
Automated Selection of Materialized 
Views and Indexes for SQL Databases

Robert Rübner, 03. 12. 2003



Robert RübnerMaterialized View Selection2

Structure

z Introduction
z Architecture for Index and Materialized View Selection
z Candidate Materialized View Selection
z Trading Choices of Indexes and Materialized Views
z Conclusion
z References



Robert RübnerMaterialized View Selection3

Introduction

z presence of the right materialized view improve performance
z to take into account the interaction between indexes and 

materialized views to optimise the physical design for the 
workload

z materialized view much richer in structure than an index
z two key techniques for an approach for candidate materialized 

view selection
z this work as part of the AutoAdmin research project at Microsoft



Robert RübnerMaterialized View Selection4

Architecture for Index and Materialized 
View Selection (I)



Robert RübnerMaterialized View Selection5

Architecture for Index and Materialized 
View Selection (II)

z first step to identify relevant indexes, materialized views and 
indexes on materialized views

z crucial to eliminate spurious indexes and materialized views from 
consideration early

z after chosen candidates find the ideal physical design, called 
configuration

z greedy algorithm for searching in the space
z an important characteristic that configuration enumeration is over 

the joint space of indexes and materialized views



Robert RübnerMaterialized View Selection6

Candidate Materialized View Selection

z goal to eliminate materialized views that not relevant for 
answering queries in configuration enumeration phase

z approach the task of candidate materialized view selection using
three steps

1) Finding interesting table-subsets

2) Exploiting the query optimiser to prune relevant materialized views
3) View merging



Robert RübnerMaterialized View Selection7

1) Finding interesting table-subsets

z table-subset interesting when reducing the cost of the workload, 
e.g., above a given threshold

z TS-Cost(T) = total cost of all queries in the workload where table-
subset T occurs

z TS-Weight(T) = ∑i Cost(Qi)*((sum of sizes of tables in T)/(sum of 
sizes of all tables in Qi))

z TS-Cost(T) the property of “monotony” since for table subsets T1, 
T2, T1 ⊆ T2 ⇒ TS-Cost(T1) ≥ TS-Cost(T2)



Robert RübnerMaterialized View Selection8

Algorithm for finding interesting table-
subsets in the workload



Robert RübnerMaterialized View Selection9

2) Exploiting the query optimiser to 
prune relevant materialized views

z many of these materialized views, finding a step before, not
relevant for answering any query

z because the decision is made by the query optimiser
z goal to prevent materialized views that are not used in answering 

any query from being considered during configuration 
enumeration



Robert RübnerMaterialized View Selection10

Cost-based pruning of syntactically 
relevant materialized views



Robert RübnerMaterialized View Selection11

3) View merging (I)

z limited materialized views, get in step before, return maybe sub-
optimal recommendations when storage is constrained

z set M good starting point for generating additional “merged”
materialized views

z to explore the space by using a sequence of pair-wise merges
z addressing two key issues

1) determining the criteria when and how to merge

2) enumerating the space of possible merged views



Robert RübnerMaterialized View Selection12

3) View merging (II)

z MergeViewPair Algorithm
– goal to create a new view with 2 properties

1) new view12 answering all queries which also can be answered using
view1 or view2

2) cost of view12 not significantly higher than the cost of using views in M

z Algorithm for generating merged views
– possible for a merged view to be merged again
– set of returned merged views not depending on the exact sequence

in which views are merged



Robert RübnerMaterialized View Selection13

Trading Choices of Indexes and 
Materialized Views

z indexes and materialized views interact with one another
z approach to consider joint enumeration of the space of 

candidate indexes and materialized views
z two alternatives to this approach

1) MVFIRST ⇒ first select materialized views and then indexes
2) INDFIRST ⇒ first select indexes and then materialized views



Robert RübnerMaterialized View Selection14

Selecting one feature set following by 
the other (MVFIRST, INDFIRST)

z for a global storage bound S and a fraction f (0 ≤ f ≤ 1)
z determining f such that a storage constraint of f*S to the first 

feature set
z using remaining storage for second feature set
z Problem: How to determine the fraction f?

– depending on several attributes of the workload (e.g., complexity of 
queries)

z the optimal value of f changes from one workload to the next



Robert RübnerMaterialized View Selection15

Joint Enumeration (JOINTSEL)

z two attractions of joint enumeration of candidate indexes and 
materialized views

1) a graceful adjustment to storage bounds

2) considering interactions between candidate indexes and 
materialized views

z using the greedy algorithm for enumeration



Robert RübnerMaterialized View Selection16

Conclusion(I)

Quality vs. storage bound with 
and without view merging

Comparison of alternative schemes 
without storage bound (e.g., 

storage = ∞)



Robert RübnerMaterialized View Selection17

Conclusion(II)

z architecture and algorithms are the foundation of a robust physical 
database design tool for Microsoft Server 2000 recommending 
both indexes and materialized views

z indexes and materialized views only a part of the physical design 
space

z to pursue the goal in the context of the AutoAdmin project of a 
complete physical design tool for SQL databases



Robert RübnerMaterialized View Selection18

References

z Paper from Agrawal S., Chaudhuri S., Narasayya V.
z AutoAdmin project, Microsoft Research 

http://www.research.microsoft.com/dmx/AutoAdmin
z Baralis E., Paraboschi S., Teniente E., Materialized View 

Selection in a Multidimensional Database, VLDB 1997


