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Introduction

z presence of the right materialized view improve performance
z to take into account the interaction between indexes and 

materialized views to optimise the physical design for the 
workload

z materialized view much richer in structure than an index
z two key techniques for an approach for candidate materialized 

view selection
z this work as part of the AutoAdmin research project at Microsoft
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Architecture for Index and Materialized 
View Selection (I)
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Architecture for Index and Materialized 
View Selection (II)

z first step to identify relevant indexes, materialized views and 
indexes on materialized views

z crucial to eliminate spurious indexes and materialized views from 
consideration early

z after chosen candidates find the ideal physical design, called 
configuration

z greedy algorithm for searching in the space
z an important characteristic that configuration enumeration is over 

the joint space of indexes and materialized views
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Candidate Materialized View Selection

z goal to eliminate materialized views that not relevant for 
answering queries in configuration enumeration phase

z approach the task of candidate materialized view selection using
three steps

1) Finding interesting table-subsets

2) Exploiting the query optimiser to prune relevant materialized views
3) View merging
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1) Finding interesting table-subsets

z table-subset interesting when reducing the cost of the workload, 
e.g., above a given threshold

z TS-Cost(T) = total cost of all queries in the workload where table-
subset T occurs

z TS-Weight(T) = ∑i Cost(Qi)*((sum of sizes of tables in T)/(sum of 
sizes of all tables in Qi))

z TS-Cost(T) the property of “monotony” since for table subsets T1, 
T2, T1 ⊆ T2 ⇒ TS-Cost(T1) ≥ TS-Cost(T2)
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Algorithm for finding interesting table-
subsets in the workload
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2) Exploiting the query optimiser to 
prune relevant materialized views

z many of these materialized views, finding a step before, not
relevant for answering any query

z because the decision is made by the query optimiser
z goal to prevent materialized views that are not used in answering 

any query from being considered during configuration 
enumeration
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Cost-based pruning of syntactically 
relevant materialized views
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3) View merging (I)

z limited materialized views, get in step before, return maybe sub-
optimal recommendations when storage is constrained

z set M good starting point for generating additional “merged”
materialized views

z to explore the space by using a sequence of pair-wise merges
z addressing two key issues

1) determining the criteria when and how to merge

2) enumerating the space of possible merged views
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3) View merging (II)

z MergeViewPair Algorithm
– goal to create a new view with 2 properties

1) new view12 answering all queries which also can be answered using
view1 or view2

2) cost of view12 not significantly higher than the cost of using views in M

z Algorithm for generating merged views
– possible for a merged view to be merged again
– set of returned merged views not depending on the exact sequence

in which views are merged
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Trading Choices of Indexes and 
Materialized Views

z indexes and materialized views interact with one another
z approach to consider joint enumeration of the space of 

candidate indexes and materialized views
z two alternatives to this approach

1) MVFIRST ⇒ first select materialized views and then indexes
2) INDFIRST ⇒ first select indexes and then materialized views
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Selecting one feature set following by 
the other (MVFIRST, INDFIRST)

z for a global storage bound S and a fraction f (0 ≤ f ≤ 1)
z determining f such that a storage constraint of f*S to the first 

feature set
z using remaining storage for second feature set
z Problem: How to determine the fraction f?

– depending on several attributes of the workload (e.g., complexity of 
queries)

z the optimal value of f changes from one workload to the next
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Joint Enumeration (JOINTSEL)

z two attractions of joint enumeration of candidate indexes and 
materialized views

1) a graceful adjustment to storage bounds

2) considering interactions between candidate indexes and 
materialized views

z using the greedy algorithm for enumeration



Robert RübnerMaterialized View Selection16

Conclusion(I)

Quality vs. storage bound with 
and without view merging

Comparison of alternative schemes 
without storage bound (e.g., 

storage = ∞)
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Conclusion(II)

z architecture and algorithms are the foundation of a robust physical 
database design tool for Microsoft Server 2000 recommending 
both indexes and materialized views

z indexes and materialized views only a part of the physical design 
space

z to pursue the goal in the context of the AutoAdmin project of a 
complete physical design tool for SQL databases
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