
Collection Browsing through Automatic
Hierarchical Tagging

Korinna Bade and Marcel Hermkes

Otto-von-Guericke-University, D-39106 Magdeburg, Germany
korinna.bade@ovgu.de, marcel.hermkes@googlemail.com

Abstract. In order to navigate huge document collections efficiently,
tagged hierarchical structures can be used. For users, it is important to
correctly interpret tag combinations. In this paper, we propose the usage
of tag groups for addressing this issue and an algorithm that is able to
extract these automatically for text documents. The approach is based
on the diversity of content in a document collection. For evaluation, we
use methods from ontology evaluation and showed the validity of our
approach on a benchmark dataset.

1 How to tag

When searching for information, structured access to data, e.g., as given by web
directories or social tagging systems like del.icio.us can be very helpful. The goal
of our work is to automatically provide such structure for unstructured collec-
tions. For this, we automatically tag text documents based on their content.
We do not tag resources individually, but compute the tags collection based. By
this, we can directly aim at supporting efficient browsing by adapting presented
tags to a dynamically created collection, which, e.g., can be the result set of
a query based search. Our approach first structures the collection by a hierar-
chical clustering algorithm and then tags clusters in the hierarchy. This results
in a set of tags combined with hierarchical relations. The cluster tags are then
assigned to the documents that belong to this cluster. In this paper, we focus on
the extraction of tags once the cluster hierarchy was built. Information on the
clustering process can be found in [1].

In todays tagging systems, resources are tagged with one or more single words
to describe them. Access to resources is usually provided by tag clouds, which
can be used to browse the existing tags. Between tags, no relations are usually
assumed (an exception are hierarchical relations from bundle tags). However, a
user might use multiple tags for two different reasons. First, he wants to provide
synonyms such that more people find his resource. Second, he wants to show
that this resource actually belongs to an overlap of several topics. While brows-
ing with a single tag is sufficient for finding a resource of the first type, the second
case requires combining more tags in the search. For cluster tags, it is even more
important to know how different tags shall be interpreted. Two tags of a cluster
could correspond either to the same document or to different documents. This

means that documents in the cluster could either belong to the intersection of
two topics or that some documents in the cluster belong more to one topic and
the others more to the other topic. As an example consider a cluster tagged
with Banking and Programming. This can either mean that the cluster contains
documents about banking software or that the cluster contains documents that
deal with Banking and others that deal with Programming. To help in the inter-
pretation of tags, our approach tries to group tags based on their relevance for
documents. A group of tags means that all tags therein belong together in de-
scribing a document of this cluster. Such a group, therefore, contains synonyms
as well as combined topics. Furthermore, tags in different groups are supposed
to relate to different documents in the cluster. In the following, we write such a
cluster tag as a set of tag groups, where each tag group is a set of tags. For the
example above, we would have either the cluster tag {{Banking ,Programming}}
or the cluster tag {{Banking}, {Programming}}.

2 An algorithm for automatic hierarchical tagging

Tagging is accomplished in three steps, i.e. candidate ranking, grouping, and
refinement. In the candidate ranking step, terms are weighted for each clus-
ter based on their descriptiveness (i.e. their value in describing the cluster) to
identify the best tags. A good tag should not only describe the cluster but also
distinguish a cluster from others. In a hierarchy, a tag must be able to distin-
guish a cluster from its sibling clusters as well as show the differences between
the cluster and its parent cluster. These ideas are integrated in our own descrip-
tive score DSw (see also [4] for related ideas). This score is compared to pure
document frequency df and modified information gain IGmod [3]. In specific, the
descriptiveness DSw of a term t in node n is computed by

DSw(t, n) = log2

(
rankdf (t, np)
rankdf (t, n)

)
· 1− SI(t, n) + SI(t, np)

2
·
(

dft,n

|n|

)w

SI(t, n) =

{
1 if ch(n) = ∅(∑

nc∈ch(n)
dft,nc

dft,n
log2

dft,nc ·|n|
dft,n·|nc|

)
/ log2

|n|
minnc∈ch(n)|nc| else

with rankdf (t, n) being the rank of t in n if terms are ordered by their document
frequency in n, dft,n the document frequency of t in n, np the parent node of n,
and ch(n) the set of child nodes of n. The score combines three factors. The first
measures the boost of document frequency ranking in comparison to the parent.
This assures that terms get higher scores that were not already good descriptors
for the parent and are therefore too general for the current cluster. The second
factor considers information on how the term is distributed in sibling and child
nodes. SI is based on the KL-Divergence between the distribution of document
frequency and the distribution of node size, normalized to stay in the interval
[0; 1]. This means that SI becomes zero, if t is distributed in the child nodes with
the same distribution as the documents, i.e. if dft,nc

dft,n
= |nc|
|n| for all child nodes.

On the other hand, SI reaches the maximum of 1, if t occurs only in the smallest
child node. Therefore, the second factor favors terms that occur in several child
clusters and penalizes terms that could be also descriptors in sibling nodes. The
last factor considers the document frequency as a relatively high frequency is
necessary however not sufficient for a good term. How strong the influence of
the frequency should be on the final score is controlled by w. Our experiments
showed that 0.33 is a good value for w (at least for the considered dataset).

In the grouping step, the ranked term list is handled sequentially to create
tag groups. The first term forms the first tag group. For every following term,
it is decided whether it forms a new tag group or belongs to an existing one.
A tag group is hereby represented as a coverage vector over the documents in
the collection. A document is covered by a term, if the term occurs in it. The
coverage of a tag group is a summation of the individual term coverages, whereby
the impact of each term is weighted by its rank in the tag group (exponentially
decreasing by e−0.5·(rank(t)−1)). Similarity between a term and a tag group (or
two tag groups) is computed by the Dice coefficient between the coverage vectors
(sim(x, y) = 2·x·y

||x||+||y||). A term is merged to the tag group with highest similarity,
if it is above a threshold. Once all terms have been used, tag groups are merged
as long as similarity between two tag groups is still above the threshold. From
the remaining tag groups, all are removed that are a specialization from another
tag group (which is determined by incl(x, y) = (

∑
i min(xi, yi))/

∑
i yi).

In the refinement step, more specific tag groups from deeper hierarchy levels
are propagated up in the hierarchy, if the coverage of non-leaf cluster tags is not
high enough. Tag groups from child nodes are added to the parent tag, if they
sufficiently increase the cluster coverage. Tag groups with the highest increase
in coverage are added first.

3 Evaluation and Conclusion

We evaluated our approach with the banksearch dataset [5]. We used three dif-
ferent hierarchies, the original one, a binary version of the original one, and a
noisy one, in which groups of documents are moved to other clusters. While
the first one requires the extraction of a single tag group per class, the other
two include multiple tag groups. Our evaluation measures are borrowed and
adapted from gold standard evaluation in ontology learning [2]. We present in
Table 1 the f-score combining average precision and recall. For each class, preci-
sion and recall are computed between the learned tag groups Gl and the refer-
ence tag groups Gr by precision(Gl, Gr) = |Gl|−1

∑
gl∈Gl

maxgr∈Gr sim(gl, gr)
and recall(Gl, Gr) = |Gr|−1

∑
gr∈Gr

maxgl∈Gl
sim(gl, gr). We use three similar-

ity measures, which are term-based (tb), rank-based (rb), and document-based
(db). simtb measures whether exactly the same terms were chosen in the 5 high-
est ranked terms, while simrb takes into account the actual ranking in the tag
group. simdb compares the covered documents of two tag groups while ignoring
the actual terms. These measures allow to evaluate different granularities, i.e.
whether the right documents were assigned to the same tag group and whether

Table 1. Results with three f-score measures on three datasets

Setting RM Original Noise Binary
tb rb db tb rb db tb rb db

(1) df 0.5000 0.5377 0.9794 0.4905 0.4751 0.8923 0.3745 0.4593 0.9464
IGmod 0.8214 0.6920 0.9467 0.7757 0.5992 0.8672 0.7249 0.7404 0.9204
DS0 .33 0.7857 0.8003 0.9530 0.7035 0.6458 0.8684 0.6832 0.7556 0.9226

(2) IGmod 0.7775 0.6561 0.9316 0.7959 0.5953 0.8873 0.7233 0.7384 0.9099
DS0 .33 0.7932 0.7962 0.9340 0.7762 0.7240 0.9043 0.6658 0.7791 0.8912

correct tags could be extracted. simtb and simrb are computed as follows while
simdb is the Dice coefficient (see Section 2):

simtb(gl, gr) =

∑
t∈gr

{
1 if t ∈ gl

0 else

}
|gr|

simrb(gl, gr) =

∑
t∈gr

{ 1
rank(t,gl)

if t ∈ gl

0 else

}
1/1 + · · ·+ 1/|gr|

Furthermore, we compared two settings, (1) the standard approach of using a
single tag group and (2) multiple tag groups. Table 1 only shows results for
the best parameter setup found for each measure and setting. Comparing the
three ranking measures, it can be seen that all three of them group the right
documents together (db measure). However, df fails to rank the good terms
high. While IGmod is better in the first 5 terms (tb measure), our DSw usually
ranks the important terms higher (rb measure). Furthermore, it can be seen that
performance drops in setting (1), if the clusters naturally consist of more than
one tag group. Our group method is capable of increasing the performance for
these datasets, especially in combination with DSw.

Concluding the paper, we want to point out that we propose in this paper
to improve the effectiveness of tagging by integrating relations between tags in
form of tag groups. We developed a method that is capable of extracting such
tag groups automatically and evaluated it with a dataset. In future work, we
want to modify the descriptive score to better reflect multiple tag groups.

References

1. Bade, K., Hermkes, M., Nürnberger, A.: User oriented hierarchical information
organization and retrieval. In: Machine Learning: ECML 2007. (2007) 518–526

2. Dellschaft, K., Staab, S.: On how to perform a gold standard based evaluation of
ontology learning. In: Proc. of 5th Int. Semantic Web Conference. (2006) 228–241

3. Geraci, F., Pellegrini, M., Margini, M., Sebastiani, F.: Cluster generation and cluster
labeling for web snippets. In: Proc. of the 13th Symposium on String Processing
and Information Retrieval. (2006) 25–36

4. Glover, E., Pennock, D., Lawrence, S.: Inferring hierarchical descriptions. In: Proc.
of 11th Int. Conference on Information and Knowledge Management. (2002) 507–514

5. Sinka, M., Corne, D.: A large benchmark dataset for web document clustering.
In: Soft Computing Systems: Design, Management and Applications, Vol. 87 of
Frontiers in Artificial Intelligence and Applications. (2002) 881–890

