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Introduction

• each workload class may have its own performance goal

• different response times, e.g.

– 1 second for transaction

– 1 minute for decision support queries

– “best effort“ for data mining queries

• today manually tuning with various low level “knobs“ in the DBMS

• ideally DBMS with per-class performance goals as input should adjust its own

low-level knobs to achieve goal
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Goal-Oriented Basics

• memory allocation is most important knob because it determines the amount

of disk and bandwidth consumed

• when all other knobs remain fixed, the goal is:

– for each class with an average response time goal, find such a memory

allocation that its observed response time is as close as possible to its goal

– while at the same time maximizing the amount of memory available for the

no-goal class
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• real world DBMS and workloads, accurately predicting the disk buffer

allocation for a goal is extremely difficult

• the general approach: feedback coupled with “best guess“ estimation

• observe actual response times and compare with response time goal then

adjust knobs

• process of observing, estimating and adjusting is repeated continuously at

regular intervals

• length of intervals is predefined number of transaction completions

• should have good balance between responsiveness and statistical stability
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Criteria for Success

• class meets its response time goal is not the only criteria for judging algorithm

Accuracy - how close is average response time to goal

Responsiveness - number of knob adjustments

Stability - variance in the response times

Overhead - reduce of system efficiency

Robustness - wide range of workloads

Practically - don’t make unrealistic assumptions

• will normally be in conflict (e.g. stability versus responsiveness)

• algorithm must find careful balance between this criteria
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Previous Approaches

• goal-oriented buffer allocation algorithms can be described abstractly in terms

of three components:

response time estimator estimates response time as function of buffer hit

rate

hit rate estimator estimates buffer hit rate as a function of memory

allocation

buffer allocation mechanism is used to divide up memory between the

competing workload classes

• response time estimator ⇒ hit rate estimator ⇒ buffer allocation mechanism

• these steps are repeated continuously for each class to come closer to the

response time goals
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Dynamic Tuning

• uses simple linear estimate to predict buffer request response times

Rest = (1.0−HIT est(M))×D

• HIT est(M) is the estimated hit rate for the class that will result from a

memory allocation M

• D is the average time required for moving a page from disk to memory
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• to estimate hit rate as function of memory the Belady hit rate function is used

1− a/M b

• M is memory allocation

• constants a and b are specific to a particular combination of workload and

buffer page replacement policy

• to compute a and b observe the hit rate of the two most recent memory

allocations

• solve the two simultaneous equations and get specific a and b

• use the inverse of the Belady equation to estimate the memory

• entire buffer pool is partitioned into separate pools for each class, managed by

completely autonomous buffer managers

André Riedel 8



Goal-Oriented Buffer Management Revisited Previous Approaches

Dynamic Tuning Issues

• is not a good “fit“ for any particular function

• real hit rate curves have a wide range of shapes and are difficult to capture

accurately with a single analytical model
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Fragment Fencing

• makes the simplifying assumption that response time and buffer miss rate are

directly proportional

HIT target = 1.0− (Mobsv ∗ (Rgoal/Robsv))

• Robsv is the observed response time, Rgoal is the response time goal

• Mobsv is the observed miss rate that occurs with the observed response time

• Fragment Fencing estimates hit rate function for each fragment of the

database that is referenced by the class

• a fragment is defined as all of the pages within a relatively uniform reference

unit, e.g. a single relation or a single level of a tree-structured index

• a uniform reference probability is assumed across the pages of a fragment
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• the goal of Fragment Fencing is to determine, for each fragment, the minimum

number of pages that must be memory resident

• these minimums are called target residencies

• when increasing the hit rate fragments of class are sorted

• increase the target residencies in order

• to enforce the determined target residency the DBMS’s buffer replacement

policy is changed
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Fragment Fencing Issues

• references within fragments are not uniform

– can easily tested by comparing the estimated hit rate to the actual hit rate

– not clear what the fragment’s memory allocation should be

– average per-page reference frequency and sorting is not meaningful

• “passive“ memory allocation

– underlying replacement policy is unaware of which frames are fenced

– policy wastes time for inspecting good frame candidates only to be

overruled by Fragment Fencing
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Class Fencing

• also assumes that miss rate and response time are proportional

• uses a more general hit rate prediction technique - hit rate concavity

• allows for data sharing between classes

• compromise between the rigid partitions of Dynamic Tuning and the passive

fences of Fragment Fencing
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The Hit Rate Concavity Assumption

Concavity Theorem:

Regardless of the database reference pattern, hit rate as a function of

buffer memory allocation is a concave function under an optimal

replacement policy.

• the slope of the hit rate curve never increases as more memory is added

• an optimal buffer replacement policy always chooses the least valuable page to

replace

• in practice optimal replacement policies are not realizable

• but industrial-strength DBMS replacement strategies are “optimal enough“
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• a DBMS should make fewer page replacement mistakes than an operating

system, because:

– knowledge of future page reference behavior

– presence of indexes

• concavity implies that there are no “knees“ in an optimal hit rate function

• empirical study showed no knee in commercial DBMS

⇒ hit rate concavity holds for the most commonly occurring workloads

running on a typical commercial DBMS
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Estimating Hit Rates Using the Concavity Assumption

• only the last two hit rate observations are needed

• straight line approximation always predicts a conservative lower bound for its

memory allocation

• can aggressively allocate memory in large increments
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Class Fencing’s Memory Allocation Mechanism

• a single fence is built to protect all of the pages referenced by a class

• each class has local buffer manager

• a global buffer manager is used for no-goal classes

• no overhead because the global buffer manager contains no fenced frames

• single buffer frame table and associated disk-page-to-buffer-frame mapping

table is shared by all buffer managers
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• each class C has a limit, poolSize[C] the maximum number of buffer frames

that can be managed by class C’s local buffer manager

• global buffer manager has poolSize[GLOBAL]

• DBMS buffer pool memory = local and global pool sizes

• local buffer manager “steals“ frames from global buffer manager

• when poolSize limit exceeds replacement policy is called

• no-goal frames are handled by the global buffer manager
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Experiments and Results

• with different workloads and goals

• Class Fencing is stable and accurate

• is not restricted to allocate memory in small chunks ⇒ is very responsive

• Responsiveness is key feature, uses very few knob turns

• eliminates primary overhead of Fragment Fencing

• is fairly robust because it applies to a wide range of workloads
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Conclusion

• Dynamic Tuning and Fragment Fencing are solutions for goal-oriented DBMS

buffer management

• Class Fencing overcomes limitations of these prior solutions

• uses other new DBMS techniques for new assumptions
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