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Motivation

• Storage of data should be as efficient as possible

• Where to store which database-object? → Data Placement

• Data-maintenance should be as easy as possible

• Database-administrator (DBA) has to take care of everything →
Self-Tuning
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Data Placement

What does Data Placement mean?

• Distribution of database-objects to all available physical media

• Database-objects are tables, indexes and materialized views

• Physical media are harddisks, raid-arrays but also nodes in a

parallel database-environment

• Database-performance and serviceability are central requirements
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Self Tuning

• Optimal tuning of a database-system is very expensive

• Requirements change during lifecylce of the DBS (increasing

accesses, changing access-pattern)

• DB-Adminstrator has to permanently adjust DBS to the

changing requirements → expensive

• Goal is to reduce the cost

• DBMS ought to tune itself as much as possible
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Storage of DB-Objects

• A DB-object is stored in only one tablespace

• Tablespaces are “containers”, that might contain more than one

DB-object

• Tablespaces can be

– Files in the filesystem of the operating-system

– Partitions on disks

– Many partitions on many disks
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Distribution of DB-OBjekts

• Simpliest case: all DB-objects are on one disk

– Easy to maintain

– Objects accessed by a query are read sequential

• Distributing each object uniformly to all disks (full-striping)

– Easy to maintain

– Again, data is read sequential

– Maximum throughput

• Until now, we didn’t consider the disk’s access-time
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Influence of the Access-Time

• Using full-striping doesn’t reduce the access-time

• Example: Merge-Join of two huge tables

– Seek, Read R1, Seek, Read R2, Seek, Read R1, Seek, Read

R2, ...

– Time for reading decreases with each additional disk

– Time for Seek doesn’t change (the relative part on the whole

operation increases)

Mathias Körbs Storage of DB-Objects



Data Placement Page 8

Effective Placement

• DB-Objects, that are co-accessed are divided to different sets of

disks

• Seek’s on distributed objects can be accessed parallel

• But fewer parallelism and throughput

• Trade-off between high throughput and short access-time has to

be found

• Higher effort for database-administrator

• → starting-point for Self-Tuning
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Starting-Point of the AutoAdmin-Project

• Goal: automating the search for an effective database-layout

• DB-Objects should be distributed to available disk-drives

• Trade-off beetween high throughput and short access-time →
formulated as an optimzation-problem
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Available Information

• Database

– Tables and their sizes

– Indexes

– Materialized views

• Workload

– All queries, that are executed at the database

– Weight of each query compared to the other queries in the

workload

• Disks

– Number of disks available

– Accesstime, read-, writerate and capacity of each disk

– Availability-properties (None, Parity, Mirroring)
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The TS-Greedy-Algorithm

• Creating the access-graph from workload

• Partition of the access-graph, the sum of weights of the

interpartition-edges has to be the maximum

• Distribution of the partitions to disk

• Distributing all disks, left from the previous step, to increase

parallelism
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Creating the Access-Graph

• The workload is displayed as a graph

• Analysis of the execution-plans of the workload’s queries

(received from the optimizer)

• Each DB-object is represented by a node

• Weight of a node represents the number of accessed blocks

• Edge beetween two nodes exists when these nodes are

co-accessed by one or more queries

• Weight of an edge represents the sum of all blocks, that are

co-accessed, blocks that are co-accessed in more than one query

are counted more than once
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Partition of the Access-Graph

• Access-Graph has to be partitioned so that the sum of all cutted

edges is maximized

• Number of partitions has to be equal or smaller than the number

of available disks

• Ideally, no partition contains co-accessed objects

• Project uses Kernighan-Lin-Algorithm to partition the graph
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Distribution of the Partitions to Disk

• Disks are sorted in descending order by transferrate

• For each partition (in order of descending nodeweight-sum)

– Assign the partition’s DB-Objects (using full-striping) to the

smallest set of disks where they fit

– Starting at the disk with the highest transferrate

• Already assigned disks can not be distributed anymore

• If a partitionP1 doesn’t fit on any unassigned set of disks

– Get an already assigned partition P2 so that the sum of

edgeweights beetween P1 and P2 is minimal and assign P1 to

the same set of disks as P2
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Distribution of the remaining Disks

• Usually, after the previous step some disk-drives are unassigned

• Execute on the current DB-layout L:

– Create alternatives of L, by assigning k unassigned disks to

each object

– Get a layout-alternative L′ with smallest C

– If C ′ of L′ smaller than C of L reread this slide with L′ as

new L

• C = Σwq · cost(Q,L)

• cost(Q,L) estimates the io-responsetime of the query Q (contains

seek- and transfertime, but no cpu-time)
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Comments

• First TS-Greedy minimizes the co-accesses on DB-objects

• And increases parallelism in a second step

• Parameter k = 1 delivers good results

• Complexity: O(mk+1n2 + n2 · log(n)); m number of available

disks, n number of nodes in access-graph
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Validation of the Cost-Model

Query ∆texec ∆test

Query 3 44% 54%

Query 9 30% 40%

Query 10 36% 51%

Query 12 32% 55%

Query 18 16% 31%

Query 21 40% 9%

TPCH-22 25% 20%

• ∆texec measured improvement of the runningtime

• ∆test expected improvement of the runningtime (expectations

based on cost-model)
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Effectiveness of the Algorithm

• Improvement of the runningtime compared to full-striping

Workload ∆test

WK-CTRL1 ca. 25%

WK-CTRL2 ca. 50%

TPCH-22 ca. 20%

SALES-45 ca. 40%

APB-800 0%

• Comments to the workloads in [ACDN03]

• Algorithm scales as expected O(mk+1n2 + n2 · log(n)))
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Conclusion

• An effective database-layout is very expensive

• Solution: automated generation of the DB-layout

• Automated generation of the DB-layout delivers better results

than full-striping

• Currently no commercial implementation is available
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Thank You

• for your attention
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