
Seminar Selftuning Databases
Data-Placement

Mathias Körbs

13. Januar 2004



Data Placement Page 1

Content

• Introduction

• Data-Placement

• The TS-Greedy algorithm

• Conclusion

Mathias Körbs Content



Data Placement Page 2

Motivation

• Storage of data should be as efficient as possible

• Where to store which database-object? → Data Placement

• Data-maintenance should be as easy as possible

• Database-administrator (DBA) has to take care of everything →
Self-Tuning

Mathias Körbs Motivation



Data Placement Page 3

Data Placement

What does Data Placement mean?

• Distribution of database-objects to all available physical media

• Database-objects are tables, indexes and materialized views

• Physical media are harddisks, raid-arrays but also nodes in a

parallel database-environment

• Database-performance and serviceability are central requirements

Mathias Körbs Motivation



Data Placement Page 4

Self Tuning

• Optimal tuning of a database-system is very expensive

• Requirements change during lifecylce of the DBS (increasing

accesses, changing access-pattern)

• DB-Adminstrator has to permanently adjust DBS to the

changing requirements → expensive

• Goal is to reduce the cost

• DBMS ought to tune itself as much as possible

Mathias Körbs Motivation



Data Placement Page 5

Storage of DB-Objects

• A DB-object is stored in only one tablespace

• Tablespaces are “containers”, that might contain more than one

DB-object

• Tablespaces can be

– Files in the filesystem of the operating-system

– Partitions on disks

– Many partitions on many disks

Mathias Körbs Storage of DB-Objects



Data Placement Page 6

Distribution of DB-OBjekts

• Simpliest case: all DB-objects are on one disk

– Easy to maintain

– Objects accessed by a query are read sequential

• Distributing each object uniformly to all disks (full-striping)

– Easy to maintain

– Again, data is read sequential

– Maximum throughput

• Until now, we didn’t consider the disk’s access-time

Mathias Körbs Storage of DB-Objects



Data Placement Page 7

Influence of the Access-Time

• Using full-striping doesn’t reduce the access-time

• Example: Merge-Join of two huge tables

– Seek, Read R1, Seek, Read R2, Seek, Read R1, Seek, Read

R2, ...

– Time for reading decreases with each additional disk

– Time for Seek doesn’t change (the relative part on the whole

operation increases)

Mathias Körbs Storage of DB-Objects



Data Placement Page 8

Effective Placement

• DB-Objects, that are co-accessed are divided to different sets of

disks

• Seek’s on distributed objects can be accessed parallel

• But fewer parallelism and throughput

• Trade-off between high throughput and short access-time has to

be found

• Higher effort for database-administrator

• → starting-point for Self-Tuning

Mathias Körbs Storage of DB-Objects



Data Placement Page 9

Starting-Point of the AutoAdmin-Project

• Goal: automating the search for an effective database-layout

• DB-Objects should be distributed to available disk-drives

• Trade-off beetween high throughput and short access-time →
formulated as an optimzation-problem

Mathias Körbs Starting-Point of the AutoAdmin-Project



Data Placement Page 10

Available Information

• Database

– Tables and their sizes

– Indexes

– Materialized views

• Workload

– All queries, that are executed at the database

– Weight of each query compared to the other queries in the

workload

• Disks

– Number of disks available

– Accesstime, read-, writerate and capacity of each disk

– Availability-properties (None, Parity, Mirroring)

Mathias Körbs Starting-Point of the AutoAdmin-Project



Data Placement Page 11

The TS-Greedy-Algorithm

• Creating the access-graph from workload

• Partition of the access-graph, the sum of weights of the

interpartition-edges has to be the maximum

• Distribution of the partitions to disk

• Distributing all disks, left from the previous step, to increase

parallelism

Mathias Körbs The TS-Greedy-Algorithm



Data Placement Page 12

Creating the Access-Graph

• The workload is displayed as a graph

• Analysis of the execution-plans of the workload’s queries

(received from the optimizer)

• Each DB-object is represented by a node

• Weight of a node represents the number of accessed blocks

• Edge beetween two nodes exists when these nodes are

co-accessed by one or more queries

• Weight of an edge represents the sum of all blocks, that are

co-accessed, blocks that are co-accessed in more than one query

are counted more than once

Mathias Körbs The TS-Greedy-Algorithm



Data Placement Page 13

Partition of the Access-Graph

• Access-Graph has to be partitioned so that the sum of all cutted

edges is maximized

• Number of partitions has to be equal or smaller than the number

of available disks

• Ideally, no partition contains co-accessed objects

• Project uses Kernighan-Lin-Algorithm to partition the graph

Mathias Körbs The TS-Greedy-Algorithm



Data Placement Page 14

Distribution of the Partitions to Disk

• Disks are sorted in descending order by transferrate

• For each partition (in order of descending nodeweight-sum)

– Assign the partition’s DB-Objects (using full-striping) to the

smallest set of disks where they fit

– Starting at the disk with the highest transferrate

• Already assigned disks can not be distributed anymore

• If a partitionP1 doesn’t fit on any unassigned set of disks

– Get an already assigned partition P2 so that the sum of

edgeweights beetween P1 and P2 is minimal and assign P1 to

the same set of disks as P2

Mathias Körbs The TS-Greedy-Algorithm



Data Placement Page 15

Distribution of the remaining Disks

• Usually, after the previous step some disk-drives are unassigned

• Execute on the current DB-layout L:

– Create alternatives of L, by assigning k unassigned disks to

each object

– Get a layout-alternative L′ with smallest C

– If C ′ of L′ smaller than C of L reread this slide with L′ as

new L

• C = Σwq · cost(Q,L)

• cost(Q,L) estimates the io-responsetime of the query Q (contains

seek- and transfertime, but no cpu-time)

Mathias Körbs The TS-Greedy-Algorithm



Data Placement Page 16

Comments

• First TS-Greedy minimizes the co-accesses on DB-objects

• And increases parallelism in a second step

• Parameter k = 1 delivers good results

• Complexity: O(mk+1n2 + n2 · log(n)); m number of available

disks, n number of nodes in access-graph

Mathias Körbs The TS-Greedy-Algorithm



Data Placement Page 17

Validation of the Cost-Model

Query ∆texec ∆test

Query 3 44% 54%

Query 9 30% 40%

Query 10 36% 51%

Query 12 32% 55%

Query 18 16% 31%

Query 21 40% 9%

TPCH-22 25% 20%

• ∆texec measured improvement of the runningtime

• ∆test expected improvement of the runningtime (expectations

based on cost-model)

Mathias Körbs The TS-Greedy-Algorithm



Data Placement Page 18

Effectiveness of the Algorithm

• Improvement of the runningtime compared to full-striping

Workload ∆test

WK-CTRL1 ca. 25%

WK-CTRL2 ca. 50%

TPCH-22 ca. 20%

SALES-45 ca. 40%

APB-800 0%

• Comments to the workloads in [ACDN03]

• Algorithm scales as expected O(mk+1n2 + n2 · log(n)))

Mathias Körbs The TS-Greedy-Algorithm



Data Placement Page 19

Conclusion

• An effective database-layout is very expensive

• Solution: automated generation of the DB-layout

• Automated generation of the DB-layout delivers better results

than full-striping

• Currently no commercial implementation is available

Mathias Körbs Conclusion



Data Placement Page 20

Thank You

• for your attention

Mathias Körbs Thank You



Literatur

[ACDN03] S. Agrawal, S. Chaudhuri, A. Das, and V. Narasayya.

Automating layout of relational databases. ICDE, 2003.


