
Creating a Cluster Hierarchy under Constraints of a Partially Known

Hierarchy

Korinna Bade and Andreas Nürnberger
Otto-von-Guericke-University Magdeburg, D-39106 Magdeburg, Germany,

{korinna.bade,andreas.nuernberger}@ovgu.de

Abstract

Although clustering under constraints is a current re-
search topic, a hierarchical setting, in which a hierar-
chy of clusters is the goal, is usually not considered.
This paper tries to fill this gap by analyzing a sce-
nario, where constraints are derived from a hierarchy
that is partially known in advance. This scenario can
be found, e.g., when structuring a collection of docu-
ments according to a user specific hierarchy. Major
issues of current approaches to constraint based clus-
tering are discussed, especially towards the hierarchical
setting. We introduce the concept of hierarchical con-
straints and continue by presenting and evaluating two
approaches using them. The approaches cover the two
major fields of constraint based clustering, i.e. instance
and metric based constraint integration. Our objects of
interest are text documents. Therefore, the presented
algorithms are especially fitted to work for these where
necessary. Despite showing the properties and ideas of
the algorithms in general, we evaluated the case of con-
straints that are unevenly scattered over the instance
space, which is very common for real-world problems
but not satisfyingly covered in other work so far.

1 Introduction

Lately, a lot of work on constraint based clustering has
been published, e.g. [5, 7, 14, 15]. All these works aim
at deriving a single flat cluster partition, even though
they might use a hierarchical cluster algorithm. In con-
trast to them, we are interested in obtaining a hierar-
chical structure of nested clusters. This poses different
requirements on the clustering algorithm.

There are many applications, in which a hierarchi-
cal cluster structure is more useful than a single flat
partition. One such example is the clustering of text
documents into a (personal) topic hierarchy. Such top-
ics are naturally structured hierarchically. Furthermore,
hierarchies can improve the access to the data for a user,
if a large number of specific clusters is present, as the
user can locate interesting topics step by step by several

specializations.
After defining our hierarchical setting, we analyze

how constraints can be used in the scope of hierarchi-
cal clustering (Sect. 2). In section 3, we review related
work on constraint based clustering in more detail, try-
ing to show different predominant concepts and their
problems. We then present two different approaches for
hierarchical constraint based clustering with special fo-
cus on text documents in section 4. These approaches
are then evaluated in section 5 with different hierarchi-
cal datasets.

2 Hierarchical Constraint Based Clustering

To avoid confusion with other approaches of constraint
based clustering as well as different opinions about the
concept of hierarchical clustering, we use this section to
define the current problem at hand from our perspec-
tive. Furthermore, we clarify the use of constraints in
this setting.

As the algorithms presented here account to a semi-
supervised learning problem, we first want to clarify the
use of the terms class and cluster. Both terms have very
similar meaning, describing a set of objects belonging
together. However, class is usually used in supervised
learning and cluster in unsupervised learning. As our
setting lays in between, the usage of both terms seems
appropriate. Here, we tend to use the term class to refer
to the structure in the data that shall be uncovered,
while clusters are the actual groupings of items derived
by the algorithm. However, as a direct mapping from
the derived clusters to the actual classes is sought, both
terms are sometimes used interchangeable.

2.1 Problem Definition. We define our task at
hand as a semi-supervised hierarchical learning prob-
lem. The goal of the clustering is to uncover a hi-
erarchical class structure H that consists of a set of
classes C, between which hierarchical relations RH =
{(c1, c2) ∈ C × C|c1 ≥H c2} hold (c1 ≥H c2 means
that c1 contains c2 as a subclass). Thus, the combina-

tion between C and RH represents the hierarchical tree
structure of classes H = (C,RH). The data objects in
O uniquely belong to one class in C. It is important
to note that we specifically allow for the assignment of
objects to intermediate levels of the hierarchy. Such an
assignment is useful in many circumstances as a specific
leaf class might not exist for certain instances. As an
example consider a document giving an overview over
a certain topic. As there might be several documents
only describing a certain part of the topic and therefore
forming several specific sub-classes, the document itself
naturally fits into the broader class as the scope of its
content is also broad. This makes the whole problem
a true hierarchical problem. A straight-forward recur-
sive application of flat partitioning algorithms is not
sufficient. Therefore, we decided on using a bottom-up
hierarchical agglomerative clustering as a basis. As an
alternative, a top-down recursive partitioning approach
could be used, if sophisticated techniques are integrated
that estimate the number of clusters and are capable of
leaving elements out of the partition (as done for noise
detection).

The clustering algorithm will be constrained in de-
riving any cluster hierarchy H by making a part of the
class hierarchy known to it, i.e. Hk = (Ck, RHk) with
Ck ⊆ C and RHk ⊆ RH . Furthermore, some objects be-
longing to these classes are given, i.e. Ok ⊆ O. Please
note that we assume for real world applications that
Ck is smaller than C and Ok is smaller than O. Fur-
thermore, we assume that we have at least one given
object o ∈ Ok for each given class c ∈ Ck. For higher
level classes (i.e. classes that are not leaf nodes of the
given class hierarchy), an object might not be assigned
directly to the class but to at least one sub-class to
fulfill this criterion. By Hk, the clustering algorithm
is constrained to produce a hierarchical clustering that
preserves the existing structure RHk, while discovering
further clusters and extracting their relations to each
other and to the classes in Ck, i.e. the constrained algo-
rithm is supposed to refine the given structure by further
data (see Fig. 1).

Figure 1: Hierarchy refinement/extension

2.2 Constraints. In constraint based clustering, the
supervised knowledge is usually expressed by two sets of

object pairs, the must-link constraints and the cannot-
link constraints [14]. The pairs in the must-link-set
describe objects that should be clustered in the same
cluster, and the cannot-link set contains object pairs
that should be separated. However, considering a hi-
erarchical cluster structure, objects are linked over dif-
ferent hierarchy levels, which makes such an absolute
constraint definition not appropriate. The drawbacks
of this constraint definition for hierarchical clustering
were also mentioned in [8]. The authors work with hier-
archical agglomerative clustering and solve the problem
by fixing the constraints to a certain dendrogram level.
However, in most cases, it is not clear, on which den-
drogram level the constraints should be applied.

We therefore suggested another definition of con-
straints that is suitable for hierarchical clustering tasks
in [2], the must-link-before (MLB) constraints. Their
goal is to stress the order, in which objects are linked.
The MLB constraint set can be specified in two ways.
In [2], we presented a hierarchy based formalization as

MLB = {(o,S)} = {(o, (S1, ..., Sm))}(2.1)

with Ok =
⋃

i Si ∪ o and ∀i, j(i 6= j) : Si ∩ Sj = ∅ and
∀i : o /∈ Si. Here, an element of the MLB constraint set
is a pair of an object o ∈ Ok with an ordered list S of
m object sets. Each of these sets contains objects from
Ok, to which o should be linked before all objects in the
following sets. The order between the sets is important,
while inside the sets it does not matter, which object
is linked first. Each MLB constraint covers all objects
in Ok. Therefore, application of the MLB constraints
requires knowledge about all relations between the el-
ements of Ok, which is true in our case of knowing a
partial hierarchy Hk. In these cases, this formalization
nicely condenses a large number of constraints.

For each o ∈ Ok such a constraint can be extracted.
An example is given in Fig. 2. Here, any object from
class 4 should first be linked with all objects in 4. Then,
it should be linked to objects from class 3 and 5, whereas
the order does not matter. Finally, the object should be
linked to all other objects, i.e objects from class 1 and
2. This leads to the MLB constraint shown on the right
of Fig. 2.

(o∗ ∈ C4,
(
⋃

o∈C4\{o∗} o,⋃
o∈C3∪C5

o,⋃
o∈C1∪C2

o))

Figure 2: Example of a MLB Constraint Extraction

For a more general case, where hierarchical rela-
tions between some objects might be known, however,

without the knowledge of a complete hierarchy, this con-
straint formalization might not be applicable. For this
case, an instance based formalization similar to the for-
malization in [11] is useful. Here, a MLB constraint set
element expresses a relative comparison between three
objects

MLB = {(ox, oy, oz)}.(2.2)

An element is interpreted as: ox should be linked to oy

on a lower hierarchy level than ox and oz. This means
that in any cluster in the cluster hierarchy that contains
ox and oz oy is also contained. However, there might be
clusters, which only contain ox and oy but not oz. An
example constraint for the hierarchy in Fig. 2 is

(ox ∈ C4, oy ∈ C3, oz ∈ C1).(2.3)

Considering single object triples instead of the complete
hierarchical view on a known hierarchy is also closer to
the initial idea of constraint based clustering, which as-
sumed the unavailability of specific class labels. Every
constraint formulation in the hierarchical view can be
transformed into an equally expressive set of triple con-
straints.

3 Discussion of Related Work

Existing methods in constraint based clustering can be
divided in two types of approaches, i.e. instance based
and metric based approaches. In the instance based
approaches, the constraints are used to influence the
cluster algorithm directly based on the constraint pairs.
This is done in different ways, e.g. by using the con-
straints for initialization (e.g. in [9]), by enforcing them
during the clustering (e.g. in [14]), or by integrating
them in the cluster objective function (e.g. in [4]).

The metric based approaches map the given con-
straints to a distance metric or similarity measure,
which is then used during the clustering process (e.g.
in [3]). The basic idea of most of these approaches is to
weight features differently, depending on their impor-
tance for the distance computation. While the metric
is usually learned in advance using only the given con-
straints, the approach in [5] adapts the distance metric
during clustering. Such an approach allows for the in-
tegration of knowledge from unlabeled objects.

Instance based approaches usually have less im-
pact on the clustering as the constraints influence the
algorithm rather locally. The strength of their im-
pact strongly depends on the clustering algorithm used
and the method of their integration into the algorithm.
However, in the worst case, directly enforcing the con-
straints might lead to no overall benefit or even decrease
the clustering performance, especially if the constraints
highly violate the underlying similarity space.

On the other hand, learning a distance metric aims
on generalizing knowledge about the final clustering
from the given constraints. More specific, it tries to
identify what features were important for grouping ob-
jects or distinguishing objects. If the constraints were
derived from labeled data, it might be sufficient to clus-
ter only the unlabeled data with the learned metric and
thus still deriving an improved cluster structure. As the
structure of the labeled data is already known, ignoring
it during the clustering process can save a large amount
of runtime. This is in contrast to the instance based
approaches that always require that the labeled data is
clustered together with the unlabeled data.

Nevertheless, the global influence of the constraints
can be problematic under two different aspects. First,
different classes might contradict in terms of important
features to stress. Features that improve the cluster for-
mation for a certain class might split a different cluster.
And second, if the constraints do not cover all interest-
ing clusters, the metric learning might be strongly bi-
ased by the known classes. Unfortunately, this is not an-
alyzed in current literature, although it is an important
aspect. Considering our scenario, it is more likely that
constraints are not evenly distributed over all classes as
some are usually unknown in advance. Evaluations dis-
cussed in current literature are based on constraints that
are about evenly distributed. They are usually drawn
at random from the complete instance space, ignoring
the probable fact of locally focused constraints. In this
paper, we want to fill this gap by evaluating our ap-
proaches with scenarios of supervision yielding different
local distributions of constraints.

From the used clustering algorithms, K-Means is
the most predominant, e.g. in [14]. Hierarchical ag-
glomerative clustering (HAC) can also be found several
times, e.g. in [7]. The authors of [7] aimed at showing
theoretical results on different constraint types using
HAC. Although using HAC, their work only analyzed
flat cluster structures. Furthermore, they were specif-
ically interested, whether constraints could be always
satisfied and what the result would look like in these
cases. In contrast to that, our interest is on an im-
proved clustering for unlabeled data objects. The strict
enforcement of constraints is less important as long as
clustering improves. For metric learning, optimization
problems are often formulated and solved, e.g. in [15].
In [13], we experimented with SOM clustering and dif-
ferent metric learning strategies.

In our work presented here, we compare an instance
based approach with a metric based approach as well as
their combination. Gradient descent is used for metric
learning and a HAC algorithm (with centroid linkage)
for clustering. This choice was particularly motivated

by the fact that the number of clusters (on each hier-
archy level) is unknown in advance. Furthermore, we
are interested in hierarchical cluster structures, which
also makes it difficult to compare our results to other
approaches, as these algorithms were always evaluated
on data with a flat cluster partitioning.

Another important factor is the data to be clus-
tered. In general, all approaches in the literature only
require a feature vector as representation of the data.
However, if features are weighted for metric learning,
special attention should be paid on how these vectors
were created in the first place, i.e. what the vector rep-
resentation means. Here, we focus on text data. Feature
vectors of text documents are usually created by assign-
ing each term to a single feature, weighting each feature
with the tf × idf weighting scheme [10]. As the created
vectors highly depend on the length of the document, a
common procedure is the normalization of all vectors as
content similarity should be independent of document
length. However, this has the effect that dimensions are
no longer independent from each other as the final value
for a feature also depends on the values of the other fea-
tures. This can cause problems for the metric learning
approaches, because it makes finding the good features
more difficult.

To illustrate this problem consider the following ex-
ample. For two documents of the same class, there are
some ”good” features, which have about the same value
in the initial vector representation. Furthermore, there
are some ”noise” features (i.e. features that do not con-
tribute in identifying the class). Their values differ by a
large value between the two documents. A good metric
would ignore the noise features and give all weight to
the good features. If the vectors will be normalized, the
values of the good features might now also vary a lot,
just due to the values in the noise features. The correct
metric is no longer that obvious, and it gets question-
able, whether the metric learning approach will still be
capable to weight the correct features. Furthermore, a
renormalization based on the learned metric is necessary
to be able of getting the initially possible improvements.
In contrast to related work, we therefore pay special at-
tention to normalization effects in our suggested metric
learning approach.

4 Constraint Based HAC

As mentioned earlier, we implemented an instance based
approach as well as a metric based approach. Both ap-
proaches will be described in the following.

4.1 Instance Based HAC (iHAC). The instanced
based approach (which is called iHAC from now on) is
rather straight forward. Here, the hierarchical agglom-

erative clustering algorithm is modified in a way such
that merges occur only in accordance with the given
MLB constraints. This is achieved by replacing the step
of merging the two closest clusters with merging the
two closest clusters from the set of candidate merges
that do not violate the given constraints. For all con-
straints (ox, oy, oz), the cluster containing oz can only
be merged with a cluster that either contains both, ox

and oy, or neither. If the constraints were created from
a given hierarchy, they are always non-conflicting. In
this case, iHAC always creates a complete dendrogram.
In the other case of conflicting constraints, iHAC might
stop in a dead end before reaching the root node. This
means that any merge possible at this moment would
violate a constraint.

In literature, it is sometimes proposed to modify the
cluster initialization to group items known to belong to
the same cluster [7]. Although this would be possible
for the case of a given hierarchy, we decided against this
for the following reasons. First, such groups could only
be formed for leaf node classes in the given hierarchy.
Furthermore, if constraints are only given by triplets
(ox, oy, oz), such groups are even not specifically known
in advance. Moreover, we use centroid linkage for cluster
similarity computation. Forming such a group of items,
which might not be similar in the given similarity space,
could lead to a creation of bad centroids, thus decreasing
clustering performance. Additionally, it would prevent
(or at least make more difficult) the detection of class
refinements into sub-classes.

4.2 Metric Based HAC (mHAC). Our metric
based approach mHAC uses the cosine similarity as ba-
sis, because it is often used in the domain of text mining.
Thus, the similarity measure is defined as

sim(o1, o2) =
oT
1 o2

|o1| · |o2|
=

∑
i o1,io2,i√∑

i o2
1,i

√∑
i o2

2,i

(4.4)

and computes the cosine of the angle between two vec-
tors. Its most important property for this work is that
it is by definition independent from vector length, which
makes it especially valuable concerning the normaliza-
tion issues stated in Section 3.

4.2.1 Similarity Measure. To adapt the similar-
ity space, a weight vector w is defined that contains a
weight for each dimension (i.e. for each feature/term).
Its goal is to express that certain terms/features are
more important for the similarity as others (of course ac-
cording to the constraints). We require that each weight
is greater than or equal to zero and that their sum is
bound to the number of features to avoid extreme case

solutions:

∀wi : wi ≥ 0
∑

i

wi = n(4.5)

Setting all weights to 1 defines a weighting scheme for
the standard case of no feature weighting. This weight-
ing scheme is valid according to (4.5).

The weights are directly integrated in the vector
representation. We use unnormalized tf × idf vectors
for the representation of text documents, taking into
account the effects from normalization as described in
Section 3. Therefore, the document vectors are created
as follows:

d =

 √
w1 · d1

. . .√
wn · dn

 =

 √
w1 · tf 1,d log idf 1

. . .√
wn · tf n,d log idf n

(4.6)

Instead of applying each weight linearly, we use its
square root. This has computational reasons that do
not change the effect of the weight: In all necessary
computations, i.e. similarity or vector length computa-
tion, vector elements are always multiplied. Therefore,
weights only occur in squared form, allowing for a sub-
stitution of w′

i = w2
i as a consequence. For the compu-

tation of the weight update rule in the weight learning
process, this substitution is especially beneficial, as it
leads to an update rule that can also modify weights
that are currently 0 (see below). To sum up, similarity
between documents is therefore computed by the cosine
similarity as in (4.4) between the weighted document
vectors as defined in (4.6).

4.2.2 Weight Adaptation. During learning of the
weights, all constraint triplets (ox, oy, oz) are presented
to the algorithm several times. For each violated con-
straint, w is updated using a gradient descent approach.
Each constraint thereby provides a relation between ob-
ject similarities as defined in (4.7), i.e. ox should be
more similar to oy than to oz. A violated constraint is
recognized by a violation of (4.7). However, we replaced
0 by a small ε (in our experiments 0.01) to obtain a more
stable adaptation. The relation in (4.7) is also used to
guide the gradient descent, trying to maximize (4.8) for
each constraint. This leads to the weight update rule
in (4.9), where η is the learning rate defining the step
width of each adaptation step.

sim(ox, oy)− sim(ox, oz) > 0.(4.7)

obj xyz = sim(ox, oy)− sim(ox, oz)(4.8)

wi ← wi + η∆wi = wi + η
∂obj xyz

∂wi
(4.9)

The final computation of ∆wi after differentiation
is:

∆wi = ox,i(oy,i − oz,i)−
1
2
sim(ox, oy)(o2

x,i + o2
y,i)

+
1
2
sim(ox, oz)(o2

x,i + o2
z,i)(4.10)

with ox,i = ox,i/|ox|.

Similarity and vector length are computed on the
weighted vectors based on the current weights. As can
be seen, this formula can also modify weights that are
currently zero as it is not of the form wi ·term. However,
this would have been the case, if vectors were weighted
by wi instead of

√
wi. After all weights have been up-

dated for one violated constraint by (4.9), all weights
are checked and modified, if necessary, to fit our condi-
tions in (4.5). This means that all negative weights are
set to 0. After that, the weights are normalized to sum
up to n.

4.2.3 Discussion. Using this weight learning ap-
proach, several problems need to be addressed. First, we
want to discuss the scenario of unevenly scattered con-
straints. It can emerge in two different ways. Primarily,
terms can occur only in unlabeled documents but not
in documents that are part of a constraint. These terms
might be potentially important for unknown classes.
However, the degree of their importance cannot be es-
timated. Therefore, their weights are not modified and
remain to be set equal to 1. To achieve this, all terms
that do not occur in a single constraint are omitted in
the weight learning method. Once, the other weights
were learned, weights for these terms are added and ini-
tialized with a value of 1.

Additionally, some of the terms already occurring in
the known classes might be of increased importance for
unknown classes. Updating these weights only based on
the known classes might lead to a worse performance.
Although this cannot be completely avoided, we try to
minimize this effect by keeping the weight changes as
small as possible to fulfill the constraints. In specific,
this means changing the weights only in the case of a
violated constraint.

A second problem is connected to run-time perfor-
mance with increasing number of labeled data. The
number of extracted constraints increases exponentially
with increasing number of labeled data. This slows
down the metric learning process significantly. At the
same time, new labeled data does not contribute to the
same extend in improving the quality of the metric. Of-
ten, similar knowledge is contributed by further data
points. Therefore, we reduce the number of generated
constraints by first clustering similar items. In our ex-

periments, we clustered all data points directly assigned
to the same class with k-means using k = 5. The result-
ing centroids are then used to represent the class instead
of the single items. This ensures an upper bound for the
run-time. The choice of using five clusters had mainly
two reasons. First, we wanted to use very few clusters
to improve performance. Second, five clusters showed
good results in our tests. However, so far, we did not
try to find the optimal number of clusters. Determining
the number of clusters based on the data might improve
the efficiency of the clustering step. This, however, is
left for future work.

Finally, we want to discuss the problem of contra-
dicting constraints between classes. As we consider a
hierarchy of classes, different granularity levels of the
hierarchy contradict each other during weight learning.
As an example, consider two classes that have a common
parent class in the hierarchy. A few features are crucial
to discriminate the two classes. On the specific hierar-
chy level of these two classes, these features are boosted
to allow for distinguishing both classes. However, on the
more general level of the parent class, these features get
reduced in impact, because both classes are recognized
as one that shall be distinguished from others on this
level. By our process of constraint generation, there is
an imbalance that results in the creation of many more
constraints for higher hierarchy levels. This leads to less
performance in distinguishing the most specific classes
in the hierarchy. To avoid this behavior, we learn dif-
ferent weighting schemes for each hierarchy level. By
this, the single weighting schemes can be learned with-
out hierarchy conflicts. All weighting schemes are then
combined to form a single weighting scheme. Here, the
higher weight is given, the more specific the hierarchy
level of the weighting scheme is. This is due to the fact
that HAC starts at the bottom, forming the most spe-
cific classes first. To be more specific, each weighting
scheme is weighted with

2 · level depth − 1.(4.11)

The complete weight learning process is summa-
rized in Fig. 3. Unfortunately, it cannot be assumed
that weight learning will succeed in producing a weight-
ing scheme that violates no constraints. Therefore, an-
other stopping criterion is needed. As gradient descent
is performed, we stop, if the weight change is below a
certain threshold. After weights have been learned, a hi-
erarchical agglomerative clustering is performed on the
weighted document vectors to get the final clustering of
the documents.

4.3 Combining the Two (miHAC). As both ap-
proaches presented influence the clustering in differ-

learnWeights(class hierarchy Hc, documents D)
Initialize w: ∀i : wi := 0
for all classes c ∈ Hc do

Compute class representatives
Rc = kmeans(5, Dc)

end for
for all hierarchy levels l do

Extract constraints MLBl

Initialize w(l): ∀w(l)
i : w

(l)
i := 1

repeat
for all (ox, oy, oz) ∈ MLBl do

if sim(ox, oy)− sim(ox, oz) ≤ ε then
∀i : w

(l)
i := w

(l)
i + η∆w

(l)
i

∀i : if w
(l)
i < 0 then w

(l)
i := 0

sumw =
∑n

j=1 w
(l)
j

∀i : w
(l)
i := w

(l)
i

n
sumw

end if
end for

until weight change is too small
∀i : wi := wi + (2depth(l)− 1) · w(l)

i

end for
sumw =

∑n
j=1 wj

∀i : wi := wi
n

sumw

return w

Figure 3: Weight Learning in mHAC

ent parts of the algorithm, a combination of both ap-
proaches might bring further improvements. We there-
fore also evaluated miHAC. This approach first learns
weights as in mHAC. After that, the documents are
clustered with iHAC, whereas the documents are rep-
resented by the weighted vectors.

5 Evaluation

We evaluated the approaches described in the previous
section for its suitability to our learning task. As this
task differs from research proposed in the literature,
comparisons to other work were not possible. However,
we used the standard HAC approach as a baseline. In
the following, we first describe the used datasets and
evaluation measures. Then we show and discuss the
obtained results.

5.1 Datasets. As the goal is to evaluate hierarchical
clustering, hierarchical datasets are needed. Unfortu-
nately, such datasets are very rare, as usually only a flat
class structure is used. Furthermore, we are interested
in text documents here. Two datasets that are pub-
lic and fulfill the given requirements are the banksearch

dataset1 and the Reuters corpus volume 12. From these
datasets, we generated three smaller sub sets, which are
shown in Fig. 4–6. The figures show the class structure
as well as the number of documents directly assigned to
each class. The first dataset uses the complete struc-
ture of the banksearch dataset but only the first 100
documents per class. For the Reuters 1 dataset, we se-
lected some classes and subclasses that seemed to be
rather distinguishable. In contrast to this, the Reuters
2 dataset contains classes that are more alike. We ran-
domly sampled a maximum of 100 documents per class,
while a lower number in the final dataset means that
there were not enough documents in the dataset.

• Finance (0)
◦ Commercial Banks (100)
◦ Building Societies (100)
◦ Insurance Agencies (100)
• Science (0)
◦ Astronomy (100)
◦ Biology (100)

• Programming (0)
◦ C/C++ (100)
◦ Java (100)
◦ Visual Basic (100)
• Sport (100)
◦ Soccer (100)
◦ Motor Racing (100)

Figure 4: Banksearch dataset

• Corporate/Industrial (100)
◦ Strategy/Plans (100)
◦ Research/Development (100)
◦ Advertising/Promotion (100)
• Economics (59)
◦ Economic Performance (100)
◦ Government Borrowing (100)

• Government/
Social (100)
◦ Disasters and

Accidents (100)
◦ Health (100)
◦ Weather (100)

Figure 5: Reuters 1 dataset

• Equity Markets (100)
• Bond Markets (100)
• Money Markets (100)
◦ Interbank Markets (100)
◦ Forex Markets (100)

• Commodity
Markets (100)
◦ Soft Commodities

(100)
◦ Metals Trading (100)
◦ Energy Markets (100)

Figure 6: Reuters 2 dataset

All documents were represented with tf × idf docu-
ment vectors. We performed a feature selection, remov-
ing all terms that occurred less than 5 times, were less
than 3 characters long, or contained numbers. From the

1Available for download at the StatLib website

(http://lib.stat.cmu.edu); Described in [12]
2Available from the Reuters website

(http://about.reuters.com/researchandstandards/corpus/)

rest, we selected 5000 terms in an unsupervised man-
ner as described in [6]. To determine this number we
conducted a preliminary evaluation. It showed that this
number still has a small impact on initial clustering per-
formance, while a larger reduction of the feature space
leads to decreasing performance.

Based on these three datasets, we created different
settings reflecting different distributions of constraints.
Setting (1) is a classification scenario, i.e. a setting,
where all classes are known in advance. Two more set-
tings were evaluated with parts of the hierarchy being
unknown. In setting (2), a single leaf node class did
not provide any labeled data. In setting (3), a whole
sub-tree of the hierarchy was left unlabeled. Further-
more, we used different numbers of labeled data given
per class. We specifically investigated small numbers of
labeled data (with a maximum of 30) as we assume from
an application oriented point of view that it is much
more likely that labeled data is rare. The labeled data
is chosen randomly. However, the same labeled data is
used for all algorithms to allow a fair comparison. The
constraints guiding the clustering process are created
based on the labeled data. All constraints possible are
extracted according to the class hierarchy.

5.2 Evaluation Measures. We used two measures
to evaluate and compare the performance of our algo-
rithms. First, we used the f-score gained in accordance
to the given dataset, which is supposed to be the true
class structure that shall be recovered. For its computa-
tion in an unlabeled cluster tree (or in a dendrogram),
we followed a common approach that selects for each
class in the dataset the cluster gaining the highest f-
score on it. This is done for all classes in the hierar-
chy. For a higher level class, all documents contained in
sub-classes are also counted as belonging to this class.
Please note that this simple procedure might select clus-
ters inconsistent with the hierarchy or multiple times in
the case of noisy clusters. Determining the optimal and
hierarchy consistent selection has a much higher time
complexity. However, the results of the simple proce-
dure are usually sufficient for evaluation purposes and
little is gained from enforcing hierarchy consistency.

We only computed the f-score on the unlabeled
data, as we want to measure the gain on the new data.
As f-score is a class specific value, we computed two
mean values: one over all leaf node classes (ll) and one
over all non-leaf node classes (hl).

Applying the f-score measure as described poten-
tially leads to an evaluation of only a part of the cluster-
ing, because it just considers the best cluster per class.
Therefore, we introduce a second measure that aims at
evaluating the total clustering. We call it the cluster

error CE . It interprets the complete dataset in terms
of MLB constraints. It then measures how many con-
straints were violated by the clustering in the dendro-
gram or cluster tree under investigation. For each docu-
ment d with a given constraint (d, (S1, ..., Sm)) = (d,S),
we can derive from the dendrogram of the current
clustering the order in which documents are merged
to d, producing another ordered list of document sets
R = (R1, ..., Rr). To compute CE , we count how often
the order in R violates the order in S, i.e. the order of
two documents di and dj is reversed. In addition, we as-
sume violations between classes that are further apart in
the hierarchy as more severe. Therefore, constraint vio-
lations are weighted. The distance between two classes
is reflected in the distance between two constraint sets
in the ordered list, which is therefore used for weighting.
The overall cluster error CE is then computed by:

CE =
∑

(d,S,R)

∑
(dik,x

,djl,y
)

k<l

{
x− y if x > y
0 else

}
,(5.12)

where dik,x
∈ Rk, dik,x

∈ Sx, djl,y
∈ Rl and djl,y

∈ Sy.
In our results, we will not show the absolute number
computed by (5.12) but the relative proportion to the
maximum number possible.

5.3 Results. In this section, we present the results
obtained in our experiments. For the metric learning
approach, we set an upper bound for the number of
iterations of 50 to limit the necessary run-time of our
experiments. Therefore, it might be possible that the
best solution was not found (yet). In the first 30 runs,
a learning rate of 10 was used, in the last 20 runs, a
learning rate of 1. Using a high learning rate in the
beginning speeds up the adaptation process, but soon
oscillation becomes a problem, which requires a reduc-
tion of the learning rate. This simple procedure worked
well in our experiments. However, it might be more dif-
ficult in general. Instead of using some fixed step size,
it might be useful to apply more sophisticated strate-
gies like simulated annealing. Furthermore, ε was set to
0.01.

Figures 7 and 8 show our results on the three
datasets. Each column of the two figures corresponds
to one evaluation measure. Each dataset is represented
with 3 diagram rows, the first showing the results of the
classification scenario (setting (1)), the second showing
results with one leaf node class unknown (setting (2)),
and the third showing results with a complete sub-tree
unknown (setting (3)).

In general, it can be seen that all three approaches
are capable of improving cluster quality. However, the
specific results differ a lot over the different settings ana-

lyzed. In our discussion, we start with the classification
scenario, using this to compare between the different
datasets. For the banksearch dataset (row 1 in Fig. 7),
cluster error decreases similarly for all approaches, with
a favor for the combined approach miHAC. It gains an
improvement of about 18% in the best case. Similar be-
havior can be found for the f-score measure. Comparing
mHAC and iHAC, mHAC is better on the higher level,
while iHAC contributes more on the leaf level. Never-
theless, miHAC succeeds in combining both, often pro-
viding the best results. In the best case, f-score gained
about 6% on the higher level and about 13% on the leaf
level.

For the reuters 1 dataset (row 4 in Fig. 7), mHAC
does not succeed in improving the cluster error, whereas
iHAC gains improvements up to 23%. Concerning f-
score, iHAC clearly outperforms mHAC on the higher
level, while mHAC is better on the leaf level. Again,
miHAC usually provides a better result by the com-
bination, gaining about 20% on the higher level and
about 5% on the leaf level. The large gap on the higher
level suggests that the used features based on term oc-
curences might not be expressive enough to recover the
structure in this dataset.

For the reuters 2 dataset (row 1 in Fig. 8), all algo-
rithms are again capable of largely reducing the cluster
error up to 32%. Comparing mHAC and iHAC, no clear
winner can be stated, as in some cases mHAC is bet-
ter and in other iHAC. However, miHAC again suceeds
in producing an overall good result. It produces an f-
score gain of 23% on the higher level and of 15% on the
leaf level. This dataset benefits most from integrating
constraints.

Summing up, the combined approach miHAC pro-
vides good results on all datasets in the classification
scenario. There is no clear winner between the instance
based and the metric based approach. Specific perfor-
mance gains depend on the properties of the dataset.
Most importantly, the chosen features need to be ex-
pressive enough to explain the class structure in the
dataset.

Next, we look at the behavior in the case of un-
evenly scattered constraints. In general, the perfor-
mance gain is less, if more classes are unknown in ad-
vance. However, this is also expected, as this means a
lower number of constraints. Nevertheless, looking at
the class specific values (which are not printed here),
it shows that classes with no labeled data usually still
increase in performance. This can be explained by the
fact that knowledge about some classes not only helps
in distinguishing between these classes but also reduces
the confusion between known and unknown classes.

For the banksearch data (rows 1–3 in Fig. 7), mHAC

Cluster Error F-Score (higher level mean) F-Score (leaf level mean)

Labeled data per class Labeled data per class Labeled data per class

Figure 7: Results: rows 1–3: banksearch data, rows 4–6: reuters 1 data; rows 1, 4: classification scenario; rows 2,
5: one unknown leaf class; rows 3, 6: one unknown sub-tree

Cluster Error F-Score (higher level mean) F-Score (leaf level mean)

Labeled data per class Labeled data per class Labeled data per class

Figure 8: Results: reuters 2 data; row 1: classification scenario; row 2: one unknown leaf class; row 3: one
unknown sub-tree

shows to have the most stable performance with increas-
ing number of unknown classes. On the higher level, it
increasingly outperforms iHAC as well as miHAC, which
seems to be bound to the bad performance of iHAC.
iHAC and miHAC deteriorate so much that results get
worse than the baseline performance of standard HAC.

For the reuters 1 data (rows 4–6 in Fig. 7), iHAC
looses its good performance on the higher level. This is
probably due to the fact that iHAC does not generalize.
Furthermore, the results of mHAC showed that gener-
alization is not possible for this dataset. Therefore, the
loss of iHAC (and with it also miHAC) is directly bound
to the less number of constraints. The performance on
the leaf level remains poor for all algorithms, with all al-
gorithms having usually slightly less performance than
the baseline of HAC.

For the reuters 2 data (rows 1–3 in Fig. 8), all al-
gorithms slightly loose performance in comparison to
the classification scenario. However, the general picture
stays the same, with the combined approach miHAC
the best way to go.

Summing up over all datasets, it gets more diffi-
cult to propose a general best algorithm. Although in

most cases, the combined approach works well, it dra-
matically lost performance for the banksearch data. For
this data, it seems to be bound too tight to the instance
based component. Future work should analyze, whether
this bound can be broken.

Presenting mHAC, we introduced a reduction of the
constraints by applying k-means clustering on the la-
beled data of each class in advance. We briefly show
here that this is reasonable to be done. Fig. 9 shows re-
sults on the reuters 2 dataset, comparing the constraint
generation with and without initial clustering. Espe-
cially in the f-score measure, it shows that introducing
the clustering step even increases performance, while at
the same time, run-time reduces by an increasingly large
amount. This is not that clear in the cluster error, i.e.
on the whole dendrogram. Nevertheless, we think the
results encourage the use of the clustering step.

Furthermore, we learn weighting schemes on differ-
ent hierarchy levels. With table 1, we show that weights
for different hierarchy levels are indeed conflicting. The
results in table 1 were produced on the reuters 1 dataset
with 30 labeled documents per class. Two weighting
schemes are compared against the standard HAC re-

Cluster Error F-Score (higher level mean) F-Score (leaf level mean)

Labeled data per class Labeled data per class Labeled data per class

Figure 9: Comparison of learning a metric with and without initial clustering of the labeled data

sult: one optimized for the leaf level of the hierarchy
and one optimized for the higher level. Both weight-
ing schemes succeed in improving the cluster quality on
the level they are optimized for, however on the costs
of the other level. The combination of both weighting
schemes into a single one will have a behavior that is
bound to both extremes. Depending on how much both
weighting schemes conflict each other, it is possible to
get a weighting scheme with improved performance on
both levels. However, it will usually not be possible to
create a weighting with the maximum on both levels.
Future work will deal with further investigation, how
such conflicts could be handled.

Table 1: Comparison of weighting schemes optimized
for different hierarchy levels

ll optimized hl optimized standard
f-score (ll) 0.77 0.59 0.73
f-score (hl) 0.62 0.71 0.62

6 Conclusion

In this paper, we dealt with semi-supervised hierarchical
clustering. The specific requirements of such a hierar-
chical setting were specified. To our knowledge, there
is no related work dealing with the same setting, al-
though it has several real-world applications. It was
shown that the typical constraint formulation of must
link and cannot link constraints is not appropriate. A
solution based on MLB constraints was therefore sug-
gested. Based on related work in constraint based flat
clustering, two types of approaches, instance based and
metric based approaches, were identified. For each type,
an approach was presented solving the hierarchical set-
ting.

All approaches were evaluated on three datasets.
It could be shown that standard clustering performance
can be significantly improved by our methods. Good re-

sults are already achieved for a small number of labeled
data, which encourages the use in real-world applica-
tions, where labeled data is usually rare. Best results
were naturally gained in a setting, where all classes are
known in advance. Nevertheless, performance can also
be improved in scenarios with a partially known hier-
archy, which is expected to be more common in many
real-world problems.

For our metric based approach as well as for metric
based approaches in general, conflicts between classes
in determining the best metric are a major issue. These
conflicts occur between classes of the same level (which
can also be found in flat clustering) as well as between
classes on different hierarchy levels. Furthermore, with
increasing number of classes, the problem is more likely
to occur. Hierarchies usually tend to include more
classes as considered in flat scenarios, as a high number
of classes is still manageable by the user within hier-
archies. Therefore, in hierarchical settings, we assume
the problem to be more dominant. In this work, we al-
ready presented one method to handle conflicts between
hierarchy levels. However, future work is necessary to
appropriately deal with this problem. Here, we envision
the use of more locally focused metrics rather than a
single global one.

The result of our presented methods is always a den-
drogram, i.e. a complete hierarchical representation of
the data. However, from an application point of view,
where a user is involved in interacting with the final clus-
tering result, a dendrogram representation of the data
will be of little use. Therefore, the extraction of a more
coarse grained structure is required to allow efficient ac-
cess to the data. Furthermore, cluster labels are neces-
sary, so that the user is capable of identifying interesting
clusters quickly. Like the clustering process itself, these
tasks can also be viewed under semi-supervised aspects.
The interested reader shall therefor be referred to [1].

References

[1] K. Bade, M. Hermkes, and A. Nürnberger. User
oriented hierarchical information organization and re-
trieval. In Proceedings of the 2007 European Confer-
ence on Machine Learning (ECML), 2007.

[2] K. Bade and A. Nürnberger. Personalized hier-
archical clustering. In Proceedings of the 2006
IEEE/WIC/ACM Int. Conference on Web Intelli-
gence, 2006.

[3] A. Bar-Hillel, T. Hertz, N. Shental, and D. Wein-
shall. Learning distance functions using equivalence
relations. In Proc. of the 20th International Confer-
ence on Machine Learning (ICML 2003), pages 11–18,
2003.

[4] S. Basu, A. Banerjee, and R. Mooney. Active semi-
supervision for pairwise constrained clustering. In
Proc. of the 4th SIAM Int. Conf. on Data Mining, 2004.

[5] M. Bilenko, S. Basu, and R. J. Mooney. Integrating
constraints and metric learning in semi-supervised clus-
tering. In Proc. of the 21st International Conference on
Machine Learning (ICML04), pages 81–88, 2004.

[6] C. Borgelt and A. Nürnberger. Fast fuzzy clustering of
web page collections. In Proc. of PKDD Workshop on
Statistical Approaches for Web Mining (SAWM), 2004.

[7] I. Davidson and S. S. Ravi. Agglomerative hierarchical
clustering with constraints: Theoretical and empirical
results. In Proc. of the 9th European Conf. on Princi-
ples and Practice of Knowledge Discovery in Databases
(PKDD05), pages 59–70, 2005.

[8] H. A. Kestler, J. M. Kraus, G. Palm, and F. Schwenker.
On the effects of constraints in semi-supervised hierar-
chical clustering. In F. Schwenker and S. Marinai, edi-
tors, Artificial Neural Networks in Pattern Recognition,
volume 4087 of LNAI, pages 57–66, 2006.

[9] H. Kim and S. Lee. An effective document cluster-
ing method using user-adaptable distance metrics. In
Proceedings of the 2002 ACM symposium on Applied
computing, pages 16–20, New York, NY, USA, 2002.
ACM Press.

[10] G. Salton and C. Buckley. Term-weighting approaches
in automatic text retrieval. Information Processing &
Management, 24(5):513–523, 1988.

[11] M. Schultz and T. Joachims. Learning a distance met-
ric from relative comparisons. In Proceedings of Neural
Information Processing Systems, 2004.

[12] M. Sinka and D. Corne. A large benchmark dataset
for web document clustering. In Soft Computing Sys-
tems: Design, Management and Applications, Vol. 87
of Frontiers in Artificial Intelligence and Applications,
pages 881–890, 2002.

[13] S. Stober and A. Nürnberger. User modelling for in-
teractive user-adaptive collection structuring. In Post-
proceedings of 5th International Workshop on Adaptive
Multimedia Retrieval (AMR07), 2008.

[14] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl.
Constrained k-means clustering with background
knowledge. In Proceedings of 18th International Con-
ference on Machine Learning, pages 577–584, 2001.

[15] E. Xing, A. Ng, M. Jordan, and S. Russell. Distance

metric learning, with application to clustering with
side-information. In Advances in Neural Information
Processing Systems 15, pages 505–512. 2003.

