
Otto-von-Guericke-Universität Magdeburg

Seminar

Self-Tuning Databases

Goal-Oriented Buffer Management Revisited

André Riedel

21 January 2004



Goal-Oriented Buffer Management Revisited Contents

Contents

1. Introduction

2. Previous Approaches

(a) Dynamic Tuning

(b) Fragment Fencing

3. Class Fencing

(a) The Hit Rate Concavity Assumption

(b) Estimating Hit Rates Using the Concavity Assumption

(c) Class Fencing’s Memory Allocation Mechanism

4. Experiments and Results

5. Conclusion

André Riedel 1



Goal-Oriented Buffer Management Revisited Introduction

Introduction

• each workload class may have its own performance goal

• different response times, e.g.

– 1 second for transaction

– 1 minute for decision support queries

– “best effort“ for data mining queries

• today manually tuning with various low level “knobs“ in the DBMS

• ideally DBMS with per-class performance goals as input should adjust its own

low-level knobs to achieve goal

André Riedel 2



Goal-Oriented Buffer Management Revisited Introduction

Goal-Oriented Basics

• memory allocation is most important knob because it determines the amount

of disk and bandwidth consumed

• when all other knobs remain fixed, the goal is:

– for each class with an average response time goal, find such a memory

allocation that its observed response time is as close as possible to its goal

– while at the same time maximizing the amount of memory available for the

no-goal class

André Riedel 3



Goal-Oriented Buffer Management Revisited Introduction

• real world DBMS and workloads, accurately predicting the disk buffer

allocation for a goal is extremely difficult

• the general approach: feedback coupled with “best guess“ estimation

• observe actual response times and compare with response time goal then

adjust knobs

• process of observing, estimating and adjusting is repeated continuously at

regular intervals

• length of intervals is predefined number of transaction completions

• should have good balance between responsiveness and statistical stability

André Riedel 4



Goal-Oriented Buffer Management Revisited Introduction

Criteria for Success

• class meets its response time goal is not the only criteria for judging algorithm

Accuracy - how close is average response time to goal

Responsiveness - number of knob adjustments

Stability - variance in the response times

Overhead - reduce of system efficiency

Robustness - wide range of workloads

Practically - don’t make unrealistic assumptions

• will normally be in conflict (e.g. stability versus responsiveness)

• algorithm must find careful balance between this criteria

André Riedel 5



Goal-Oriented Buffer Management Revisited Previous Approaches

Previous Approaches

• goal-oriented buffer allocation algorithms can be described abstractly in terms

of three components:

response time estimator estimates response time as function of buffer hit

rate

hit rate estimator estimates buffer hit rate as a function of memory

allocation

buffer allocation mechanism is used to divide up memory between the

competing workload classes

• response time estimator ⇒ hit rate estimator ⇒ buffer allocation mechanism

• these steps are repeated continuously for each class to come closer to the

response time goals

André Riedel 6



Goal-Oriented Buffer Management Revisited Previous Approaches

Dynamic Tuning

• uses simple linear estimate to predict buffer request response times

Rest = (1.0−HIT est(M))×D

• HIT est(M) is the estimated hit rate for the class that will result from a

memory allocation M

• D is the average time required for moving a page from disk to memory

André Riedel 7



Goal-Oriented Buffer Management Revisited Previous Approaches

• to estimate hit rate as function of memory the Belady hit rate function is used

1− a/M b

• M is memory allocation

• constants a and b are specific to a particular combination of workload and

buffer page replacement policy

• to compute a and b observe the hit rate of the two most recent memory

allocations

• solve the two simultaneous equations and get specific a and b

• use the inverse of the Belady equation to estimate the memory

• entire buffer pool is partitioned into separate pools for each class, managed by

completely autonomous buffer managers

André Riedel 8



Goal-Oriented Buffer Management Revisited Previous Approaches

Dynamic Tuning Issues

• is not a good “fit“ for any particular function

• real hit rate curves have a wide range of shapes and are difficult to capture

accurately with a single analytical model

André Riedel 9



Goal-Oriented Buffer Management Revisited Previous Approaches

Fragment Fencing

• makes the simplifying assumption that response time and buffer miss rate are

directly proportional

HIT target = 1.0− (Mobsv ∗ (Rgoal/Robsv))

• Robsv is the observed response time, Rgoal is the response time goal

• Mobsv is the observed miss rate that occurs with the observed response time

• Fragment Fencing estimates hit rate function for each fragment of the

database that is referenced by the class

• a fragment is defined as all of the pages within a relatively uniform reference

unit, e.g. a single relation or a single level of a tree-structured index

• a uniform reference probability is assumed across the pages of a fragment

André Riedel 10



Goal-Oriented Buffer Management Revisited Previous Approaches

• the goal of Fragment Fencing is to determine, for each fragment, the minimum

number of pages that must be memory resident

• these minimums are called target residencies

• when increasing the hit rate fragments of class are sorted

• increase the target residencies in order

• to enforce the determined target residency the DBMS’s buffer replacement

policy is changed

André Riedel 11



Goal-Oriented Buffer Management Revisited Previous Approaches

Fragment Fencing Issues

• references within fragments are not uniform

– can easily tested by comparing the estimated hit rate to the actual hit rate

– not clear what the fragment’s memory allocation should be

– average per-page reference frequency and sorting is not meaningful

• “passive“ memory allocation

– underlying replacement policy is unaware of which frames are fenced

– policy wastes time for inspecting good frame candidates only to be

overruled by Fragment Fencing

André Riedel 12



Goal-Oriented Buffer Management Revisited Class Fencing

Class Fencing

• also assumes that miss rate and response time are proportional

• uses a more general hit rate prediction technique - hit rate concavity

• allows for data sharing between classes

• compromise between the rigid partitions of Dynamic Tuning and the passive

fences of Fragment Fencing

André Riedel 13



Goal-Oriented Buffer Management Revisited Class Fencing

The Hit Rate Concavity Assumption

Concavity Theorem:

Regardless of the database reference pattern, hit rate as a function of

buffer memory allocation is a concave function under an optimal

replacement policy.

• the slope of the hit rate curve never increases as more memory is added

• an optimal buffer replacement policy always chooses the least valuable page to

replace

• in practice optimal replacement policies are not realizable

• but industrial-strength DBMS replacement strategies are “optimal enough“

André Riedel 14



Goal-Oriented Buffer Management Revisited Class Fencing

• a DBMS should make fewer page replacement mistakes than an operating

system, because:

– knowledge of future page reference behavior

– presence of indexes

• concavity implies that there are no “knees“ in an optimal hit rate function

• empirical study showed no knee in commercial DBMS

⇒ hit rate concavity holds for the most commonly occurring workloads

running on a typical commercial DBMS

André Riedel 15



Goal-Oriented Buffer Management Revisited Class Fencing

Estimating Hit Rates Using the Concavity Assumption

• only the last two hit rate observations are needed

• straight line approximation always predicts a conservative lower bound for its

memory allocation

• can aggressively allocate memory in large increments

André Riedel 16



Goal-Oriented Buffer Management Revisited Class Fencing

Class Fencing’s Memory Allocation Mechanism

• a single fence is built to protect all of the pages referenced by a class

• each class has local buffer manager

• a global buffer manager is used for no-goal classes

• no overhead because the global buffer manager contains no fenced frames

• single buffer frame table and associated disk-page-to-buffer-frame mapping

table is shared by all buffer managers

André Riedel 17



Goal-Oriented Buffer Management Revisited Class Fencing

• each class C has a limit, poolSize[C] the maximum number of buffer frames

that can be managed by class C’s local buffer manager

• global buffer manager has poolSize[GLOBAL]

• DBMS buffer pool memory = local and global pool sizes

• local buffer manager “steals“ frames from global buffer manager

• when poolSize limit exceeds replacement policy is called

• no-goal frames are handled by the global buffer manager

André Riedel 18



Goal-Oriented Buffer Management Revisited Experiments and Results

Experiments and Results

• with different workloads and goals

• Class Fencing is stable and accurate

• is not restricted to allocate memory in small chunks ⇒ is very responsive

• Responsiveness is key feature, uses very few knob turns

• eliminates primary overhead of Fragment Fencing

• is fairly robust because it applies to a wide range of workloads

André Riedel 19



Goal-Oriented Buffer Management Revisited Conclusion

Conclusion

• Dynamic Tuning and Fragment Fencing are solutions for goal-oriented DBMS

buffer management

• Class Fencing overcomes limitations of these prior solutions

• uses other new DBMS techniques for new assumptions

André Riedel 20



Goal-Oriented Buffer Management Revisited Conclusion

References:

K. P. Brown, M. J. Carey and M. Livny, Goal-Oriented Buffer Management

Revisited, Proceedings of the ACM SIGMOD, Jun. 1996, pages 353–364.

André Riedel 21


