
282 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 31, NO. 3, AUGUST 2001
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Abstract—A data warehouse (DW) contains multiple views ac-
cessed by queries. One of the most important decisions in designing
a DW is selecting views to materialize for the purpose of efficiently
supporting decision making. The search space for possible materi-
alized views is exponentially large. Therefore heuristics have been
used to search for a near optimal solution. In this paper, we explore
the use of an evolutionary algorithm for materialized view selection
based on multiple global processing plans for queries. We apply a
hybrid evolutionary algorithm to solve three related problems. The
first is to optimize queries. The second is to choose the best global
processing plan from multiple global processing plans. The third
is to select materialized views from a given global processing plan.
Our experiment shows that the hybrid evolutionary algorithm de-
livers better performance than either the evolutionary algorithm
or heuristics used alone in terms of the minimal query and main-
tenance cost and the evaluation cost to obtain the minimal cost.

Index Terms—Data mining, data warehousing, evolutionary al-
gorithms, materialized view selection.

I. INTRODUCTION

DATA warehousing is an approach to the integration of data
from multiple, possibly very large, distributed, heteroge-

neous databases and other information sources. A data ware-
house (DW) is a repository of integrated information available
for querying and analysis. To avoid accessing the original data
sources and increase the efficiency of the queries posed to a DW,
some intermediate results in the query processing are stored in
the DW. These intermediate results stored in a DW are called
materialized views. On a sufficiently abstract level, a DW can
be seen as a set of materialized views over the data extracted
from the distributed heterogeneous databases. There are many
research issues related to DWs [1], among which materialized
view selection is one of the most challenging ones. On one hand,
materialized views speed up query processing. On the other
hand, they have to be refreshed when changes occur to the data
sources. Therefore, there are two costs involved in materialized
view selection: the query processing cost and the materialized
view maintenance cost. The question we are interested in is:
what views should be materialized in order to make the sum of
the query performance and view maintenance cost minimal?
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The materialized view selection involves a difficult trade-off
between query performance and maintenance cost.

• Materializing all the views in a DW can achieve the best
performance but at the highest cost of view maintenance.

• Leaving all the views virtual will have the lowest view
maintenance cost but the poorest query performance. The
word “virtual” here means that no intermediate result will
be saved in the DW.

• We can have some views materialized (e.g., have those
shared views materialized), and leave others virtual. In
this way we may achieve an optimal (or near optimal)
balance between the performance gain and maintenance
cost. Unfortunately the materialized view selection design
problem has been proven to be NP-hard [2]. Heuristics
have to be used in practice to find a near optimal solution
to this problem.

The problem considered in this paper can be described as fol-
lows. Based on a set of frequently asked DW queries, select a set
of views to materialize so that the total query and maintenance
cost is minimized. Our problem is related to three different is-
sues:

1) query optimization;
2) multiple query optimization;
3) materialized view selection.
The existing algorithms for solving one or more of the above

optimization problems can be classified into four categories ac-
cording to [3].

Deterministic algorithmsusually construct or search a solu-
tion in a deterministic manner either by applying heuristics or
by exhaustive search.

Randomized algorithmspursue a completely different
approach. First, a set of moves are defined. These moves
constitute edges between different solutions in the solution
space. Two solutions are connected by an edge if and only
if they can be transformed into one another by exactly one
move. Each of the algorithms performs a random walk along
the edges according to certain rules, terminating as soon as no
more applicable ones exist or a time limit is exceeded. The best
solution encountered so far will be the result.

Evolutionary algorithmsuse a randomized search strategy
similar to biological evolution in their search for good solu-
tions. Although an evolutionary algorithm resembles random-
ized algorithms in this aspect, the approach shows enough dif-
ferences to warrant a consideration of its own. The basic idea
is to start with a random initial population and generate off-
spring by random variations (e.g., crossover and mutation). The
“fittest” members of the population survive the subsequent se-
lection; the next generation is based on these. The algorithm

1094–6977/01$10.00 © 2001 IEEE



ZHANG et al.: EVOLUTIONARY APPROACH TO MATERIALIZED VIEWS SELECTION 283

terminates as soon as there is no further improvement over a pe-
riod or after a predetermined number of generations. The fittest
individual found is the solution.

Hybrid algorithmscombine deterministic and randomized al-
gorithms in various ways, e.g., solutions obtained by determin-
istic algorithms can be used as starting points for randomized
algorithms or as initial population members for evolutionary al-
gorithms; a deterministic algorithm can be applied to the best
solution found by an evolutionary algorithm, etc.

In [4], the technique used was to reduce the solution space by
considering only the relevant elements of the multidimensional
lattice. Unfortunately, potential good solutions may be lost in
the reduction process. In [2] and [5], the goal was to select an
appropriate set of views that minimizes the total query response
time and/or the cost of maintaining materialized views, given a
limited amount of resources such as materialized time, storage
space, or total view maintenance time. A greedy heuristic al-
gorithm was used. The performance of the algorithm is highly
problem dependent because the greedy nature of the algorithm
makes it susceptible to poor local minima.

In [6], a framework and algorithms were described for an-
alyzing the issues in materialized view selection in order to
achieve the best combination of good query performance and
low view maintenance cost. The 0–1 integer programming tech-
nique was used to obtain the optimal global processing plan and
then a heuristic algorithm was employed to select the materi-
alized views based on this global processing plan. It is worth
noting that the optimal global processing plan found in such a
way may not lead to the best set of materialized views. It is pos-
sible that another near optimal global processing plan may lead
to a better set of materialized views. The two optimization prob-
lems should not be separated.

This paper adopts a holistic approach to materialized view se-
lection and considers local processing plans, global processing
plans, and materialized view selection in an integrated frame-
work and algorithm [7]. The relationships among the three can
be explored and exploited by our algorithms. Hence algorithms
proposed in this paper are more likely to find better solutions
than other methods, [2], [4], [5], [6], [8]–[10].

Although evolutionary algorithms have been applied to query
optimization in recent years [3], [11], [12], because of its ro-
bustness and strong global search ability, few attempts have
been made to make use of evolutionary algorithm’s power in
solving more complex problems, such as materialized view se-
lection. In this paper, we propose several hybrid evolutionary
and heuristic algorithms for optimizing global processing plans
and materialized view selection. The hybrid algorithms combine
evolutionary algorithm’s power in global search with heuristic’s
ability in fine-grained local search to find a good set of material-
ized views. Our experimental results show that the hybrid algo-
rithms performed better than the existing algorithms. They also
performed better than either evolutionary algorithms or heuristic
algorithms alone.

In this paper, the data model is based on selection-projec-
tion-join (SPJ) model rather than the multidimensional model.

The rest of this paper is organized as follows. Section II
explains and formulates the problem of materialized view

selection based on global processing plans. It also describes
the cost model considered in this paper. Section III presents
our algorithms. A two-level framework is introduced. The
evolutionary algorithm and the heuristics used are explained in
detail, including crossover, mutation, and selection used. The
section also proposes methods for dealing with infeasible solu-
tions during search. Section IV gives the experimental results
using our evolutionary approach. Several hybrid algorithms are
tested and evaluated using a number of randomly generated
problems of variable sizes. Finally Section V concludes the
paper by summarizing the main results and suggesting future
work.

II. M ATERIALIZED VIEW SELECTION

Materialized view selection consists of three optimization
problems, i.e., query optimization, multiple query optimization,
and materialized view selection. It should be pointed out that a
set of locally optimized queries may not be optimal anymore if
multiple queries are considered together. Similarly, an optimal
set of multiple queries does not guarantee the optimal selection
of materialized views because a different set may lead to
better materialized views. It is important to consider all three
problems together in materialized view selection.

A. Query Optimization

A lot of research has been done on this topic. A valuable
review can be found in [13] and [14]. In query optimization,join
operation is one of the most expensive operations. For simplicity
we only considerjoin operation in this paper. That is, query
optimization will be regarded as join order optimization here.

Assume that a database is given a set of relations
. A local processing plan is defined as a

query graph, in which all relations are leaf nodes and all
operations (e.g., join, projection, and selection) are specified
as its inner nodes. Since we only considerjoin operation, a
local processing plan for a query can be regarded as a binary
join tree that consists of all relations as its leaves and join
operations as its inner nodes. The edges are labeled with the
join predicateand join selectivity.The join predicatemaps
tuples from the Cartesian product of the adjacent nodes to
false, true depending on whether the tuple is to be included

in the result or not. Thejoin selectivityis the ratio between the
included and total number of tuples.

The search space for query optimization is the set of all pos-
sible local processing plans. A point in the search space is one
particular plan. Every point of the search space has a cost as-
sociated with it. Since there are lots of methods, such as nested
loop, sort-merge, and hash loop, to perform a join operation,
there exist several cost functions with respect to the processing
tree. For example, the left trees in Fig. 1 denote nested loop join
method. For nested loop join with no indices available, each
tuple of the outer relation must be checked against every tuple
of the inner relation, so the cost of is .

In the solution space, the left-deep processing trees have been
of special interest to researchers. The left-deep tree is a tree
where inner relation of each join is a base relation. In this paper,
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Fig. 1. Examples of join trees using nested loop join (left trees) and sort-merge
join (right trees) operations.

TABLE I
POSSIBLENESTING ORDERS FORJOIN OPERATIONS[3]

we focus on left-deep trees. Forrelations, Table I [3] illustrates
how big the solution space is. In fact, it has been shown that
query optimization is NP-hard [15].

In Fig. 1, the costs of two join trees in (1) may be different
due to different join methods. The costs of two join trees in (2)
are different as well although the structure is the same, because
the join orders of relations are different. The left tree in (2) is

while the right tree in (2) is
. Assume that the sizes for R1, R2, and R3 are 20, 30, and

40, respectively. The cost of the left tree in (2) is derived as
follows. First calculate the cost of as

. If results in 20 tuples, then the
cost of will be . Hence
the total cost is . However, the cost of the
right tree in (2) will be different. The cost of is

. If results in 10 tuples,
then the cost of will be , i.e.,
a total cost of .

Given a set of processing plans for a query, the goal of query
optimization is to find a processing plan with the lowest query
processing cost. There has been some work on applying evo-
lutionary algorithm to query optimization [3], [11], [12], [16],
[17]. In this paper, query optimization is only part of a large
problem—materialized view selection.

Fig. 2. Global processing plan should be a directed acyclic graph (DAG).

B. Multiple Query Optimization

A DW is a repository of integrated information available for
querying analysis. One issue we have to deal with is multiple
query processing. In [18]–[20], a systematic look at the problem
has been presented.

Assume that a set of queries are
given. For every query , there exists at least one processing
plan, called a local processing plan. A global/multiple pro-
cessing plan for corresponds to a global plan that provides
a way to compute the results forqueries. A global/multiple
processing plan can be constructed by choosing one plan for
each query and then merging them together. A locally optimal
plan is referred to as the cost plan for processing a query
individually. This corresponds toquery optimization. The
globally optimal plan is referred to as the global processing
plan by merging the common parts of individual local plans.

The multiple query optimization (MQO) problem can be
formulated as follows. Given sets of local processing plans

, with being the
set of possible plans for query , , is the
number of local processing plans for. Find a global/multiple
processing plan by selecting one plan from eachsuch that
the cost (query cost) of the global/multiple processing plan is
minimized.

In general, the union of locally optimal plans does not nec-
essarily form a globally optimal plan. Hence, we cannot find
the globally optimal plan by simply combining locally optimal
plans. A heuristic algorithm is often needed in searching for a
globally optimal plan. In [19] and [20], a heuristic search algo-
rithm is proposed, which only examines a fraction of all pos-
sible global processing plans. Some potentially good plans may
be lost. By using the evolutionary approach, our algorithms are
capable of carrying out global search and looking into all pos-
sible combinations of individual plans.

When combining multiple query processing plans, i.e., mul-
tiple join trees, the produced global processing plan should be a
directed acyclic graph (DAG) not a tree. This is shown in Fig. 2.
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C. Materialized View Selection

In DW, selected information is extracted in advance and
stored in a repository. A DW can therefore be seen as a set of
materialized views defined over the sources. The problem we
are dealing with now is how to select the views to be material-
ized so that the cost of query processing and view maintenance
for all the nodes in a global processing plan is minimized.

An easy approach would be to use exhaustive search to find
the optimal set of materialized views on the set of queries. How-
ever, this approach is impractical if the search space is big. It
has been shown that materialized view selection is NP-hard [2].
Heuristic algorithms have to be used to trim the search space in
order to get the results quickly [2], [4], [5]. However, the perfor-
mance of a heuristic algorithm depends heavily on the quality
of heuristics which may be difficult and/or costly to obtain in
practice. Heuristic algorithms also get stuck easily in a local op-
timum. Compared with heuristic algorithms, evolutionary algo-
rithms have many advantages, such as searching from a popu-
lation of points using probabilistic transition rules. In order to
avoid an exhaustive search in the whole solution space and ob-
tain a better solution than that obtained by heuristic methods,
we propose a new evolutionary approach to materialized view
selection.

D. Cost Model of Materialized View Selection

1) Motivating Example:Our example is taken from a DW
application which analyzes trends in sales and supply [6]. The
relations and the attributes of the schema for this application are
the following.

Item(I_id, I_name, I_price)
Part(P_id, P_name, I-id)
Supplier(S_id, S_name,P_id, City, Cost,

Preference)
Sales(I_id, Month, Year, Amount)

There are five queries, as follows.

Q1: Select P_id, min(cost), max(cost)
From Part, Supplier
Where Part.P_id Supplier.P_id

And P_name in “spark_plug,” “gas_kit”
Group by P_id

Q2: Select I_id,
sum(amount number min_cost)

From Item, Sales, Part
Where I_name in “MAZDA,” “NISSAN,”

“TOYOTA”
And year 1996
And Item.I_id Sales.I_id
And Item.I_id Part.I_id
And Part.P_id

(Select P_id, min(cost) as min_cost
From Supplier
Group by P_id)

Group by I_id

Q3: Select P_id, month sum(amount)
From Item, Sales, Part
Where I_name in “MAZDA,” “NISSAN,”

“TOYOTA”
And year 1996
And Item.I_id Sales.I_id
And Part.I_id Item.I_id
Group by P_id, month

Q4: Select I_id, Sum(amount I_price)
From Item, Sales
Where I_name in “MAZDA,” “NISSAN,”

“TOYOTA”
And year 1996
And Item.I_id Sales.I_id
Group by I_id

Q5: Select I_id, avg(amount I_price)
From Item, Sales
Where I_name in “MAZDA,” “NISSAN,”

“TOYOTA”
and year 1996
and Item.I_id Sales.I_id
Group by I_id.

Fig. 3 gives a possible global query processing plan for the
five queries listed above, in which the local access plan for in-
dividual queries are merged based on the shared operations on
common data sets. We call it the multiple view processing plan
(MVPP).

The query access frequencies are labeled on the top of each
query node. For simplicity, we assume that all the base relations
Item, Sales, Part , and Supplier are updated only
once for a certain period of time. In Fig. 3, we abbreviate one
thousand as “k,” one million as “m,” and one billion as “b.” For
example, the cost for obtainingtmp3 by usingtmp1 is 36 m.

Now we have to decide which node(s) to materialize so that
the total query and view maintenance cost is minimal. It is
obvious from this graph that we have several alternatives for
choosing the set of materialized views: e.g.,

1) materialize all the application queries;
2) materialize some of the intermediate nodes (e.g.,tmp1,

tmp3, tmp7 , etc.);
3) leave all the nonleaf nodes virtual.

The cost for each alternative can be calculated in terms of query
processing and view maintenance.

In order to calculate the cost, we make the following assump-
tions.

• There are 1 k tuples in theItem relation.
• On average, each item has ten parts, therefore, there are

ten k tuples inPart table.
• There are 50 k tuples insupplier table.
• There are ten years worth of sales in theSales table from

1987 to 1996. On average, each item is sold 100 times a
month resulting in 12 m entries in the sales relation.

• The cost of answering a query is proportional to the
number of rows in the table used to construct.

• The methods for implementing select and join operations
are linear search and nested loop.
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Fig. 3. Motivating example.

TABLE II
COSTS FORDIFFERENTVIEW MATERIALIZATION STRATEGIES

Based on the above assumptions, the cost for each operation
node in Fig. 3 is labeled at the right-hand side of the node.

Now we can calculate the costs of different view material-
ization strategies. Suppose there are some materialized interme-
diate nodes. For each query, the cost of query processing is query
frequency multiplied by the cost of query access from the ma-
terialized node(s). The maintenance cost for materialized view
is the cost used for constructing this view (here we assume that
recomputing is used whenever an update of involved base rela-
tion occurs). The total cost for an MVPP is the sum of all query
processing and view maintenance costs. Our goal is to find a
set of nodes to be materialized so that the total cost is minimal.
Table II gives some materialized view design strategies and their
costs. There are many other possible strategies for materializing
views in this example.

2) Cost Model: A global processing plan is a DAG and can
be described by where is the
set of vertices and is the set of arcs over . The DAG is
constructed as follows.

1) Create a vertex for every relational algebra operation in a
query tree, every base relation, and every distinct query.

2) For , is the relation generated by corre-
sponding vertex . can be a base relation, interme-
diate result while processing a query or the final result for
a query.

3) For any leaf vertex (that is, it has no edges coming into
the vertex), corresponds to a base relation. Letbe
a set of leaf nodes.

4) For any root vertex (that is, it has no edges going out of
the vertex), corresponds to a global query. Letbe
a set of root nodes.

5) If the base relation or intermediate result relation
corresponding to vertexis needed for further processing
at another node introduce an arc .

6) For every vertex , let denote the source nodes
which have edges pointed to. For any , .
Let be the set of descendants of.

7) For every vertex , let D( ) denote the destination nodes
to which is pointed. For any , .

8) For is the cost of query accessing ,
is the cost of maintaining based on changes

to the base relation , if is materialized.
9) and are query and maintenance frequency, respec-

tively.
A linear cost model [21] is used to calculate the cost of query
. The cost of answering is the number of rows in the table

that query used to construct .
Let be a set of materialized views, be the cost to

compute from the set of materialized views , and be
the cost of maintenance whenis materialized. Then the total
query processing cost is . The total mainte-
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nance cost is . The total cost of the materialized
views is

Given a global processing plan, the objective is to minimize
the above cost.

E. Problem Specification

The materialized view selection problem can be formulated as
follows. Given sets of local processing plans ,
where is the set of possible plans for
query , , and is the number of local processing
plans for , select a set of views to be materialized over a global
processing plan by “merging” local processing plans (one out
of each set ) such that the sum of query and maintenance
cost is minimized. It is worth emphasizing that this problem is
different from MQO [6].

1) MQO is to find an optimal processing plan for multiple
queries executed at the same time by sharing some tem-
porary results which are common subexpressions, while
our problem is to find a set of relations (which can be any
intermediate result from query processing) to be materi-
alized so that the total cost (query processing and view
maintenance) is minimized.

2) In MQO, a global processing plan is derived from the
idea that temporary result sharing should be less expen-
sive compared to a serial execution of queries. However,
this may not be true for every possible database state. For
example, sharing a temporary result may prove to be a
bad decision when indices on base relations are defined.
The cost of processing a selection through an index or an
existing temporary result clearly depends on the size of
these two structures. In our problem, if an intermediate
result is materialized, we can establish a proper index on
it afterwards if necessary. Therefore, it is guaranteed that
there is a performance gain if an intermediate result is
materialized. If the intermediate result happens to be a
common subexpression which can be shared by more than
one query, then there is a view maintenance gain as well.

3) In MQO, the ultimate goal is to achieve the best perfor-
mance, while our problem has to take into consideration
both query and view maintenance cost.

4) In MQO, the input is a set of queries and the output is
a globally optimal plan. In our case, the input is a set of
global queries and their access frequencies, and a set of
base relations and their update frequencies. The output
is one or more global processing plans with materialized
views that minimize the total query and maintenance cost.

Just like we cannot guarantee to get the globally optimal pro-
cessing plan from the union of locally optimal plans, we cannot
guarantee to get the optimal selection of materialized views
from the optimal global processing plan. This is because the
optimization of global processing plans does not consider the
maintenance cost. For example, an optimal global processing
plan may have optimal query cost 333 m. Based on this global
processing plan, we may obtain materialized views with the total

Fig. 4. Structure of our algorithms.

Fig. 5. Abstract framework of evolutionary algorithms.

cost (query cost and maintenance cost) of 370 m. However, with
a nonoptimal global processing plan that has query cost 350 m,
we may get materialized views with a total cost of 360 m, which
is less than 370 m.

III. A LGORITHMS FORMATERIALIZED VIEW SELECTION

Our algorithms are designed based on the two-level structure
as shown in Fig. 4. The hierarchical structure helps to make a
large problem manageable. The higher level algorithm searches
for good global processing plans from local processing plans
based on queries. The lower level algorithm selects the best set
of materialized views with the minimal total cost for a partic-
ular global processing plan. In principle, any optimization al-
gorithms can be used at the higher and lower levels. In prac-
tice, however, a compromise often needs to be made between
the speed of optimization and the quality of the solutions. This
paper investigates different hybrid algorithms where an evolu-
tionary/heuristic algorithm is used at the higher/lower level.

When an evolutionary algorithm is implemented at the higher
level to search for global processing plans, the fitness of each in-
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Fig. 6. Mapping from a DAG (i.e., genotype) to a binary string (i.e., phenotype).

dividual (i.e., global processing plan) is defined by the total cost
of the best set of materialized views (i.e., the outcome from the
lower level optimization). If another evolutionary algorithm is
implemented at the lower level, the fitness of the best individual
from the lower level population will be used. More details about
a lower level evolutionary algorithm can be found in [22] where
the higher level optimization problem was not addressed.

A. Evolutionary Algorithms

Evolutionary algorithms have been shown to solve many real-
world problems with success [23]–[27]. They use population-
based stochastic search strategies and are unlikely to be trapped
in a poor local optimum. They make few assumptions about a
problem domain yet are capable of incorporating domain knowl-
edge in the design of chromosome representation and variation
operators. They are particularly suited for large and complex
problems where little prior knowledge is available. The results
presented in the next section illustrate that a properly designed
evolutionary algorithm can be a very promising method for ma-
terialized view selection. Fig. 5 shows an abstract framework of
evolutionary algorithms. Details of our implementation are de-
scribed in the following subsections.

B. Representation of Solutions

Representation is one of the key issues in problem solving.
Good representations often lead to a more efficient algorithm
for solving a problem. Different problems usually require dif-
ferent representations. In our two-level structure introduced ear-
lier, two different representations are needed to represent global
processing plans and materialized views.

1) Representation of Global Processing Plans:Given
queries , a global processing plan (i.e., an
individual in a higher level evolutionary algorithm) can be
represented by a vector of integers, ,
where indicates the th local processing plan for query

. For example, assume that there are three queries, ,
and , and the respective number of local processing plans
are 12, 120, and 120. Then[4], [89], [70] represents a global
processing plan consisting of the fourth processing plan for

, the 89th processing plan for , and the 70th processing
plan for where the range for each gene is [1 12], [1
120], and [1 120], respectively.

2) Representation of Materialized Views:The represen-
tation of materialized views in the lower level optimization
is based on DAGs. Each DAG is encoded as a binary string.

Fig. 6 shows how to map a DAG into a binary string. One of
the reasons of using binary strings, rather than graphs directly
is to simplify the implementation of evolutionary algorithms
(including crossover, mutation, and selection). It is our future
work to investigate evolutionary algorithms that will operate
on DAGs directly.

For example, the breadth-first traverse of the DAG in
Fig. 3 results in the following ordered list:[Q5,0], [Q4,0],
[Q3,0], [Q2,0], [Q1,0], [result5,0], [result1,0], [result2,0],
[result4,0], [result3,0], [tmp9,0], [tmp3,0], [tmp4,0], [tmp8,0],
[tmp7,0], [tmp10,0], [tmp1,0], [tmp2,0], [tmp5,0], [tmp6,0].
A binary string of 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
means that no node is materialized. A string of
0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,1,1means that nodesQ4,

Q1, result5, tmp2, tmp5, and tmp6are materialized, but
others are not.

C. Fitness Functions in our Evolutionary Algorithms

Since the objective in our cost model is to minimize the sum
of query and maintenance cost while the fitness function of an
evolutionary algorithm is usually defined as maximization, we
have applied the following simple transformation to define the
fitness function from the cost

when

otherwise

where denotes the cost function and is the fitness
function.

There are a lot of ways of choosing the coefficient . It
can be set to the largest value in the current population or
the largest in the last generations.

If an evolutionary algorithm is used at the lower level, each
individual in a population represents a set of materialized views.
Its fitness depends on the total query and maintenance cost as
described above.

If an evolutionary algorithm is used at the higher level, each
individual in a population represents a global processing plan.
Its fitness is determined as follows.

1) Find a set of materialized views that minimize the total
query and maintenance cost for this global processing
plan. This step involves optimal selection of materialized
views on a fixed global processing plan, i.e., the lower
level optimization in Fig. 4.

2) Transform this minimal cost to the fitness of the indi-
vidual.
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D. Crossover

Crossover encourages information exchange among different
individuals. It helps the propagation of useful genes in the pop-
ulation and assembling better individuals. One-point crossover
is used in our evolutionary algorithms for its simplicity and ef-
fectiveness in our case.

In a lower level evolutionary algorithm, the crossover is im-
plemented as a kind of cut-and-swap operator [28]. For example,
given two individuals

and

where indicates that nodesQ5, Q4, Q1, result4, tmp3,
tmp1, tmp2, tmp5, and tmp6are materialized and means
that nodes Q4, Q1, result5, result2, result3, tmp9, tmp7, tmp2,
tmp5, and tmp6 are materialized. Assume the crossover point
(indicated by symbol) is chosen at random as seven, between
one and 20. Then the two offspring after crossover are

and

where indicates that nodesQ5, Q4, Q1, result2, result3,
tmp9, tmp7, tmp2, tmp5, and tmp6are materialized and
shows that nodesQ4, Q1, result5, result4, tmp3, tmp1, tmp2,
tmp5, and tmp6are materialized. Two new sets of materialized
views are generated which have inherited genes from both par-
ents.

In a higher level evolutionary algorithm, one-point crossover
is such implemented that crossover points can only be between
genes, but not in a gene. For example, given two individuals

and

where the symbol indicates the crossover point. The two off-
spring are

and

E. Mutation

Although crossover can put good genes together to generate
better offspring. It cannot generate new genes. Mutation is
needed to create new genes that may not be present in any
member of a population and enables the algorithm to reach all
possible solutions (in theory) in the search space.

Mutation in a lower level evolutionary algorithm is imple-
mented as a bit-flipping operator. Given an individual

Fig. 7. Example of invalid result.

A random position between onr and 20 will be generated first.
Say it is 16. Then the 16th bit will be flipped from 0 to 1 with a
probability to produce the offspring

Mutation in a higher level evolutionary algorithm is imple-
mented differently due to a different chromosome representa-
tion. Rather than flipping a bit, a random number in a certain
range will be generated as a new gene in an individual. For ex-
ample, given an individual

Assume the third gene is randomly selected for mutation. Fur-
ther assume that the third gene has a total of 120 possible pro-
cessing plans. Then a random number between one and 120 is
generated, say 16. The offspring after mutation will be

F. Dealing With Invalid Solutions

In the lower level of optimization as shown in Fig. 4, “invalid”
solutions may be generated during search, e.g., by crossover
and/or mutation. Fig. 7 shows such an example of possible in-
valid solutions. Ifv2 has the same ancestors (excludingv1 ) as
v1 , it is unnecessary to materializev2 . Any solutions that ma-
terializev2 in such a case will be regarded as “invalid.” In some
cases, invalid solutions can be prevented from being generated
or repaired after generation. We will describe how we deal with
invalid solutions in the following subsections.

1) Claim: In Fig. 7, letv1 andv2 be two nodes in a global
processing plan represented by a DAG. Ifv1 is a parent ofv2
andv2 has the same ancestors (excludingv1 ) asv1 , then there
is no need to materializev2 afterv1 has been materialized.

Proof: Let be the cost of computing from the
set of materialized views . If bothv1 andv2 are materialized,
then the total cost is

(1)
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Becausev1 and v2 have the same parents, (1) can be
rewritten as

Sincev1 is materialized beforev2, v2 cannot be reached
by any queries, i.e., . Hence the above equation
becomes

(2)

If we only materializev1 , the total cost will be

Because , it is clear that materializing bothv1 and
v2 has a higher cost than materializingv1 alone. This is not
surprising because materializingv2 increases the maintenance
cost without reducing any query costs. Therefore, in the pres-
ence of the materialized viewv1 , we should not materializev2
under the conditions mentioned above.

For example, given the global processing plan in Fig. 3,
assume that an offspring00 000 000 001 100 101 100
is generated after crossover and mutation. The offspring
indicates that tmp9, tmp3, tmp7, tmp1, tmp2
should be materialized. However, tmp3, tmp9 are
ancestors of tmp1, tmp2 . The offspring is invalid
because it has a higher cost than another individual
00 000 000 001 100 100 000 which has fewer ma-

terialized views. It could be argued that individuals having
higher costs might not harm optimization. They do reduce the
efficiency of optimization.

There are several methods for dealing with an invalid solu-
tion. One is to constrain crossover and mutation such that only
valid solutions are generated. Another is to allow invalid so-
lutions but penalize them by introducing a penalty term in the
fitness function. The first method can prevent invalid solutions
from being generated, but may introduce a complex search land-
scape because valid regions may be separated by invalid regions.
Moving from one valid region to the other may be difficult.
Good solutions in a different valid region may not be found.
The second method introduces another difficult problem, i.e.,
how to select an optimal penalty coefficient in order to strike
the right balance between minimizing the cost and minimizing
the penalty.

We use the repair approach in this paper. That is, invalid so-
lutions are allowed to be generated, but will be repaired into
valid ones before evaluating their fitness. Fig. 8 shows the repair
algorithm. The algorithm was designed according to theclaim
proved in the previous section.

Fig. 8. Repair algorithm.

G. Selection

Selection in evolutionary algorithms determines the proba-
bility of individuals being selected for reproduction. The prin-
ciple here is to assign higher probabilities to fitter individuals.
Tournament selection is used in our algorithms because it can
better maintain a relatively smooth selection pressure over gen-
erations. It also facilitates future parallel implementation of our
algorithms since it does not require global information.

Tournament selection is implemented by conducting tourna-
ments among a number of randomly selected individuals. The
winner is selected to survive for reproduction. The tournament
size (i.e., the number of individuals involved in a tournament) is
an important parameter that determines the selection pressure.
A large size introduces a strong pressure, which often leads to
fast convergence to a local optimum. The quality of the local
optimum depends quite a lot on the start conditions of the algo-
rithm. A small tournament size introduces a weak selection pres-
sure, which often implies slow convergence but the algorithm
is less likely to be trapped in a poor local optimum. Following
suggestions from the literature [29] and our own preliminary ex-
periments, the tournament size was chosen to be between four
and seven in our study.

IV. EXPERIMENTAL STUDIES

All our experiments were performed under SUN OS 5.5. The
simulation software was built on the basis of the Simple Ge-
netic Algorithm [30] and GAlib [31]. In particular, we have
implemented our lower level evolutionary algorithm based on
the Simple Genetic Algorithm program [30] which is a C-lan-
guage translation and extension of the original Pascal code [28].
Our higher level evolutionary algorithm was implemented using
the GAlib [31], which is a library containing different chromo-
some representation schemes, evolutionary operators, selection
schemes, etc.

A. Evolving Materialized Views Based on a Given Global
Processing Plan

The lower level algorithm shown in Fig. 4 optimizes materi-
alized view selection on a given global processing plan. Yanget
al. [6] have recently proposed a very good heuristic algorithm
for optimal selection of materialized views on a fixed global pro-
cessing plan. Fig. 9 compares the results from Yanget al.’s algo-
rithm [6] and those produced by our evolutionary algorithm on a
number of randomly generated problems with up to 50 queries.
The number of source relations involved in each query varies
from three to eight. The nodes of the DAG varies from 24 to
200. We compare our algorithm to Yanget al.’s [6] because their
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Fig. 9. Comparison between our evolutionary algorithm and Yanget al.’s
heuristic algorithm [6].

algorithm is one of the best existing ones using the same cost
model.

It is clear from Fig. 9 that the evolutionary algorithm out-
performed the heuristic algorithm consistently. The advantage
of the evolutionary algorithm was most prominent when the
number of queries was small. This large advantage decreased
gradually as the number of queries increased. However, since
the total cost increases dramatically as the number of query
grows, a little difference in Fig. 9 may translate into a large
amount of cost saving in practice.

B. Evolving Global Processing Plans and Materialized Views

Without loss of generality, query processing plans used in our
experiments are generated at random as a set of left-deep binary
trees. It has been argued that good solutions are likely to exist
among these trees [3]. The experiments were run over randomly
generated queries. These queries share at least two relations.
For our experiments, we have generated up to 60 queries. Each
query has from six to 720 different query processing plans. The
solution space for such problems is huge. For example, with 10
queries, there are possible global processing plans. For
each global processing plan, there are 40 join nodes on average
and the space of possible sets of materialized views is .
Hence, the size of the whole solution space is .

In order to evaluate and gain a better understanding of our
evolutionary algorithm, we compare it with the following
heuristic method for generating a near optimal global pro-
cessing plan.

1) Create optimal global processing plans by merging lo-
cally optimal plans.

2) Compare the total query cost of each global processing
plan and select the one which gives the lowest query cost.

Fig. 10 shows the results produced by different hybrid algo-
rithms, where EA1 denotes the higher level evolutionary algo-
rithm for optimizing global processing plans, EA2 represents
the lower level evolutionary algorithm for materialized view se-
lection given a global processing plan, H1 indicates the higher

Fig. 10. Comparison of different hybrid algorithms.

level heuristic algorithm described above, and H2 is the lower
level heuristic algorithm used in [6]. Since most heuristic al-
gorithms designed for materialized view selection differ in the
cost models and problem formulations used, meaningful com-
parisons with them are difficult. Yanget al.’s algorithm [6]
was chosen as H2 because they used the same cost model and
problem formulation as ours. Their algorithm is also one of the
best under such a model.

The implementation details of each hybrid algorithm are as
follows.

1) EA1-EA2 represents the algorithm where EA1 is used at
the higher level for optimizing global processing plans
and EA2 is used at the lower level for materialized view
selection.

2) EA1-H2 uses H2 to select materialized views for each
global processing plan.

3) EA1-H2-EA2 is similar to EA1-H2, but applies EA2 to
further improve the best global processing plan found by
EA1-H2.

4) H1-EA2 uses H1 for optimizing global processing plans
and EA2 for materialized view selection.

5) H1-H2 uses H1 for optimizing global processing plans
and H2 for materialized view selection for each global
processing plan.

All results shown in Fig. 10 have been averaged over five
independent runs. The costs have been normalized using the
H1-H2 algorithm as the reference. From the results shown
in Fig. 10, we can observe that EA1-H2-EA2 and EA1-EA2
seemed to perform very well when the number of queries was
small. As the number of queries increased, H1-EA2 emerged
as the best performer among all hybrid algorithms. It seemed to
cope with the increasing number of queries very well without
any sudden increase in the total cost.

Fig. 10 shows that hybrid algorithms outperformed the
H1-H2 heuristic algorithm in almost all cases, which illustrates
the advantage of having an evolutionary algorithm to search
a larger part of a huge space and thus find a better solution.
However, using both EA1 and EA2 proved to be very CPU
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TABLE III
COMPARISON OFH1-H2 AND EA1-H2 BASED ON 30 INDEPENDENTRUNS

OF EACH EXPERIMENT

TABLE IV
COMPARISON OFH1-EA2 AND EA1-H2 BASED ON 30 INDEPENDENTRUNS

OF EACH EXPERIMENT

intensive and time-consuming. To evaluate an individual in
EA1, EA2 had to be executed. This is the reason why we
did not carry out experiments with EA1-EA2 for problems
with seven or more queries. Hybrid algorithms that employ
a mixture of heuristic and evolutionary algorithms should be
adopted to strike a balance between the solution quality and the
computation time needed to achieve such quality.

Out of the two hybrid algorithms, EA1-H2 and H1-EA2,
H1-EA2 seemed to perform better and more consistent. Al-
though the additional EA2 after EA1-H2 (i.e., the EA1-H2-EA2
algorithm) helped to improve EA1-H2’s results when the
number of queries was smaller than 13; it did not help much
for problems with a larger number of queries. The difference
in results from EA1-H2 and H1-EA2 suggests that the best
hybrid algorithm should employ a heuristic algorithm to find a
good global processing plan and use an evolutionary algorithm
to explore possible materialized views on it. EA1-H2 did
not perform as well probably because of inaccurate fitness
evaluation by H2. In EA1, the fitness of each individual (i.e., a
global processing plan) is evaluated by running H2 and using
its result to calculate the fitness. Because H2 is a heuristic
algorithm only, its solution may be far away from the actual
optimum. When this happens, a good global processing plan
may be “miscalculated” as poor and thus would be unable to
survive in the EA1 population. More analysis is needed in
the future to confirm whether this is the primary reason for
EA1-H2’s poor performance.

To better understand and further evaluate different hybrid
algorithms, i.e., H1-EA2 and EA1-H2, extensive experiments
have been carried out to compare them using a statistically
sound method. Each experiment reported below has been
repeated independently 30 times with the number of queries
being five, 10, 20, 40, and 60. The results are summarized in

TABLE V
COMPARISON OFTIME TO FIND THE GLOBAL OPTIMAL SOLUTION BY

DIFFERENTALGORITHMS

Tables III and IV. As shown in Table III, EA1-H2 performed
significantly better than H1-H2 on all but the first problem
when the number of queries was five, in which case no statisti-
cally significant difference was found. According to Table IV,
H1-EA2 performed significantly better than EA1-H2 for all
test cases. It is clear that H1-EA2 is the best hybrid algorithm
for all the problems we have tested.

To compare execution time of different algorithms using the
exhaustive search algorithm as a benchmark, we have carried
out additional experiments to evaluate the time taken by each al-
gorithm to find the global optimal solution. Table V summarizes
the experimental results. It is clear from the table that hybrid al-
gorithms are able to find the global optimal solution within a
reasonable amount of time.

V. CONCLUSION

The materialized view selection based on multiple query pro-
cessing plans is a hard combinatorial optimization problem. Pre-
vious work has either assumed a fixed global processing plan for
materialized view selection or only examined multiple query op-
timization without considering materialized view selection. We
have argued in this paper that a good selection of materialized
views can only be found by taking a holistic approach and con-
sidering the optimization of both global processing plans and
materialized view selection. A two-level structure for material-
ized view selection was proposed. It has facilitated greatly the
development of several hybrid algorithms.

In this paper, we have studied several hybrid heuristic and
evolutionary algorithms. Pure evolutionary algorithms were
found to be impractical due to their excessive computation
time. Pure heuristic algorithms were unsatisfactory in terms
of the quality of the solutions they found. Hybrid algorithms
that combine the advantages of heuristic and evolutionary
algorithms seem to perform the best in our experiments.
Our experimental results show that applying an evolutionary
algorithm to either global processing plan optimization or
materialized view selection for a given global processing plan
can reduce the total query and maintenance cost significantly.
Our study also shows that simply combining or merging
optimal local processing plans will not produce an optimal
global processing plan in most cases. Finding an optimal global
processing plan with optimal materialized views requires a two
level hierarchy as described by Fig. 4.
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While our hybrid algorithms perform better than the heuristic
algorithm in terms of cost savings, they often require longer
computation time. While the heuristic algorithm typically took
seconds to run, a hybrid algorithm typically took minutes, or
even hours to run. Finding the suitable trade-off between the
computation time and the cost saving will be a topic for future
studies.

Once a data warehousing design is completed and imple-
mented, it will be used frequently and may last for a long time.
Hence it is very important to optimize the design as much as
possible, even if this means a relatively long design time. It is
time that is well spent. In this case, the extra computation time
incurred by employing an evolutionary algorithm during the de-
sign stage is well justified. It is expected to lead to substantial
cost savings when the DW is in use.
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