Seminar Selftuning Databases
Data-Placement

Mathias Korbs

13. Januar 2004

Data Placement Page 1

Content

e Introduction
e Data-Placement

e The TS-Greedy algorithm

e Conclusion

Mathias Korbs Content

Data Placement Page 2

Motivation
e Storage of data should be as efficient as possible
e Where to store which database-object?” — Data Placement
e Data-maintenance should be as easy as possible

e Database-administrator (DBA) has to take care of everything —
Self-Tuning

Mathias Korbs Motivation

Data Placement Page 3

Data Placement
What does Data Placement mean?
e Distribution of database-objects to all available physical media
e Database-objects are tables, indexes and materialized views

e Physical media are harddisks, raid-arrays but also nodes in a

parallel database-environment

e Database-performance and serviceability are central requirements

Mathias Korbs Motivation

Data Placement Page 4

Self Tuning

e Optimal tuning of a database-system is very expensive

e Requirements change during lifecylce of the DBS (increasing

accesses, changing access-pattern)

e DB-Adminstrator has to permanently adjust DBS to the

changing requirements — expensive
e (Goal is to reduce the cost

e DBMS ought to tune itself as much as possible

Mathias Korbs Motivation

Data Placement Page 5

Storage of DB-Objects

e A DB-object is stored in only one tablespace

e Tablespaces are “containers”, that might contain more than one
DB-object

e Tablespaces can be
— Files in the filesystem of the operating-system
— Partitions on disks

— Many partitions on many disks

Mathias Korbs Storage of DB-Objects

Data Placement Page 6

Distribution of DB-OBjekts

e Simpliest case: all DB-objects are on one disk
— Basy to maintain

— Objects accessed by a query are read sequential

e Distributing each object uniformly to all disks (full-striping)
— FBasy to maintain
— Again, data is read sequential

— Maximum throughput

e Until now, we didn’t consider the disk’s access-time

Mathias Korbs Storage of DB-Objects

Data Placement Page 7

Influence of the Access-Time
e Using full-striping doesn’t reduce the access-time

e Example: Merge-Join of two huge tables

— Seek, Read R, Seek, Read Rs, Seek, Read R;, Seek, Read
Ry, ...

— Time for reading decreases with each additional disk

— Time for Seek doesn’t change (the relative part on the whole

operation increases)

Mathias Korbs Storage of DB-Objects

Data Placement Page 8

Effective Placement

e DB-Objects, that are co-accessed are divided to different sets of
disks

e Seek’s on distributed objects can be accessed parallel
e But fewer parallelism and throughput

e Trade-off between high throughput and short access-time has to
be found

e Higher effort for database-administrator

e — starting-point for Self-Tuning

Mathias Korbs Storage of DB-Objects

Data Placement Page 9

Starting-Point of the AutoAdmin-Project
e Goal: automating the search for an effective database-layout
e DB-Objects should be distributed to available disk-drives

e Trade-off beetween high throughput and short access-time —

formulated as an optimzation-problem

Mathias Korbs Starting-Point of the AutoAdmin-Project

Data Placement Page 10

Available Information

e Database
— Tables and their sizes
— Indexes

— Materialized views

e Workload
— All queries, that are executed at the database

— Weight of each query compared to the other queries in the
workload

o Disks
— Number of disks available
— Accesstime, read-, writerate and capacity of each disk

— Availability-properties (None, Parity, Mirroring)

Mathias Korbs Starting-Point of the AutoAdmin-Project

Data Placement Page 11

The TS-Greedy-Algorithm

e Creating the access-graph from workload

e Partition of the access-graph, the sum of weights of the

interpartition-edges has to be the maximum
e Distribution of the partitions to disk

e Distributing all disks, left from the previous step, to increase

parallelism

Mathias Korbs The TS-Greedy-Algorithm

Data Placement Page 12

Creating the Access-Graph
e The workload is displayed as a graph

e Analysis of the execution-plans of the workload’s queries

(received from the optimizer)
e Fach DB-object is represented by a node
e Weight of a node represents the number of accessed blocks

e Ldge beetween two nodes exists when these nodes are

co-accessed by one or more queries

e Weight of an edge represents the sum of all blocks, that are
co-accessed, blocks that are co-accessed in more than one query

are counted more than once

Mathias Korbs The TS-Greedy-Algorithm

Data Placement Page 13

Partition of the Access-Graph

e Access-Graph has to be partitioned so that the sum of all cutted

edges is maximized

e Number of partitions has to be equal or smaller than the number

of available disks
e Ideally, no partition contains co-accessed objects

e Project uses Kernighan-Lin-Algorithm to partition the graph

Mathias Korbs The TS-Greedy-Algorithm

Data Placement Page 14

Distribution of the Partitions to Disk

e Disks are sorted in descending order by transferrate

e For each partition (in order of descending nodeweight-sum)

— Assign the partition’s DB-Objects (using full-striping) to the
smallest set of disks where they fit

— Starting at the disk with the highest transferrate
e Already assigned disks can not be distributed anymore

o If a partitionP; doesn’t fit on any unassigned set of disks

— Get an already assigned partition P so that the sum of
edgeweights beetween P; and P, is minimal and assign P; to
the same set of disks as P

Mathias Korbs The TS-Greedy-Algorithm

Data Placement Page 15

Distribution of the remaining Disks
e Usually, after the previous step some disk-drives are unassigned

e Execute on the current DB-layout L:

— Create alternatives of L, by assigning k unassigned disks to

each object

— Get a layout-alternative L’ with smallest C

— If C" of L' smaller than C of L reread this slide with L’ as
new L

o C =3Xw,-cost(Q,L)

e cost(Q, L) estimates the io-responsetime of the query) (contains

seek- and transfertime, but no cpu-time)

Mathias Korbs The TS-Greedy-Algorithm

Data Placement Page 16

Comments
e First TS-Greedy minimizes the co-accesses on DB-objects
e And increases parallelism in a second step
e Parameter k = 1 delivers good results

e Complexity: O(m*T1n? 4+ n? . log(n)); m number of available

disks, n number of nodes in access-graph

Mathias Korbs The TS-Greedy-Algorithm

Data Placement Page 17

Validation of the Cost-Model

Query Ate:r:ec Atest
Query 3 44% 54%
Query 9 30% 40%

Query 10 36% 51%
Query 12 32% 55%
Query 18 | 16% 31%
Query 21 40% 9%
TPCH-22 25% 20%

o At.... measured improvement of the runningtime

o At.st expected improvement of the runningtime (expectations

based on cost-model)

Mathias Korbs The TS-Greedy-Algorithm

Data Placement Page 18

Effectiveness of the Algorithm

e Improvement of the runningtime compared to full-striping

Workload JAN S
WK-CTRL1 | ca. 25%
WK-CTRL2 | ca. 50%
TPCH-22 ca. 20%
SALES-45 ca. 40%
APB-800 0%

e Comments to the workloads in [ACDNO3]

o Algorithm scales as expected O(m**tn2 +n? -log(n)))

Mathias Korbs The TS-Greedy-Algorithm

Data Placement Page 19

Conclusion
e An effective database-layout is very expensive
e Solution: automated generation of the DB-layout

e Automated generation of the DB-layout delivers better results
than full-striping

e Currently no commercial implementation is available

Mathias Korbs Conclusion

Data Placement Page 20

Thank You

e for your attention

Mathias Korbs Thank You

Literatur

[ACDNO03| S. Agrawal, S. Chaudhuri, A. Das, and V. Narasayya.
Automating layout of relational databases. ICDE, 2003.

