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An Evolutionary Approach to Materialized Views
Selection in a Data Warehouse Environment

Chuan Zhang, Xin YaoSenior Member, IEEEand Jian Yang

Abstract—A data warehouse (DW) contains multiple views ac-

The materialized view selection involves a difficult trade-off

cessed by queries. One of the mostimportant decisions in designingpetween guery performance and maintenance cost.

a DW is selecting views to materialize for the purpose of efficiently
supporting decision making. The search space for possible materi-
alized views is exponentially large. Therefore heuristics have been
used to search for a near optimal solution. In this paper, we explore
the use of an evolutionary algorithm for materialized view selection
based on multiple global processing plans for queries. We apply a

» Materializing all the views in a DW can achieve the best
performance but at the highest cost of view maintenance.

* Leaving all the views virtual will have the lowest view
maintenance cost but the poorest query performance. The
word “virtual” here means that no intermediate result will

hybrid evolutionary algorithm to solve three related problems. The
first is to optimize queries. The second is to choose the best global
processing plan from multiple global processing plans. The third
is to select materialized views from a given global processing plan.
Our experiment shows that the hybrid evolutionary algorithm de-
livers better performance than either the evolutionary algorithm
or heuristics used alone in terms of the minimal query and main-
tenance cost and the evaluation cost to obtain the minimal cost.

be saved in the DW.

» We can have some views materialized (e.g., have those
shared views materialized), and leave others virtual. In
this way we may achieve an optimal (or near optimal)
balance between the performance gain and maintenance
cost. Unfortunately the materialized view selection design
problem has been proven to be NP-hard [2]. Heuristics
have to be used in practice to find a near optimal solution
to this problem.

The problem considered in this paper can be described as fol-
lows. Based on a set of frequently asked DW queries, select a set

ATA warehousing is an approach to the integration of dafg views to materialize so that the total query and maintenance
cost is minimized. Our problem is related to three different is-

from multiple, possibly very large, distributed, heteroge:
neous databases and other information sources. A data walt=>" L
house (DW) is a repository of integrated information available 1) duery optimization;
for querying and analysis. To avoid accessing the original data2) Multiple query optimization;
sources and increase the efficiency of the queries posed to a DW3) Materialized view selection.
some intermediate results in the query processing are stored in N€ existing algorithms for solving one or more of the above
the DW. These intermediate results stored in a DW are call@gtimization problems can be classified into four categories ac-
materialized views. On a sufficiently abstract level, a DW ca¢Prding to [3].
be seen as a set of materialized views over the data extracteB€terministic algorithmsaisually construct or search a solu-
from the distributed heterogeneous databases. There are nfi@fyin @ deterministic manner either by applying heuristics or
research issues related to DWs [1], among which materializZ8¥y exhaustive search.
view selection is one of the most challenging ones. On one handRandomized - algorithmspursue a completely different
materialized views speed up query processing. On the otf@proach. First, a set of moves are defined. These moves
hand, they have to be refreshed when changes occur to the §9pstitute edges between different solutions in the solution
sources. Therefore, there are two costs involved in materialiZfce- Two solutions are connected by an edge if and only
view selection: the query processing cost and the materialiZzédhey can be transformed into one another by exactly one
view maintenance cost. The question we are interested in 89ve. Each of the algorithms performs a random walk along
what views should be materialized in order to make the sum %€ €dges according to certain rules, terminating as soon as no

the query performance and view maintenance cost minimal?More applicable ones exist or a time limit is exceeded. The best
solution encountered so far will be the result.
Evolutionary algorithmsuse a randomized search strategy
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terminates as soon as there is no further improvement over a pelection based on global processing plans. It also describes
riod or after a predetermined number of generations. The fittelse cost model considered in this paper. Section Ill presents
individual found is the solution. our algorithms. A two-level framework is introduced. The
Hybrid algorithmscombine deterministic and randomized alevolutionary algorithm and the heuristics used are explained in
gorithms in various ways, e.g., solutions obtained by determigetail, including crossover, mutation, and selection used. The
istic algorithms can be used as starting points for randomizselction also proposes methods for dealing with infeasible solu-
algorithms or as initial population members for evolutionary ations during search. Section IV gives the experimental results
gorithms; a deterministic algorithm can be applied to the bassing our evolutionary approach. Several hybrid algorithms are
solution found by an evolutionary algorithm, etc. tested and evaluated using a number of randomly generated
In [4], the technique used was to reduce the solution spacegpblems of variable sizes. Finally Section V concludes the
considering only the relevant elements of the multidimensiongdper by summarizing the main results and suggesting future
lattice. Unfortunately, potential good solutions may be lost work.
the reduction process. In [2] and [5], the goal was to select an
appropriate set of views that minimizes the total query response
time and/or the cost of maintaining materialized views, given a

limited amount of resources such as materialized time, storageyiaterialized view selection consists of three optimization

space, or total view maintenance time. A greedy heuristic groblems, i.e., query optimization, multiple query optimization,

gorithm was used. The performance of the algorithm is highhd materialized view selection. It should be pointed out that a

problem dependent because the greedy nature of the algorigwnof locally optimized queries may not be optimal anymore if

makes it susceptible to poor local minima. multiple queries are considered together. Similarly, an optimal
In [6], a framework and algorithms were described for arset of multiple queries does not guarantee the optimal selection

alyzing the issues in materialized view selection in order wf materialized views because a different set may lead to

achieve the best combination of good query performance ametter materialized views. It is important to consider all three

low view maintenance cost. The 0-1 integer programming tegbroblems together in materialized view selection.

nigue was used to obtain the optimal global processing plan and

then a heuristic algorithm was employed to select the mategj- Query Optimization

alized views based on this global processing plan. It is worth . .

noting that the optimal global processing plan found in such aA lot of research has been done on this topic. A valuable

way may not lead to the best set of materialized views. It is porseV'eW can befound in [13] and [14]. In query optimizatigmi

. : : operation is one of the most expensive operations. For simplicity
sible that another near optimal global processing plan may lev?/%eonly consideijoin operation in this paper. That is, query

to a better set of materialized views. The two optimization prodptimization will be regarded as join order optimization here.
lems should not be separated.

Thi doots a holisti ht terialized vi Assume that a databasP is given a set of relations
IS paper adopts a holistic approach to matenalized view sg- Ry, ..., R,. A local processing plan is defined as a

Ie}ctlon an(;;l cons@el_rs Igce_ll pr0c1|355|_ng plans,_g!{obal tprccix;ess ry graph, in which all relations are leaf nodes and all
plans, an mat_enalze vr:ew sle _ec“ohf? inan in egrza eh raMSHerations (e.g., join, projection, and selection) are specified
work and algorithm [7]. The relationships among the three ¢ its inner nodes. Since we only considen operation, a

be explore.d an.d exploited by our a_lgorithmg Hence algorit_h%%al processing plan for a query can be regarded as a binary
proposed in this paper are more likely to find better solutiongi, yree that consists of all relations as its leaves and join

than other methods, [2], [4], [5], [6], [8]-[10]. _ operations as its inner nodes. The edges are labeled with the
Although evolutionary algorithms have been applied to AUe[¥in predicateand join selectivity. The join predicate maps
optimization in recent years [3], [11], [12], because of its rqypjes from the Cartesian product of the adjacent nodes to
bustness and strong global search ability, few attempts haygise, trug depending on whether the tuple is to be included
been made to make use of evolutionary algorithm’s power jj the result or not. Thipin selectivityis the ratio between the
solving more complex problems, such as materialized view sgcjuded and total number of tuples.
lection. In this paper, we propose several hybrid evolutionary The search space for query optimization is the set of all pos-
and heuristic algorithms for optimizing global processing plangple local processing plans. A point in the search space is one
and materialized view selection. The hybrld algorithms Combi%rticu|ar p|an_ Every point of the search space has a cost as-
evolutionary algorithm’s power in global search with heuristic’sociated with it. Since there are lots of methods, such as nested
ability in fine-grained local search to find a good set of materialoop, sort-merge, and hash loop, to perform a join operation,
ized views. Our experimental results show that the hybrid algfere exist several cost functions with respect to the processing
rithms performed better than the existing algorithms. They ala@e. For example, the left trees in Fig. 1 denote nested loop join
performed better than either evolutionary algorithms or heuristigethod. For nested loop join with no indices available, each
algorithms alone. tuple of the outer relation must be checked against every tuple
In this paper, the data model is based on selection-projex-the inner relation, so the cost OR; 1 Ry) is || Ry]| * || Ra]|-
tion-join (SPJ) model rather than the multidimensional model. In the solution space, the left-deep processing trees have been
The rest of this paper is organized as follows. Section &if special interest to researchers. The left-deep tree is a tree
explains and formulates the problem of materialized viewhere inner relation of each join is a base relation. In this paper,

Il. MATERIALIZED VIEW SELECTION



284 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 31, NO. 3, AUGUST 2001

Tree 1 Tree2

A N o \ /

m ) g - A X&
RI R2 R3 RI R2 R4

Merging
O DAG
R2
Rt R2 R3 RI R3

Fig.1. Examples of join trees using nested loop join (left trees) and sort-merge

join (right trees) operations. - R1 R2 R3

TABLE |

POSSIBLENESTING ORDERS FORJOIN OPERATIONS|3] Fig. 2. Global processing plan should be a directed acyclic graph (DAG).

Relations(n) Processing Trees solutions(Trees*n!) B. Multlple Query Optimization
1 1 1
2 1 2 . . . . . .
\ \ o A DW is a repository of integrated information available for
) querying analysis. One issue we have to deal with is multiple
5 120 . .

query processing. In [18]-[20], a systematic look at the problem
5 1 1,680 has been presented.
6 42 30,240 .
. - 665,250 Assume that a set of queriég = {Q, Qo, ..., Q,} are
. 20 17297’280 given. For every query);, there exists at least one processing
. 430 518’918’400 plan, called a local processing plan. A global/multiple pro-

’ T cessing plan for) corresponds to a global plan that provides

10 4,862 17,643,225,600 . .

a way to compute the results farqueries. A global/multiple
11 16,796 670,442,572,800 . .

processing plan can be constructed by choosing one plan for
12 58,786  28,158,588,057,600

each query and then merging them together. A locally optimal
plan is referred to as the cost plan for processing a qagry

we focus on left-deep trees. Forelations, Table | [3]illustrates |nd|V|duaIIy._Th|s corr_esponds tauery optimization. The_
I{)bally optimal plan is referred to as the global processing

how big the solution space is. In fact, it has been shown th%] . R
query optimization is NP-hard [15]. plan by merging the common parts of individual local plans.

In Fig. 1, the costs of two join trees in (1) may be different The multiple query optimization (MQO) problem can be
due to different join methods. The costs of two join trees in (3prmulated as follows. Given sets of local processing plans
are different as well although the structure is the same, becadige /2, - - -» P, With P = {pi1, pi2, ..., pix, } being the
the join orders of relations are different. The left tree in (2) i§€t Of possible plans for quer;, 1 < 4 < n, k; is the
((Ry 1 Ry) <1 R3) while the right tree in (2) i$( Ry <1 Rg) number_of local processing plans Q. Find a global/multiple
R,). Assume that the sizes for R1, R2, and R3 are 20, 30, apkpcessing plan by selecting one plan from e&gtsuch that
40, respectively. The cost of the left tree in (2) is derived 48€ cost (query cost) of the global/multiple processing plan is
follows. First calculate the cost 6, i Ry ) as|| Ry ||+||Re|| = Minimized.

20 * 30 = 600. If (R; p Ry) results in 20 tuples, then the In general, the union of locally optimal plans does not nec-
cost of ((R; »1 Ry) 1 Rs) will be 20 x 40 = 800. Hence essarily form a globally optimal plan. Hence, we cannot find
the total cost i500 4+ 800 = 1400. However, the cost of the the globally optimal plan by simply combining locally optimal
right tree in (2) will be different. The cost ¢fR; >« R3) is plans. A heuristic algorithm is often needed in searching for a
[|R1||*|| R3|| = 20+40 = 800. If (R, p1 R3) resultsin 10 tuples, globally optimal plan. In [19] and [20], a heuristic search algo-
then the cost of(R; 1 R3) < Ry) will be 10« 30 = 300, i.e., rithm is proposed, which only examines a fraction of all pos-
a total cost oR00 + 300 = 1100. sible global processing plans. Some potentially good plans may

Given a set of processing plans for a query, the goal of qudrg lost. By using the evolutionary approach, our algorithms are
optimization is to find a processing plan with the lowest queryapable of carrying out global search and looking into all pos-
processing cost. There has been some work on applying esiirle combinations of individual plans.
lutionary algorithm to query optimization [3], [11], [12], [16], When combining multiple query processing plans, i.e., mul-
[17]. In this paper, query optimization is only part of a largéiple join trees, the produced global processing plan should be a
problem—materialized view selection. directed acyclic graph (DAG) not a tree. This is shown in Fig. 2.




ZHANG et al. EVOLUTIONARY APPROACH TO MATERIALIZED VIEWS SELECTION 285

C. Materialized View Selection

Q3: Select P_id, month sum(amount)

In DW, selected information is extracted in advance afd©™m !tem, Sales, Part

stored in a repository. A DW can therefore be seen as a set/§fiere |_name in
materialized views defined over the sources. The problem we
are dealing with now is how to select the views to be material-
ized so that the cost of query processing and view maintenance
for all the nodes in a global processing plan is minimized.

{"MAZDA,” “NISSAN,”
‘TOYOTA"}

And year =1996
And Item.l_id =Sales.l id
And Partl_id =ltem.l_id

An easy approach would be to use exhaustive search to fing Group by P_id, month

the optimal set of materialized views on the set of queries. Ho
ever, this approach is impractical if the search space is big.
has been shown that materialized view selection is NP-hard [W
Heuristic algorithms have to be used to trim the search space in
order to get the results quickly [2], [4], [5]. However, the perfor-

mance of a heuristic algorithm depends heavily on the quality
of heuristics which may be difficult and/or costly to obtain in
practice. Heuristic algorithms also get stuck easily in a local o
timum. Compared with heuristic algorithms, evolutionary alg

rithms have many advantages, such as searching from a poWu
lation of points using probabilistic transition rules. In order to
avoid an exhaustive search in the whole solution space and ob2Nd yea
tain a better solution than that obtained by heuristic methods,
we propose a new evolutionary approach to materialized view

selection.

D. Cost Model of Materialized View Selection

$@4: Select I_id, Sum(amount

«|_price)
From ltem, Sales
here | _name in
“TOYOTA”}

{*"MAZDA,” “NISSAN,”

And year =1996
And Item.l id =Sales.l id
Group by I|_id

5. Select |_id, avg(amount
-rom Item, Sales
here |_name in

x|_price)

{"MAZDA,” “NISSAN,”
“TOYOTA"}

r =1996
and Item.l_id =Sales.l_id

Group by I_id.

Fig. 3 gives a possible global query processing plan for the
five queries listed above, in which the local access plan for in-

1) Motivating Example:Our example is taken from a DW dividual queries are merged based on the shared operations on
application which analyzes trends in sales and supply [6]. Themmon data sets. We call it the multiple view processing plan
relations and the attributes of the schema for this application {VPP).

the following.

Item(l_id, 1_name, |_price)

Part(P_id, P_name, I-id)

Supplier(S_id, S_name,P_id, City, Cost,
Preference)

Sales(l_id, Month, Year, Amount)

There are five queries, as follows.

Q1: Select P_id, min(cost), max(cost)

From Part, Supplier

Where Part.P_id =Supplier.P_id
And P_name in {“spark_plug,” “
Group by P_id

Q2: Select |_id,
sum(amount xnumber xmin_cost)

From Item, Sales, Part

Where I_name in {*MAZDA,” “NISSAN,”

gas_kit”

“TOYOTA"}

And year =1996

And Item.l_id =Sales.l_id
And Item.l_id =Part.l_id
And Part.P_id =

(Select P_id, min(cost) as min_cost
From Supplier
Group by P_id)

Group by I_id

}

The query access frequencies are labeled on the top of each
query node. For simplicity, we assume that all the base relations
Item, Sales, Part , and Supplier are updated only
once for a certain period of time. In Fig. 3, we abbreviate one
thousand as “k,” one million as “m,” and one billion as “b.” For
example, the cost for obtaininmp3 by usingtmpl is 36 m.

Now we have to decide which node(s) to materialize so that
the total query and view maintenance cost is minimal. It is
obvious from this graph that we have several alternatives for
choosing the set of materialized views: e.g.,

1) materialize all the application queries;

2) materialize some of the intermediate nodes (¢vp.l,

tmp3, tmp7 , etc.);

3) leave all the nonleaf nodes virtual.

The cost for each alternative can be calculated in terms of query
processing and view maintenance.

In order to calculate the cost, we make the following assump-
tions.

e There are 1 k tuples in théem relation.

* On average, each item has ten parts, therefore, there are
ten k tuples inPart table.

« There are 50 k tuples isupplier  table.

e There are ten years worth of sales in8ades table from
1987 to 1996. On average, each item is sold 100 times a
month resulting in 12 m entries in the sales relation.

« The cost of answering a query is proportional to the
number of rows in the table used to constrqct

« The methods for implementing select and join operations
are linear search and nested loop.
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1

Q3 ' 120k

24k C 24k resultt 30kl sum(amount*no)

_]_I_ resultS
Lid, Trl_id,sum
I_name, (amount*I_price)

avg(amount*[_prjces)

24k<
tmp9
0.02k 0.03k

L)

1_name like
{MAZDA,
TOYQTA} 0.03k,

6 tmpl

I_name like

{MAZDA,
NISSAN,
TOYOTA}

Item Sales
Fig. 3. Motivating example.
TABLE 1l 1)
COsSTS FORDIFFERENTVIEW MATERIALIZATION STRATEGIES

— 2)

Materialized views Cost of Cost of Total
query processing | maintenance | cost

Item,Sales,Part,Supplier 8b980m860% 0 86980m860k
tmp3, tmp4, tmp8 76201m547k 16350m125k | 8b551m672k 3)
tmp3, tmp3, 416m747k 16632m204k | 16b448m951k
tmp3, tmp4, tmp7 Th276mA497k 16220m55k 8b496m 552k
tmp3, tmp7 8b6281mb4Tk 126m122k 86407Tm669k 4)
resultl result2,result3,result4 | 1m447k 176384m934k | 176386m381k

5

Based on the above assumptions, the cost for each operation)
node in Fig. 3 is labeled at the right-hand side of the node.

Now we can calculate the costs of different view material- 6)
ization strategies. Suppose there are some materialized interme-
diate nodes. For each query, the cost of query processing is query
frequency multiplied by the cost of query access from the ma- 7)
terialized node(s). The maintenance cost for materialized view
is the cost used for constructing this view (here we assume thaig)
recomputing is used whenever an update of involved base rela-
tion occurs). The total cost for an MVPP is the sum of all query
processing and view maintenance costs. Our goal is to find ag)
set of nodes to be materialized so that the total cost is minimal.

120k 1 360k Tr[_id,sum
result2 CD (mincost*
-H-P_id, month

amount*no)

2

@ ‘30k

301
resultd

S

360k
o" @

L5k 1.5k
resull3<>
-”P_id,

3.6b min(cost)
max(cost)

P_id,

min(cost)
max(cost)

P_name like
{spark_plug,
gas_kit}

50k

Supplier

Create a vertex for every relational algebra operation in a
query tree, every base relation, and every distinct query.
Forv € V, T(v) is the relation generated by corre-
sponding vertex. T(v) can be a base relation, interme-
diate result while processing a query or the final result for
a query.

For any leaf vertex (that is, it has no edges coming into
the vertex)T'(v) corresponds to a base relation. lebe

a set of leaf nodes.

For any root vertex (that is, it has no edges going out of
the vertex)I'(v) corresponds to a global query. Letbe

a set of root nodes.

If the base relation or intermediate result relatibf)
corresponding to vertexis needed for further processing
at another node introduce an are. — v.

For every vertexw, let S(v) denote the source nodes
which have edges pointedtoFor anyv € L, S(v) = (.

Let S*{v} be the set of descendants:of

For every vertex, let D(v) denote the destination nodes
to whichw is pointed. For any € R, D(v) = 0.

Forv € V Cé(v) is the cost of query accessing’(v),

C? (v) is the cost of maintainin@’(v) based on changes
to the base relatio§* (v) (| R, if T'(v) is materialized.

fq and f,, are query and maintenance frequency, respec-
tively.

Table Il gives some materialized view design strategies and theiiA linear cost model [21] is used to calculate the cost of query
costs. There are many other possible strategies for materializigThe cost of answering is the number of rows in the table
views in this example. that query,4 used to construap.

2) Cost Model: A global processing plan is a DAG and can Let M be a set of materialized views,,, (M) be the cost to
be described byV, A, Ci(v), C},(v), f;, fu) whereV isthe computey; from the set of materialized viewd , andC,,, (v) be
set of vertices andi is the set of arcs ovey. The DAG is the cost of maintenance wheris materialized. Then the total
constructed as follows. query processing costls’, . fy,Cy, (M). The total mainte-
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nance costiy_ ., fuCm(v). The total cost of the materialized

views M is Create many global Higher level

Given a global processing plan, the objective is to minimize
the above cost.

E. Problem Specification

The materialized view selection problem can be formulated a
follows. Givenn sets of local processing plais, P, ..., P,
whereP; = {p;1, pi2, - .-, pir, } IS the set of possible plans for
query@;, 1 < ¢ < n, andk; is the number of local processing
plansforQ;, select a set of views to be materialized over a globa
processing plan by “merging? local processing plans (one out

processing plans (Global Processing Plan Optimization)

S £ G + Y FuConw).

7 €Q veM

0 Lower level
e
(Materialized View Selection Based on One Global Processing Plan)

global processing plan

of each setP;) such that the sum of query and maintenance _
cost is minimized. It is worth emphasizing that this problem {g9: 4. Structure of our algorithms.
different from MQO [6].

1)

2)

3)

4)

MQO is to find an optimal processing plan for multiple BEGIN
queries executed at the same time by sharing some tem-
porary results which are common subexpressions, while
our problem is to find a set of relations (which can be any Evaluate all individuals in G(0);
intermediate result from query processing) to be materi- t:=0;

alized so that the total cost (query processing and view

Generate the initial population, G(0);

maintenance) is minimized. REPEAT

In MQO, a global processing plan is derived from the te=t+1;

idea that temporary regult sharing should pe less expen- Select G(t) from G(t-1);

sive compared to a serial execution of queries. However,

this may not be true for every possible database state. For Alter G(t) using variation operaf
example, sharing a temporary result may prove to be a Evaluate all individuals in G(t);

bad decision when indices on base relations are defined.

The cost of processing a selection through an index or an

existing temporary result clearly depends on the size of END;
these two structures. In our problem, if an intermediate
result is materialized, we can establish a proper index ep. 5
it afterwards if necessary. Therefore, it is guaranteed thai
there is a performance gain if an intermediate result is

materialized. If the intermediate result happens to beCqSt (QUery costand maintenance cost) of 370 m. However, with

common subexpression which can be shared by more tfaA°noPtimal global processing plan that has query cost 350 m,
one query, then there is a view maintenance gain as wélffe may get materialized views with a total cost of 360 m, which
In MQO, the ultimate goal is to achieve the best perfofS €SS than 370 m.

mance, while our problem has to take into consideration

both query and view maintenance cost. [ll. ALGORITHMS FORMATERIALIZED VIEW SELECTION

In MQO, the input is a set of queries and the output is Qur algorithms are designed based on the two-level structure
a globally optimal plan. In our case, the input is a set &fs shown in Fig. 4. The hierarchical structure helps to make a
global queries and their access frequencies, and a setapfe problem manageable. The higher level algorithm searches
base relations and their update frequencies. The outit good global processing plans from local processing plans
is one or more global processing plans with materializashsed on queries. The lower level algorithm selects the best set
views that minimize the total query and maintenance cosf materialized views with the minimal total cost for a partic-

UNTIL a satisfactory solution is found;

Abstract framework of evolutionary algorithms.

Just like we cannot guarantee to get the globally optimal prokar global processing plan. In principle, any optimization al-
cessing plan from the union of locally optimal plans, we canngbrithms can be used at the higher and lower levels. In prac-
guarantee to get the optimal selection of materialized viewise, however, a compromise often needs to be made between
from the optimal global processing plan. This is because ttiee speed of optimization and the quality of the solutions. This
optimization of global processing plans does not consider thaper investigates different hybrid algorithms where an evolu-
maintenance cost. For example, an optimal global processtianary/heuristic algorithm is used at the higher/lower level.
plan may have optimal query cost 333 m. Based on this globalwhen an evolutionary algorithm is implemented at the higher
processing plan, we may obtain materialized views with the tolalvel to search for global processing plans, the fithess of each in-
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1. Input a global processing plan represented by a DAG.

2. Use a certain graph traversal strategy, such as breadth-first, depth-first or other problem-
specific strategies, to traverse through all nodes in the DAG and produce an ordered list of
nodes.

3. Create a binary string according to this order, where 0 indicates that the corresponding node
is not materialized and 1 represents that the corresponding node is materialized. The binary

string is also called the mapping array.

Fig. 6. Mapping from a DAG (i.e., genotype) to a binary string (i.e., phenotype).

dividual (i.e., global processing plan) is defined by the total cobtg. 6 shows how to map a DAG into a binary string. One of
of the best set of materialized views (i.e., the outcome from tltige reasons of using binary strings, rather than graphs directly
lower level optimization). If another evolutionary algorithm igs to simplify the implementation of evolutionary algorithms
implemented at the lower level, the fithess of the best individu@ihcluding crossover, mutation, and selection). It is our future
from the lower level population will be used. More details abowtork to investigate evolutionary algorithms that will operate
a lower level evolutionary algorithm can be found in [22] wheren DAGs directly.

the higher level optimization problem was not addressed. For example, the breadth-first traverse of the DAG in
Fig. 3 results in the following ordered lis{{Q5,0], [Q4,0],
A. Evolutionary Algorithms [Q3,0], [Q2,0], [Q1,0], [result5,0], [resultl,0], [result2,0],

Evolutionary algorithms have been shown to solve many re

world problems with success [23]-[27]. They use populatio

i‘rlgsult4,0], [result3,0], [tmp9,0], [tmp3,0], [tmp4,0], [tmp8,0],
based stochastic search strategies and are unlikely to be tra@%egmary string of {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,00,0

tmp7,0], [tmp210,0], [tmp1,0], [tmp2,0], [tmp5,0], [tmp6,p]

in a poor local optimum. They make few assumptions abou fans that no node is materialized. A string of
problem domain yet are capable of incorporating domain knovxﬁ- 1,0,0,1,1,0,0,0,0,0,0,0,0,0,0.0,1 lfieans that_nqde@4,
edge in the design of chromosome representation and variat% , results, tmp2, tmps, and tmpéare materialized, but
operators. They are particularly suited for large and compl8 ers are not.

problems where little prior knowledge is available. The resuIE
presented in the next section illustrate that a properly designéd
evolutionary algorithm can be a very promising method for ma- Since the objective in our cost model is to minimize the sum
terialized view selection. Fig. 5 shows an abstract framework f query and maintenance cost while the fitness function of an
evolutionary algorithms. Details of our implementation are d@volutionary algorithm is usually defined as maximization, we

Fitness Functions in our Evolutionary Algorithms

scribed in the following subsections. have applied the following simple transformation to define the
fitness function from the cost
B. Representation of Solutions Crax — c{z), Whene(z) < Chax
Representation is one of the key issues in problem solving. J(w) = {07 otherwise

Good representations often lead to a more efficient algorithm

for solving a problem. Different problems usually require difvherec(z) denotes the cost function anfix) is the fitness
ferent representations. In our two-level structure introduced ef#nction.

lier, two different representations are needed to represent global here are a lot of ways of choosing the coeffici€h.. It

processing plans and materialized views. can be set to the largedtr) value in the current population or

1) Representation of Global Processing Plar@iven n the largest in the lagt generations.
queries@;, Qs, ..., Q,, a global processing plan (i.e., an If an evolutionary algorithm is used at the lower level, each
individual in a higher level evolutionary algorithm) can béndividualin a population represents a set of materialized views.
represented by a vector of integers, Py, Psj, ..., P, s fitness depends on the total query and maintenance cost as
where P,,, indicates thekth local processing plan for querydescribed above.
Q... For example, assume that there are three quepies(-, If an evolutionary algorithm is used at the higher level, each

and @3, and the respective number of local processing plaifglividual in a population represents a global processing plan.
are 12, 120, and 120. Thd4], [89], [70]} represents a global Its fitness is determined as follows.
processing plan consisting of the fourth processing plan for 1) Find a set of materialized views that minimize the total

(1, the 89th processing plan f@y,, and the 70th processing query and maintenance cost for this global processing

plan for Qs where the range for each gene is.[112], [1 ... plan. This step involves optimal selection of materialized

120], and [1... 120], respectively. views on a fixed global processing plan, i.e., the lower
2) Representation of Materialized View3he represen- level optimization in Fig. 4.

tation of materialized views in the lower level optimization 2) Transform this minimal cost to the fithess of the indi-
is based on DAGs. Each DAG is encoded as a binary string.  vidual.
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D. Crossover
, , ) Vi \4!
Crossover encourages information exchange among different

individuals. It helps the propagation of useful genes in the pop-
ulation and assembling better individuals. One-point crossover
is used in our evolutionary algorithms for its simplicity and ef-
fectiveness in our case. —_—

In a lower level evolutionary algorithm, the crossover is im-
plemented as a kind of cut-and-swap operator [28]. For example,
given two individuals

V2
L; =1100100]|0100 100001111 Q V2
and

L, =0100110|1011000100111

Fig. 7. Example of invalid result.

where L; indicates that node$Q5, Q4, Q1, result4, tmp3, » ) ]
tmp1, tmp2, tmp5, and tmpGaré materialized andl, means A rapdpm position between.on( and 20 will be generateq first.
that nodegQ4, Q1, results, result2, result3, tmp9, tmp7, tmng,ay it |§_16. Then the 16th bit WI|.| be flipped from 0 to 1 with a
tmp5, and tmp are materialized. Assume the crossover poiffobability to produce the offspring

(indicated by symbao]) is chosen at random as seven, between I/ — 11001000100 100011 111

one and 20. Then the two offspring after crossover are )

L/ =1100100[1011000100 111 Mutatio_n in a higher level e_volutionary algorithm is imple-
1= mented differently due to a different chromosome representa-

and tion. Rather than flipping a bit, a random number in a certain

L, =0100110{0100100001111 range will be generated as a new gene in an individual. For ex-
ample, given an individual

where L} indicates that node$Q5, Q4, Q1, result2, result3,

tmp9, tmp7, tmp2, tmp5, and tmp@re materialized and, L, = [4][20](30][[10][99].

shows that node§Q4, Q1, result5, result4, tmp3, tmpl, tmp2, . . .

tmp5, and tmpﬁ?rgmgerialized. Two new setz of m:gterialige ssume the third gene is randomly selected for mutation. Fur-

views are generated which have inherited genes from both p Sr assume that the third gene has a total of 120 possible pro-
ents. cessing plans. Then a random number between one and 120 is

In a higher level evolutionary algorithm, one-point crossov@renerated’ say 16. The offspring after mutation will be

is such |mplem_ented that crossover pomps can on_Iy t_)e_ between L, = [4][20][16]|[10][99].
genes, but not in a gene. For example, given two individuals

Ly =[4][20][30]|[10][99] F. Dealing With Invalid Solutions
and In the lower level of optimization as shown in Fig. 4, “invalid”
L, =[5][30][21]|[40][80] solutions may be generated during search, e.g., by crossover

o _ and/or mutation. Fig. 7 shows such an example of possible in-
where the symbd| indicates the crossover point. The two offvalid solutions. Ifv2 has the same ancestors (excludiig as

spring are v1, itis unnecessary to materializ . Any solutions that ma-
, terializev2 in such a case will be regarded as “invalid.” In some
L = [4][20][30][40][80] cases, invalid solutions can be prevented from being generated
and or repaired after generation. We will describe how we deal with
L, =[5][30][21][10][99]. invalid solutions in the following subsections.

1) Claim: In Fig. 7, letvl andv2 be two nodes in a global
processing plan represented by a DAGvIfis a parent of/2
E. Mutation andv2 has the same ancestors (excludiig asvl, then there

Although crossover can put good genes together to gener‘ﬁt@o neeq to materialize2 aftervl has been materialized.
better offspring. It cannot generate new genes. Mutation is Proof: LetCy (M) be the cost of computing from the

needed to create new genes that may not be present in gﬁgpfmaterialized views/. If bothvl andv2 are materialized,
member of a population and enables the algorithm to reach ¢ the total cost is

possible solutions (in theory) in the search space. .
Mutation in a lower level evolutionary algorithm is imple- Ci= ;O: @) Cq(vr) + ;O: Ja(@)Cq(v2)
q€0yy ICTuy

mented as a bit-flipping operator. Given an individual ) )
+ > L) (u) + Y 1)) ()
L =11001000100100001111. rCly, rCl,
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Becausevl and v2 have the same parents, (1) can b¢REPEAT
rewritten as If a parent-child pair share the same ancestors and they are materialized, then

1. unmaterialize the child node,

C) = Z f{](q) * (Cq(vl) + Cq(UQ)) + Z fu(r) % C" (v1) 2. re-calculate the total cost, and

aCOy, rCl,, 3. replace the old solution by the new one.
. UNTIL no materialized parent-child pair share the same ancestors
+ E Ju(r) % C (v2)
rel, Fig. 8. Repair algorithm.

Sincevl is materialized beforg2, v2 cannot be reached
by any queries, i.e{,(v2) = 0. Hence the above equationG. Selection

becomes Selection in evolutionary algorithms determines the proba-
bility of individuals being selected for reproduction. The prin-
C,= Z fo(@) * Cé(v1) + Z Julr) * C} (v1) ciple here is to assign higher probabilities to fitter individuals.
q€O0,, rel,, Tournament selection is used in our algorithms because it can
+ Z Falr) = O (v2). ) better maintain a relatively smooth selection pressure over gen-

erations. It also facilitates future parallel implementation of our
algorithms since it does not require global information.
If we only materializev1, the total cost will be Tournament selection is implemented by conducting tourna-
ments among a number of randomly selected individuals. The
winner is selected to survive for reproduction. The tournament
size (i.e., the number of individuals involved in a tournament) is
an important parameter that determines the selection pressure.
Because’, > Ob, it is clear that materializing botwl and A large size introduces a strong pressure, whic_h often leads to
v2 has a higher cost than materializing alone. This is not fast convergence to a local optimum. The quality of the local

surprising because materializing increases the maintenance?Ptimum depends quite a ot on the start conditions of the algo-
cost without reducing any query costs. Therefore, in the prddhm- Asmalltournament size introduces a weak selection pres-
ence of the materialized viewl , we should not materialize2  SU"® which often implies slow convergence but the algorithm
under the conditions mentioned above. is less likely to be trapped in a poor local optimum. Following
For example, given the global processing plan in Fig. §}Jggestlons from the I|teratur_e [29] and our own preliminary ex-
assume that an offsprifi§0 000 000 001 100 101 100 } periments, the tournament size was chosen to be between four

is generated after crossover and mutation. The offspriﬁ&d seven in our study.
indicates that {tmp9, tmp3, tmp7, tmpl, tmp2 }
should be materialized. However{tmp3, tmp9 } are IV. EXPERIMENTAL STUDIES

ancestors'of {tmp1, t.mp2 }. The offspring is quhd All our experiments were performed under SUN OS 5.5. The
because it has a higher cost than another individual

(00000000001 100100000 } which has fewer ma- S|m_ulat|on _software was bwlt_on the basis o_f the Simple Ge-
SN ; ' o . netic Algorithm [30] and GAlib [31]. In particular, we have
terialized views. It could be argued that individuals havin

; ) N plemented our lower level evolutionary algorithm based on
hlgh_er costs m'ghF noF harm optimization. They do reduce trt]ﬁe Simple Genetic Algorithm program [30] which is a C-lan-
efficiency of optimization.

%uage translation and extension of the original Pascal code [28].

rel,,

Co= Y ful@) *Cllv) + D fulr)* Ch(w0).

qC Oy, rClyy

There are several methods for dealing with an invalid solft; ¥ ) . : ,
ur higher level evolutionary algorithm was implemented using

: ; . : at ok GAlib [31], which is a library containing different chromo-

valid solutions are generated. Another is to allow invalid so- ) . .

; : . ) .. some representation schemes, evolutionary operators, selection
lutions but penalize them by introducing a penalty term in the
: . . : . . sthemes, etc.
fithess function. The first method can prevent invalid solutions
from being generated, but may introduce a complex search land- i ilized Vi q ) lobal
scape because valid regions may be separated by invalid regiéhs=V0Ving I\I/Iaterla ized Views Based on a Given Global
Moving from one valid region to the other may be difficultProcessing Plan
Good solutions in a different valid region may not be found. The lower level algorithm shown in Fig. 4 optimizes materi-
The second method introduces another difficult problem, i.aljzed view selection on a given global processing plan. ¥&ng
how to select an optimal penalty coefficient in order to strikal. [6] have recently proposed a very good heuristic algorithm
the right balance between minimizing the cost and minimizirfgr optimal selection of materialized views on a fixed global pro-
the penalty. cessing plan. Fig. 9 compares the results from Yetrad.'s algo-

We use the repair approach in this paper. That is, invalid sithm [6] and those produced by our evolutionary algorithm on a
lutions are allowed to be generated, but will be repaired intmimber of randomly generated problems with up to 50 queries.
valid ones before evaluating their fitness. Fig. 8 shows the repalie number of source relations involved in each query varies
algorithm. The algorithm was designed according todlagm from three to eight. The nodes of the DAG varies from 24 to

proved in the previous section. 200. We compare our algorithm to Yaatal.'s [6] because their
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Fig. 9. Comparison between our evolutionary algorithm and Yeingl’s ~ Fi9- 10- Comparison of different hybrid algorithms.
heuristic algorithm [6].
level heuristic algorithm described above, and H2 is the lower

algorithm is one of the best existing ones using the same cfistel heuristic algorithm used in [6]. Since most heuristic al-
model. gorithms designed for materialized view selection differ in the

It is clear from Fig. 9 that the evolutionary algorithm outcost models and problem formulations used, meaningful com-
performed the heuristic algorithm consistently. The advantagarisons with them are difficult. Yangt al.s algorithm [6]
of the evolutionary algorithm was most prominent when thgas chosen as H2 because they used the same cost model and
number of queries was small. This large advantage decreapesblem formulation as ours. Their algorithm is also one of the
gradually as the number of queries increased. However, singsst under such a model.
the total cost increases dramatically as the number of queryThe implementation details of each hybrid algorithm are as
grows, a little difference in Fig. 9 may translate into a largllows.

amount of cost saving in practice. 1) EA1-EA2 represents the algorithm where EA1 is used at
the higher level for optimizing global processing plans

and EA2 is used at the lower level for materialized view

Without loss of generality, query processing plans used inour  selection.

experiments are generated at random as a set of left-deep binary) EA1-H2 uses H2 to select materialized views for each
trees. It has been argued that good solutions are likely to exist  global processing plan.

among these trees [3]. The experiments were run over randomly3) EA1-H2-EA2 is similar to EA1-H2, but applies EA2 to
generated queries. These queries share at least two relations. further improve the best global processing plan found by
For our experiments, we have generated up to 60 queries. Each EaA1-H2.

query has from six to 720 different query processing plans. The4) H1-EA2 uses H1 for optimizing global processing plans

solution space for such problems is huge. For example, with 10  and EA2 for materialized view selection.

queries, there arg20' possible global processing plans. For 5) H1-H2 uses H1 for optimizing global processing plans

each global processing plan, there are 40 join nodes on average and H2 for materialized view selection for each global

and the space of possible sets of materialized view(:°). processing plan.

Hence, the size of the whole solution space2e'’(O(2*)). All results shown in Fig. 10 have been averaged over five
In order to evaluate and gain a better understanding of qHtependent runs. The costs have been normalized using the

evolutionary algorithm, we compare it with the followingH1-H2 algorithm as the reference. From the results shown

heuristic method for generating a near optimal global prgy Fig. 10, we can observe that EA1-H2-EA2 and EA1-EA2

B. Evolving Global Processing Plans and Materialized Views

cessing plan. seemed to perform very well when the number of queries was
1) Create optimal global processing plans by merging lemall. As the number of queries increased, H1-EA2 emerged
cally optimal plans. as the best performer among all hybrid algorithms. It seemed to

2) Compare the total query cost of each global processingpe with the increasing number of queries very well without

plan and select the one which gives the lowest query coahy sudden increase in the total cost.

Fig. 10 shows the results produced by different hybrid algo- Fig. 10 shows that hybrid algorithms outperformed the
rithms, where EAL denotes the higher level evolutionary algbtl-H2 heuristic algorithm in almost all cases, which illustrates
rithm for optimizing global processing plans, EA2 representhe advantage of having an evolutionary algorithm to search
the lower level evolutionary algorithm for materialized view sea larger part of a huge space and thus find a better solution.
lection given a global processing plan, H1 indicates the highdowever, using both EA1 and EA2 proved to be very CPU
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TABLE 11l TABLE V
COMPARISON OFH1-H2 AND EA1-H2 BASED ON 30 INDEPENDENTRUNS COMPARISON OFTIME TO FIND THE GLOBAL OPTIMAL SOLUTION BY
OF EACH EXPERIMENT DIFFERENT ALGORITHMS
Number of queries H1-H2 EA1-H2 Hi-H2 ~ EA1-H2 Algorithm 6 queries | 7 queries 8 queries
Mean | Std Dev | Mean | Std Dev T-test N
H1-H2 5 Secs 50 Secs 1.2 Mins
5 50250 0 50266 144 -0.98
10 100854 0 09818 | 2594 219 EA1-H2 30 Secs | 10.1 Mins 20 Mins
20 217818 0 215226 | 5865 2.42 EA1-H2-GA2 | 1 Mins 10 Mins 25 Mins
40 258238 | O | 255506 | 5401 2.77 HL-EA2 35 Secs | 10 Mins 99 Mins
60 301748 | 0 | 299583 | 5336 2.11 .
EA1-EA2 4 Mins 2 Hours 7 Hours
Exhaustive 5 Mins | 2.5 Hours | 25.2 Hours
TABLE IV
COMPARISON OFH1-EA2 AND EA1-H2 BASED ON 30 INDEPENDENTRUNS
OF EACH EXPERIMENT Tables Il and IV. As shown in Table Ill, EA1-H2 performed
Number of queries HLEAZ EALHZ HiEAz - EALme  Significantly better than !—|1—H2 on al! but 'the first proble_m.
Mo | Sed Dov | Memn 1 Std Dev T test wh”en t_he_?_umbe;jr_ fchf queries wafs flved, wA Whlcdh_ case 'r;obsltar\?tl_
5 o0 . e P cally significant di erence was found. According to Table 1V,
" o877 o vos1s | 2504 i H1-EA2 performed significantly better than EA1-H2 for all
) test cases. It is clear that H1-EAZ2 is the best hybrid algorithm
20 207494 0 215226 5865 -7.22
) . for all the problems we have tested.
4 2 41 -7. . . . . .
“© M0 55506 ) 540t o7 To compare execution time of different algorithms using the
60 292456 | 0 | 299583 | 5356 729 exhaustive search algorithm as a benchmark, we have carried

out additional experiments to evaluate the time taken by each al-
intensive and time-consuming. To evaluate an individual orithm to find the global optimal solution. Table V summarizes
i ) o e experimental results. Itis clear from the table that hybrid al-
EAL, EA2 had to be executed. This is the reason why we P y

did not carry out experiments with EAL-EA2 for problem orithms are able to fln_d the global optimal solution within a
. ) . . easonable amount of time.
with seven or more queries. Hybrid algorithms that employ
a mixture of heuristic and evolutionary algorithms should be
adopted to strike a balance between the solution quality and the
computation time needed to achieve such quality. The materialized view selection based on multiple query pro-
Out of the two hybrid algorithms, EA1-H2 and H1-EAZ2 cessing plansis a hard combinatorial optimization problem. Pre-
H1-EA2 seemed to perform better and more consistent. Alious work has either assumed a fixed global processing plan for
though the additional EA2 after EA1-H2 (i.e., the EA1-H2-EA2naterialized view selection or only examined multiple query op-
algorithm) helped to improve EA1-H2’'s results when thé&mization without considering materialized view selection. We
number of queries was smaller than 13; it did not help mudtave argued in this paper that a good selection of materialized
for problems with a larger number of queries. The differenagews can only be found by taking a holistic approach and con-
in results from EA1-H2 and H1-EA2 suggests that the besidering the optimization of both global processing plans and
hybrid algorithm should employ a heuristic algorithm to find aaterialized view selection. A two-level structure for material-
good global processing plan and use an evolutionary algorithiped view selection was proposed. It has facilitated greatly the
to explore possible materialized views on it. EA1-H2 didievelopment of several hybrid algorithms.
not perform as well probably because of inaccurate fitnessin this paper, we have studied several hybrid heuristic and
evaluation by H2. In EA1, the fitness of each individual (i.e., avolutionary algorithms. Pure evolutionary algorithms were
global processing plan) is evaluated by running H2 and usifgund to be impractical due to their excessive computation
its result to calculate the fitness. Because H2 is a heuristime. Pure heuristic algorithms were unsatisfactory in terms
algorithm only, its solution may be far away from the actualf the quality of the solutions they found. Hybrid algorithms
optimum. When this happens, a good global processing pldwat combine the advantages of heuristic and evolutionary
may be “miscalculated” as poor and thus would be unable &gorithms seem to perform the best in our experiments.
survive in the EA1 population. More analysis is needed iDur experimental results show that applying an evolutionary
the future to confirm whether this is the primary reason faigorithm to either global processing plan optimization or
EA1-H2's poor performance. materialized view selection for a given global processing plan
To better understand and further evaluate different hybran reduce the total query and maintenance cost significantly.
algorithms, i.e., H1-EA2 and EA1-H2, extensive experimen@ur study also shows that simply combining or merging
have been carried out to compare them using a statisticadigtimal local processing plans will not produce an optimal
sound method. Each experiment reported below has begabal processing plan in most cases. Finding an optimal global
repeated independently 30 times with the number of queripocessing plan with optimal materialized views requires a two
being five, 10, 20, 40, and 60. The results are summarizedlavel hierarchy as described by Fig. 4.

V. CONCLUSION



ZHANG et al. EVOLUTIONARY APPROACH TO MATERIALIZED VIEWS SELECTION

While our hybrid algorithms perform better than the heuristic[21]
algorithm in terms of cost savings, they often require longer
computation time. While the heuristic algorithm typically took ]
seconds to run, a hybrid algorithm typically took minutes, or
even hours to run. Finding the suitable trade-off between the
computation time and the cost saving will be a topic for futurep2s)
studies.

Once a data warehousing design is completed and implé%“]
mented, it will be used frequently and may last for a long time25]
Hence it is very important to optimize the design as much as
possible, even if this means a relatively long design time. It igpg)
time that is well spent. In this case, the extra computation time
incurred by employing an evolutionary algorithm during the de-,
sign stage is well justified. It is expected to lead to substantia
cost savings when the DW is in use.

7]

(28]
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