
HyPE: A Hybrid Query Processing
Engine for Co-Processing in Database

Systems

User Manual

Version 0.2

Otto-von-Guericke-University Magdeburg
School of Computer Science

Department of Technical and Business Information Systems
Database and Information Systems Group

Authors:

Sebastian Breß

Robin Haberkorn

Steven Ladewig

Contents

1 Documentation 5

1.1 Introduction . 5

1.2 Features . 5

1.3 Detailed Documentation . 6

1.4 Project Members . 6

1.4.1 Project Members: . 6

1.4.2 Project Partners: . 6

1.4.3 Former Project Members: . 6

1.5 Publications . 6

2 Installation 7

2.1 Prerequisites . 7

2.2 Installing on Linux . 7

2.3 Installing on Windows . 8

2.3.1 Installing with Minimal GNU for Windows 9

2.3.2 Installing with Visual Studio C++ 10

3 Tutorial: How to use HyPE 11

4 Available Components 15

4.1 Statistical Methods . 15

4.1.1 Least Square Method . 15

4.1.2 Multi Linear Fitting . 15

4.2 Recomputation Heuristics . 15

4.2.1 Periodic Recomputation . 16

4.2.2 Oneshot Recomputation . 16

4 CONTENTS

4.2.3 Error based Recomputation (under development) 16

4.3 Optimization Criterions . 16

4.3.1 Response Time . 16

4.3.2 Waiting Time Aware Response Time 16

4.3.3 Round Robin . 17

4.3.4 Threshold-based Outsourcing 17

4.3.5 Probability-based Outsourcing 17

5 Configure HyPE 19

6 Extend HyPE 21

6.1 Statistical Methods . 21

6.2 Recomputation Heuristics . 22

6.3 Optimization Criterions . 22

7 FAQ 25

8 Class Index 27

8.1 Class List . 27

9 File Index 29

9.1 File List . 29

10 Class Documentation 31

10.1 hype::core::HYPE_EXPORT Protocol Reference 31

10.1.1 Detailed Description . 33

10.1.2 Member Function Documentation 36

10.1.2.1 AlgorithmMeasurement 36

10.1.2.2 afterAlgorithmExecution 36

10.1.2.3 SchedulingDecision 36

10.1.2.4 getNameofChoosenAlgorithm 36

10.1.2.5 getEstimatedExecutionTimeforAlgorithm 36

10.1.2.6 getFeatureValues 37

10.1.2.7 getDeviceSpecification 37

10.1.2.8 AlgorithmSpecification 37

10.1.2.9 OperatorSpecification 37

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

CONTENTS 5

10.1.2.10 DeviceSpecification 38

10.1.2.11 DeviceConstraint . 38

10.1.2.12 operator DeviceTypeConstraint 38

10.1.2.13 operator ProcessingDeviceMemoryID 38

10.1.2.14 operator DeviceTypeConstraint 38

10.1.2.15 operator ProcessingDeviceMemoryID 38

10.2 hype::HYPE_EXPORT Protocol Reference 38

10.2.1 Detailed Description . 39

10.2.2 Member Function Documentation 40

10.2.2.1 instance . 40

10.2.2.2 addAlgorithm . 40

10.2.2.3 setOptimizationCriterion 41

10.2.2.4 setStatisticalMethod 41

10.2.2.5 setRecomputationHeuristic 41

10.2.2.6 getOptimalAlgorithm 42

10.2.2.7 addObservation . 42

11 File Documentation 43

11.1 documentation.hpp File Reference . 43

11.1.1 Detailed Description . 43

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

6 CONTENTS

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

Chapter 1

Documentation

1.1 Introduction

HyPE is a library build for automatic selection of processing units for co-processing in
database systems. The long-term goal of the project is to implement a fully fledged
query processing engine, which is able to automatically generate and optimize a hy-
brid CPU/GPU physical query plan from a logical query plan. It is a research prototype
developed by the Otto-von-Guericke University Magdeburg in collabo-
ration with Ilmenau University of Technology.

See the publications listed below for more details.

1.2 Features

Currently, HyPE supports the following features:

• Entirely written in C++

• Decides on the (likely) optimal algorithm w.r.t. to a user specified optimization
criterion for an operation

• Unrestricted use in parallel applications due to thread-safety

• Easily extensible by utilizing a plug-in architecture

• New: Runs under Linux and Windows

• New: Supports the following compilers: g++ (>=4.5), clang, and Visual C++

• Requires (almost) no knowledge about executed algorithms, just the relevant fea-
tures of the datasets for an algorithms execution time

• Collects statistical information to help the user to fine tune HyPE’s parameters for
their use case

• Provides a parallel execution engine for operators

8 Documentation

1.3 Detailed Documentation

1. Installation (p. 7)

2. Tutorial: How to use HyPE (p. 11)

3. Available Components (p. 15)

4. Configure HyPE (p. 19)

5. Extend HyPE (p. 21)

6. FAQ (p. 25)

1.4 Project Members

1.4.1 Project Members:

• Sebastian Breß (University of Magdeburg)

• Klaus Baumann (University of Magdeburg)

• Robin Haberkorn (University of Magdeburg)

• Steven Ladewig (University of Magdeburg)

• Tobias Lauer (Jedox AG)

• Gunter Saake (University of Magdeburg)

• Norbert Siegmund (University of Magdeburg)

1.4.2 Project Partners:

• Felix Beier (Ilmenau University of Technology)

• Ladjel Bellatreche (LIAS/ISEA-ENSMA, Futuroscope, France)

• Hannes Rauhe (Ilmenau University of Technology)

• Kai-Uwe Sattler (Ilmenau University of Technology)

1.4.3 Former Project Members:

• Ingolf Geist (University of Magdeburg)

1.5 Publications

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

Bibliography

[1] S. Breß. Ein selbstlernendes Entscheidungsmodell für die Verteilung von Daten-
bankoperationen auf CPU/GPU-Systemen. Master thesis, University of Magdeburg,
Germany, March 2012. In German.

[2] S. Breß, F. Beier, H. Rauhe, E. Schallehn, K.-U. Sattler, and G. Saake. Automatic
Selection of Processing Units for Coprocessing in Databases. In ADBIS, pages
57–70. Springer, 2012.

[3] S. Breß, I. Geist, E. Schallehn, M. Mory, and G. Saake. A Framework for Cost based
Optimization of Hybrid CPU/GPU Query Plans in Database Systems. Control and
Cybernetics, 41(4), 2012. to appear.

[4] S. Breß, S. Mohammad, and E. Schallehn. Self-Tuning Distribution of DB-
Operations on Hybrid CPU/GPU Platforms. In GvD, pages 89–94. CEUR-WS, 2012.

[5] S. Breß, E. Schallehn, and I. Geist. Towards Optimization of Hybrid CPU/GPU
Query Plans in Database Systems. In GID, pages 27–35. Springer, 2012.

10 BIBLIOGRAPHY

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

Chapter 2

Installation

HyPE uses CMake as a cross-platform build system. Generally, building HyPE is similar
on all platforms but we will nevertheless highlight some platform-specifics on this page.

There might also be precompiled binaries for your platform and toolchain.

Note that C++ libraries for one platform (e.g. Windows) built with different toolchains or
merely different toolchain versions are generally not interchangeable.

2.1 Prerequisites

HyPE depends on the following third-party libraries and tools:

• boost::filesystem, boost::system, boost::thread, boost-
::program_options, boost::chrono

• Headers of the "C++ Technical Report on Standard Library Extensions", or boost-
::tr1

• Loki Library

• ALGLIB (included, usually no need install separately)

• Doxygen (only if you would like to build the documentation)

2.2 Installing on Linux

HyPE has been tested with the following compilers/build-environments on Linux:

• Ubuntu 11.04 (32-bit)

• Ubuntu 12.04 (64-bit)

• gcc/g++ (v4.6.3)

12 Installation

To install all prerequisites on Ubuntu Linux, install the following packages:

sudo apt-get install gcc g++ make cmake doxygen graphviz libboost-all-dev
build-essential gnuplot-x11 ffmpeg libloki-dev libloki*

Now you can configure the HyPE package. We advise you to do a CMake out-of-source-
tree build, for instance using the following commands from a shell:

cd hype-library
mkdir build
cd build
cmake ../

If you encounter any errors during configuration, or want to tweak HyPE’s build system
you may want to run ‘ccmake‘ to manipulate CMake’s cache and re-generate the build-
system. The appropriate options are documented.

To build HyPE, use:

make

To build and run the test suite, type:

make check

To build the documentation, type:

make hype-doc

To install HyPE, type (as root):

make install

2.3 Installing on Windows

HyPE was tested with Windows using the following toolchains:

• Cygwin

• Minimal GNU for Windows (32-bit), GCC 4.7.2

• Visual Studio C++ 2010 Express (32-bit)

Naturally, other toolchains like MinGW-64 and newer versions of Visual Studio might
work as well.

In any case, if you would like to build HyPE’s documentation, install Doxygen via its
Windows installer. If you let the installer add Doxygen to ‘PATH‘, the build system will
locate it automatically.

You must also install CMake, presumably via its Windows installer. Let the installer add
CMake to ‘PATH‘ as well.

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

2.3 Installing on Windows 13

2.3.1 Installing with Minimal GNU for Windows

To install HyPE using the MinGW toolchain, first build MinGW versions of the dependant
libraries. They do not necessarily have to be installed into the MinGW/MSYS path
hierarchy.

Boost must be built for the MinGW toolchain, Visual Studio builds will not work. If
you cannot find an appropriate binary, build the binaries from a MinGW command shell
(cmd.exe):

cd boost_1_53_0
boostrap mingw
bjam toolset=gcc

The Loki library must also be built for the MinGW toolchain. At first you must remove
Loki’s ‘src/LevelMutex.cpp‘, since it is broken on MinGW and not required by HyPE.
From a MinGW shell (MSYS Bash), type:

cd loki-0.1.7/
mingw32-make build-static build-shared OS=Windows

Now you are ready to build HyPE. From a MSYS Shell, type:

cd hype-library
mkdir build
cd build
cmake-gui ../

Choose "MSYS Makefiles" as the build system to generate and click _Configure_ to
configure the HyPE package. There will be errors. In the CMake cache

• set ‘BOOST_ROOT‘ to the build location of Boost for MinGW

• configure the ‘Boost_USE_‘ options; presumably enable ‘Boost_USE_STATIC_-
LIBS‘

Now _Configure_ again - Boost should be properly configured now but not the Loki
library. So in the cache (advanced), set

• ‘Loki_INCLUDE_DIRS‘ to the ‘include/‘ subdirectory of Loki (e.g. ‘C:/loki-0.1.-
7/include‘)

• ‘Loki_LIBRARIES‘ to the path of Loki’s static library (‘libloki.a‘) or DLL (‘libloki.dll‘)

HyPE should now Configure properly and you can click Generate.

From a MSYS Shell you may now build HyPE just like you would on Linux:

cd hype-library/build
make

It may also be installed into the MinGW/MSYS paths.

Note: In order to run the test suite, copy all necessary DLLs to ‘hype-
library/build/examples/unitests/‘.

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

14 Installation

2.3.2 Installing with Visual Studio C++

To install HyPE using the Visual Studio C++ toolchain, first build MSVC versions of the
dependant libraries.

Boost must be built for the MSVC toolchain, MinGW builds will not work. If you cannot
find an appropriate binary, build the sources from Windows command shell (cmd.exe):

cd boost_1_53_0
boostrap
bjam

The Loki library must also be built for the MSVC toolchain. From a Windows shell
(cmd.exe) using Visual Studio C++ 2010, type:

cd loki-0.1.7/
set VS80COMNTOOLS=%VS100COMNTOOLS%
make.msvc.bat

Now you are ready to build HyPE. First generate the Visual Studio project files using C-
Make. To do so, start CMake GUI and select the HyPE source directory. You may select
a different build directory for out-of-source-tree builds. Click _Configure_ to configure
the HyPE package. There will be errors. In the CMake cache

• set ‘BOOST_ROOT‘ to the build location of Boost for MSVC

• configure the ‘Boost_USE_‘ options; presumably enable ‘Boost_USE_STATIC_-
LIBS‘

Now _Configure_ again - Boost should be properly configured now but not the Loki
library. So in the cache (advanced), set

• ‘Loki_INCLUDE_DIRS‘ to the ‘include/‘ subdirectory of Loki (e.g. ‘C:/loki-0.1.-
7/include‘)

• ‘Loki_LIBRARIES‘ to the path of Loki’s MSVC static library (‘loki.lib‘)

HyPE should now Configure properly and you can click Generate.

In Visual Studio, you can now open the generated solution file ‘HyPE.sln‘ (located in the
build directory) and build the entire solution or a specific target.

Note: In order to run the test suite, copy all necessary DLLs to ‘hype-
library/build/examples/unitests/‘ (or whatever your build directory is).

Note also, that when performing a _Debug_ build, all dependent libraries must be de-
bug versions as well. Debug versions of Boost are automatically selected by the build
system, but Loki library Debug versions must be manually built and selected in the C-
Make cache.

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

Chapter 3

Tutorial: How to use HyPE

HyPE is organized as a library to allow easy integration in existing applications. You can
choose between a dynamic and a static version of the library. Note that you have to link
against the libraries HyPE uses, if you use the static version.

ATTENTION: HyPE uses the thread library of boost for it’s advanced features. -
There is a bug concerning applications compiled with the g++ compiler, because
boost thread does not properly export all symbols until version 1.48. The Bug
was fixed in Boost 1.49. The workaround is to statically link against boost
thread. Further details can be found here.

To integrate HyPE in your project, you have to include the header file

#include <hype.hpp>

and link against hype:

g++ -g -Wl,-rpath,${PATH_TO_HYPE_LIB}/lib -Wall -Werror -o <you application’s
name> <object files> -I${PATH_TO_HYPE_LIB}/include -Bstatic -lboost_thread -
pthread -Bdynamic -L${PATH_TO_HYPE_LIB}/lib -lhype -lboost_system -lboost_filesystem
-lboost_program_options-mt -lloki -lrt

The general concept of HyPE is to make decisions for your applications, which algorithm
(processing device) should be used to perform an operation. Therefore, you first have to
specify the Operations you wish to make decisions for and second you have to register
your available algorithms for these operations. First we need a reference to the global
Scheduler:

hype::Scheduler& scheduler=hype::Scheduler::instance();

HyPE uses two major abstractions: First, a DeviceSpecification, which defines informa-
tion to a processing device, e.g., a CPU or GPU. Second, is an AlgorithmSpecification,
which encapsulates algorithm specific information, e.g., the name, the name of the op-
eration the algorithm belongs to as well as the learning and the load adaption strategy.

As example, we will create the configuration for the most common case: A system with
one CPU and one dedicated GPU:

16 Tutorial: How to use HyPE

DeviceSpecification cpu_dev_spec(hype::PD0, //by convention, the first CPU has
Device ID: PD0 (any system has at least one)

hype::CPU, //a CPU is from type CPU
hype::PD_Memory_0); //by convention, the host

main memory has ID PD_Memory_0

DeviceSpecification gpu_dev_spec(hype::PD1, //different porcessing device
(naturally)

hype::GPU, //Device Type
hype::PD_Memory_1); //separate device memory

Now, we have to define the algorithms. Note that an algorithm may utilize only one
processeng device at a time (e.g., the GPU).

AlgorithmSpecification cpu_alg("CPU_Algorithm",
"SORT",
hype::StatisticalMethods::Least_Squares_1D,
hype::RecomputationHeuristics::Periodic,
hype::OptimizationCriterions::ResponseTime);

AlgorithmSpecification gpu_alg("GPU_Algorithm",
"SORT",
StatisticalMethods::Least_Squares_1D,
RecomputationHeuristics::Periodic,
OptimizationCriterions::ResponseTime);

Note that the GPU algorithm is only executable on the GPU and hence, should be
assigned only to DeviceSpecifcations of ProcessingDeviceType GPU. ATTENTION: the
algorithm name in the AlgorithmSpecification has to be unique! Let’s assume that
our CPU algorithm runs only on the CPU and the GPU algorithms runs only on the GPU.
We define this by calling the method Scheduler::addAlgorithm:

scheduler.addAlgorithm(cpu_alg, cpu_dev_spec); //add CPU Algorithm to CPU
Processing Device

scheduler.addAlgorithm(gpu_alg, gpu_dev_spec); //add GPU Algorithm to GPU
Processing Device

We are now ready to use the scheduling functionality of HyPE. First, we have to identify
the parameters of a data set that have a high impact on the algorithms execution time. In
case of our sorting example, we identify the size of the input array as the most important
feature value. Note that HyPE supports n feature values (n>=1).

To tell HyPE the feature value(s) of the data set that is to be processed, we have to
store them in a hype::Tuple object. By convention, the first entry quantifies the size
of the input data, and the second (if any) should contain the selectivity of a database
operator.

hype::Tuple t;
t.push_back(Size_of_Input_Dataset);//for our sort operation, we only need the

data size

Now, HyPE knows about your hardware and your algorithms. We can now let HyPE do
scheduling decisions. HyPE needs two informations to perform scheduling decisions:
First is a OperatorSpecification, which defines the operation that should be executed
("SORT"), and the feature vector of the input data (t). Furthermore, we have to specify
the location of the input data as well as the desired location for the output data, so HyPE
can take the cost for possible copy operations into account.

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

17

OperatorSpecification op_spec("SORT",
t,
hype::PD_Memory_0, //input data is in CPU RAM
hype::PD_Memory_0); //output data has to be

stored in CPU RAM

The second information, which HyPE needs, is a specification of constraints on the
processing devices. For some applications, operations cannot be executed on all pro-
cessing devices for arbitrary data. For example, if a GPU has not enough memory to
process a data set, the operation will fail (and will probably slow down other operations).
Since HyPE cannot know this, because it does not know the semantic of the operations,
the user can specify constraints, on which type of processing device the operation may
be executed. In our case, we have no constraints and just default construct a Device-
Constraint object.

DeviceConstraint dev_constr;

No we can ask HyPE were to execute our operation:

SchedulingDecision sched_dec = scheduler.getOptimalAlgorithm(op_spec,
dev_constr);

Note that the application always has to execute the algorithm HyPE chooses, otherwise,
all following calls to sched_dec.getOptimalAlgorithm() will have undefined behavior. -
Since HyPE uses a feedback loop to refine the estimations of algorithm execution times,
you have to measure the execution times of your algorithms and pass them back to Hy-
PE. HyPE provides a high level interface for algorithm measurement:

AlgorithmMeasurement alg_measure(sched_dec); //has to be directly before
algorithm execution

//execute the choosen algortihm
alg_measure.afterAlgorithmExecution(); //has to be directly after algorithm

termination

The AlgorithmMeasurement object starts a timer and afterAlgorithmExecution() stops
the timer. Note that the constructor of the AlgorithmMeasurement object needs a -
SchedulingDecision as parameter. When we put the usage of the SchedulingDecision
together, we get the following code skeleton:

if(sched_dec.getNameofChoosenAlgorithm()=="CPU_Algorithm"){
AlgorithmMeasurement alg_measure(sched_dec);

//execute "CPU_Algorithm"
alg_measure.afterAlgorithmExecution();

}else if(sched_dec.getNameofChoosenAlgorithm()=="GPU_Algorithm"){
AlgorithmMeasurement alg_measure(sched_dec);

//execute "GPU_Algorithm"
alg_measure.afterAlgorithmExecution();

}

Some applications have their own time measurement routines and wish to use their
own timer framework. To support such applications, HyPE offers a direct way to add a
measured execution time in nanoseconds for a corresponding SchedulingDecision:

uint64_t begin=hype::core::getTimestamp();
CPU_algorithm(t[0]);
uint64_t end=hype::core::getTimestamp();
//scheduling decision and measured execution time in nanoseconds!!!
scheduler.addObservation(sched_dec,end-begin);

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

18 Tutorial: How to use HyPE

The complete source code of this example can be found in the documentation online-
_learning::cpp and in the examples directory of HyPE (examples/use_as_online_-
framework/online_learning.cpp).

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

Chapter 4

Available Components

4.1 Statistical Methods

A Statistical Method learns the relation between the feature values of the input dataset
and an algorithms execution time. It is a central part of HyPE, implementing the learning
based execution time estimation. Hence, it is crucial to select the appropriate statistical
method depending on the algorithm and the application environment. Currently, HyP-
E supports one dimensional Least Square Method and Multi Linear Fitting. Statistical
methods are defined in the type hype::StatisticalMethods.

4.1.1 Least Square Method

HyPE uses the least square solver of the ALGLIB Project. It is usually the candidate to
choose, if an algorithm only depends on one input features, such as sorting.

4.1.2 Multi Linear Fitting

HyPE uses the multi linear fitting functionality of the ALGLIB Project. You should choose
Multi Linear Fitting, if an algorithm depends on multiple input features, such as selec-
tions (data size, selectivity). Note that Multi Linear Fitting is currently limited to two
features, but will support more in future versions of HyPE.

4.2 Recomputation Heuristics

A Recomputation Heuristic implements the load adaption functionality of HyPE. If the
load situation of a system dramatically changes, then it is very likely that the execu-
tion time of algorithm will change as well. To ensure sufficiently exact estimations,
the learned approximation functions have to be updated. However, there is now ’per-
fect’ point in time when to recompute the approximation functions. Therefore, the

20 Available Components

user can select a Recomputation Heuristic, which is appropriate for the application.
Recomputation heuristics are defined in the type hype::RecomputationHeuristics.

4.2.1 Periodic Recomputation

The Periodic Recomputation Heuristic will recompute the approximation function of an
algorithm after X executions of this algorithm. X is called Recomputation Period and
can be configured as well (see Configure HyPE (p. 19) for details). You should use
this Recomputation Heuristic if you want that HyPE refines its estimations at runtime to
adapt at changing data, load, etc.

4.2.2 Oneshot Recomputation

The Oneshot Recomputation Heuristik will compute the approximation functions once
after the initial training phase. You should choose this optimization criterion, if signifi-
cant changes in the load in your system is seldom or have little impact on algorithms
execution time.

4.2.3 Error based Recomputation (under development)

4.3 Optimization Criterions

An Optimization Criterion specifies what an "optimal" algorithm for your application is.
Should it be the fastest? Or would you like to select algorithms in a way that the through-
put of your system is optimized? Therefore, we implemented several strategies to make
HyPE configurable and better usable for a wide range of applications. Optimization
criteria are defined in the type hype::OptimizationCriterions.

4.3.1 Response Time

The idea of Response Time optimization is to reduce the execution time of one operation
by selecting the (estimated) fastest algorithm.

4.3.2 Waiting Time Aware Response Time

Waiting Time Aware Response Time (WTAR) is an extension of the simple response
time algorithm. WTAR takes into account the load on all processing devices and allo-
cates for an operation O the processing device, were the sum of the waiting time, until
the previous oeprators finished, and the estimated execution time of O is minimal. This
is the recommended optimization algorithm for HyPE.

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

4.3 Optimization Criterions 21

4.3.3 Round Robin

The round robin strategy allocates processing devices for operations in turns, distribut-
ing a workload of operations on all processing devices. This approach works well in
case operation need roughly the same time on all processing devices (e.g., on homo-
geneous hardware). However, in case one processing device is significantly faster than
the other processing devices, the round strategy will under utilize the faster processing
device, and over utilize the slower processing devices.

4.3.4 Threshold-based Outsourcing

Threshold-based Outsourcing is an extension of Response Time. The idea is to force
the use of a slower processing device to relieve the fastest processing device and dis-
tribute the workload on all available processing devices. However, the algorithm has to
ensure that the operation’s response time does not significantly increase. Therefore, an
operation may be executed on a slower processing device, if and only if the expected
slowdown is under a certain threshold W.

4.3.5 Probability-based Outsourcing

Probability-based Outsourcing computes for each scheduling decision the estimated
execution times of the avaialble algorithms. Then, each algorithm gets assigned a prob-
ability, depending on the estimated execution time. Faster algorithms (on faster process-
ing devices) get a higher probability to be executed then slower algorithms. Depending
on the probability, an algorithm is chosen randomly for execution.

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

22 Available Components

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

Chapter 5

Configure HyPE

HyPE can be configured in four ways. First, modify the Static_Configuration of HyPE,
which sets default values for all variables. Second, update the configuration at runtime.
The class Runtime_Configuration provides methods to change all modifiable variables.
Note that not all variables are modifiable during runtime. Third, create a configuration
file ’hype.conf’, and add the variables with their corresponding values. Note, that the
structure of the file for each line is variable_name=value and one line may at most
contain one assignment. Fourth, specify parameter values in environment variables.

• modify the hype::core::Static_Configuration of HyPE (requires recompilation)

• update the configuration at runtime using hype::core::Runtime_Configuration

• create a configuration file ’stemod.conf’, and add the variables with their corre-
sponding values

– help produce help message

– length_of_trainingphase set the number algorithms executions to com-
plete training

– history_length set the number of measurement pairs that are kept in the
history (important for precision of approximation functions)

– recomputation_period set the number of algorithm executions to trigger
recomputation

– algorithm_maximal_idle_time set maximal number of operation execu-
tions, where an algorithm was not executed; forces retraining of algorithm

– retraining_length set the number of algorithm executions needed to com-
plete a retraining phase (load adaption feature)

– ready_queue_length set the number of operators that are queued on a
processing device, before scheduling decision stops scheduling new oper-
ators (The idea is to wait how the done scheduling decisions turn out and to
adjust the scheduling accordingly)

• specify parameter values in environment variables:

24 Configure HyPE

– HYPE_LENGTH_OF_TRAININGPHASE set the number algorithms execu-
tions to complete training

– HYPE_HISTORY_LENGTH set the number of measurement pairs that are
kept in the history (important for precision of approximation functions)

– HYPE_RECOMPUTATION_PERIOD set the number of algorithm execu-
tions needed to complete a retraining phase (load adaption feature)

– HYPE_ALGORITHM_MAXIMAL_IDLE_TIME set maximal number of oper-
ation executions, where an algorithm was not executed; forces retraining of
algorithm

– HYPE_RETRAINING_LENGTH set the number of algorithm executions to
trigger recomputation

– HYPE_READY_QUEUE_LENGTH set the number of operators that are
queued on a processing device, before scheduling decision stops schedul-
ing new operators (The idea is to wait how the done scheduling decisions
turn out and to adjust the scheduling accordingly)

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

Chapter 6

Extend HyPE

6.1 Statistical Methods

HyPE learns the correlation between features of the input data set and the resulting exe-
cution time of an algorithm on a specific processing device. To allow the user to fine tune
the statistical method, HyPE provides a plug-in architecture, where the user can choose
either from the set of implemented statistical methods, or alternatively, implement and
integrate the preferred statistical method in HyPE.

To create a new statistical method, the user has to inherit from the abstract base class
hype::core::StatisticalMethod and implement its pure virtual methods. Since HyPE uses
a plug-in architecture based on factories, a static member function create should be
defined, which returns a pointer to a new instance of your new statistical method (e.g.,
Least_Squares_Method_1D).

#include <core/statistical_method.hpp>

namespace hype{
namespace core{

class Least_Squares_Method_1D : public StatisticalMethod {
public:

Least_Squares_Method_1D();

virtual const EstimatedTime computeEstimation(const Tuple&
input_values);

virtual bool recomuteApproximationFunction(Algorithm& algorithm);

virtual bool inTrainingPhase() const throw();

virtual void retrain();

static Least_Squares_Method_1D* create(){
return new Least_Squares_Method_1D();

}

virtual ~Least_Squares_Method_1D();
};

}; //end namespace core
}; //end namespace hype

After the user added the class, he needs to extend the enumeration hype::Statistical-

26 Extend HyPE

Methods::StatisticalMethod in file global_definitions.hpp by a new member, which iden-
tifies the plug-in. Finally, the user has to register the plug-in in the class hype::core::-
PluginLoader in file pluginloader.cpp.

6.2 Recomputation Heuristics

HyPE is capable of refining estimated execution times at run-time. Depending on the
application, a run-time refinement is beneficial or causes only additional overhead. To
support a wide range of applications, HyPE allows to fine tune the runtime refinement
on a per algorithm basis (e.g, for the same operation, we can have runtime adaption on
the CPU, but not on the GPU.)

HyPE provides a plug-in architecture, where the user can choose either from the set
of implemented recomputation heuristics, or alternatively, implement and integrate the
preferred recomputation heuristic in HyPE.

To create a new recomputation heuristic, the user has to inherit from the abstract base
class hype::core::RecomputationHeuristic and implement its pure virtual methods. -
Since HyPE uses a plug-in architecture based on factories, a static member function
create should be defined, which returns a pointer to a new instance of your new recom-
putation heuristic (e.g., Oneshotcomputation).

#include <core/recomputation_heuristic.hpp>

namespace hype{
namespace core{

class Oneshotcomputation : public RecomputationHeuristic {
public:
Oneshotcomputation();
//returns true, if approximation function has to be recomputed and

false otherwise
virtual bool internal_recompute(Algorithm& algortihm);

static Oneshotcomputation* create(){
return new Oneshotcomputation();

}

};
}; //end namespace core

}; //end namespace hype

After the user added the class, he needs to extend the enumeration hype::-
RecomputationHeuristics::RecomputationHeuristic in file global_definitions.hpp by a
new member, which identifies the plug-in. Finally, the user has to register the plug-in in
the class hype::core::PluginLoader in file pluginloader.cpp.

6.3 Optimization Criterions

To add a new optimization criterion, the user has to inherit from the abstract class hype-
::core::OptimizationCriterion and implement its pure vitual methods. Since HyPE uses
a plug-in architecture based on factories, a static member function create should be
defined, which returns a pointer to a new instance of your new optimization criterion,
which we will call "NewResponseTime".

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

6.3 Optimization Criterions 27

#include <core/optimization_criterion.hpp>

namespace hype{
namespace core{

class NewResponseTime : public OptimizationCriterion{
public:
NewResponseTime(const std::string& name_of_operation);

virtual const SchedulingDecision getOptimalAlgorithm_internal(const
Tuple& input_values, Operation& op, DeviceTypeConstraint dev_constr);

//factory function
static NewResponseTime* create(){

return new NewResponseTime("");
}

}
};

};

After the user added the class, he needs to extend the enumeration hype::Optimization-
Criterions::OptimizationCriterion in file global_definitions.hpp by a new member, which
identifies the plug-in. Finally, the user has to register the plug-in in the the class hype-
::core::PluginLoader in file pluginloader.cpp.

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

28 Extend HyPE

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

Chapter 7

FAQ

1. What is HyPE?

HyPE is a Hybrid query Processing Engine build for automatic selection of pro-
cessing units for co-processing in database systems. The long-term goal of the
project is to implement a fully fledged query processing engine, which is able to
automatically generate and optimize a hybrid CPU/GPU physical query plan from
a logical query plan.

2. When should I use HyPE?

You can use HyPE whenever you want to decide on a CPU and a GPU imple-
mentation of an operation in your application at run-time. In other words, any
GPU accelerated application can make use of hype to effectively utilize existing
processing ressources.

3. Under which license is HyPE distributed?

HyPE is licenced under the GNU LESSER GENERAL PUBLIC LICENSE -
Version 3.

4. Which platforms are currently supported?

HyPE compiles and runs under Linux and Windows (Cygwin). Native Windows
support is planned for future releases.

5. I have a problem in using HyPE, how can I get help?

For information about the project, technical questions and bug reports: please
contact the development team via Sebastian Breß.

30 FAQ

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

Chapter 8

Class Index

8.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

hype::core::HYPE_EXPORT
This class represents an easy to use interface for time measurement
of an algorithms execution time . 31

hype::HYPE_EXPORT
The Scheduler is the central component for interaction of the appli-
cation and the library . 38

32 Class Index

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

Chapter 9

File Index

9.1 File List

Here is a list of all documented files with brief descriptions:

algorithm_measurement.hpp . ??
documentation.hpp

This file contains additional documentation, like the generated web
pages in the doxygen documentation 43

hype.hpp . ??
scheduling_decision.hpp . ??
specification.hpp . ??
time_measurement.hpp . ??

34 File Index

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

Chapter 10

Class Documentation

10.1 hype::core::HYPE EXPORT Protocol Reference

This class represents an easy to use interface for time measurement of an algorithms
execution time.

Public Member Functions

• AlgorithmMeasurement (const SchedulingDecision &scheduling_decision)

constructs an AlgorithmMeasurement object

• void afterAlgorithmExecution ()

stops the time of an algorithms execution and adds obtained data to algorithm statis-
tics.

• SchedulingDecision (Algorithm &alg_ref, const EstimatedTime &estimated_-
time_for_algorithm, const Tuple &feature_values)

constructs a SchedulingDecision object by assigning neccessary informations to all
fields of the object

• const std::string getNameofChoosenAlgorithm () const

returns the name of the choosen algorithm

• const EstimatedTime getEstimatedExecutionTimeforAlgorithm () const

returns the estimated execution time of the choosen algorithm

• const Tuple getFeatureValues () const

returns the feature values that were the basis for this decision

• const DeviceSpecification getDeviceSpecification () const throw ()

returns the ComputeDevice the chosen algorithm utilizes

• bool operator== (const SchedulingDecision &sched_dec) const
• AlgorithmSpecification (const std::string &alg_name, const std::string &op-

_name, StatisticalMethods::StatisticalMethod stat_meth=StatisticalMethods::-
Least_Squares_1D, RecomputationHeuristics::RecomputationHeuristic recomp-
_heur=RecomputationHeuristics::Periodic, OptimizationCriterions::Optimization-
Criterion opt_crit=OptimizationCriterions::ResponseTime)

36 Class Documentation

constructs an AlgorithmSpecification object by assigning necessary informations to all
fields of the object

• const std::string & getAlgorithmName () const throw ()

returns the algorithm’s name

• const std::string & getOperationName () const throw ()

returns the name of the operation the algorithm belongs to

• const std::string getStatisticalMethodName () const throw ()

returns the name of the statistical method that is used for the algorithm

• const std::string getRecomputationHeuristicName () const throw ()

returns the name of the recomputation heuristic that is used for the algorithm

• const std::string getOptimizationCriterionName () const throw ()

returns the name of the optimization criterion of the operation the algorithm belongs to

• OperatorSpecification (const std::string &operator_name, const Tuple &feature-
_vector, ProcessingDeviceMemoryID location_of_input_data, ProcessingDevice-
MemoryID location_for_output_data)

constructs an OperatorSpecification object by assigning necessary informations to all
fields of the object

• const std::string & getOperatorName () const throw ()

returns the operations’s name

• const Tuple & getFeatureVector () const throw ()

returns the feature vector of this operator

• ProcessingDeviceMemoryID getMemoryLocation () const throw ()

returns the memory id where the input data is stored

• DeviceSpecification (ProcessingDeviceID pd, ProcessingDeviceType pd_t, -
ProcessingDeviceMemoryID pd_m)

constructs an DeviceSpecification object by assigning necessary informations to all
fields of the object

• ProcessingDeviceID getProcessingDeviceID () const throw ()

returns the processing device’s ProcessingDeviceID

• ProcessingDeviceType getDeviceType () const throw ()

returns the processing device’s device type

• ProcessingDeviceMemoryID getMemoryID () const throw ()

returns the processing device’s memory id

• operator ProcessingDeviceID ()

implicit conversion to an object of type ProcessingDeviceID

• operator ProcessingDeviceType ()

implicit conversion to an object of type ProcessingDeviceType

• operator ProcessingDeviceMemoryID ()

implicit conversion to an object of type ProcessingDeviceMemoryID

• bool operator== (const DeviceSpecification &) const

overload of operator== for this class

• DeviceConstraint (DeviceTypeConstraint dev_constr=ANY_DEVICE, -
ProcessingDeviceMemoryID pd_mem_constr=PD_Memory_0)

constructs an DeviceConstraint object by assigning necessary informations to all fields
of the object

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

10.1 hype::core::HYPE_EXPORT Protocol Reference 37

• DeviceTypeConstraint getDeviceTypeConstraint () const

returns the DeviceTypeConstraint

• operator DeviceTypeConstraint ()

implicit conversion to an object of type DeviceTypeConstraint

• operator ProcessingDeviceMemoryID ()

implicit conversion to an object of type ProcessingDeviceMemoryID

• operator DeviceTypeConstraint () const

implicit conversion to an object of type DeviceTypeConstraint

• operator ProcessingDeviceMemoryID () const

implicit conversion to an object of type ProcessingDeviceMemoryID

• EstimatedTime ()
• EstimatedTime (double time_in_nanoseconds)
• double getTimeinNanoseconds () const
• MeasuredTime ()
• MeasuredTime (double time_in_nanoseconds)
• double getTimeinNanoseconds () const

10.1.1 Detailed Description

A DeviceConstraint restricts the type of processing device, which HyPE may choose to
process an operator.

A DeviceSpecification defines a processing device that is available for performing com-
putations.

A OperatorSpecification defines the operator that the user wants to execute.

An AlgorithmSpecification specifies all relevant information about an algorithm, such as
the algorithm’s name or the name of the operation the algorithms belongs to.

This class represents a scheduling decision for an operation w.r.t. a user specified set
of features of the input data.

The user just have to create an object of AlgorithmMeasurement. Then, the algo-
rithm that is to measure is executed. After that, the user has to call afterAlgorithm-
Execution() (p. 36). The framework takes care of the rest.

Internally, afterAlgorithmExecution() (p. 36) stops the time and adds the received data
to the algorithms statistics. It is crucial that the application executes the algortihm
specified by the SchedulingDecision or the libraries behaviour is undefined.

Author

Sebastian Breß

Version

0.1

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

38 Class Documentation

Date

2012

A user has to execute the algortihm suggested by the SchedulingDecision, or the library
will not work. The user can determine the algorithm to excute by calling getNameof-
ChoosenAlgorithm() (p. 36). The user can then measure the execution time of the
algorithm by using an AlgorithmMeasurement object.

Author

Sebastian Breß

Version

0.1

Date

2012

Author

Sebastian Breß

Version

0.2

Date

2013

Copyright

GNU LESSER GENERAL PUBLIC LICENSE - Version 3, http://www.gnu.-
org/licenses/lgpl-3.0.txt

Hence, it contains the name of the operation and the features of the input data set as
well as the two memory ids, where the first identifies where the input data is stored,
and the second specifies where the input data is stored. Note that HyPE needs this
information to estimate the overhead of data transfers in case the data needs to be
copied to use a certain processing device.

Author

Sebastian Breß

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

10.1 hype::core::HYPE_EXPORT Protocol Reference 39

Version

0.2

Date

2013

Copyright

GNU LESSER GENERAL PUBLIC LICENSE - Version 3, http://www.gnu.-
org/licenses/lgpl-3.0.txt

It consists of a ProcessingDeviceID, which has to be unique, a processing device type
(e.g., CPU or GPU) and a memory id, which specifies the memory that the processing
devices uses. By convention, the host’s CPU has the processing device id of 0, is a
processing device from type CPU and the CPU’s main memory has memory id 0.

Author

Sebastian Breß

Version

0.2

Date

2013

Copyright

GNU LESSER GENERAL PUBLIC LICENSE - Version 3, http://www.gnu.-
org/licenses/lgpl-3.0.txt

This is especially important if an algorithms does not support a certain data type on a
certain processing device (e.g., no filter operations on an array of strings on the GPU).
On default construction, no constraint is defined.

Author

Sebastian Breß

Version

0.2

Date

2013

Copyright

GNU LESSER GENERAL PUBLIC LICENSE - Version 3, http://www.gnu.-
org/licenses/lgpl-3.0.txt

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

40 Class Documentation

10.1.2 Member Function Documentation

10.1.2.1 hype::core::HYPE_EXPORT::AlgorithmMeasurement (const
SchedulingDecision & scheduling decision) [explicit]

The constructor will fetch the current time. Therefore, it starts a timer to measure the
execution time of the choosen algorithm. Therefore, the user should construct the -
AlgorithmMeasurement object directly before the algorithms call. Directly after the algo-
rthm finished execution, afterAlgorithmExecution() (p. 36) has to be called to ensure
a precise time measurement.

Parameters
cheduling_-

decision
a reference to a SchedulingDecision

10.1.2.2 void hype::core::HYPE_EXPORT::afterAlgorithmExecution ()

To ensure a precise time measurement, afterAlgorithmExecution() (p. 36) has to be
called directly after the algorthm finished execution.

10.1.2.3 hype::core::HYPE_EXPORT::SchedulingDecision (Algorithm & alg ref,
const EstimatedTime & estimated time for algorithm, const Tuple & feature values)

Parameters
alg_ref Reference to Algorithm that was choosen

estimated_-
time_for_-
algorithm

estimated execution time for algorithm

feature_-
values

features of the input data set that were previously specified by the user

10.1.2.4 const std::string hype::core::HYPE_EXPORT::getNameofChoosen-
Algorithm () const

Returns

name of choosen algorithm

10.1.2.5 const EstimatedTime hype::core::HYPE_EXPORT::getEstimatedExecution-
TimeforAlgorithm () const

Returns

estimated execution time of the choosen algorithm

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

10.1 hype::core::HYPE_EXPORT Protocol Reference 41

10.1.2.6 const Tuple hype::core::HYPE_EXPORT::getFeatureValues () const

Returns

feature values of input data set

10.1.2.7 const DeviceSpecification hype::core::HYPE_EXPORT::getDevice-
Specification () const throw ()

Returns

ComputeDevice the chosen algorithm utilizes

10.1.2.8 hype::core::HYPE_EXPORT::AlgorithmSpecification (const std::string
& alg name, const std::string & op name, StatisticalMethods::StatisticalMethod
stat meth = StatisticalMethods::Least Squares 1D,
RecomputationHeuristics::RecomputationHeuristic recomp heur
= RecomputationHeuristics::Periodic,
OptimizationCriterions::OptimizationCriterion opt crit =
OptimizationCriterions::ResponseTime)

Parameters
alg_name name of the algorithm
op_name name of the operation the algorithms belongs to
stat_meth the statistical method used for learning the algorithms behavior (op-

tional)
recomp_-

heur
the recomputation heuristic used for adapting the algorithms approxi-
mation function (optional)

opt_crit the optimization criterion of the operation the algorithm belongs to (op-
tional)

10.1.2.9 hype::core::HYPE_EXPORT::OperatorSpecification (const std::string
& operator name, const Tuple & feature vector, ProcessingDeviceMemoryID
location of input data, ProcessingDeviceMemoryID location for output data)

Parameters
operator_-

name
the operations’s name

feature_-
vector

the feature vector of this operator

location_of_-
input_data

the memory id where the input data is stored

location_for-
output-

data

the memory id where the output data is stored

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

42 Class Documentation

10.1.2.10 hype::core::HYPE_EXPORT::DeviceSpecification (ProcessingDeviceID pd,
ProcessingDeviceType pd t, ProcessingDeviceMemoryID pd m)

Parameters
pd the unique id of the processing device

pd_t type of the processing device (e.g., CPU or GPU)
pd_m unique id of the memory the processing device uses

10.1.2.11 hype::core::HYPE_EXPORT::DeviceConstraint (DeviceTypeConstraint
dev constr = ANY DEVICE, ProcessingDeviceMemoryID pd mem constr =
PD Memory 0)

Parameters
dev_constr a device type constraint (e.g., CPU_ONLY or ANY_DEVICE for now

restriction)
pd_mem_-

constr
memory id, where the data should be stored when processed (experi-
mental)

10.1.2.12 hype::core::HYPE EXPORT::operator DeviceTypeConstraint ()

non-const version

10.1.2.13 hype::core::HYPE EXPORT::operator ProcessingDeviceMemoryID ()

non-const version

10.1.2.14 hype::core::HYPE EXPORT::operator DeviceTypeConstraint () const

const version

10.1.2.15 hype::core::HYPE EXPORT::operator ProcessingDeviceMemoryID () const

const version

10.2 hype::HYPE EXPORT Protocol Reference

The Scheduler is the central component for interaction of the application and the library.

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

10.2 hype::HYPE_EXPORT Protocol Reference 43

Public Member Functions

• bool addAlgorithm (const AlgorithmSpecification &alg_spec, const Device-
Specification &dev_spec)

adds an Algorithm to the AlgorithmPool of an operation defined by alg_spec on the
processing device defined by dev_spec.

• bool setOptimizationCriterion (const std::string &name_of_operation, const std-
::string &name_of_optimization_criterion)

assigns the OptimizationCriterion name_of_optimization_criterion to Operation name-
_of_operation

• bool setStatisticalMethod (const std::string &name_of_algorithm, const std-
::string &name_of_statistical_method)

assigns the StatisticalMethod name_of_statistical_method to an existing Algorithm

• bool setRecomputationHeuristic (const std::string &name_of_algorithm, const
std::string &name_of_recomputation_strategy)

assigns the StatisticalMethod name_of_statistical_method to an existing Algorithm

• const SchedulingDecision getOptimalAlgorithm (const OperatorSpecification
&op_spec, const DeviceConstraint &dev_constr)

Returns a Scheduling Decision, which contains the name of the estimated optimal
Algorithm w.r.t. the user specified optimization criterion.

• bool addObservation (const SchedulingDecision &sched_dec, const double
&measured_execution_time)

adds an observed execution time to the algorithm previously choosen by getOptimal-
AlgorithmName.

• core::EstimatedTime getEstimatedExecutionTime (const OperatorSpecification
&op_spec, const std::string &alg_name)

Static Public Member Functions

• static Scheduler & instance ()

This method implements the singelton concept for the Scheduler class to avoid multiple
instances.

10.2.1 Detailed Description

The Scheduler provides two main functionalities. First, it provides the service to decide
on the optimal algorithm for an operation w.r.t. a user specified optimization criterion.
Second, the Scheduler implements an interface to add new Observations to the exe-
cuted Algorithm. Hence, it is the central component for interaction of the application
and the library. Since it is not meaningful to have multiple instances of the Scheduler
class, it is not possible to create multiple Scheduler instances. This property is imple-
mented by using the singelton concept. Additionally, the Scheduler enables the user to
setup the Operations with their respective Algorithms as well as to configure for each
algorithm a statistical method and a recomputation heuristic and for each operation an
optimization criterion. Note that the statistical method and the recomputation statistic

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

44 Class Documentation

can be exchanged at run-time, because the Algortihm uses the pointer to implementa-
tion technique (or pimpl-idiom). This class is the interface for using stemod. It forwards
calls to the Scheduler in stemod::core and implements thread safety.

Author

Sebastian Breß

Version

0.1

Date

2012

Copyright

GNU LESSER GENERAL PUBLIC LICENSE - Version 3, http://www.gnu.-
org/licenses/lgpl-3.0.txt

10.2.2 Member Function Documentation

10.2.2.1 static Scheduler& hype::HYPE_EXPORT::instance () [static]

Returns

Reference to Scheduler instance.

10.2.2.2 bool hype::HYPE_EXPORT::addAlgorithm (const AlgorithmSpecification &
alg spec, const DeviceSpecification & dev spec)

If the specified operation does not exist, it is created. Multiple calls to addAlgorithm
with an AlgorithmSpecification having the same Operation name will add the respective
algorithms to the algorithm pool of the specified Operation

Parameters
alg_spec defines properties of the algorithm, e.g., name, the operation it belongs

to, etc.
dev_spec defines properties of the processing device the algorithm runs on, e.g.,

device type (CPU or GPU) and the device id

Returns

returns true on success and false otherwise

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

10.2 hype::HYPE_EXPORT Protocol Reference 45

10.2.2.3 bool hype::HYPE_EXPORT::setOptimizationCriterion (const std::string &
name of operation, const std::string & name of optimization criterion)

Parameters
name_of_-

operation
name of the Operation

name_of_-
optimization-

_criterion

Name of OptimizationCriterion

Returns

returns true on success and false otherwise

10.2.2.4 bool hype::HYPE_EXPORT::setStatisticalMethod (const std::string &
name of algorithm, const std::string & name of statistical method)

Parameters
name_of_-

algorithm
Name of Algorithm

name_of_-
statistical_-

method

assigns the StatisticalMethod name_of_statistical_method to an exist-
ing Algorithm

Returns

returns true on success and false otherwise

10.2.2.5 bool hype::HYPE_EXPORT::setRecomputationHeuristic (const std::string &
name of algorithm, const std::string & name of recomputation strategy)

Parameters
name_of_-

algorithm
Name of Algorithm

name_of_-
recomputation-

_strategy

assigns the RecomputationHeuristic name_of_recomputation_strategy
to an existing Algorithm

Returns

returns true on success and false otherwise

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

46 Class Documentation

10.2.2.6 const SchedulingDecision hype::HYPE_EXPORT::getOptimalAlgorithm (
const OperatorSpecification & op spec, const DeviceConstraint & dev constr)

Parameters
op_spec OperatorSpecification, contains all available information about the op-

erator to execute
dev_constr DeviceConstraint, restricting the available algorithms to a subset of the

algorithm pool (e.g., allow only CPU algorithms)

Returns

SchedulingDecision, which contains the suggested algortihm for the specified in-
formation

10.2.2.7 bool hype::HYPE_EXPORT::addObservation (const SchedulingDecision &
sched dec, const double & measured execution time)

Parameters
sched_dec the scheduling decision, this observation belongs to

measured_-
execution_-

time

measured execution time, in nanoseconds!!!

Returns

true on success and false in case an error occured

Generated on Wed Jun 5 2013 20:57:29 for Hybrid Query Processing Engine for Coprocessing in Database Systems
by Doxygen

Chapter 11

File Documentation

11.1 documentation.hpp File Reference

This file contains additional documentation, like the generated web pages in the doxy-
gen documentation.

11.1.1 Detailed Description

Author

Sebastian Breß

Version

0.1

Date

2012

Copyright

GNU LESSER GENERAL PUBLIC LICENSE - Version 3, http://www.gnu.-
org/licenses/lgpl-3.0.txt

Index

AlgorithmMeasurement
hype::core::HYPE_EXPORT, 36

AlgorithmSpecification
hype::core::HYPE_EXPORT, 37

DeviceConstraint
hype::core::HYPE_EXPORT, 38

DeviceSpecification
hype::core::HYPE_EXPORT, 37

OperatorSpecification
hype::core::HYPE_EXPORT, 37

SchedulingDecision
hype::core::HYPE_EXPORT, 36

addAlgorithm
hype::HYPE_EXPORT, 40

addObservation
hype::HYPE_EXPORT, 42

afterAlgorithmExecution
hype::core::HYPE_EXPORT, 36

documentation.hpp, 43

getDeviceSpecification
hype::core::HYPE_EXPORT, 37

getEstimatedExecutionTimeforAlgorithm
hype::core::HYPE_EXPORT, 36

getFeatureValues
hype::core::HYPE_EXPORT, 36

getNameofChoosenAlgorithm
hype::core::HYPE_EXPORT, 36

getOptimalAlgorithm
hype::HYPE_EXPORT, 41

hype::HYPE_EXPORT, 38
addAlgorithm, 40
addObservation, 42
getOptimalAlgorithm, 41
instance, 40
setOptimizationCriterion, 40
setRecomputationHeuristic, 41
setStatisticalMethod, 41

hype::core::HYPE_EXPORT, 31

AlgorithmMeasurement, 36
AlgorithmSpecification, 37
DeviceConstraint, 38
DeviceSpecification, 37
OperatorSpecification, 37
SchedulingDecision, 36
afterAlgorithmExecution, 36
getDeviceSpecification, 37
getEstimatedExecutionTimefor-

Algorithm, 36
getFeatureValues, 36
getNameofChoosenAlgorithm, 36
operator DeviceTypeConstraint, 38
operator ProcessingDeviceMemoryI-

D, 38

instance
hype::HYPE_EXPORT, 40

operator DeviceTypeConstraint
hype::core::HYPE_EXPORT, 38

operator ProcessingDeviceMemoryID
hype::core::HYPE_EXPORT, 38

setOptimizationCriterion
hype::HYPE_EXPORT, 40

setRecomputationHeuristic
hype::HYPE_EXPORT, 41

setStatisticalMethod
hype::HYPE_EXPORT, 41

