
Introduction :

SELF TUNING MEMORY

MANAGEMENT FOR

DATA SERVERS

By

Sangeetha Sivaprakasam

Introduction :

1) Introduction.
2)Need for memory

tuning.

3)Self –tuning server

caching.

4)Automatic tuning of

server and cache memory.

5)Exploiting distributed

memory.

6)Integrating speculative

prefetching with caching.

7)Self – tuning caching and

prefetching for web based

systems.

8)Conclusion.

9)Bibliography.

What is memory tuning ?
When you run multiple instances on a

computer,each instance dynamically acquires
and frees memory to adjust for changes in the
workload of the instance.

1) Introduction.

2)Need for memory

tuning.
3)Self –tuning server

caching.

4)Automatic tuning of

server and cache memory.

5)Exploiting distributed

memory.

6)Integrating speculative

prefetching with caching.

7)Self – tuning caching and

prefetching for web based

systems.

8)Conclusion.

9)Bibliography.

Need for memory tuning :

• In case of complex software.

• In case of data server in multi-user mode and multiple data-
intensive decision support queries.

• Increasing data volumes and critical decision.

• Thrashing ,memory bottle Memory contention neck.

• Automatic tuning decisions reduce the cost of human
administration.

Self – tuning server caching :

• Memory in data server is for caching frequently accessed data to
avoid disk I/O.

• Cache manager is to maximize the cache hit ratio.

• The most used replacement is LRU(Least Recently Used)
algorithm.

a) Sequential scan over large set of pages .

b) Random access to pages sets with highly skewed cardinalities .

1) Introduction.

2)Need for memory

tuning.

3)Self –tuning server

caching.
4)Automatic tuning of

server and cache memory.

5)Exploiting distributed

memory.

6)Integrating speculative

prefetching with caching.

7)Self – tuning caching and

prefetching for web based

systems.

8)Conclusion.

9)Bibliography.

Self – tuning server caching :

• To overcome these deficiencies –had developed – no of
tuning methods but they are not fully self –tuning .

The various approaches are :

1) PANDORA :

• This approach relies on explicit tuning hints from programs.

• This is an hint processing approach. Eg: a query processor
engine.

• The difficulty is hinting passing approach is very limited and
bears high risk.

1) Introduction.

2)Need for memory

tuning.

3)Self –tuning server

caching.
4)Automatic tuning of

server and cache memory.

5)Exploiting distributed

memory.

6)Integrating speculative

prefetching with caching.

7)Self – tuning caching and

prefetching for web based

systems.

8)Conclusion.

9)Bibliography.

Self – tuning server caching :

1) Introduction.

2)Need for memory

tuning.

3)Self –tuning server

caching.
4)Automatic tuning of

server and cache memory.

5)Exploiting distributed

memory.

6)Integrating speculative

prefetching with caching.

7)Self – tuning caching and

prefetching for web based

systems.

8)Conclusion.

9)Bibliography.

SISYPHUS :

• This approach aims to tune the cache manager by portioning
the overall cache into separate “Pools”.

• It works well with partitioning index Vs data pages.

•But the difficult - appropriate pool size and proper assignment
of page classes of pools.

SPHINX :

• It abandons LRU and adopts a replacement policy based on
access frequencies.

• LFU (Least frequently used) policy –optimal for static work
load ----pages have independent reference probabilities.

Self – tuning server caching :

1) Introduction.

2)Need for memory

tuning.

3)Self –tuning server

caching.
4)Automatic tuning of

server and cache memory.

5)Exploiting distributed

memory.

6)Integrating speculative

prefetching with caching.

7)Self – tuning caching and

prefetching for web based

systems.

8)Conclusion.

9)Bibliography.

• The problem in sphinx can also be improved by using a “Nike
approach” - LRU-k algorithm.

• It uses three methods observe-predict –react.

Observation :

• It keeps limiting on relevant page’s reference history –
k last reference time points.

• ‘Relevant’ - all pages that are currently in the cache plus some
more pages that are potential caching candidates.

• Five - minute rule -last 5 mins can be safely discarded.

Self – tuning server caching :
1) Introduction.

2)Need for memory

tuning.

3)Self –tuning server

caching.
4)Automatic tuning of

server and cache memory.

5)Exploiting distributed

memory.

6)Integrating speculative

prefetching with caching.

7)Self – tuning caching and

prefetching for web based

systems.

8)Conclusion.

9)Bibliography.

Predictions :
• Page’s specific access rate is known as page’s heat.

• Page’s heat(p) = k / now – tk.

• Probability for accessing the page within next T time units is

1- e ^ - (heat(p) * T).

• optimal to rank pages - near-future access probabilities.

Reaction :

• When page - freed up in cache LRU-k algorithm replaces the
pages with smallest value for above estimated probability.

Self – tuning server caching :

1) Introduction.

2)Need for memory

tuning.

3)Self –tuning server

caching.
4)Automatic tuning of

server and cache memory.

5)Exploiting distributed

memory.

6)Integrating speculative

prefetching with caching.

7)Self – tuning caching and

prefetching for web based

systems.

8)Conclusion.

9)Bibliography.

• This algorithms can be generalized with variable size caching
(documents) rather than pages.

• We calculate temperature of document.

• Caching documents are simply ranked by their temperature.

Automatic tuning of server and cache memory :

1) Introduction.

2)Need for memory

tuning.

3)Self –tuning server

caching.

4)Automatic tuning of

server and cache

memory.
5)Exploiting distributed

memory.

6)Integrating speculative

prefetching with caching.

7)Self – tuning caching and

prefetching for web based

systems.

8)Conclusion.

9)Bibliography.

• A data server needs to manage also working memory for long
running operations.

• Memory management should not focus on single global
performance .

• It has consider to different workload classes.

• System cannot automatically infer importance of each class -
needs human administrator.

• Mechanism for handling multiple work load classes - class
specific memory areas.

• The partition is merely conceptual and not physical - memory area
- shared by multiple workload classes.

Automatic tuning of server and cache memory :

1) Introduction.

2)Need for memory

tuning.

3)Self –tuning server

caching.

4)Automatic tuning of

server and cache

memory.
5)Exploiting distributed

memory.

6)Integrating speculative

prefetching with caching.

7)Self – tuning caching and

prefetching for web based

systems.

8)Conclusion.

9)Bibliography.

• Approaches for automatic memory performance is described
as a feedback loop.

OBSERVATION

PREDICTION

REACTION

Uses moving time window averaging. Here
observation widow must be carefully choosen .

An algorithm is used to predict the performance
change and so response time predictions are
concerned i.e., is Ri of class i as function of
M1,…Mm memory areas.
Approx Ri(M1,…Mm) is difficult .

Re-initiate prediction is found by max(Ri / Gi ,1<=i<=m)
where Ri is response time and Gi is response time goal
of class i.

Exploiting distributed memory :

1) Introduction.

2)Need for memory

tuning.

3)Self –tuning server

caching.

4)Automatic tuning of

server and cache memory.

5)Exploiting distributed

memory.
6)Integrating speculative

prefetching with caching.

7)Self – tuning caching and

prefetching for web based

systems.

8)Conclusion.

9)Bibliography.

Two cases :

• High end data servers implemented on server clusters.

• Collection of independent servers with data replicated across all of
them.

• Distributed caching algorithm –controls dynamic replication of
data objects in (fixed sized pages or dynamic documents) caches.

•Two approaches :
•1) egoistic caching .
•2) altruistic caching.

Exploiting distributed memory :

1) Introduction.

2)Need for memory

tuning.

3)Self –tuning server

caching.

4)Automatic tuning of

server and cache memory.

5)Exploiting distributed

memory.
6)Integrating speculative

prefetching with caching.

7)Self – tuning caching and

prefetching for web based

systems.

8)Conclusion.

9)Bibliography.

Egoistic :

• Each server runs on local cache replacement algorithm –LRU and
LRU-k .

• It views remotely cached data that is not locally cached.

• It ends with hottest data fully replicated and in all caches with
little space left out for others.

Altruistic :

• It aims at maximizing this replication by giving preference in the
local cache replacement to data.

• That data should not be cache resident in different server.

Exploiting distributed memory :

1) Introduction.

2)Need for memory

tuning.

3)Self –tuning server

caching.

4)Automatic tuning of

server and cache memory.

5)Exploiting distributed

memory.
6)Integrating speculative

prefetching with caching.

7)Self – tuning caching and

prefetching for web based

systems.

8)Conclusion.

9)Bibliography.

• For high band width network altruistic approach is better –
affordable overhead.

• In fastest interconnect it becomes congested under high load.

• Mathematical cost model -it decides which method is useful
under the current workload and system settings.

• Benefit is proportional to mean response time of data and requests
over all servers.

• This model includes disk queuing the entire approach can even
contribute to disk load balancing .

Integerating speculative prefetching with caching :

1) Introduction.

2)Need for memory

tuning.

3)Self –tuning server

caching.

4)Automatic tuning of

server and cache memory.

5)Exploiting distributed

memory.

6)Integrating speculative

prefetching with

caching.
7)Self – tuning caching and

prefetching for web based

systems.

8)Conclusion.

9)Bibliography.

• Caching reduces overall disks I/O load.

• To reduce response time prefetching is used.

• Prefetching brings relevant data into memory already before it
is explicitly required.

• It pays off well - high latencies data request.

• It is beneficial with a certain probability like in case of
sequential scans not in case of near access patterns of ongoing
operations or client sessions.

Integerating speculative prefetching with caching :

1) Introduction.

2)Need for memory

tuning.

3)Self –tuning server

caching.

4)Automatic tuning of

server and cache memory.

5)Exploiting distributed

memory.

6)Integrating speculative

prefetching with

caching.
7)Self – tuning caching and

prefetching for web based

systems.

8)Conclusion.

9)Bibliography.

• Alternative method is to access near future access probabilities
-stationary heat statistics or corresponding temp value.

• The method is temperature based vertical data migration in.

• It keeps a list of the top temp non cached data units and
considers their prefetching in desc order of temperature.

• Prefetching is initiated only when the corresponding
documents temp exceeds the temp of the documents.

• When latencies of fetching non-cached documents vary cost
benefits consideration should be further refined explicitly.

Integerating speculative prefetching with caching :

1) Introduction.

2)Need for memory

tuning.

3)Self –tuning server

caching.

4)Automatic tuning of

server and cache memory.

5)Exploiting distributed

memory.

6)Integrating speculative

prefetching with

caching.
7)Self – tuning caching and

prefetching for web based

systems.

8)Conclusion.

9)Bibliography.

• With length T the expected number of access to document d
within time ‘T’ is

Nspec(d) = heat (d) * T

• Benefit of prefetching document
d = Nspec(d) / size(d) * Fetch_time(d,v)

• Where Fetch_time(d,v) is the estimated time for accessing d on
its “home location”.

• Where v can be secondary storage ,an online volume in
tertiary storage or offline volume .

Integerating speculative prefetching with caching :

1) Introduction.

2)Need for memory

tuning.

3)Self –tuning server

caching.

4)Automatic tuning of

server and cache memory.

5)Exploiting distributed

memory.

6)Integrating speculative

prefetching with

caching.
7)Self – tuning caching and

prefetching for web based

systems.

8)Conclusion.

9)Bibliography.

• The division by size(d) is normalization per cache space unit.

• This method is for aggressive prefetching and not for
speculative.

• Here overhead is low comparable to LRU-k bookkeeping.

Self – tuning caching and prefetching for web based systems :

1) Introduction.

2)Need for memory

tuning.

3)Self –tuning server

caching.

4)Automatic tuning of

server and cache memory.

5)Exploiting distributed

memory.

6)Integrating speculative

prefetching with

caching.

7)Self – tuning caching

and prefetching for

web based systems.
8)Conclusion.

9)Bibliography.

• When servers are accessed over the web or use tertiary
storage incur very high latency.

• Stochastic prediction for near future requests must be more
“aggressive” but needs to be more “accurate”.

• A richer class of models used is Markov chains.

• Markov chain based algorithm has been investigated for
prefetching and caching.

• In prior methods they focussed on reference pattern of a
single client and assumed discrete time .

Self – tuning caching and prefetching for web based systems :

1) Introduction.

2)Need for memory

tuning.

3)Self –tuning server

caching.

4)Automatic tuning of

server and cache memory.

5)Exploiting distributed

memory.

6)Integrating speculative

prefetching with

caching.

7)Self – tuning caching

and prefetching for

web based systems.
8)Conclusion.

9)Bibliography.

• McMin (Markov-chain based Migration for near line storage)
-different interaction speed of clients - CTMC.

• In web based access to a digital library –CTMC captures
variability.

• It is possible to compute both the expected number of near
future access to a document d, Nspec(d) - appropriate
precomputations.

• The (d,Nspec(d)) both of these values can be aggregated over
multiple CTMC models one for each active client session and
“arrivals”,”departures” as separate sessions.

Conclusion :

1) Introduction.

2)Need for memory

tuning.

3)Self –tuning server

caching.

4)Automatic tuning of

server and cache memory.

5)Exploiting distributed

memory.

6)Integrating speculative

prefetching with caching.

7)Self – tuning caching and

prefetching for web based

systems.

8)Conclusion.
9)Bibliography.

• The methods - geared for centralized, high speed interconnected
and widely distributed data servers.

• The common method we followed is :
• Observation – online statistics
• prediction – mathematical models
• Reaction – feed back loop

• Space need for online statistics must be carefully controlled.

• CPU time over head of predictions may be a critical factor.

• Self tuning algorithms will penetrate products and
contribute towards zero-admin and trouble -free servers.

Bibliography :

1) Introduction.

2)Need for memory

tuning.

3)Self –tuning server

caching.

4)Automatic tuning of

server and cache memory.

5)Exploiting distributed

memory.

6)Integrating speculative

prefetching with caching.

7)Self – tuning caching and

prefetching for web based

systems.

8)Conclusion.

9)Bibliography.

• Goal oriented buffer management revisited SIGMOD conf.,
1996 --- Brown,K., Carey,M., Livny,M.,

• Adaptive database buffer allocation using query feedback
VLDB conf., 1993 --- Chen,C.M.,Roussopoulos,N.,

• The LRU-k page replacement algorithm for database disk

buffering SIGMOD conf., 1993 ----
O’Neil,E.J.,O’neil,P.E.,Weikum,G.,

?

