

An Evolutionary Approach to Materialized Views Selection in a Data Warehouse Environment

by Andreas Winter

based on work of Chuan Zhang, Xin Yao, Senior Member, IEEE, and Jian Yang

Structure

I Introduction

- data warehouse
- materialized views
- algorithms

II Materialized view selection

- query optimization
- multiple query optimization

III Algorithms for materialized view selection

- 2-Level framework
- representation of solutions

IV Experimental Studies

V Conclusion

I. *Introduction*Data Warehouse

simplified view

I. IntroductionMaterialized views

problem:

- " What views should be materialized in order to make the sum of the query performance and view maintenance cost minimal? "
- selection involves difficult trade-off
 - materialized all views best performance, but highest cost of view maintenance
 - materialized no views lowest view maintenance, but poorest query performance
 - some materialized views near optimal balance

I. *Introduction*Algorithms

(1) deterministic algorithms

- construct or search solution in deterministic manner
- by apply heuristics or exhaustive search

(2) randomized algorithms

- moves constitute edges between different solution
- transforming by exactly one move, solutions are connected
- each algorithm performs random walk
- no more applicable ones exists or time limit exceeded, algorithm terminate

(3) evolutionary algorithms

- randomized search strategy similar biological evolution
- fittest members survive the selection

(4) hybrid algorithms

- combine deterministic, randomized and evolutionary algorithms
- e.g. deterministic algorithms solutions can be used as starting points for randomized algorithms

II. Materialized view selection Query optimization

- join operation is one of the most expensive operations
- for example: R1 = 20, R2 = 30, R3 = 40

((R1 ⋈ R2) ⋈ R3)

((R1 ⋈ R3) ⋈ R2)

goal: find a processing plan with lowest query processing cost

II. *Materialized view selection*Multiple query optimization

 goal: find a global/multiple processing plan such the query cost is minimized

- in general, union of locally optimal plans ≠ globally optimal plan
- algorithm is often needed

III. Algorithms for materialized view selection2-Level-Framework

algorithms based on the 2-level structure

higher level (global processing plan optimization)

lower level

(Materialized view selection based on one global processing plan)

III. Algorithms for materialized view selection Representation of global processing plans

- higher level optimization
- queries Q₁, Q₂ ... Q_n
- global processing plan represented by a vector of n integers $\{[P_{1i}], [P_{2j}], \dots [P_{kn}]\}$ $P_{kn} \dots kth$ local processing plan for Q_n
- for example:
 - number of local processing plans for $Q_1 = 12$, $Q_2 = 120$, $Q_3 = 80$
 - vector {[4], [89], [70]} reprents a global processing plan, that means 4th processing plan for Q_1 , 89th for Q_2 and 70th for Q_3
 - range for each plan is [1 ... 12], [1 ... 120] and [1 ... 80]

III. Algorithms for materialized view selection Representation of materialized views

- lower level optimization
- based on DAGs (directed acyclic graph)
- each DAG encoded as a binary string
- 1 indicates that the corresponding node is materialized, 0 it is not
- binary string called also mapping array
- for example:
 - breadth-first travers of the DAG results follow ordered list: {[Q5,0], [Q4,0], [Q3,0] ... [tmp6,0]}
 - binary string {0,0,0,0,0,0,0,...,0} means that no node is materialized
 - {0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1} means that nodes {Q4, Q1, result 5, tmp2, tmp5 and tmp6 } are materialized, others not

III. Algorithms for materialized view selection Example

- four relations
 - Item, Part,
 - Supplier, Sales
- five queries

III. Algorithms for materialized view selection Crossover

- encourages information exchange among different individuals
- assembling better individuals
- one-point crossover
- for example:

III. Algorithms for materialized view selection Mutation

- needed to create new genes
- enables the algorithm to reach all possible solutions (in theory)
- for example:

```
(1) lower level
```

generate position = 16

individuals $L = 11\ 001\ 000\ 100\ 100\ 001\ 111$

offsprings L' = 11 001 000 100 100 011 111

(2) higher level

generate gene = 3

individuals L = [4][20][30][10][99]

offsprings L' = [4][20][16][10][99]

IV. Experimental Studies

simulation software based on the Simple Genetic Algorithm and GAlib

COMPARISON OF TIME TO FIND THE GLOBAL OPTIMAL SOLUTION BY DIFFERENT ALGORITHMS

Algorithm	6 queries	7 queries	8 queries
H1-H2	5 Secs	50 Secs	1.2 Mins
EA1-H2	30 Secs	10.1 Mins	20 Mins
EA1-H2-GA2	1 Mins	10 Mins	25 Mins
H1-EA2	35 Secs	10 Mins	22 Mins
EA1-EA2	4 Mins	2 Hours	7 Hours
Exhaustive	5 Mins	2.5 Hours	25.2 Hours

- EA1 higher level evolutionary algorithm EA2 lower level evolutionary algorithm
- H1 higher level heuristic algorithm
- H2 lower level heuristic algorithm

V. Conclusion

- materialized view selection based on multiple query processing plans
- proposed a 2-level structure
- pure evolutionary algorithms impractical due to their excessive computation time
- pure heuristic algorithms unsatisfactory in terms of the quality of the solutions
- performance of hybrid algorithms that combine advantages of heuristic and evolutionary seems the best

"Finding the suitable trade-off between the computation time and the cost saving will be a topic for future studies."