 
layout as follows: 

Definition 1. Database Layout: A database layout is 
an assignment of each database object to a set of disk 
drives along with a specification of the fraction of the 
object that is allocated to each disk drive. ♦♦♦♦  

Definition 2. Valid Database Layout: We define a 
database layout as valid if it satisfies the following two 
criteria: (1) For each disk, the database layout does not 
violate the capacity constraint of that disk. (2) Each object 
is allocated in its entirety.♦♦♦♦  

Logically, a database layout is specified by a two-
dimensional matrix where each row corresponds to an 
object and each column corresponds to a disk drive. The 
value of a cell xij (0 ≤ xij  ≤1) in the matrix is the fraction 
of the total number of blocks of object Ri that is placed on 
disk drive Dj. We denote the size of object Ri by |Ri| and 
the capacity in blocks of disk Dj by Cj. In terms of the 
above notation, a layout is valid if it satisfies the 
following three constraints (n is the number of objects and 
m is the number of disk drives).  

0]1[],1[ ≥∈∀∈∀ ijxmjni KK   

1]1[
1

=∈∀ ∑
=
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jij
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=
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The first two constraints together ensure that each 
object is allocated sufficient disk space, and the third 
constraint ensures that the capacity constraint for each 
disk is not violated. Finally, we note that objects created 
temporarily during query execution can also have a 
significant impact on I/O performance (e.g., large sorts, 
hash joins). We can incorporate these effects by modeling 
temporary tables as objects in our formulation (which are 
stored in the tempdb database) with the constraint that all 
these objects should be stored on the same filegroup.  

2.2 Workload 

The appropriate choice of database layout depends on 
the nature of the workload faced by the system, i.e., the 

I/O access patterns of queries and updates that execute 
against the system. For example, for a single-table query 
that involves the scan of a large table (or index), it may be 
advantageous to define a layout in which the referenced 
table (or index) is allocated on a large number of disks. 
This is because the object can be scanned in parallel on 
all disks, thereby reducing the I/O response time for that 
query. On the other hand, if the query requires 
simultaneously accessing two or more large objects (e.g., 
a merge join of two tables), it may be better to allocate the 
objects on disjoint sets of disk drives. The reason is that if 
the two objects are co-located on a disk drive, then a 
potentially large number of random I/O accesses are 
introduced on that disk drive when the two objects are 
simultaneously accessed by the query, thereby making 
that disk a potential I/O bottleneck for the query.  

In this paper, we assume that a workload is provided as 
input. We define a workload as a set of SQL DML 
statements, i.e., SELECT, INSERT, UPDATE and 
DELETE statements. Optionally, each statement Q in the 
workload may have associated with it a weight (denoted 
by wQ) that signifies the importance of that statement in 
the workload. For example, weight may indicate the 
multiplicity of that statement in the workload. A 
representative workload for the system can be gathered 
using profiling tools available in modern commercial 
database systems, e.g., the SQL Server Profiler in 
Microsoft SQL Server. Alternatively, DBAs can specify a 
custom representative workload, e.g., an organization or 
industry specific benchmark.  In Section 4 we show how 
given such a workload, we can extract the relevant access 
and co-access information about database objects.  

Since we model the workload as a set of statements, 
we do not take into account the impact on database layout 
by statements that execute concurrently with one another. 
In particular, this has the effect of underestimating the 
amount of co-access between objects. Incorporating 
effects of concurrent query execution into the workload 
model by exploiting sequence and execution overlap 
information in the workload is part of our ongoing work.    

2.3 Problem Statement 

In this section, we first present a formulation of the 
database layout problem that focuses on I/O performance. 
We then show how to extend this formulation to 
incorporate important manageability and availability 
requirements. We define the I/O response time of a given 
statement as the total elapsed time spent performing I/O 
to execute that statement. Our goal is to automatically 
choose a database layout that minimizes the (weighted) 
sum of the I/O response time over all statements in the 
workload. We denote the I/O response time of a query Q 
for a given valid database layout L by Cost (Q, L). The 
formal statement of the database layout problem is shown 
in Figure 2. We now discuss how manageability and 
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availability requirements in database layout can be 
incorporated in our formulation. We model these 
requirements as additional constraints in the problem 
formulation described in Figure 2. 
 

 
 
 
 
 
 
 
 

2.3.1. Manageability Requirements.  DBAs often use a 
filegroup for manageability reasons as a unit of backup 
and restore. For example, a DBA may want to backup a 
set of frequently updated tables more often, and may want 
this set of tables to belong to a single filegroup. We 
incorporate such a specification by adding a co-location 
constraint Co-Located (Ri, Rk) to the definition of a valid 
layout. Co-Located (Ri, Rk) means that objects Ri and Rk 
must be placed in the same filegroup, i.e., we need to 
ensure that both Ri and Rk are assigned to exactly the 
same set of disk drives. Semantically, Co-Located (Ri, Rk) 
can be expressed as follows:  

)00(]1[ =⇔=∈∀ kjij xxmj K  

A second manageability requirement arises from the 
fact that while DBAs may occasionally be willing to 
completely re-design the current database layout, in many 
common situations (e.g., adding an index, adding a disk 
drive) they would prefer an incremental solution.  One 
way to incorporate such incrementality into our problem 
formulation is to introduce a constraint that that limits the 
total amount of data movement required for transforming 
the current database layout to the proposed layout. We 
note that these constraints can affect the nature of the 
optimization problem itself, and hence the solution to the 
problem as well. 

 
2.3.2. Availability Requirements. When different disk 
drives have different availability characteristics – e.g., 
some disk drives are RAID 1 (Mirroring), others are 
RAID 5 (Parity), and still others are RAID 0 (no 
availability), the DBA may want to specify an availability 
constraint Avail-Requirement (Ri) that enforces a specific 
degree of availability for object Ri. For example, the DBA 
may want Mirroring for a particular critical table. Once 
again, we can incorporate availability requirements in the 
problem formulation by introducing additional constraints 
to the validity of a layout. Semantically, Avail-
Requirement (Ri) can be expressed as: 

)0(]1[ AAVAILxmj jij =⇒>∈∀ K    

3. Architecture of Solution 

 

The architecture of our solution to the database layout 
problem is shown in Figure 3. We take as input the 
following information: (1) A database that consists of a 
set of tables as well as a set of other physical design 
objects such as indexes and materialized views. The 
database has a current database layout, which can be 
inferred by looking up the database system catalogs. (2) A 
workload file consisting of a set of SQL DML statements 
that execute against the given database. Each statement in 
the workload may (optionally) have associated with it a 
weight that denotes the importance of that statement in 
the workload. (3) A file containing a list of disk drives 
with the associated disk characteristics. The disk drives 
listed in this file need not be existing disk drives. (4) 
Optionally, manageability and availability constraints (as 
discussed in Section 2.3) that the DBA may wish to 
impose on the solution.  

We produce as output a recommendation for the 
database layout that is appropriate for the given database, 
workload, disk drives and specified constraints. Along 
with this recommendation, we include an estimate of the 
percentage improvement in I/O response time if the 
recommended layout were to be actually implemented. 
These estimates are based on our Cost Model of I/O 
response time (Section 5). A novel aspect of our solution 
is the manner in which we exploit information about the 
workload to guide the choice of an appropriate layout. In 
our architecture, the Analyze Workload component 
(described in Section 4) is a preprocessing step executed 
prior to solving the optimization problem, that extracts 
information about which objects (e.g., tables, indexes) are 
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Figure 3. Architecture Overview 
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Given: A set of database objects {R1,…Rn}, a 
workload W (set of queries/updates with associated 
weights), and a set of disk drives {D1, … Dm} 
Find:   A valid database layout with the smallest total 
estimated I/O response time for the workload, i.e., 
find a valid layout L such that for any valid layout L’ 
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Figure 2: The Database Layout Problem 
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accessed during the execution of the workload. The 
Analyze Workload component is efficient since it does 
not actually execute the workload. Instead, it examines 
the execution plan that is generated by the query 
optimizer for the statement. This information is passed 
into the Search component, which uses the information to 
guide its strategy for solving the optimization problem.  

The goal of the Search component is, to enumerate 
over the space of possible database layouts that satisfy the 
specified constraints, and choose the one that has the 
lowest total I/O response time for the given workload. 
The Search component relies on the Cost Model 
component to provide accurate information about the 
estimated I/O response time for the workload. The 
optimization problem is provably hard (Section 6.1), and 
thus the key challenge is to design an efficient and 
scalable search algorithm that ensures good quality 
recommendations in practice. Since the cost model may 
be invoked many times by the search algorithm, the 
scalability of the solution relies on the cost model being 
computationally efficient. In particular, the cost model 
estimates the I/O response time for a layout, without 
physically materializing the layout or actually executing 
the workload. We now describe each of the components 
of our solution in detail. 

4. Analyzing Workload 

There are two key aspects of the workload that affect 
the choice of database layout. The first is information 
about which objects are accessed during execution of the 
workload and total number of blocks accessed for each 
object. The second aspect is which sets of objects are co-
accessed during execution, and the total number of blocks 
co-accessed.  For the rest of the paper we refer to the 
above information as workload information. In this 
section, we describe: (a) How we represent workload 
information (Section 4.1) and (b) How such workload 
information can be extracted from a given workload 
(Section 4.2). 

4.1 Representing Workload Information 

We represent workload information in the form of a 
weighted undirected graph that we refer to as the access 
graph (denoted in this paper by G). Each node u in the 
access graph represents an object in the database. A node 
u has a weight Nu, equal to the total number of blocks of 
that object that is referenced during the execution of all 
statements in the workload. An edge exists between two 
objects u and v if there are one or more statements in the 
workload such that both u and v are co-accessed during 
the execution of that statement. The weight of the edge 
between u and v (denoted by Nu,v) is the sum over all 
statements in the workload of the total number of blocks 

of u and v that are co-accessed during the execution of the 
workload.  Note that the access graph depends on the 
actual execution plan of the statements in the workload. 
The following example shows the access graph for a 
workload consisting of two queries: 

 

Example 2:  Suppose the workload consists of two 
queries with the execution plans shown in Figure 4. Q1 
simultaneously accesses objects R1, R2 and R3, and Q2 
simultaneously accesses objects R2, R3 and R4. The total 
number of blocks of each object accessed in each query is 
also shown in the plans. Figure 5 shows the access graph 
for the workload {Q1, Q2}. The value in parenthesis on 
each node represents the node weight. The value on the 
edge represents the edge weight. For example, the edge 
between R2 and R3 shows that a total of 1300 (= 700 for 
Q1 + 600 for Q2) blocks of R1 and R2 are co-accessed in 
the workload.  ♦♦♦♦  

Finally, we note that rather than keeping information 
over all subsets of objects that are co-accessed, the access 
graph only keeps pair wise information. However, we 
have found in our experiments that this simplification 
does not significantly affect the quality of the final 
solution.  

4.2 Extracting Workload Information 

We extract workload information by analyzing the 
execution plan of each statement in the workload.  We do 
not need to execute a statement in order to examine the 
execution plan of the statement. Most modern database 
systems provide functionality to submit a statement in a 
“no-execute” mode in which the query is optimized but 
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Figure 5: Access Graph for {Q1, Q2} 
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not executed. For example, in Microsoft SQL Server 2000 
and IBM DB2, the Showplan option and EXPLAIN mode 
respectively provide this functionality. We note that our 
strategy of extracting workload information from the 
execution plan is not sensitive to the current database 
layout since today’s query optimizers ignore the current 
database layout when determining a plan. 

There are two important observations that guide the 
process of extracting information from a given execution 
plan. First, simply because two objects appear in the same 
plan does not imply that they will be co-accessed during 
the execution of the statement. The reason for this is that 
in many cases, there are blocking operators in the 
execution plan that ensure that access to one object does 
not begin until another object is completely accessed. We 
refer to the maximal subtree in the execution plan that 
does not contain any blocking operators as a non-blocking 
subplan. The example below highlights this point. 

Example 3: Consider Q5 of TPC-H benchmark. The 
query references 6 tables: nation, region, customer, 
orders, lineitem and supplier. Thus, without looking any 
further we could assume that all relations are co-accessed 
during query execution. However, in the actual execution 
plan for Q5, which is a left-deep join tree, the tables 
{nation, region, customer, orders} are co-accessed and 
similarly {lineitem, supplier} are co-accessed, but no pair 
of tables across these two sets is co-accessed. This is due 
to the fact that after nation, region, customer, and orders 
are joined, there is a blocking sort operator that appears 
prior to the join with lineitem and supplier.♦♦♦♦  

Second, even if an object is accessed in the execution 
plan, the total number of blocks of that object accessed 
may be significantly different than the total size of that 
object. The following example illustrates this point: 

Example 4: Consider an execution plan that involves 
an index seek that retrieves RIDs of the records matching 
the filter condition(s), and the records corresponding to 
those RIDs are then retrieved from the table. Note that the 
number of blocks of the table accessed in the plan can, 
and usually does differ from the total number of blocks of 
the table. This number is determined by the selectivity of 
the predicate(s) for which the index seek is being 
performed, and whether the index is clustered or non-
clustered. Thus, the access graph should reflect this 
number, rather than the total size of the table. ♦♦♦♦  

Based on the above observations, our method for 
constructing the access graph from a given execution plan 
is described in Figure 6. Our method first decomposes the 
execution plan into sub-plans, each of which consists only 
of non-blocking (i.e., pipelined) operators.  This 
decomposition is achieved by introducing a “cut” in the 
execution plan at each blocking operator. Next, for each 
database object accessed in a sub-plan, we determine the 
total number of blocks (say B) of that object accessed and 
increment the node value for that object in G by B. The 
total number of blocks of an object that is accessed can be 

determined based on the query optimizer’s estimate of the 
number of rows accessed and the estimated average size 
of each row (available from the execution plan). For each 
pair of distinct objects in the sub-plan, we add an edge to 
G (if such an edge is not already present) and increment 
the weight of the edge by the sum of the number of blocks 
of both objects.  

 

5. Cost Model 

Our goal is to find a database layout that minimizes the 
total I/O response time over all statements in the 
workload (see Section 2.3). Any search method that 
solves this problem will therefore need to compute the I/O 
response time of statements in the workload for different 
database layouts. It is, however, not feasible to compute 
the total I/O response time for the workload by actually 
altering the database layout and executing statements. 
Thus, we instead rely on a cost model that estimates the 
I/O response time for a given statement Q and database 
layout L, without physically altering the layout or 
executing the query. In this section, we describe the cost 
model that we have adopted. Note that it is not possible to 
use the query optimizer’s cost estimates for this purpose, 
because today’s query optimizers are insensitive to 
database layout.  

An effective cost model must satisfy two properties: 
(1) Accuracy – the error incurred in estimating the I/O 
response time should be as small as possible. Although 
accuracy in absolute terms is desirable, in general, it is 
difficult to accurately model the complex behavior of 
modern disk drives that perform prefetching, I/O 
reordering etc. Thus, similar to a query optimizer in a 
RDBMS, in which the goal is to accurately model the 
relative costs across different execution plans for a given 
query, our goal to accurately model the relative I/O 

Input: Workload W  
Output: Access graph G for W 
1. Initialize G to have one node for each object in 

the database, and set the node value of each 
node to 0 

2. For each statement Q ∈  W, obtain execution 
plan PQ. 

3. For each object R accessed in PQ increment the 
node value for object R in G by total number of 
blocks of R accessed in PQ 

4. For each non-blocking subplan S in PQ 
5. Introduce an edge, if one does not exist, in G 
       between each pair of distinct objects accessed  
       in S.  Increment the weight of the edge by the 
       sum of the number of blocks of the two objects  
       that define the edge.  

Figure 6. Algorithm for constructing the  
access graph. 
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response time of a given query across different database 
layouts. (2) Efficiency – the computational overhead of 
each invocation of the cost model should be small, since 
the cost model may be invoked many times by the search 
method.   

For a given layout L and a given query Q the cost 
model estimates the I/O response time, denoted by      
Cost (Q,L). When the objects required for answering the 
query are distributed over more than one disk drive, we 
define Cost (Q,L) as the I/O response time on the disk 
drive with the largest I/O response time for that query; 
i.e., the last disk drive to complete I/O for that query 
determines the I/O response time for the query. Note that 
the actual execution time of the query is, in general, 
different from the I/O response time for that query, and 
also depends on the CPU time taken by the query.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Our cost model assumes conventional magnetic disk 

technology. We model the time to service an I/O request 
as consisting of two parts: seek time and transfer time. We 
define the seek time to include the time to position the 
disk arm onto the appropriate cylinder and bring the 
appropriate sector on the cylinder under the head. The 
transfer time is the time taken to read (or write) the 

requested data once the arm and the head are in the 
appropriate position, and is inversely proportional to the 
average read (or write) transfer rate. The average transfer 
rate can be determined using any disk calibration tool or 
from the disk manufacturer specifications. Finally, we 
note that the read and write transfer rates are typically 
different.  

Figure 7 presents the pseudocode for our cost model. 
We model the transfer time (Step 5) on a particular disk 
as the time taken to transfer all blocks accessed by the 
query on that disk. The seek time (Steps 6-8) on a disk 
drive is modeled by assuming that on average all objects 
that are co-accessed on a disk drive (i.e., in a given non-
blocking sub-plan) are accessed at a rate proportional to 
the number of blocks accessed of each object. For 
example, if on a given disk drive, 10 blocks of object A 
and 20 blocks of object B are co-accessed, then we 
predict that on average, after accessing each block of A, a 
seek is necessary to access two blocks of B, followed by 
another seek to access one more block of A etc. Such a 
model is reasonable for most binary relational operators 
such as Nested Loops Join and Merge Join, as well as 
plans involving index seek followed by table lookup. 

We now illustrate how the cost model works through 
the following example. 

Example 5.  Consider the query “SELECT * FROM A, B 
WHERE A.a=B.b”. Assume we find from the execution 
plan of this query that the object A (consisting of 300 
blocks) and the object B (consisting of 150 blocks) are 
scanned together (e.g., in a Merge Join operator). Assume 
we have three identical disk drives D1, D2, D3 with 
transfer rate T and average seek time S. Consider the 
layout L1 (full striping) shown in Figure 8, in which each 
object is allocated on all three disk drives. Assuming 
equal distribution, each disk drive contains 100 blocks of 
A and 50 blocks of B. Thus the estimated transfer time on 
each disk drive is (100+50)/T and the estimated seek time 
is (2⋅50⋅S) for a total estimated I/O response time of 
(150/T + 100⋅S).  In contrast, in layout L2, D1 and D2 each 

B 
A A B 

B 
A 

A B A 

B 
A 

B 
A 

D1 D2 D3 D1 D2 D3 

D1 D2 D3 

Layout L1 

Layout L3 

Layout L2 

Figure 8. Cost model example. 

Input: Execution Plan PQ for SQL statement Q, 
Layout L 
Output: Estimated I/O response time for Q assuming 
layout L  
1. Cost = 0 
2. For each non-blocking sub-plan P of PQ 
3.    MaxCost = 0 
4.    For each disk drive Dj 
5.       TransferCost = Σi xij. B(|Ri|,P) / Tj  , where 

B(|Ri|,P) is the number of blocks of Ri accessed 
in P,  Tj is the read or write transfer rate (as 
appropriate) of disk drive Dj and the summation 
is taken over an object Ri if and only if Ri is 
accessed in P 

6.       Let  k be the number of objects on Dj 
accessed in P.  

7.       If  k > 1 Then 
         SeekCost = k. Sj. mini (xij. B(|Ri|,P))  , 

where Sj is the average seek time, and the minimum 
is taken  

 over all objects Ri that are accessed in P 
8.       Else SeekCost = 0 End If 
9.       If (TransferCost + SeekCost) > MaxCost 

Then 
10.             MaxCost = (TransferCost + SeekCost) 
11.       End If 
12.    End For 
13.    Cost += MaxCost 
14. End For 
15. Return Cost 

Figure 7: Cost Model 
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contain 150 blocks of A, and D2 and D3 each contain 75 
blocks of B. Thus D2 is the bottleneck disk drive for the 
query and its total estimated I/O response time is 
(150+75)/T + 2⋅75⋅S = (225/T + 150⋅S). In layout L3 
however, D1 and D2 each contain 150 blocks of A, and D3 
contains 150 blocks of B. Since there is no seek time on 
any of the disks and all disks contain the same number of 
blocks to be accessed by the query, the total estimated I/O 
response time of the query is 150/T. Therefore, for the 
above query, layout L3 is better than layout L1, which in 
turn is better than layout L2. ♦♦♦♦  

Our cost model is an analytical model, and thus it 
sidesteps the need to physically alter the database layout 
and actually execute queries. We present an experimental 
validation of our cost model in Section 7.  

6. Search Strategy 

In this section we present our algorithm for solving the 
database layout problem, i.e., finding a valid database 
layout having minimum total estimated I/O response time 
for the given workload. A popular solution to the 
database layout problem is full striping, where each object 
is allocated on all available disk drives (we refer to this 
solution in our experiments as FULL STRIPING)1. The 
advantage of full striping is that: (a) The method is simple 
to understand and manage (b) for each statement in the 
workload the I/O parallelism for each object accessed in 
the statement is maximized. However, this solution 
ignores the additional random I/O accesses incurred due 
to co-access of objects in queries, and can therefore under 
perform significantly.  

Our search strategy uses the cost model described in 
Section 5 for estimating the I/O response time of the 
workload for a given database layout is determined. We 
begin by showing that for this cost model, the database 
layout problem is provably hard. Thus we do not expect 
to find a polynomial time algorithm that solves the 
problem optimally. Moreover, we note that the objective 
function we are trying to optimize, i.e., Cost (Q, L) is 
non-linear. Thus, rather than using generic search 
techniques for solving non-linear optimization problems, 
which tend to be computationally expensive, we try to 
leverage domain knowledge to develop a scalable 
heuristic solution.  

6.1 Hardness of Database Layout Problem 

Claim: The decision version of the database layout 
problem presented in Section 2.3 is NP-Complete when 

                                                 
1 To ensure a fair comparison with our search method, we 
assume that the fraction of each object allocated to a disk is 
proportional to the transfer rate of that disk. 

Cost (Q,L) is defined by the cost model described in 
Section 5. 

Proof: Omitted due to lack of space. The reduction is 
from the Partition problem [7]. ♦♦♦♦  

6.2 Two-Step Greedy Enumeration 

We describe a two-step (heuristic) search method for 
the database layout problem (Section 2.3). This algorithm 
focuses on the performance aspect, and does not describe 
the modifications necessary for handling manageability 
and availability constraints. We omit these extensions due 
to lack of space. The intuition behind this method is as 
follows: the first step obtains an initial (valid) database 
layout that attempts to minimize the co-location of objects 
that are co-accessed in the workload; and the second step 
improves the initial solution by attempting to increase the 
I/O parallelism of objects in a greedy manner. We refer to 
this method in our experiments as TS-GREEDY. We 
now describe each of the two steps in more detail.  

 

Input: Workload W, Access graph G, k 
Output: Database layout L 
1. Partition nodes in G into m partitions using a 

graph partitioning algorithm so as to maximize 
the sum of edge weights across partitions. 

2. For each partition P in descending order of 
total node weight 

3. Assign objects in P to the smallest set of disk 
drive(s) ordered by decreasing transfer rate that 
can (a) hold the objects in the partition (b) Is 
disjoint from the disk drives to which previous 
partitions have been assigned. If a disjoint set 
of  disk drive(s) does not exist, find a 
previously assigned partition P’ such that sum 
of edge weights between P and P’ is smallest, 
and assign P to same set of disk drives as P’. 

4. End For  
5. Let L be the layout obtained at end of Step 4, 

and let C =  ΣQ∈ W wQ. Cost(Q, L) // L is the 
starting layout for the greedy step 

6. For each object, consider all layouts derived 
from L by adding at most k remaining disk 
drives to the object. For each layout 
considered, the object is allocated across the 
chosen disk drives in ratio of the transfer rate 
of chosen disk drives. 

7. Of all layouts explored in Step 6, let L’ be the 
layout with the smallest value of C’ = ΣQ∈ W 

wQ. Cost(Q, L’) 
8. If  C’<C, Then L = L’; C = C’ ; Goto 6 End If 
9. Return L 

Figure 9. Two-Step Greedy Search Algorithm 
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Recall that the access graph (see Section 4.1) captures 
the co-access information of objects in the workload. 
Each edge (u,v) in the co-access graph represents the total 
number of blocks of objects u and v that are co-accessed 
in the workload. The first step (Steps 1-4 in Figure 9), 
which aims to minimize the amount of co-location of 
objects that are co-accessed in the workload is, in fact, the 
problem of partitioning the nodes of the access graph into 
a given number of partitions (p) such that the sum of the 
weights of edges that go across partitions (i.e., the total 
weight of the edge cut set) is maximized. Intuitively, each 
partition contains objects that are rarely or never co-
accessed together. The above problem is in fact the well 
known graph partitioning problem, which itself is known 
to be NP-Complete [7]. Fortunately, the graph 
partitioning problem has been well studied since it has 
many applications, and there are efficient heuristic 
solutions to the problem; and we use one such algorithm 
in our solution, namely the Kernighan-Lin algorithm [9]. 
We allocate objects in a partition on to the same disk 
drive(s). One issue in using a graph partitioning algorithm 
is deciding the value of p to use, i.e., how many partitions 
to create. Since increasing p beyond the number of 
available disk drives (m) cannot further reduce the co-
location of co-accessed objects, we set p = m.   

The second step (Steps 5-8 in Figure 9), which 
proceeds iteratively, improves the solution obtained in the 
first step by attempting to increase parallelism of objects. 
In each iteration, we try to increase parallelism of each 
object by at most k (a parameter to the algorithm) 
additional disk drives on which the object is not already 
allocated. Intuitively, the parameter k controls how 
exhaustive this step of the search is. At the end of the 
iteration, the layout that reduces the cost of the workload 
the most is chosen as the starting point for the next 
iteration. The algorithm terminates when it encounters an 
iteration in which a layout with lower cost of the 
workload is not found.  

Note that for an object which has little or no co-access 
with other objects, the greedy strategy will eventually 
allocate sufficient (possibly all) disk drives and will 
thereby achieve good parallelism for that object (similar 
to FULL STRIPING). However, due to its greedy nature, 
it is possible that the algorithm will get stuck in a local 
minimum. This is because when the number of disk drives 
on which two co-accessed objects are co-located goes 
from 0 to 1, the cost of the query can increase 
significantly (due to increased seek cost), but as the 
number of disk drives on which the objects are co-located 
increases beyond 1, the cost can decrease (below the cost 
for the no overlap case). Despite the above potential 
shortcoming, in our experiments on real and synthetic 
workloads (see Section 7), we have found that TS-
GREEDY finds very good solutions (i.e., comparable to 
exhaustive enumeration in most cases) even when k = 1. 

The running time of the first step, i.e., the Kernighan-
Lin algorithm on a graph G = (V,E)  is O (|E| log |E|). 
Thus, in the worst case, when the number of edges in the 
access graph is O (n2), the running time of the first step is 
O(n2.log(n)), where n is the number of objects in the 
access graph. The greedy step runs in time O (.mkn), and 
thus the overall algorithm runs in time O(.mk+1n2 + 
n2.log(n)). In our experiments, we use k=1 and thus the 
running time of the algorithm is O(.m2n2 + n2.log(n)). In 
Section 7 we present an experimental comparison of TS-
GREEDY to FULL STRIPING for different databases 
and workloads. 

7. Experiments 

We have implemented the techniques described in this 
paper and evaluated their quality and scalability on 
Microsoft SQL Server 2000. In this section, we 
demonstrate through our experiments that: 
•  The cost model (Section 5) provides good relative 

estimations of I/O response time for different 
database layouts. 

•  The greedy search algorithm (TS-GREEDY) 
presented in Section 6.2 recommends significantly 
better layouts than full striping (FULL STRIPING) 
in almost all the test workloads/databases. 

•  The running time of TS-GREEDY scales 
quadratically with the number of disks and number of 
database objects. 

7.1 Experimental Setup 

The experiments were conducted on a 1 GHz 256 MB 
Intel Pentium III machine running Microsoft SQL Server 
2000 on Windows 2000 Server. The machine has 8 
external disks with an aggregate capacity of 48 GB. The 
characteristics of the disks viz. average transfer rates and 
seek times were gathered using the Ziff Davis Media 
WinBench calibration tool [18]. The differences between 
the fastest and slowest disks are about 30% for both the 
average transfer rate and seek times. Although our 
problem formulation allows incorporating temporary 
objects, our current implementation does not support this, 
and therefore for fair comparison, in all our experiments 
we placed tempdb on a separate (9th) disk drive.  

 Databases: We used the following databases: (1) 
TPCH1G, a 1GB TPC-H database [15]. (2) APB database 
[3] with about 250MB data and 40 tables. (3) SALES, an 
internal database that tracks the sales of the products 
within the company, is about 5GB in size and has 50 
tables. 

 Workloads: The workloads we use in the experiments 
are summarized in Table 1. We use two benchmarks, 
TPC-H and APB as a part of our experiments. Both these 
benchmarks have complex queries that reference multiple 
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tables and have aggregations. We also use SALES-45, a 
workload that is used to analyze the sales data in the 
company; the queries in SALES-45 reference 8 tables on 
average. WK-CTRL workloads were generated to study 
the specific aspects of the scheme viz. the validation of 
cost model itself. These workloads have a small number 
of queries; the queries have count (*) aggregate and 
access almost all the table data, here lineitem, orders, 
partsupp and part tables in TPC-H schema. 

 

7.2  Experimental Results 

Validation of Cost Model: In this experiment, we 
validate the cost model described in Section 5. We use the 
following workloads: TPCH-22 (the original benchmark), 
WK-CTRL1 and WK-CTRL2 (see Table 1) on the 
TPCH1G database. For each workload, we estimate the 
cost of a layout using our cost model and then actually 
execute the workload after materializing the layout. For 
execution times, we used the average of three cold runs.  

 
 
 
 
 
 
 
 
 
 
 

 
 
In the first part of the experiment, we analyze the 

behavior of individual TPCH-22 queries. We use a layout 
where lineitem is on 5 disks and orders is allocated on 3 
disks and are completely separated; all other tables are 
striped across all 8 disks. Table 2 shows the improvement 
of the above layout in actual execution times and 

estimated I/O response times compared to FULL 
STRIPING. For Q3, in which the I/O response time for 
accessing the objects is about 90% of the execution time, 
we get good estimation. We observe similar behavior for 
queries 9, 10, 12 and 18 where cost of accessing lineitem 
and orders accounts for most of the query cost. For query 
21, we get a relatively poor approximation. This is 
because lineitem is used multiple times in the query and 
reflects the shortcoming of the cost model in capturing 
effects of buffering. 

In the second part of the experiment, we generated 4 
layouts, where in each case, the layout of all the TPCH1G 
tables is determined at random. We also generated 5 
controlled layouts with different degrees of overlap 
between the lineitem and orders tables, as well as the 
FULL STRIPING layout (for a total of 10 different 
layouts). We used the following workloads: (a) WK-
CTRL-1, (b) WK-CTRL-2 (c) TPCH-22 and (d) Five 
synthetically generated workloads with 25 queries each 
on TPCH1G with varying selection and join conditions, 
Group By and Order By clauses. For each workload and 
layout combination, we computed the cost as predicted by 
the cost model and then measured the actual execution 
time. For each pair of layouts we order them first by 
estimated cost and then by actual execution times for a 
given workload. We observe that the order in execution is 
matched by the cost model in 82% of these cases. On 
analyzing some of the cases where the cost model fails to 
identify the right order, we found those workloads to have 
large I/O time accessing temporary objects (e.g., ORDER 
BY/GROUP BY operations on large number of rows). 
This is because in our implementation of the cost model, 
we did not factor in the I/O times of temporary objects.  

Effectiveness of TS-GREEDY: First we compare the 
estimated quality of the TS-GREEDY search strategy to 
FULL STRIPING.  Figure 10 shows the comparison for 
different workloads. Note that for controlled workloads 
viz. WK-CTRL1 and WK-CTRL2, the estimated 
improvement is more than 25% higher compared to FULL 
STRIPING; this results from recommendations where the 
tables – lineitem and orders are placed on separate disks. 
For TPCH-22, TS-GREEDY recommends a layout where 
lineitem and orders are separated (5 disks for lineitem and 
3 for orders) and so are partsupp and part (5 disks for 
partsupp and 3 for part). This separation causes the 
respective joins between these tables to be faster, however 
the individual table scans becomes slightly slower (about 
5% slower for table scans on an average) as the I/O 
parallelism per table is reduced. The overall estimated 
improvement is about 20%. On materializing the above 
layout, we observe actual improvement of about 25%. We 
observe that on the SALES database, the estimated 
improvement is about 38%. The queries in the SALES 
database involve multi-table joins – TS-GREEDY 
separates the two largest tables in the database on 4 disks 
each; these tables are joined in almost all the queries. The 

Name #queries Remarks 

TPCH-22 22 Standard TPC-H benchmark 

SALES-45 45 Real-world workload on 
SALES database 

APB-800 800 Workload on APB database 

WK-
SCALE 
(N) 

N=100 
to 3200 
queries 

Workloads of increasing size 
on TPCH1G 

WK-
CTRL1 

5 Workloads of two table joins 
on TPCH1G with a simple 
aggregation. 

WK-
CTRL2 

10 Mix of single table and multi-
table queries, with a simple 
aggregation. 

Queries Execution 
Improvement 

Estimated 
Improvement 

Query 3 44% 54% 
Query 9 30% 40% 
Query 10 36% 51% 
Query 12 32% 55% 
Query 18 16% 31% 
Query 21 40% 9% 
TPCH-22 25% 20% 

Table 2: Estimated vs. Actual for  
TPCH-22 queries compared to full striping 

Table 1: Summary of workloads  
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results remained similar even the number of disks is 
increased for SALES up to 64. For APB-800, the TS-
GREEDY scheme recommends the same layout as FULL 
STRIPING. This is not surprising since the database has 
two large tables and several small tables; however no 
queries co-access the two large tables. This experiment 
demonstrates that TS-GREEDY can significantly 
outperform FULL STRIPING for workloads in which 
large objects are co-accessed. 

 

 

 
Scalability of TS-GREEDY: In this experiment we 

demonstrate the scalability of TS-GREEDY with respect 
to (a) number of disks and (b) number of objects in 
database. For (a), we use all 3 databases viz. TPCH-22 for 
TPCH1G, APB-800 for APB and SALES-45 for SALES. 
Figure 11 shows the running time of TS-GREEDY as the 
number of disks are varied from 4 to 64 (doubled in every 
step).  We plot the ratio of the running time as compared 
to the running time for 4 disks. The figure shows that the 
increase in running time is slightly more than quadratic 
(about 6 times as the number of disks is doubled). This is 
in line with our expectation from analysis of running time 
of the algorithm (see Section 6.2). Adding more disks also 
increases the evaluation time for each layout explored; 
and that accounts for “more than quadratic” increase in 
TS-GREEDY running time.  

Running Time vs. Number of Disks
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In the second part of experiment we study the variation 

of the running time of TS-GREEDY as the number of 

database objects is increased. We generate TPCH1G-N, 
versions of TPCH1G database where N is the number of 
copies of all the tables in database TPCH1G; this allows 
us to vary the number of objects in database. For example, 
TPCH1G-2 has 2 copies of all the tables in the database. 
We fix the number of disks to 8 and use N = 1, 2, 3, 4, 5 
and 6. We generate workloads for TPCH1G-N as follows: 
we generate TPCH-88-N, all with 88 queries using the 
qgen query generation program of the TPC-H benchmark 
[15]. Next we randomly replace table names in a query 
with one of the N copies of table names using a program. 
This allows us to have almost identical workloads for the 
experiment. Figure 12 shows the running time of TS-
GREEDY compared to the time taken for N=1. We 
observe that the running time of the greedy scheme is 
quadratic – it increases about 40 times when N=6. Based 
on these experiments, we expect that that TS-GREEDY 
scales well up to a few hundred disks and database 
objects.  

Running Time vs. number of objects
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8. Related Work 

There are three key distinguishing features of our work 
that compared to previous work. First, we exploit 
workload information at the level of SQL query execution 
plans. In previous work, workload information is either 
specified in terms of the average I/O request rate and 
average I/O request size per file in the system [2,14]. 
Second, to the best of our knowledge, ours is the first 
paper to exploit knowledge of co-access of objects in 
determining an appropriate layout. Third, unlike the work 
in [2,14] in which the goal is to minimize the average 
time of an I/O request executing against the system, our 
goal is to minimize the total I/O response time for a given 
workload.  

There has been a significant amount of work in the 
area of storage administration and management. Early 
work in the HP AutoRAID project [17] demonstrated how 
the problem of configuring disk arrays could be made 
simpler by automatically moving data between two 
different RAID levels (RAID 1 vs. RAID 5) depending on 
I/O access patterns. More recently, the Minerva paper [2] 

Quality: TS-GREEDY vs. FULL STRIPING 

0% 
10% 
20% 
30% 
40% 
50% 

WK- 
CTRL1 

WK- 
CTRL2 

TPCH- 
22 

SA 
LES-45 

APB- 
800 

WORKLOAD 

% Estimated  
Improvement  

Figure 10: Comparing quality of TS-
GREEDY to FULL STRIPING 

Figure 12: Running Time of TS-GREEDY vs. 
Number of Objects. 

Figure 11: Running Time of TS-GREEDY vs. 
Number of Disks. 
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addresses the problem of not only determining which disk 
arrays (RAID 1/0 or RAID 5) to place the objects on 
based on workload information, but also looks at the 
capacity planning issues, i.e., what is the minimum 
number of disk drives that would support the throughput 
requirements of the workload. Similar to our approach, 
they also develop a cost model for predicting impact of 
different layouts on the workload.  

The work in [14] studies a related problem – assuming 
files are always striped across all available disks, what 
should be the striping unit, i.e., the granularity at which 
the files should be striped. The paper also explores the 
issue of dynamic load balancing similar to [17], where 
disk bottlenecks due to hot data on a given disk are 
reduced by moving blocks to other disks.  The issues 
studied in this paper are complementary to our work. We 
note that tissue of dynamic load balancing has also been 
explored in several other studies, including [1,4,6, 
10,11,16]. These above studies are in contrast to our 
“offline” approach where we are interested in achieving a 
good static layout for a (given) fixed workload.  

In [12], the issue of whether to cluster a file (relation) 
on a single disk (or as few disks as possible) or to 
decluster it across all disks is explored via a simulation 
study. The clustering option is similar to the first step of 
our solution (see Section 6.2) where we try to minimize 
co-access in the initial layout by placing an object on as 
few disk drives as possible. However, this may not be the 
best solution since it potentially gives up I/O parallelism 
that is explored in our second (greedy) step. In [9], it is 
argued that striping data across all disks is not appropriate 
for OLTP workloads. They propose a scheme in which 
only the parity data is striped and the database objects 
themselves are not necessarily striped across all disks. 

Another area of related work [5,13] is studying how to 
decluster a single table across a set of disks for the case of 
grid-queries. The goal of these papers is to maximize I/O 
parallelism for the above restricted class of queries. 
Unlike these papers in our work (a) co-access of objects is 
a significant issue that affects the optimization problem 
and hence the search strategies, and (b) queries are more 
general, i.e., arbitrary SQL.  

9. Summary 

In this paper we present a framework for addressing 
the problem of assigning database objects to disk drives to 
optimize the I/O performance of the workload, while 
incorporating manageability and availability 
requirements. We show that exploiting knowledge of co-
access of database objects is important in achieving a 
database layout with better I/O performance as compared 
to full striping. An important area of future work is 
extending the cost model to capture effect of concurrent 
execution of statements in the workload. 
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