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What is memory tuning ?
When you run multiple instances on a

computer,each instance dynamically acquires  
and frees memory to adjust for changes in the 
workload of the instance.
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Need for memory tuning :

• In case of complex software.

• In  case of data server in multi-user mode and multiple data-
intensive decision support queries.

• Increasing data volumes and critical decision.

• Thrashing ,memory bottle Memory contention neck.

• Automatic tuning decisions reduce the cost of human 
administration.



Self – tuning server caching :

• Memory in data server is for caching  frequently accessed data to
avoid disk I/O.

• Cache manager is to maximize the cache hit ratio.

• The most used replacement is LRU( Least Recently Used) 
algorithm. 

a) Sequential scan over large set of pages .

b) Random access to pages  sets with highly skewed cardinalities .
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Self – tuning server caching :

• To overcome these deficiencies –had developed – no of 
tuning methods but they are not fully self –tuning .

The various approaches are :

1) PANDORA : 

• This approach relies on explicit tuning hints from programs.

• This is  an hint processing approach. Eg: a query processor 
engine.

• The difficulty  is hinting passing approach is very limited  and
bears high risk.
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SISYPHUS :

• This approach aims to tune the cache manager by portioning 
the overall cache into separate “Pools”.

• It works well with partitioning index Vs data pages.

•But the difficult - appropriate pool size and proper assignment 
of page classes of pools.

SPHINX :

• It abandons LRU and adopts a replacement policy based on 
access frequencies.

• LFU (Least frequently used ) policy –optimal for static work 
load ----pages have independent reference probabilities.
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• The problem in sphinx can also be improved by using a “Nike  
approach” - LRU-k algorithm.

• It uses three methods observe-predict –react.

Observation :

• It keeps limiting on relevant page’s reference history –
k last reference time points.

• ‘Relevant’ - all pages that are currently in the cache plus some 
more pages that are potential caching candidates. 

• Five - minute rule  -last 5 mins can be safely discarded.
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Predictions :
• Page’s specific access rate is  known as page’s heat.

• Page’s heat(p) = k / now – tk. 

• Probability for accessing the page within next T time units  is 

1- e ^ - (heat(p) * T).

• optimal to rank pages - near-future access probabilities.

Reaction :

• When page - freed up in cache LRU-k algorithm replaces the 
pages with smallest value for above estimated probability.
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• This algorithms can be generalized with variable size caching
(documents) rather than pages.

• We calculate temperature of document.

• Caching documents are simply ranked by their temperature.
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• A data server needs to manage also working memory  for long 
running operations.

• Memory  management should not focus on single global 
performance .

• It has consider to different workload classes.

• System cannot automatically infer importance of each class -
needs human administrator.

• Mechanism for handling multiple work load classes - class 
specific memory areas.

• The partition is merely conceptual and not physical - memory area  
- shared by multiple workload classes.
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• Approaches  for automatic memory performance is described 
as a feedback loop. 

OBSERVATION

PREDICTION

REACTION

Uses moving time window averaging. Here 
observation widow must be carefully choosen .

An algorithm is used to predict the performance 
change  and so response time predictions are 
concerned i.e., is Ri of class i as function of  
M1,…Mm memory areas.
Approx Ri(M1,…Mm) is difficult .

Re-initiate prediction is found by max(Ri / Gi ,1<=i<=m) 
where Ri is response time  and Gi is response time goal 
of class i.
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Two cases : 

• High end data servers implemented on server clusters.

• Collection of independent servers with data replicated across all of  
them.

• Distributed caching algorithm –controls dynamic replication of 
data objects in (fixed sized pages or dynamic documents) caches.

•Two approaches :
•1) egoistic caching .
•2) altruistic caching.
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Egoistic :

• Each server runs on local cache replacement algorithm –LRU and  
LRU-k .

• It views remotely cached data  that is not locally cached. 

• It ends with hottest data fully replicated and in all caches with 
little space left out for others.

Altruistic :

• It aims at maximizing this replication by giving preference in the 
local cache replacement to data.

• That data should not be cache resident in different server.
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• For high band width network altruistic approach is better –
affordable overhead.

• In fastest interconnect it becomes congested under high load.

• Mathematical cost model  -it decides which method is useful 
under the current workload and  system settings. 

• Benefit is proportional to mean response time of data and requests 
over all servers.

• This model includes disk queuing the entire approach can even
contribute to disk load balancing .
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• Caching reduces overall disks I/O load.

• To reduce response time prefetching is used.

• Prefetching brings relevant data  into memory already before it 
is  explicitly required.

• It pays off well - high latencies data request. 

• It is beneficial with a certain probability like in case of 
sequential scans not in case of near access patterns of ongoing 
operations or client sessions.
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• Alternative method is to access near future access probabilities 
-stationary heat statistics or corresponding temp value.

• The method is temperature based vertical data migration in.

• It keeps  a list of the top temp non cached data units and 
considers their prefetching in desc order of temperature.

• Prefetching is initiated only when the corresponding 
documents temp exceeds the temp of the documents.

• When latencies of fetching non-cached documents vary cost 
benefits consideration should be further refined explicitly.
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• With length T the expected number of access to document d 
within time ‘T’ is 

Nspec(d) = heat (d) * T

• Benefit of prefetching document 
d = Nspec(d) / size(d) * Fetch_time(d,v)

• Where Fetch_time(d,v) is the estimated time for accessing d on 
its  “home location”.

• Where v  can be secondary storage ,an online volume in 
tertiary storage or offline volume .
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• The division by size(d) is normalization per cache space unit.

• This method is for aggressive prefetching and not for 
speculative. 

• Here overhead is low comparable to LRU-k bookkeeping.
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• When servers are accessed over the web or use tertiary  
storage incur very high latency.

• Stochastic prediction for near future requests must be more 
“aggressive” but needs to be more “accurate”.

• A richer class of models used is Markov chains.

• Markov chain based algorithm has been investigated for 
prefetching and caching.

• In prior methods they focussed on reference pattern of a 
single client and assumed discrete time .
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• McMin (Markov-chain based Migration for near line storage ) 
-different interaction speed of clients  - CTMC.

• In web based access to a  digital library –CTMC captures 
variability.

• It is possible to compute both the expected number of near 
future access to a document d, Nspec(d) - appropriate 
precomputations.

• The (d,Nspec(d)) both of these values can be aggregated over 
multiple CTMC models one for each active client session and 
“arrivals”,”departures” as  separate sessions.
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• The methods - geared for centralized, high  speed interconnected  
and widely distributed data servers.

• The common method we followed is :
• Observation – online statistics
• prediction – mathematical models 
• Reaction – feed back loop

• Space need for online statistics must be carefully controlled.

• CPU time over head of predictions may be a critical factor. 

• Self tuning algorithms will penetrate products and 
contribute towards zero-admin and trouble -free servers.
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