
Otto-von-Guericke University Magdeburg

School of Computer Science
Department of Technical and Business Information Systems

Master Thesis

Optimizing Sequences of Refactorings

Author:

Liang Liang

March 1, 2010

Advisors:

Prof. Dr. rer. nat. habil. Gunter Saake,
Dipl.-Inform. Martin Kuhlemann

Otto-von-Guericke University Magdeburg
School of Computer Science

P.O.Box 4120, D–39016 Magdeburg
Germany

Liang, Liang:
Optimizing Sequences of Refactorings
Master Thesis, Otto-von-Guericke University
Magdeburg, 2010.

CONTENTS i

Contents

Contents i

List of Figures iii

List of Tables v

List of Abbreviations vii

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 2

1.3 Outline . 2

2 Background 3

2.1 Refactoring . 3

2.1.1 The Concept of Refactoring . 3

2.1.2 The Composition of Refactorings 5

2.2 Feature Oriented Programming . 6

2.2.1 The Concept of Features . 6

2.2.2 Feature Oriented Design . 6

2.3 Refactoring Feature Modules . 9

2.3.1 The Concept of Refactoring Feature Modules 9

2.3.2 The Tool Support of Refactoring Feature Modules 9

2.4 Summary . 12

3 Principle of Optimizing Sequences of Refactorings 13

3.1 Refactorings . 13

ii CONTENTS

3.2 Sequences of Refactorings . 16

3.2.1 Properties of Sequences of Refactorings 16

3.2.2 Potential Relationships of Refactorings 18

3.3 Formal Perspective . 19

3.3.1 Definition of Refactoring Operations 19

3.3.2 Definition of Sequences of Refactoring Operations 21

3.3.3 Definition of Relational Operations 22

3.3.4 Optimization Rules . 24

3.4 Optimization . 28

3.4.1 Logical Optimization . 29

3.4.2 Physical Optimization . 32

4 Implementation of Prototype 37

4.1 The Functional Requirements Analysis 37

4.2 The Design of Prototype . 39

4.2.1 The Framework of Prototype . 39

4.2.2 The Core Algorithms . 41

4.3 The Limitations of Application . 43

5 Case Studies 45

5.1 Motivating Cases . 45

5.2 Evaluation . 50

6 Related Work 57

7 Conclusion and Future Work 65

7.1 Conclusion . 65

7.2 Future Work . 66

Bibliography 69

A 70 Basic Refactoring Operators 73

B Optimization Rules 77

C Detailed Evaluation Tables 79

LIST OF FIGURES iii

List of Figures

2.1 Rename Method Refactoring . 4

2.2 A Chain of Refactorings . 5

2.3 Three Features of the Queue Program 7

2.4 Source code examples in Jak of the Queue implementation 8

2.5 The final Queue class refined by features Base, Head and Length 8

2.6 Rename Method Refactoring . 10

2.7 The sequence of RFMs . 10

2.8 Implementation of RFMs . 11

3.1 An example of “rename method” refactoring 14

3.2 Unified model of a typical refactoring . 15

3.3 Two kinds of establishing satisfaction of preconditions 17

3.4 Potential Dependency Relationship . 19

3.5 Unified simplification rules . 25

3.6 Unified composition rules . 27

3.7 The initial sequence of six refactoring operations 30

3.8 Potential the relationships in initial sequence 30

3.9 Reorder sequence for applying optimization rules 31

3.10 Apply optimization rules . 31

3.11 Situation 1 . 33

3.12 Situation 2 . 34

3.13 Situation 3 . 35

4.1 The role of optimization process in composition of RFMs 38

4.2 Simplified UML of the core classes in Prototype 40

iv LIST OF FIGURES

5.1 The base program in the feature module in Case SimplifiedList 45

5.2 The three initial sequences of Case SimplifiedList 46

5.3 The three optimized sequences of Case SimplifiedList 51

5.4 The comparison of the optimization effect for given sequences 56

6.1 Different paths of composition features from ‘Base’ to ‘Goal’ 58

6.2 The example of commutation operation 62

LIST OF TABLES v

List of Tables

3.1 Basic Refactoring Operators . 16

3.2 Formal expression for basic refactoring operators 21

5.1 The unoptimized/optimized composition time and the optimization time 55

5.2 The comparison of the optimization effect for given sequences 55

6.1 Category Theory, FOP and RFMs Terminology 58

A.1 70 Basic Refactoring Operators . 73

B.1 Optimization Rules . 77

C.1 Detailed data of 5-RFM sequence#1 in “SimplifiedList” case 79

C.2 Detailed data of 8-RFM sequence#2 in “SimplifiedList” case 79

C.3 Detailed data of 10-RFM sequence#3 in “SimplifiedList” case 80

C.4 Detailed data of 10-RFM sequence in “TankWar” case 80

C.5 Detailed data of 10-RFM sequence#1 in “workbench.texteditor” case . . 80

C.6 Detailed data of 17-RFM sequence#2 in “workbench.texteditor” case . . 81

C.7 Detailed data of 55-RFM sequence#3 in “workbench.texteditor” case . . 81

C.8 Detailed data of 3-RFM sequence in “ZipMe” case 81

vi LIST OF TABLES

vii

List of Abbreviations

SPL Software Product Lines
FOP Feature Oriented Programming
RefOp Refactoring Operation
RF Rename Field
RM Rename Method
RC Rename Class
EI Extract Interface
IM Inline Method
EF Encapsulate Field
MM Move Method
SA Substitute Algorithm
CH Collapse Hierarchy
AI Artificial Intelligent

viii

Chapter 1. Introduction 1

Chapter 1

Introduction

1.1 Motivation

Feature oriented programming (FOP), an extension of the paradigm for object ori-
ented programming, can be used to implement software product lines in terms of
features[CE00]. In the FOP, a feature is an increment in program functionality [BSR03].
Technically, the code of different classes associated to one feature is merged into one fea-
ture module. Assigning a feature to a configuration, which is a combination of features,
causes the new feature module to superimpose the old feature module. That is, new
members and classes are added or old classes are refined [BSR03]. In other words, the
feature is implemented by the feature module. FOP can produce different concrete pro-
grams by selecting or deselecting features on a feature model[CE00][Bat05]. Therefore,
feature oriented design improves reusability of classes by using feature modules to add
new classes to a program, add new members, or extend members of existing classes.

Distinguished from the concept of FOP, refactoring is a disciplined process of changing
a program in such a way that it does not alter the program’s behavior while improves its
existing members and classes. Refactoring defined by Martin Fowler is “a change made to
the internal structure of software to make it easier to understand and cheaper to modify
without changing it observable behaviour”[Fow99]. Hence, a refactoring describes a
process of transforming the structure of program while keeping its functionality. For
instance, “rename method refactoring” changes the name of a method to reveal the
method’s purpose but does not change its functionality.

Refactoring feature modules (RFMs) combine refactorings and feature mod-
ules through encapsulating refactorings and sequences of refactorings in feature
modules[KBA09]. A refactoring feature module can be seen as a special feature in
the feature model[KBA09]. This kind of the special feature transforms the structure of
program but does not add program functionality. Thus, both refactoring features and
normal features can be selected in the feature model, no matter what the type of features
is. Furthermore, the compiler can successively compose the selected features (normal fea-
ture or refactoring) according to the order in the feature model[KBA09]. By using this
way, software product lines can be tailored regarding non-functional properties[SKAP10].
But the encapsulated refactorings in feature modules might be selected by user in a way
which produces a disadvantageous sequence. For example, a method may be renamed
twice. When the disadvantageous sequence of refactorings is applied to a program, it

2 1.2. Goals

may cause a high compilation effort. With the number of refactorings growing, the high
effort of compilation becomes unfeasible. In order to reduce the effort of compilation,
disadvantageous sequences of refactorings should be optimized before compiled. This
thesis focuses on optimizing sequences of refactorings to reduce the effort of compilation.

1.2 Goals

In this thesis, a theoretical framework about how to optimize disadvantageous sequences
of refactorings to reduce compilation time when composing corresponding sequences of
RFMs to a base feature-oriented program is described. As a concept demonstration, the
presented concepts in a prototype that integrated to existing compose tool in four case
studies are implemented and evaluated.

1.3 Outline

The remainder of this thesis is organized as follows:

• Chapter 2 describes the background to the thesis in detail, i.e., relevant concepts
of refactorings, feature oriented programming and refactoring feature modules.

• Chapter 3 firstly gives an introduction to the theoretical foundation of predefined
refactorings in the RFMs and explores relationships among refactorings in given
sequence. Moreover, we present the theoretical framework of the logical optimiza-
tion to express the whole process of the optimization of one user-defined sequence
of RFMs. Additionally, the concept of physical optimization to complement opti-
mization in logical level is discussed.

• Chapter 4 implements the presented concepts in a prototype of optimization tool.

• Chapter 5 reports on four case studies and evaluates the compilation time of
different sequences in these case studies by comparing the original user-defined
sequences of RFMs with the optimized sequences of RFMs. In these case studies,
the compilation time of composing user-defined sequences is reduced by up to 81.9%
with our optimization tool.

• Chapter 6 reports on the related work.

• Chapter 7 concludes the thesis with a summary and presents ideas for future
work.

Chapter 2. Background 3

Chapter 2

Background

In this chapter, the theoretical background that is necessary for understanding this thesis
is provided. Since we mainly analyze sequences of refactorings in the rest of the thesis, we
firstly explain the concept of refactorings and composition of refactorings. Subsequently,
we briefly introduce the concept of feature oriented programming (FOP). Lastly, we
provide the principle of refactoring feature modules (RFMs) in detail for understanding
how to integrate our work into refactoring feature modules.

2.1 Refactoring

The application of refactoring in the process of software development has gained much
attention in recent years[Fow99][Opd92][Rob99]. Especially, it becomes a important part
of the movement towards agile processes[Coc06] and extreme programming[Bec99][BF01]
by improving the design of existing code through the software lifecycle. In this section,
we begin with an introduction of the concept of refactoring. Furthermore, the principle
of composition of refactorings is introduced.

2.1.1 The Concept of Refactoring

The term refactoring was originally introduced in Opdyke’s dissertation[Opd92]. He
proposed refactoring as a disciplined technique with behavior-preserving program trans-
formations in order to support the iterative design of object-oriented programs. Later,
Fowler emphasizes that the intention of refactoring is to improve the design and intro-
duces the definitions of refactoring as follows:

Definition 2.1 “Refactoring (noun): a change made to the internal structure of soft-
ware to make it easier to understand and cheaper to modify without changing its observ-
able behavior.”([Fow99])

Definition 2.2 “Refactor (verb): to restructure software by applying a series of refac-
torings without changing its observable behavior.”([Fow99])

To illustrate, Figure 2.1 presents an apparent example, “Rename Method” refactor-
ing, which is described in book[Fow99]. If the name of a method does not reveal its

4 2.1. Refactoring

purpose, the old name of the method to the new one in all calls that occur in the pro-
gram should be changed. We execute “Rename Method” refactoring two times to the
initial program which is shown in Figure 2.1(a). One transforms old method name “foo”
to “enqueue”, the other transforms old method name “bar” to “dequeue”. As illustrated
in this example, the transformed program improves the overall readability of the initial
program.

1 class Queue{

2 private LinkedList elements = new LinkedList ();

3
4 public void foo(Element element){

5 elements.add(element);

6 }

7
8 public Element bar (){

9 elements.removeFirst(element);

10 }

11 }

(a) Before refactoring

1 class Queue{

2 private LinkedList elements = new LinkedList ();

3
4 public void enqueue(Element element){

5 elements.add(element);

6 }

7 public Element dequeue (){

8 elements.removeFirst(element);

9 }

10 }

(b) After refactoring

Figure 2.1: Rename Method Refactoring

Besides “Rename Method” refactoring, Fowler has already introduced a comprehen-
sive catalogue of 68 different kinds of refactorings[Fow99] and described them in the
following way: Firstly, he gives each refactoring a name and follows the name with a
short summary that describes the refactoring. Secondly, he introduces a motivation that
describes why the refactoring should be done. Thirdly, a mechanic is given to describe
how to carry out this refactoring step-by-step. Finally, he shows a corresponding ex-
ample to illustrate how this refactoring works. In practice, performing refactorings by
hand usually relies on program complication and test cycles. For example, on one hand
complication detects whether a new method has the same name as an already existing
method for “Rename Method” refactoring. On the other hand, it is necessary to guar-
antee that the behavior of a program is not transformed after refactoring by testing.
In summary, Opdyke and Fowler describe refactorings as combinations of preconditions
whose purpose is to guarantee the execution of refactorings and actual transformation
steps that are described through using natural language.

Due to the fact that performing refactorings manually is tedious and error-prone,
Roberts developed an automatic refactoring tool to reduce program analysis by asserting
preconditions and postconditions on the abstract syntax tree of a Smalltalk program to
assist refactoring[Rob99]. The preconditions and postconditions are all described as
first-order predicates, which allows the calculation of properties of relationships among

Chapter 2. Background 5

refactorings. His work also contains certain principles of composition of refactorings.
Based on the preconditions and postconditions, the preconditions for the chain of the
composite refactorings can be derived. Ó Cinnéide et al. use the approach of Roberts
in order to compose refactorings related to design patterns. Besides the composition
of preconditions, he introduces the concept of composition of postconditions. We will
briefly review the concept of the composition of refactorings.

2.1.2 The Composition of Refactorings

Due to the concept of composing refactorings is an important part of our approach, it
is necessary that we examine relevant approaches for composition of refactorings from
existing researches. The earlier work is from the Roberts. He introduces how to derive
the precondition of a composite refactoring from the preconditions of the individual
refactorings in a sequence of refactorings[Rob99]. When there are dependencies among
refactorings in the sequence, the precondition of the composite refactorings does not
simply combine the preconditions of the individual refactorings together. This is because
results of earlier refactorings will establish satisfactions of some preconditions of the later
refactorings.

The paper[CN00] that extends the approach of Roberts describes a concept of the
composite refactorings for Java program. Distinguished from the approach of Roberts,
the core concept is to compute what the overall preconditions and postconditions are for
the whole chain of primitive refactorings. It means that the derivation of a postcondition
for a composite refactorings is also considered. We review some detailed concepts of
composing refactorings shown in this thesis, we have already known each refactoring
has its own precondition and postcondition. The approach for composing this sequence
is to evaluate the precondition and postcondition for each individual refactoring step
by step in the given sequence. The precondition and the postcondition for the whole
sequence by using the approach can be calculated. Theoretically, we should discuss how
to calculate precondition and postcondition for a two-refactoring-sequence firstly. Then,
we can derive the composite conditions for any length sequence by iteratively analyzing
pair of refactorings.

To illustrate, we compose the two refactorings R1 and R2. We borrow the notion
from the paper[CN00]. For a general refactoring Ri, its precondition and postcondition
are denoted by preRi and postRi respectively. In Figure 2.2, we can compose the pre-
conditions and postconditions for a two-refactorings-sequence. There are three potential

R2R1

Pre1 Pre2Post1 Post2

Precomposite Postcomposite

Figure 2.2: A Chain of Refactorings

benefits for the composition of the two refactorings:

• the precondition for R1 may includes part of the precondition of R2.

6 2.2. Feature Oriented Programming

• postR1 may guarantee preR2 . In other words, the execution of R1 provides the
satisfaction of part of precondition of R2.

• if postR1 ∧ postR2 leads to contradiction, the part of postR1 that causes the con-
tradiction is dropped.

Essentially, the postcondition of the above concepts is similar to a abstract concept of
transformation effect of refactorings. Therefore, in our optimization approach, the types
of optimization potential, which are applied to pairs of refactorings, are divided to two
categories: composition potential and simplification potential. Similar to the concept
of composition, the composition potential can eliminate the precondition of a pair of
refactorings and keep the two transformations. Distinguished from the the concept of
composition, the simplification potential not only can eliminate the precondition of a pair
of refactoring but also can compose both transformations to an updated transformation.

2.2 Feature Oriented Programming

FOP is one technique to implement software product lines and improve reusability of
object-oriented classes[BSR03]. Distinguished from refactorings that restructure existing
members and classes, FOP transforms a base program by creating new members and
classes or extending them. In this section, we introduce the concept of features and
feature oriented design respectively.

2.2.1 The Concept of Features

The intention of software product lines(SPL) is to generate tailored programs from dif-
ferent set of similar products distinguished by the features they implement[CE00]. In
concept, a tailored program is composed from a base program that includes some base
code shared by all other features[CE00]. A user can create a feature model by a domain
requirement to select the corresponding features of the SPL. The feature model is essen-
tially a configuration file that not only defines the selected features but also defines the
order of composing selected features onto base program.

As one implementation of software product lines, the basic concept of FOP is feature.
Batory et al. define feature as a “product characteristic that is used in distinguishing
programs within a family of related programs.”[BSR03]. In FOP, features correspond to
functionalities that programs provided and a single feature is an increment of program
functionality. Due to the fact that features are implemented through one or more classes,
adding a feature subsequently means to introduce codes, namely adding new classes,
adding new members and extending members of existing classes[Kuh07]. In the next
subsection, we will explain this kind of increment fashion in detail. As the code of
classes associated to one feature is merged into one feature module, the terms feature
and feature module synonymously are used for simplicity[AB06].

2.2.2 Feature Oriented Design

Feature oriented design synthesizes individual programs by composing feature modules.
One implementation approach of FOP is AHEAD introduced by Batory. In AHEAD,

Chapter 2. Background 7

adding features incrementally in a style of stepwise refinement[Bat06]. Each feature
corresponds to a layer, which contains a set of partial definitions of classes that implement
the feature[BSR03]. A base program is part of every composed product and can be refined
stepwise by further feature modules. Then, we can successively compose such layers to
generate concrete programs based on user-defined order in configuration file.

For instance, we define the following features for the Queue program:

1. Base, which implements a base program with enqueue and dequeue functions,

2. Head, which returns the first element of a queue without removing it,

3. Length, which records the length of queue.

Figure 2.3 depicts the three layers of the Queue. Each feature module is stored in one
layer. Base, Head and Length are also the names of the features.

Length

Head

Base class Elementclass Queue

refines class Queue

refines class Queue

Figure 2.3: Three Features of the Queue Program

To illustrate the process of every refinement, we show an example with class Queue
in Figure 2.4. We assume that the three feature modules, Base, Head and Length, are
selected in a configuration process and composed in a top-down order. Class Queue is
defined with enqueue and dequeue methods in feature module Base. Firstly, feature
module Head refines class Queue by adding method getHead with keyword “refines”.
Secondly, the Count.jak in feature module Length refines class Queue by adding field
count and method getLength. Existing methods are extended by overriding, e.g. method
enqueue and dequeue of class Queue via an inheritance-like mechanism. These refine-
ments add statements and call the refined method using keyword “Super”. In general,
when feature modules are selected, the features that extend other classes must be defined
with the keyword “refines” and methods can be refined with keyword “Super”.

Finally, through composing Jak refinement by the jampack tool of the AHEAD tool
suite, we can achieve the result of the composition of feature modules. Figure 2.5 shows
the final Queue class with the features Base, Head and Length.

8 2.2. Feature Oriented Programming

1 class Queue{

2 private LinkedList elements = new LinkedList ();

3
4 public void enqueue(Element element){

5 elements.add(element);

6 }

7 public Element dequeue (){

8 elements.removeFirst(element);

9 }

10 }

(a) Base.jak

1 refines class Queue{

2 public Element getHead (){

3 return elements.getFirst ();

4 }

5 }

(b) Head.jak

1 refines class Queue{

2 private LinkedList elements = new LinkedList ();

3 private int count;

4
5 public Element getHead (){

6 i f (count >0) Super.getHead ();
7 }

8 public void enqueue(Element element){

9 Super.enqueue(element);
10 count ++;

11 }

12 public Element dequeue (){

13 Super.dequeue ();
14 count --;

15 }

16 public int getLength (){

17 return count;

18 }

19 }

(c) Count.jak

Figure 2.4: Source code examples in Jak of the Queue implementation

1 class Queue{

2 private LinkedList elements = new LinkedList ();

3 private int count;

4
5 public Element getHead (){

6 i f (count >0)return elements.getFirst ();

7 }

8 public void enqueue(Element element){

9 elements.add(element);

10 count ++;

11 }

12 public Element dequeue (){

13 elements.removeFirst(element);

14 count --;

15 }

16 public int getLength (){

17 return count;

18 }

19 }

Figure 2.5: The final Queue class refined by features Base, Head and Length

Chapter 2. Background 9

2.3 Refactoring Feature Modules

Refactoring feature modules are a combination of refactorings and feature oriented de-
sign. They adjust members and classes by composing feature modules[KBA09]. This
section is the basis of the implementation of our thesis. Therefore, we explain the con-
cept of refactoring feature modules and introduce the implementation mechanism of
refactoring feature modules in detail.

2.3.1 The Concept of Refactoring Feature Modules

The refactoring feature modules (RFMs) are feature modules that encapsulate refactor-
ing units and integrate refactorings into feature-oriented design[KBA09]. By using this
way, we can gain synergy effects. The core concept is to define refactorings in refactoring
units that are encapsulated in feature modules[KBA09]. Similar to sequences of feature
modules composed to build programs, the defined sequence of refactorings from RFMs
can be applied to a program. In other words, the compiler can successively compose
the selected features (normal feature or refactoring modules) according to a user-defined
order.

Different refactorings expose corresponding parameters whose values define the ini-
tial program elements that are to be refactored as well as the target program elements
to be refactored into. For example, the parameters of a “Rename Method” refactoring
include a qualified name of the method to rename and a new method name. In common
IDEs, these parameter values are provided by user selecting code and answering GUI
forms. Similarly, in RFMs, a refactoring interface corresponds to a refactoring template.
The refactoring interface contains getter methods for acquiring parameters of the corre-
sponding specified refactoring. A refactoring unit is a class-like entity that implements
a refactoring interface. The getter methods of the refactoring interface are implemented
by the refactoring unit then each method returns a value for that parameter. By using
this way, a concrete refactoring can be specified by setting the parameter values of a
refactoring unit.

To illustrate, we depict two samples, which encapsulate two refactoring units
”RenameMethodEnqueueToAddTail” and ”RenameMethodDequeueToRemoveHead” in
Figure 2.6.

Figure 2.7 depicts a sequence of RFMs that is applied successively in a top-down order
to the result program of the composition of the three feature modules in the preceding
subsection.

Furthermore, the existing work about the RFMs not only focused on transformations
that monotonically add code in order to produce program transformations [KBA09], but
also can guarantee that refactorings and sequence of refactorings are composed without
errors in feature oriented designs[KBK09b].

2.3.2 The Tool Support of Refactoring Feature Modules

Due to the requirement of implementing presented concepts in a prototype, the under-
standing of an existing tool is necessary. The implementation of concepts of the existing

10 2.3. Refactoring Feature Modules

1 refactoring RenameMethodEnqueueToAddTail implements RenameMethodRefactoring {

2 public String getOldMethodName (){

3 return "Queue.enqueue";

4 }

5 public String getNewMethodName (){

6 return "addTail";

7 }

8 }

(a) RenameMethod Refactoring From ‘Enqueue’ To ‘AddTail’

1 refactoring RenameMethodDequeueToRemoveHead implements RenameMethodRefactoring {

2 public String getOldMethodName (){

3 return "Queue.Dequeue";

4 }

5 public String getNewMethodName (){

6 return "removeHead";

7 }

8 }

(b) RenameMethod Refactoring From ‘Dequeue’ To ‘RemoveHead’

Figure 2.6: Rename Method Refactoring

1 class Queue{

2 private LinkedList elements = new LinkedList ();

3 private int count;

4
5 public Element getHead (){

6 i f (count >0)return elements.getFirst ();

7 }

8 public void addTail(Element element){

9 elements.add(element);

10 count ++;

11 }

12 public Element dequeue (){

13 elements.removeFirst(element);

14 count --;

15 }

16 }

(a) enqueue→addTail

1 class Queue{

2 private LinkedList elements = new LinkedList ();

3 private int count;

4
5 public Element getHead (){

6 i f (count >0)return elements.getFirst ();

7 }

8 public void addTail(Element element){

9 elements.add(element);

10 count ++;

11 }

12 public Element removeHead (){

13 elements.removeFirst(element);

14 count --;

15 }

16 }

(b) dequeue→removeHead

Figure 2.7: The sequence of RFMs

Chapter 2. Background 11

tool can be seen as an extension to the Jak language which extends support for fea-
ture modules [BSR03]. The technical report [KBA08]describes a plugin mechanism to
support different kinds of refactorings for refactoring units where one refactoring corre-
sponds to one plugin. Refactoring plugins follow a common interface and are loaded by
the compiler when corresponding refactoring units are executed. Refactoring interfaces
are declared inside every plugin and each interface corresponds to one type of refactor-
ings. Then a refactoring interface is implemented by corresponding refactoring units
during the compilation.

composer

RenameMethod Refactoring

compilation

source code

compilation result

RenameMethod1.refQueue.jak RenameMethod2.ref

RenameClass Refactoring

EncapsulateField Refactoring

Other refactoring interfaces

Queue.jak

Configuration File

Figure 2.8: Implementation of RFMs

As illustrated in Figure 2.8, before the compilation, we assume there is a simple FOP
program: Queue.jak, the content of which was shown in layer F1 in Figure 2.5. At the
same time, we define two “Rename Method” refactorings by implementing the corre-
sponding interfaces in two refactoring units: RenameMethodEnqueueToAddTail.ref and
RenameMethodDequeueToRemoveHead.ref, the content of which were shown in Figure
2.6(a) and Figure 2.6(b) respectively. In Figure 2.8, we use RenameMethod1.ref and Re-
nameMethod2.ref instead of RenameMethodEnqueueToAddTail.ref and RenameMethod-
DequeueToRemoveHead.ref for short respectively. Moreover we assume that the user-
defined order of the sequence of RFMs is written in the configuration file when selected
features are F1, R1 and R2.

During the compilation, the existing tool (composer) can successively compose the
selected feature modules and refactoring feature modules based on the user-defined order
in configuration file.

After the compilation, the transformed program Queue.jak is generated successfully.

In the following chapters, we will come up with one methodology for optimizing
the sequence of refactorings loaded during compilation. If we find out the optimized
sequence of refactorings, we shall rewrite the refactoring units and the execution order
of refactorings to the configuration file before compilation.

12 2.4. Summary

2.4 Summary

This chapter began with the concept of refactoring and the composition of refactorings.
These concepts inspire us to analyze potential relationships among refactorings. In
addition, the application of refactoring feature modules in feature oriented programming
is the basis of the thesis. There were descriptions of two important concepts, for one
thing, we reviewed the concept of feature and the principle of feature oriented design,
For another, we briefly introduced the concept of refactoring feature modules and the
application of refactoring feature modules based on existing tool.

Chapter 3. Principle of Optimizing Sequences of Refactorings 13

Chapter 3

Principle of Optimizing Sequences
of Refactorings

In practical applications, after users select refactoring feature modules (RFMs) and define
the execution order of them, these RFMs are sequentially composed to a base program by
compilation of existing compose tool. During these RFMs are composed, corresponding
refactorings encapsulated in these RFMs are applied to the base program. Therefore, the
key to reduce the compilation time of RFMs is to optimize the sequences of refactorings.

In this chapter, we provide a complete description of our approach about optimizing
sequences of refactorings. Firstly, we start with a detailed description of refactorings
and corresponding operations in Section 3.1 and then we explore the potential relation-
ships among refactorings within user-defined sequences of refactorings in Section 3.2. In
addition, we define the relevant basic notations on which we depend in order to theoret-
ically express our approach in Section 3.3. Last but not least, in Section 3.4 we describe
concepts of logical optimization and physical optimization respectively.

3.1 Refactorings

In general, a refactoring corresponds to a behavior-preserving conditional transformation
performed on a given program[KK04]. From our perspective, the given program consists
of different types of program elements such as class, method, field and other group of
cohesive codes. When we apply a series of refactorings encapsulated in RFMs to the given
program, the program structure can be sequentially transformed by operating relevant
program elements but the program functionality are unchanged.

Essentially, a typical refactoring application can be divided into two phases:

In the preconditions checking phase, if program elements of the given program satisfy
conditions of a refactoring, we can enable operations of this refactoring to operate rele-
vant program elements. Before a refactoring is executed, the process of checking whether
its conditions are satisfied is called preconditions checking. The preconditions checking
of a refactoring requires searching the whole program to determine whether it is legal.
It is a global concept and need to consider the whole program.

In the transformation phase, when its preconditions are satisfied, the operation of
refactorings to relevant program elements can be executed. The refactoring operation

14 3.1. Refactorings

transforms relevant program elements to the target program elements. It is a local
concept and reflects transformation effects of refactorings.

As illustrated in Figure 3.1, the “rename method” refactoring renames the method
name “Queue.foo” to the new method name “Queue.enqueue”. In the preconditions
checking phase, the preconditions checking of this specified refactoring requires to search
the whole program and check the existence of the method “Queue.foo” and the non-
existence of the “Queue.enqueue”. In the transformation phase, if its preconditions are
satisfied, the transformation effect is reflected by operating relevant identifiers. In the
thesis, identifiers are used to indicate the signatures of program elements. In practical
application, the identifiers of specified operation of a refactoring are similar to the param-
eter values of the specified refactoring. For example, the “rename method” refactoring
renames the old method name into the new method name and updates all references.
There are two corresponding identifiers. One is to indicate the old method name and all
references, the other is to indicate the new method name and all updated references.����� �������	
����

����

�� �������������
� ��
� ��������������� �������������������������������������� �������	
����

����

�� �������������
� ��
� ����������� ���������������������������������

Preconditions Transformation
Identifier

Queue.foo Queue.enqueue Identifier

Refactoring Operation

Figure 3.1: An example of “rename method” refactoring

Existing automatic refactoring tools support different types of refactorings by setting
different parameters. The specified parameter values correspond to program elements
that to be refactored and program elements that are refactored into. For example, the
“rename method” refactoring transforms the name of the method in the given program
by operating relevant program elements of the method. The parameters of the “rename
method” refactoring are the fully qualified name of the initial method and the updated
method name. Figure 3.2 depicts a unified and simplified refactoring. As illustrated in

Chapter 3. Principle of Optimizing Sequences of Refactorings 15

Precondition Transformation

Atomic Composed Operations Elements

Refactoring

AND OR NOT

Define parameters

Add Delete Replace Entity Relationship

Field Method Class
Other

statement

Figure 3.2: Unified model of a typical refactoring

Figure 3.2, in the preconditions checking phase, the precondition may contain atomic
conditions or complex ones created by conjunction, disjunction and negation of subcon-
ditions. Atomic conditions refer to checking the typical structure of a concrete program.
In the transformation phase, Transformations can alter structure of a concrete program
by primitive operations (add, delete, replace, etc). For example, the transformation of
“rename class” refactoring can be applied by deleting the old class and adding the new
class.

Since the number of possible refactorings is unlimited, there is no program tool can
integrate all refactorings for various user requirements[KK04]. Fortunately Fowler’s list
of standard refactorings contains the common refactorings that can satisfy the require-
ments of most users. From a formal perspective, one refactoring operation can be seen
as a unary algebra operator applied to a single expression of refactored program. Based
on the sixty eight different types of standard refactorings introduced by Fowler and two
common ones namely “rename class” refactoring, “rename Field” refactoring1, we can
derive the seventy corresponding basic refactoring operators of the algebra. Table 3.1
depicts the nine typical refactoring operators2 of them. The names of these refactoring
operators correspond to the abbreviations of the standard refactorings.

Theoretically, these refactorings can be implemented in refactoring units encapsu-
lated in the RFMs. Operations of these refactorings modify different types of program
elements in order to produce expected program transformation. In fact, these refactor-
ings seldom are used alone, while sequences of refactorings can acquire a more meaningful
transformation. In the next section, we explore the characteristics of sequences of refac-
torings.

1These 70 refactorings are called standard refactorings in thesis. 26% of the standard refactorings
are covered in existing composition tool of RFMs[KBK09b].

2Other operators can be referred in Appendix A.

16 3.2. Sequences of Refactorings

RefOps 3 Transformation Description

RF The “Rename Field” refactoring transforms a name of the field to
a new one.

RC The “Rename Class” refactoring transforms a name of the class to
a new one.

RM The “Rename Method” refactoring transforms a name of the
method to a new one.

EI The “Extract Interface” refactoring extracts the same subset from
client class into an interface

IM The “Inline Method” refactoring replaces a call of old method name
with the fragment of code in its body

EF The “Encapsulate Field” refactoring deals with the public field and
make it private and provide accessors for other classes.

MM The “Move Method” refactoring moves one method from the source
class to the target class.

SA The “Substitute Algorithm” refactoring replaces the body of the
method with the new algorithm.

CH The “Collapse Hierarchy” refactoring merges superclass and sub-
class together

Table 3.1: Basic Refactoring Operators

3.2 Sequences of Refactorings

Sequences of refactorings which we optimize are not randomly generated from the prede-
fined refactorings encapsulated in RFMs. They are user-defined sequences of refactorings
encapsulated in the RFMs and can be executed in user-selection orders. In order to de-
fine relational algebra for computation of optimization for sequences of refactorings, we
continue to explore the properties of user-defined sequences of refactorings and reveal
potential relationships between refactorings in sequences.

3.2.1 Properties of Sequences of Refactorings

The assumption of our approach is that the sequences of refactorings which we optimize
can be executed successfully. In fact, the existing technique has already guaranteed the
sequences of RFMs can be composed safely. In other words, the user-defined sequences
of refactorings can be guaranteed to be performed successfully by verifying the precon-
ditions of the involved refactorings[KBK09a]. Therefore, the properties of user-defined
sequences of refactorings which are given to us for optimization include three aspects:

• All the refactorings are defined in corresponding RFMs

• The execution order of refactorings is defined in the configuration file by user

• The sequence of refactorings must be performed successfully.

3RefOps denotes basic refactoring operators.

Chapter 3. Principle of Optimizing Sequences of Refactorings 17

Technically, for refactorings encapsulated in RFMs, their preconditions can be for-
mulated in terms of identifiers which must exist when an RFM is applied and identifiers
which must not exist[KBK09a]. An isolated refactoring’s precondition is established in
the initial program. But if a refactoring is in a legal sequence of refactorings, its precon-
ditions might be established in the initial program or set up by preceding refactorings.
This is an important property of legal sequences of refactorings. If the preconditions
of refactorings in a given sequence of refactoring can be satisfied by execution of the
preceding refactorings, there could be chances for optimization.

PreC1 RefOp2PreC2RefOp1

foo bar bar new

Initial program

Establish satisfaction of

preconditions

:

: Transformation

: RefOp2 depends on RefOp1

rename class refactoring1 rename class refactoring2

Optimization chance

Figure 3.3: Two kinds of establishing satisfaction of preconditions

As illustrated in Figure 3.3, the RefOp denotes a general refactoring operation and
the PreC denotes precondition of corresponding refactoring. There are two refactorings
in the user-defined sequence. The “rename class” refactoring which renames a class bar
into new requires program elements with identifier “bar” to exist and program elements
with identifier “new” not to exist.

The first precondition of this refactoring can be set up by preceding refactorings. For
example, the preceding ‘rename class” refactoring renames a class foo into bar. This
preceding refactoring establishes the identifier ‘bar’ of the later refactoring, in other
words, the later refactoring depends on the preceding refactoring. In our concept, this
dependency relationship is called set-up-identifier dependency relationship. This kind
of dependency relationship provides an chance for optimization. We can merge the two
refactorings to one refactoring which renames “foo” to “new”.

As a part of our concept, the second precondition of this refactoring also can be set up
by preceding refactorings. For example, if there is the preceding ‘rename class’ refactoring
which renames a class ‘new’ into ‘other’. This preceding refactoring establishes one
deletion of identifier ‘new’ of the later refactoring. In this situation, the later refactoring
depends on the preceding refactoring. But this kind of dependency relationship do not
expose optimization potential, while we should keep the order of the two refactorings in
sequence during optimization process.

In summary, for legal user-defined sequences of refactorings, if the preconditions of a
refactoring are influenced by the preceding refactorings, there is dependency relationship
among refactorings in the sequence. Based on the dependency relationships, we can
expose optimization potentials for user-defined sequences. In the next section, the types
of relationship between refactorings in legal user-defined sequences will be explored.

18 3.2. Sequences of Refactorings

3.2.2 Potential Relationships of Refactorings

The user-defined sequence of refactorings can be thought of as a legal-guaranteed se-
quence that is made up of a set of refactorings. In this section, we describe two cate-
gories of potential relationships of refactorings by analyzing the properties of sequences
of refactorings as follows:

1. The commutative relationship. If the preconditions of the individual refactorings
in a sequence are not related in any way, we can swap the location of any two refac-
torings in the sequence. In such situation that if the locations of two refactorings
are interchangeable, we call that there is the commutative relationship between
the two refactorings.

Based on this kind of relationship, it is no doubt that we can rearrange the locations
of relevant refactorings.

2. The dependency relationship. If the preconditions of the refactorings influence
the satisfaction of preconditions of the following refactorings in a sequence, we
cannot directly swap the locations of any two refactorings and usually require
keeping the order of involved refactorings in the sequence. In such situation that if
the preconditions of the refactoring depend on the transformation of the previous
refactoring in a pair of refactorings, we call that there is a dependency relationship
between the two refactorings.

In our concept, the dependency relationship can be further divided into three types
of dependency relationship as follows:

First is set-up-identifier dependency where one refactoring establishes required
identifiers for a later refactoring. Based on set-up-identifier dependency, we can
consider detecting whether there are optimization potentials among involving refac-
torings. If the involving refactorings can be optimized, they could be merged to an
updated refactorings by applying optimization rules. If the involving refactorings
cannot be optimized, their order should be kept and disallow being reordered.

Second is set-up-part-of-identifier dependency where one refactoring establishes
part of an identifier for a later refactoring. Due to the fact that identifier is fully
qualified name of program elements, the fully qualified name of a method consists
of identifier of class and the method name. In other words, the part of identifier
of a method could be a hosting class name. Therefore, one refactoring could
establish part of an identifier for a later refactoring. For example, there are two
refactorings, ‘rename class’ refactoring which renames ‘foo’ to ‘bar’ and ‘rename
method’ refactoring which renames ‘bar.old’ to ‘bar.new’. The former refactoring
establishes part of identifier to the latter refactoring. Based on set-up-part-of-
identifier dependency, we consider commute the involving refactorings to expose
optimization potentials. But the execution of commutation operation requires
that the relevant refactorings update their parameters for guaranteeing that the
reordering sequence is a legal sequence.

Third is set-up-deletion-of-identifier dependency where one refactoring establishes
required deletions for a later refactoring. Based on set-up-deletion-of-identifier
dependency, we could not expose the optimization potential. Even if we found

Chapter 3. Principle of Optimizing Sequences of Refactorings 19

that the involved refactorings have optimization potential with others, we still
need to keep the order of the involved refactorings and disallow reordering them.

RefOp1PreC1 RefOp2PreC2 RefOp3PreC3 RefOp4PreC4 RefOp5PreC5

Refactoring1 Refactoring2 Refactoring3 Refactoring4 Refactoring5

Establish satisfaction of

preconditions

:

Figure 3.4: Potential Dependency Relationship

To illustrate, Figure 3.4 depicts the potential dependency relationships in a sample
sequence of refactorings. The three dependency relationships between Refactoring1 and
Refactoring3, Refactoring3 and Refactoring5, Refactoring4 and Refactoring5 are
shown. Unless specifically indicated, there is commutative relationship between each
other. In practice, both the commutative relationship and the dependency relationship
are potential relationships in a user-defined sequence. The two kinds of potential re-
lationships, especially the dependency relationships, support our approach. We should
firstly expose the two kinds of relationships and separate the initial sequence into differ-
ent chains of refactorings4.

3.3 Formal Perspective

Before explaining our approach, we want to clarify some terms and notations for formal
expression of sequences of refactoring operations and to extend relevant concepts about
analysis of optimization in the remainder of this section.

3.3.1 Definition of Refactoring Operations

In general, refactorings are defined as program transformations that have preconditions
that must be satisfied before the transformation is performed successfully. Roberts’
dissertation[Rob99] extends this concept to support computing dependencies between
refactorings. In his work, he specified preconditions with first order predicate calculus.
By using this way, we can formalize the dependencies between refactorings. As we
mentioned in the preceding sections, the preconditions of every refactorings in sequences
of refactorings are satisfied before we optimize the sequences. Due to preconditions of
a refactoring have been satisfied, we focus on the operation of the refactoring. For our
approach, we firstly extend the concept of refactorings and then give a special definition.

We use RefOp to denote one general refactoring operation and the abbreviation of
the name of standard refactorings to denote the specific refactoring operations. Be-
sides we introduce a pair of terms consists of PreKeys and PostKeys. The concept

4A chain of refactorings corresponds to a sequence in which there are dependency relationships
between any two refactorings.

20 3.3. Formal Perspective

of RefOp’s PreKeys is derived from identifiers that need to exist for satisfaction of
its preconditions before this refactoring is executed. When other preconditions are also
satisfied, these identifiers will be operated by this refactoring. The concept of RefOp’s
PostKeys is derived from identifiers that are transformed after we execute the refac-
toring. In essential, for refactorings encapsulated in RFMs, the preconditions of some
refactorings require to analyze the properties of inheritance hierarchies[KBK09a]. We
do not consider these kinds of preconditions by checking concrete programs, because
these kinds of preconditions should be satisfied in the process of the implementation of
existing tool. Besides, if their preconditions are formulated in terms of identifiers which
must exist when an RFM is applied and identifiers which must not exist, we define the
identifiers, which must exist and to be transformed, to be PreKeys, and define the
transformed identifiers to be PostKeys.

For example, the “rename class” refactoring renames a class “List” into “Queue”. The
preconditions include both that program elements with identifier “List” to exist and that
program elements with identifier “Queue” not to exist. As for our approach, we only
derive the identifier “List” that must to exist from the preconditions as the PreKey.
The PreKey of this refactoring operation is “List” and its PostKey is “Queue”, which is
derived from the transformed program elements with one identifier “Queue”. Moreover,
if the type of program elements is method or field, the identifier of the method or the
field is the fully qualified name which can indicate the corresponding program elements.
The fully qualified name consists of the name of the class and the name of the method or
the name of the field. For instance, the “rename method” refactoring which renames a
method “foo” into “enqueue”. One of its preconditions is that identifier “Queue.foo” to
exist. After performing this refactoring, the transformed program elements with identifier
is “Queue.enqueue”. Thus, the PreKeys of “rename method” refactoring is “Queue.foo”
and the PostKeys is “Queue.enqueue”. Due to all preconditions and transformations of
refactorings are satisfied before we optimize them, we only focus on the relevant program
elements with identifiers.

Besides, some other types of refactorings have more than one identifier as PostKeys
or PreKeys. For example, the “Encapsulate Field” refactoring which encapsulates field
“index” in class “Queue”. These relevant program elements about this field are indicated
by identifier “Queue.index”. Its preconditions contain the identifier “Queue.index” that
must exist, the access specifier of field “index” that is not private and more other con-
ditions. We focus on one of the preconditions is field ”Queue.index” must exist. Thus
the PreKey of this “Encapsulate Field” refactoring is the identifier ”Queue.index”. On
the other hand, the transformed program elements of this refactoring usually contain
the access specifier of field “index”, the setting method “setIndex” for modifying the
value of field “index” and the getting method “getIndex” for accessing the value of
field “index”. Thus, the PostKeys consists of the identifier “Queue.index”, identifier
“Queue.getIndex” and identifier “Queue.setIndex”.

Therefore, when preconditions of a refactoring are satisfied, we define the refactoring
operation with PreKeys and PostKeys for our approach.

Definition 3.1 In user-defined sequences of refactorings, a refactoring operation is
RefOpPreKeys⇒PostKeys, where PreKeys are derived from program elements that to be
transformed and PostKeys are derived from identifiers of updated program elements.

Chapter 3. Principle of Optimizing Sequences of Refactorings 21

Based on this definition, the “rename class” refactoring which renames a class “List”
into “Queue” can be described as RCList⇒Queue, the “rename method” refactoring which
renames a method “foo” into “enqueue” can be described as RMQueue.foo⇒Queue.enqueue

and “Encapsulate Field” refactoring which encapsulates field “index” in class “Queue”
can be described as EFQueue.index⇒Queue.index|Queue.getIndex|Queue.setIndex. In practical ap-
plication, our optimization probably consider one or more identifiers from the PreKeys
and the PostKeys. So we use “|” to denote the disjunction of identifiers in the PreKeys
and the PostKeys.

RefOps Transformation Description

RFC.f⇒C.newf The “Rename Field” refactoring transforms a name of
the field(C.f) to a new one(C.newf).

RCC⇒newC The “Rename Class” refactoring transforms a name of
the class(C) to a new one(newC).

EIC⇒I The “Extract Interface” refactoring extracts the same
subset from client class(C) into an interface(I)

IMM⇒... The “Inline Method” refactoring replaces a call of old
method(M) with the fragment of code in its body(. . .)

RMC.M⇒C.newM The “Rename Method” refactoring transforms a name
of the method(C.M) to a new one(C.newM).

EFC.f⇒C.f |C.getf |C.setf The “Encapsulate Field” refactoring deals with the pub-
lic field(C.f) and make it private and provide accessors
for other classes.

MMC1.M |C2⇒C1|C2.M The “Move Method” refactoring moves one method(M)
from the source class(C1) to the target class(C2).

SAC.M⇒C.M The “Substitute Algorithm” refactoring replaces the
body of the method(C.M) with the new algorithm.

CHC1|C2⇒C1 The “Collapse Hierarchy” refactoring merges
superclass(C1) and subclass(C2) together(C1)

Table 3.2: Formal expression for basic refactoring operators

As illustrated in Table 3.2, we derive the formal expressions for nine refactoring
operations to extend the Table 3.1. In the following descriptions, we will use these
formal expressions to explain the refactoring operations for short.

3.3.2 Definition of Sequences of Refactoring Operations

The refactorings encapsulated in RFMs are rarely performed in isolation but performed
in sequence to acquire a more interesting transformation. In RFMs, the user-defined
sequences of refactoring operations can be defined as follows:

Definition 3.2 A user-defined sequence of refactoring operations is <RefOp1, RefOp2,
RefOp3, . . . , RefOpn >, where these RefOps are sequentially applied to a program
successfully. RefOpi is the refactoring operation in the ith location of the sequence, the
order of execution is left to right and the length of the sequence is n.

22 3.3. Formal Perspective

To illustrate, there is a legal three-refactoring-operation sequence <RC1, RM, RC2 >,
where RC1C1⇒C2

, RM
C2.M1⇒C2.M2

, RC2C2⇒C3
. The first refactoring operation is to rename

the class C1 to class C2, the second is to rename the method C2.M1 to C2.M2, and
the third is to rename the class C2 to C3.

3.3.3 Definition of Relational Operations

From a formal perspective, a binary algebra operator is applied to two expressions. Based
on the relationships among refactoring operations in sequences of refactoring operations,
we define four binary relational operators to operate two expressions of refactoring op-
erations in this section.

If there are potential commutative relationships and dependency relationships in a
given sequence of refactoring operations, we need to expose commutative relationships
and dependency relationships by separating different chains of refactorings. In this
section, we firstly define two commutative operations to separate the chains of refactoring
operations as follows:

Definition 3.3 commutative operator “↔”
If there is a commutative relationship between the two refactoring operations in a given
sequence: <RefOp1, RefOp2 >, we can swap locations of the RefOp1 and RefOp2.
This kind of commutative laws is shown as:
RefOp1 ↔ RefOp2 = RefOp2 ↔ RefOp1

In our concept, the application of the commutative operator “↔” is based on the
commutative relationships among the refactorings. To accurate, there is a commutative
relationship between the two refactoring operations, namely the RefOp1 and RefOp2.
They modify mutually non-related program elements and their locations can be re-
ordered. Changing the execution order of the two refactorings does not influence the
results of final transformation. Take the pair of refactoring operations < RM, RF >
where RMC1.M1⇒C1.M2 and RFC1.F1⇒C1.F2 as an example. If we swap the locations of
RM and RF , we can get the pair of refactoring operations <RF, RM>. At the same
time, the transformation results of the pair of refactoring operations <RM,RF > is
equivalent to the original pair.

The commutative operator is unique relational operator that is based on the com-
mutative relationship among refactorings inside sequences of refactorings. Furthermore,
we can extend the concept of commutative operator that is based on the dependency
relationship. To accurate, this kind of commutative operator is based on set-up-part-of-
identifier dependency.

To illustrate, if one of the identifiers of program elements modified by the RefOp1

contains one of the identifiers of program elements modified by the RefOp2, we
should update the identifier of program elements of RefOp1 before swapping the lo-
cations of the RefOp1 and the RefOp2. For example, There is a pair of refactor-
ings < RM, RC2 > in three-refactoring-operation sequence < RC1, RM, RC2 >, where
RC1C1⇒C2

, RM
C2.M1⇒C2.M2

, RC2C2⇒C3
. There is an optimization chance to optimize

<RC1, RC2>. Hence, we want to swap the locations of RM and RC2, we should firstly
update the relevant identifiers in the PreKeys and PostKeys for the RM . Then we can

Chapter 3. Principle of Optimizing Sequences of Refactorings 23

get the legal sequence <RC1, RC2, RM>, where RC1C1⇒C2
, RC2C2⇒C3

, RM
C3.M1⇒C3.M2

.
In order to solve this situation about set-up-part-of-identifier dependency, we introduce
the definition of the conditional commutative operator as follows:

Definition 3.4 conditional commutative operator “⇔”
If there is a set-up-part-of-identifier relationship between the two refactoring operations
in a given sequence: < RefOp1PreKey1⇒PostKey1

, RefOp2PreKey2⇒PostKey2
>, we can swap

locations of the RefOp1 and RefOp2. This kind of commutative laws is shown as:
RefOp1PreKey1⇒PostKey1

⇔ RefOp2PreKey2⇒PostKey2
=

RefOp2PreKey2′⇒PostKey2′ ⇔ RefOp1PreKey1⇒PostKey1

Based on application of “↔” operator and “⇔” operator, we can separate the se-
quence of refactoring operations to different chains of refactoring operations by slightly
reordering locations of refactoring operations. By using this way, we can get a new
sequence consisting of different chains of refactoring operations. In general, the new
equivalent sequences can expose potential chances to be optimized.

For a general chain of refactorings which may be of any length, we can simplify the
computation of its full precondition and transformation by analyzing the precondition
of each refactoring in this chain and corresponding transformation effects. By using
this way in the extreme situation, we can achieve a composite refactoring for the entire
chain. In our approach, we start to analyze the preconditions and transformation for
pair of refactorings in the chain step by step. There exists complexity in automatically
eliminating the preconditions and merging the transformations. We manually explore the
optimization rules for pair of refactorings. The basic concepts of the optimization effect
are based on eliminating the preconditions and merging or replacing the transformations.

Based on these concepts, we define two operators to express the ways of processing the
pairs of refactoring operations within a chain of refactoring operations for optimization
effect as follows:

Definition 3.5 Each chain of refactorings is a sequence of refactoring operations <
RefOp1 θ RefOp2 θ RefOp3 θ . . . θ RefOpn> where each RefOp is executed success-
fully. “θ” denotes the operator in {→,⇒} which can be applied for pairs of refactoring
operations in the optimization analysis.

Given a pair of refactoring operations <RefOp1, RefOp2> from a chain of refactoring
operations, RefOp1 → RefOp2, RefOp1 sets up preconditions of RefOp2 and RefOp2

depends on RefOp1. In other words, the one or more PostKeys of RefOp1 are identical
to the only one or multiple PreKeys of RefOp2.

In this situation, there is optimization chance for the RefOp1 and RefOp2 in the
theoretical level. In practical application, if we can implement the optimization effect for
both RefOp1 and RefOp2, we use relational operator “⇒” to denote that the RefOp1

and RefOp2 can be optimized. The optimization effect includes two possible ways:

- The “RefOp1 ◦ RefOp2” denotes the composition of transformations. Take <
RM,MM> for instance, where RM renames the method C1.M1 into the C1.M2,
MM moves the method M2 from class C1 into class C2. The transformation

24 3.3. Formal Perspective

of RM generates the method C1.M2, which guarantees that the method C1.M2
have already existed. As an independent refactoring, one of the preconditions of
MM need to check that the method C1.M2. After composing <RM, MM>, the
cost of checking overall preconditions <RM ◦ MM > is lower than checking the
preconditions for these refactorings respectively[Rob99]. So we can compose these
two refactoring operations to a composite refactoring operation <RM ◦ MM >
by merging the preconditions and composing the transformations. This kind of
optimization way has already been proposed by existing researches[Rob99][KK04]
.

- The “RefOp3” denotes the simplification of transformations. Take <RM1, RM2>
for instance, where RM1 renames the method C1.M1 into the C1.M2, RM2 re-
names the method C1.M2 into the C1.M3. The preconditions and transformation
of RM1 guarantee the all preconditions of RM2. We can replace the pair of refac-
toring operations <RM1, RM2> by <RM3> which renames the method C1.M1
into the C1.M3. The preconditions of RM1 can guarantee the execution of RM3.
This kind of optimization way is an important point of our concept.

Although there is a dependency relationship between RefOp1 and RefOp2, if we
cannot implement the optimization effect for both RefOp1 and RefOp2. we must not
break the relationship of RefOp1 and RefOp2 and should keep the order of the RefOp1

and the RefOp2. We can use the relational operator “→” to denote the keeping order
of the RefOp1 and the RefOp2. For instance, there is a three-refactoring-operation
sequence <MM, RM, SA> where MM moves the method M1 from class C1 into class
C2, RM renames the method C2.M1 into the C2.M2 and SA changes the algorithm
for the method C2.M2. In our concept, we predefine the optimization rules for pair of
refactoring operations. So far, it is impossible to compose the three refactoring operations
together <MM ◦ RM ◦ SA>. The alternative solution could be <MM ◦ RM, SA> or
<MM,RM ◦ SA>. We should keep the initial order of the unoptimized refactoring
operation and the composite refactoring operation.

Another instance is a four-refactoring-operation sequence <RC1, RC2, RC3, RC4 >
where RC1A⇒B

, RC2Z⇒Y
, RC3B⇒C

and RC4C⇒Z
. There are two original classes A and Z.

The locations of the RC2 and the RC4 also should keep and disallow to be reordered. Be-
cause there exists a set-up-deletion-of-identifier dependency. set-up-deletion-of-identifier
dependency is a special dependency relationship where a refactoring establishes a re-
quired deletion of a later refactoring. In this instance, if the class Z is not renamed to
class Y, the R4 cannot be executed because it is impossible that there are two identical
classes in Java and Java-like languages. By using this concept, we can avoid reordering
some refactorings whose the name of PreKey and PostKey is identical to the name of
updated program elements. If we reorder the location of RC4 with RC2, satisfaction of
its preconditions will be broken. Hence, we should disallow reordering the location of
RC4.

3.3.4 Optimization Rules

Based on refactoring operators and relational operators, we can heuristically reveal sev-
eral optimization rules for any pairs of refactoring operations within a chain of refac-

Chapter 3. Principle of Optimizing Sequences of Refactorings 25

toring operations. These optimization rules play a central role in identifying alternative
sequences of refactoring operations. Given a pair of refactoring operations, if one or
more PostKeys of the first refactoring operation is identical to one or more PreKeys
of the second refactoring operation, it is possible that we reveal optimization rules for
this pair of refactoring operations. In practical application, the optimization rules can
be classified into two types of rules: simplification rules and composition rules.

1. Simplification rules:
In general, for a pair of refactoring operations: <RefOp1, RefOp2> in the chain of refac-
toring operations, if the PostKeys of the first refactoring are identical to the PreKeys
of the second refactoring and there is the transformation of one alternative refactoring
instead of the transformation of the pair of refactorings, we can apply the simplification
rules to the pair of refactorings.

The graphical depiction for unified simplification rules is illustrated in Figure 3.5.
The former refactoring’s transformation and preconditions can provide all the satisfaction
of the latter refactoring’s preconditions. So the former refactoring’s preconditions are
enough for performing the alternative refactoring whose transformation is derived from
the original two transformations by merging operations.

Simplification Rules:

Preconditions1

Transformation1

Preconditions2

Transformation2

Precondition1

Transformation3

RefOp1

RefOp2

RefOp

PreC1, Transformation1 <PreC2, Transformation2> PreC1, Transformation13 ! " # ! !

Transformation1 set up parts of

precondition2. The Preconditoins1

can guarantee others of precondition2.

Establish satisfaction of preconditions:

Figure 3.5: Unified simplification rules

Example 1: There is a pair of refactorings < RF1, RF2 >, where RF1C.f1⇒C.f2
,

RF2C.f2⇒C.f3
. It means two rename field refactorings following each other, if the

transformation of the former refactoring sets up the parts of preconditions of the
latter refactoring. In this example, the transformation of RF1 sets up one of the
preconditions of RF2: the field C.f2 must exist. The preconditions of the former
refactoring are enough to guarantee both transformations. We can replace both
transformations by an alternative transformation. The new refactoring consists
of the precondition of the former refactoring and the alternative transformation.
<RF1 ⇒ RF2>≡<RFnew>, where RFnewC.f1⇒C.f3

.

26 3.3. Formal Perspective

Example 2: There is a pair of refactorings <RC1, RC2>, where RC1C1⇒C2
, RC2C2⇒C3

. It
means two rename class refactorings following each other, if the transformation of
the former refactoring sets up the parts of preconditions of the latter refactoring.
In this example, the transformation of RC1 sets up one of the preconditions of RC2:
the class C2 must exist. The preconditions of the former refactoring are enough
to guarantee both transformations. We can replace both transformations by an
alternative transformation. The new refactoring consists of the precondition of the
former refactoring and the alternative transformation. <RC1 ⇒ RC2>≡<RCnew>,
where RCnewC1⇒C3

.

Example 3: There is a pair of refactorings < RM1, RM2 >, where RM1C.M1⇒C.M2
,

RM2C.M2⇒C.M3
. It means two rename method refactorings following each other,

if the transformation of the former refactoring sets up the parts of preconditions
of the latter refactoring. In this example, the transformation of RM1 sets up one
of the preconditions of RM2: the method C.M2 must exist. The preconditions of
the former refactoring are enough to guarantee the both transformations. We can
replace both transformations by an alternative transformation. The new refac-
toring consists of the precondition of the former refactoring and the alternative
transformation. <RM1 ⇒ RM2>≡<RMnew>, where RMnewC.M1⇒C.M3

.

Example 4: There is a pair of refactorings <EI,RC>, where EIC⇒I1, RCI1⇒I2. It
means the “extract interface” refactoring is followed by “rename class” refactoring,
if the transformation of the former refactoring sets up the parts of preconditions
of the latter refactoring. In this example, the transformation of EI sets up one of
the preconditions of RC: the class I1 must exist. The preconditions of the former
refactoring are enough to guarantee the both transformations. We can replace both
transformations by an alternative transformation. The new refactoring consists
of the precondition of the former refactoring and the alternative transformation.
<EI ⇒ RC>≡<EI>, where EInewC⇒I2

.

Example 5: There is a pair of refactorings < RM, IM >, where RM1C.M1⇒C.M2
,

RM2C.M2⇒...
. It means the “rename method” refactoring is followed by “inline

method” refactoring, if the transformation of the former refactoring sets up the
parts of preconditions of the latter refactoring. In this example, the transforma-
tion of RM1 sets up one of the preconditions of IM : the method C.M2 must exist.
The preconditions of the former refactoring are enough to guarantee the both trans-
formations. We can replace both transformations by an alternative transformation.
The new refactoring consists of the precondition of the former refactoring and the
alternative transformation. <RM ⇒ IM>≡<IM>, where IMnewC.M1⇒...

.

There are 37 predefined optimization rules. 4 rules are related to field-refactorings,
12 rules are related to method-refactorings, 11 rules are related to class-refactorings and
10 rules are related to mixed-type-refactorings. The above five examples of simplification
rules have been integrated into our implementation. For other refactoring operators, the
optimization rules of their operators are similar to these rules, so it is omitted here and
can be referred to the table of this kind optimization rules in Appendix B.

2. Composition rules:

Chapter 3. Principle of Optimizing Sequences of Refactorings 27

In general, for a pair of refactoring operations: <RefOp1, RefOp2 > in the chain of
refactoring operations, if parts of the PostKeys of the first refactoring are identical to
parts of the PreKeys of the second refactoring and there is the combination of the
transformations by eliminating the preconditions of the second refactoring, we can apply
the composition rules to the pair of refactorings.

The graphical depiction for composition rules is illustrated in Figure 3.6. The for-
mer refactoring’s transformation can set up parts of the satisfaction of the latter refac-
toring’s preconditions. We can eliminate the cost of checking preconditions of both
refactorings[Rob99]. Based on the satisfaction of preconditions, we can compose the
transformations for both refactorings.

Composition Rules:

Preconditions1

Transformation1

Preconditions2

Transformation2

Precondition3

RefOp1

RefOp2

RefOp

Transformation1

Transformation2

Precondition3Preconditions1 Preconditions2 =

The PostKey of RefOp1 is

identical to the PreKey of RefOp2.

We can eliminate the cost of

checking preconditions of RefOp2

Establish satisfaction of preconditions:

PreC1, Transformation1 <PreC2, Transformation2> PreC1 PreC2, Transformation1 Transformation2 ! " # ! ! ! "

Figure 3.6: Unified composition rules

Example 1: There is a pair of refactorings < RF, EF >, where RFC.f1⇒C.f2,
EFC.f2⇒C.f2|C.setf2|C.getf2. It means the “encapsulated field” refactoring is followed
by “rename field” refactoring, if the transformation of the former refactoring sets
up the parts of the preconditions of the latter refactoring. In this example, the
transformation of RF sets up one of preconditions of EF : the field C.f2 must exist.
The preconditions of the latter refactoring to be checked are eliminated. We can
compose both transformations together and merge both preconditions to eliminate
the cost of checking preconditions. The new refactoring consists of the merged
preconditions and the composed transformations. <RF ⇒ EF>≡<RF ◦ EF>.

Example 2: There is a pair of refactorings <MM,RM>, where MMC1.M |C2⇒C1|C2.M ,
RMC2.M⇒C2.M2. It means the “move method” refactoring is followed by “rename
method” refactoring, if the transformation of the former refactoring sets up the
parts of preconditions of the latter refactoring. In this example, the transforma-
tion of MM sets up one of the preconditions of RM : the method C2.M must exist.

28 3.4. Optimization

The preconditions of the latter refactoring to be checked are eliminated. We can
compose both transformations together and merge the both preconditions to elimi-
nate the cost of checking preconditions. The new refactoring consists of the merged
preconditions and the composed transformations. <MM ⇒ RM>≡<MM◦RM>.

Example 3: There is a pair of refactorings <MM, SA>, where MMC1.M |C2⇒C1|C2.M ,
SAC2.M⇒C2.M . It means the “move method” refactoring is followed by “Substitute
Algorithm” refactoring, if the transformation of the former refactoring sets up the
parts of preconditions of the latter refactoring. In this example, the transformation
of MM sets up one of the preconditions of C2.M : the method C2.M must exist.
The preconditions of the latter refactoring to be checked are eliminated. We can
compose both transformations together and merge the both preconditions to elimi-
nate the cost of checking preconditions. The new refactoring consists of the merged
preconditions and the composed transformations. <MM ⇒ SA>≡<MM ◦ SA>.

Example 4: There is a pair of refactorings < SA, RM >, where SAC.M1⇒C.M1,
RMC.M1⇒C.M2. It means the “substitute algorithm” refactoring is followed by “re-
name method” refactoring, if the transformation of the former refactoring sets up
the parts of preconditions of the latter refactoring. In this example, the transforma-
tion of SA sets up one of the preconditions of RM : the method C.M1 must exist.
The preconditions of the latter refactoring to be checked are eliminated. We can
compose both transformations together and merge the both preconditions to elimi-
nate the cost of checking preconditions. The new refactoring consists of the merged
preconditions and the composed transformations. <SA ⇒ RM>≡<SA ◦RM>.

The composition of refactorings is widely researched[Rob99][Kni04][CN00]. If it
necessary, we could predefines the composition rules for the pairs of standard
refactorings and don’t consider more than two standard refactorings, because the
number of refactorings can be composed is infinite. The intention of composing
a pair of refactorings to a non-standard refactorings is to eliminate the cost of
preconditions checking based on user requirements.

3.4 Optimization

We use the term compose plan of RFMs to denote the configuration of the user-defined
sequence of refactorings. Applying the user-defined sequence of these refactoring oper-
ations is equivalent to executing the compose plan of corresponding RFMs. Therefore,
optimizing this sequence essentially can be seen as finding a better compose plan for
corresponding RFMs. The process of optimization takes place in two separate phases:
the first phase is called logical optimization and the second called physical optimization.
Both phases follow on the translation step as listed below:

- 1. Translate compose plan into its formal expression for the sequence of refactoring
operations.

- 2. Perform logical optimization

- 3. Perform physical optimization

Chapter 3. Principle of Optimizing Sequences of Refactorings 29

3.4.1 Logical Optimization

Theoretically, the foundation for logical optimization is formed by the set of formal equiv-
alent expressions of a given user-defined sequence. Given an initial formal expression,
which results from the translation of the given user-defined sequence, the optimization
rules mentioned in the preceding section can be used to derive some formal expressions
that are equivalent to the initial algebraic expression. The set of formal equivalent
expressions spans the possible optimized sequences for a user-defined original sequence.

In the logical level, the optimization focuses on two steps:

• Adjust locations of refactoring operations in initial sequence. This step exposes the
potential commutative relationships and dependency relationships. Based on the
different relationships among refactoring operations, the initial sequence is split
into different chains of refactoring operations that expose optimization potentials
by reordering locations of refactoring operations.

• Apply optimization rules to the initial sequence. If the initial sequence is an dis-
advantageous sequence, we could achieve an optimized sequence for a user-defined
original sequence.

To illustrate, There is a sequence of refactorings defined in RFMs and the compose
plan of RFMs as follows:

1. “RenameClass” refactoring: rename class name C1 to C2,

2. “RenameMethod” refactoring: rename method name M1 in C2 to M2

3. “RenameField” refactoring: rename field name F1 in C2 to F2,

4. “RenameMethod” refactoring: rename method name M2 in C2 to M3,

5. “RenameClass” refactoring: rename class name C2 to C3,

6. “RenameMethod” refactoring: rename method name M3 in C3 to M4,

As a legal sequence, the preconditions of these refactorings have already satisfied.
Based on the identifiers for detailed program elements, we derived the PreKey and
PostKey for the six corresponding refactoring operations. A user-defined sequence of
refactoring operations < RC1, RM1, RF1, RM2, RM3, RC2 > is illustrated in Figure
3.7, where

1. RC1 is “RenameClass” refactoring: RC1C1⇒C2
,

2. RM1 is “RenameMethod” refactoring: RM1C2.M1⇒C2.M2
,

3. RF1 is “RenameField” refactoring: RF1C2.F1⇒C2.F2
,

4. RM2 is “RenameMethod” refactoring: RM2C2.M2⇒C2.M3
,

5. RC2 is “RenameClass” refactoring: RC2C2⇒C3
,

6. RM3 is “RenameMethod” refactoring: RM3C3.M3⇒C3.M4
,

30 3.4. Optimization

RC1PreC1 RM1PreC2 RF1PreC3 RM2PreC4 RM3PreC6RC2PreC5

C1 C2 C2.M1 C2.M2 C2.F1 C2.F2 C2.M2 C2.M3 C3.M3 C3.M4C2 C3

Figure 3.7: The initial sequence of six refactoring operations

As illustrated in Figure 3.7, this sequence has six refactoring operations and can be
executed successfully in the left to right order.

To optimize this sequence, we firstly explore relationships among refactoring opera-
tions, especially dependency relationships which are graphically shown in Figure 3.8. If
there is a dependency relationship between any two refactoring operations, we should
keep the order of these refactorings. In the dependency relationship, we further explore
the optimization chance by matching predefined optimization rules. In Figure 3.8, there
are conditional commutative operations between RC2 and RM2, RC2 and RF1, RC2 and
RM1. RC2 does not depend on RM2, RF1 and RM1. But the identifier of PreKey and
PostKey of RM2, RF1 and RM1 depend on the identifier of PreKey of RC1. Thus,
after applying optimization rules to RC1 and RC2, we should update the PreKey and
the PostKey of RM2, RF1 and RM1 to guarantee the legal execution of the optimized
sequence.

RC1PreC1 RM1PreC2 RF1PreC3 RM2PreC4 RM3PreC6RC2PreC5

C1 C2 C2.M1 C2.M2 C2.F1 C2.F2 C2.M2 C2.M3 C3.M3 C3.M4C2 C3

" "
" "

" " : Optimization rule can be applied

Establish satisfaction of

preconditions

:

: Conditional commutative

Figure 3.8: Potential the relationships in initial sequence

Secondly, as illustrated in Figure 3.9, refactoring operations in the initial sequence
are separated into different chains by reordering their locations. After we updated the
the PreKey and the PostKey of RM2, RF1 and RM1, the new optimization chance
is also exposed between RM2 and RM3. For each chain of refactoring operations, the
relational operator “→” and “⇒” are used to process the pairs of refactorings in an
iterative manner in our concept. If there is an optimization rule that can be applied to
the pair of refactorings, we use the relational operator “⇒” to express that this pair of
refactorings can be optimized. If not, we should keep the order of the two refactorings.

Thirdly, after we apply optimization rules to different chains of refactoring opera-

Chapter 3. Principle of Optimizing Sequences of Refactorings 31

RC1PreC1 RM1PreC2 RF1PreC3RM2PreC4 RM3PreC6RC2PreC5

C1 C2 C3.M1 C3.M2 C3.F1 C3.F2C3.M2 C3.M3 C3.M3 C3.M4C2 C3

" " : Optimization rule can be applied

" " " " " "

Figure 3.9: Reorder sequence for applying optimization rules

tions, the optimized sequences can be generated. The applied optimization rules contain
[RC1C1⇒C2

⇒ RC2C2⇒C3
≡ RCnewC1⇒C3

, where the PostKey of RC1= PreKey of RC2],
[RM1C3.M1⇒C3.M2

⇒ RM2C3.M2⇒C3.M3
≡ RMnewC3.M1⇒C3.M3

, where the PostKey of RM1=
PreKey of RM2], [RM1C3.M2⇒C3.M3

⇒ RM2C3.M3⇒C3.M4
≡ RMnewC3.M2⇒C3.M4

, where the
PostKey of RM1= PreKey of RM2], where the PostKey of RF1= PreKey of RF2].
They belong to one kind of the optimization rules, namely simplification rules that simply
the two refactorings to one standard refactoring. After we apply this kind of optimiza-
tion rules, we usually can get the best optimization effect for the applied sequence. For
example in Figure 3.10, the <RCnew, RMnew, RF1> is the best optimized sequence. Its
compilation time should be less than any other equivalent sequences whose compilation
results are the same.

RC1PreC1 RM1PreC2 RF1PreC3RM2PreC4 RM3PreC6RC2PreC5

C1 C2 C3.M1 C3.M2 C3.F1 C3.F2C3.M2 C3.M3 C3.M3 C3.M4C2 C3

" " : Optimization rule can be applied

" " " " " "

RCnewPreC1 RMnewPreC2 RF1PreC3

C1 C3 C3.M1 C3.M4 C3.F1 C3.F2

Figure 3.10: Apply optimization rules

Another kind of optimization rules is the composition rule that composes two
operations together. In an extreme situation, if each chain of refactorings can be
composed to a composite refactoring, this sequence could be the best optimized se-
quence. But it is difficult to implement this in practical application, because our

32 3.4. Optimization

concepts only predefine the composition rules for the pair of refactorings. For exam-
ple, there is a three-refactoring-operation chain < RF, EF, IM > where RFC.f1⇒C.f2,
EFC.f2⇒C.f2|C.setf2|C.getf2, IMC.getf2⇒.... We have to choose one pair of refactorings be-
tween <RF,EF> and <EF, IM> to be the optimized by applying optimization rules.
At this moment, the concrete program should be analyzed. The concept of physical
optimization is represented to determine which pair of refactorings should be applied
optimization rules in the rest of this chapter.

3.4.2 Physical Optimization

Physical optimization is a complement concept to support logical optimization. It guar-
antees the optimized sequence of refactorings to be a legal sequence and gets better
optimization effect by considering concrete programs.

On one hand, when we reorder an initial sequence in practice, reordering the initial
sequence of these refactorings need to analyze the concrete program. Otherwise it could
break potential dependencies and influence the satisfaction of precondition of the involved
refactoring. For example, there are class C1 and C1’s subclass C2. In the class C2,
the method C2.M1 overrides C1.M1. Due to the semantics of Java language, when
a legal “rename method” refactoring renames the C1.M1 into C1.M2, the C2.M1 is
also renamed to C2.M2. Given a three-refactoring-sequence <RM1, SA5, RM2> where
RM1C1.M1⇒C1.M2

, SA
C2.M2⇒C2.M2

, RM2C1.M2⇒C1.M3
, we could consider the RM1 and RM2 to

expose optimization potential without analyzing the concrete program. In fact, changing
locations of SA and RM2 breaks the satisfaction of precondition of SA. The solution of
this kind of potential dependencies is that we introduce additional identifiers from the
concrete program. These identifiers are also transformed to establish preconditions for
some later refactorings. In this example, the additional identifier of RM1’s PreKey is
“C2.M1” and is transformed to “C2.M2”. “C2.M2” to exist is one of the precondition
of SA where SA

C2.M2⇒C2.M2
. It can not be broken. In other words, the locations of SA

and RM2 can not be reordered.

On the other hand, if more than two types of refactorings expose optimization po-
tential, we could apply composition rules to pairs of refactorings. For example, there
is a three-refactoring chain <RC, RM, MM 6 > where RCC1⇒C2, RMC.M⇒C.newM and
MMC.newM |C2⇒C|C2.newM . In an ideal situation, these refactorings can be merged to-
gether. But due to limitation of our concept, we predefine composition rules for compos-
ing two refactorings manually. Hence, we should choose one better optimization potential
from RM ◦MM and RC ◦MM . The solution to this limitation is that we choose one
of identifiers as PreKey or PostKey to expose optimization potential, while other rele-
vant identifiers as additional identifiers. These identifiers also need to be guaranteed by
keeping the order of refactorings and unoptimized refactorings. The choice of identifier
as PreKey or PostKey could require to analyze concrete program. The cost of relevant
identifiers checking often dominates the cost of the refactorings[KK04]. Because the
program elements operated by refactorings are local whereas the related preconditions
checking is global. For example, “Remove Setting Method” refactoring needs a constant

5SA denote the “substitute algorithm” refactoring which replaces the method body of C2.M2 with
new algorithm

6MM denote “move method” refactoring which moves the method newM from class C into class C2

Chapter 3. Principle of Optimizing Sequences of Refactorings 33

time and only locally deletes corresponding methods, whereas checking whether it is
legal requires searching more detailed elements in the program. In our concept, the op-
timization effects of composition rules of pairs of refactorings are based on eliminating
the process of checking preconditions and merging the transformations. Therefore, the
physical optimization focuses on estimating the cost of checking the detailed elements.
The identifiers are estimated based on the statistics about cost of checking identifiers in
the concrete program. The more positions of an identifier existing in the concrete pro-
gram, the higher the estimated cost of the identifier. We should compose preconditions
involving the identifier with higher estimated cost.

To illustrate, we introduce the concept of physical optimization about applying com-
position rules in the following three general situations. At the same time, we come
up with the corresponding solutions to compromise optimizations for guaranteeing the
execution of optimized sequence as follows:

Situation 1:

In this situation, only one identifier in the PreKey and the PostKey of in-
volved refactorings expose the optimization potential. We take the general three-
refactoring sequence for instance illustrated in Figure 3.11. According to our opti-

RefOp1 RefOp3RefOp2

RefOp1 RefOp3RefOp2

Solution1

Solution2

PreC1 PreC2 PreC3

PreC1 PreC2 PreC3

RefOp1
�
RefOp2 RefOp3PreC1

�
PreC2 PreC3

" " " "

" "

RefOp1PreC1 RefOp2
�
RefOp3PreC2

�
PreC3

RefOp1 RefOp3RefOp2PreC1 PreC2 PreC3
" "

" " : Optimization laws can be applied

Establish satisfaction of preconditions:

Figure 3.11: Situation 1

mization rules, especially the type of rules belongs to composition rules, are applied
in the pair of refactorings. We only consider the combination of two transforma-
tions. Although there is a potential chance to compose the three transformations in
the ideal situation, we only focus on two transformations. The rest one keeps its po-
sition in this sequence. Take a three-refactoring-operation chain <SA,RM,MM>
for example, where SAC.M⇒C.M , RMC.M⇒C.newM and MMC.newM |C2⇒C|C2.newM . In

34 3.4. Optimization

ideal situation, we can compose a three-refactoring operation <SA ◦RM ◦MM>.
But our concept only supports to merge the pair of refactoring operations. Hence,
we have to choose the better optimization between the <SA ◦RM, MM> and the
<SA, RM ◦ MM >. By using this way, the optimized sequence can be guaran-
teed to execute legally. In this example, the cost of checking identifier “C.M” is
identical to identifier “C.newM”. So the optimization effect of <SA ◦RM, MM>
is the same as that of <SA, RM ◦ MM >. We can apply composition rules for
<SA ◦RM,MM> or <SA, RM ◦MM>.

RefOp1 RefOp3RefOp2

RefOp1 RefOp3RefOp2

Solution1

Solution2

PreC1 PreC2 PreC3

PreC1 PreC2 PreC3

" "

" "

" "

RefOp1PreC1 RefOp2
�
RefOp3PreC2

�
PreC3

RefOp2PreC2

" " : Optimization laws can be applied

Establish satisfaction of preconditions:

RefOp1
�
RefOp3PreC1

�
PreC3

RefOp1 RefOp3RefOp2PreC1 PreC2 PreC3

" "

Figure 3.12: Situation 2

Situation 2:

In this situation, more than one identifier in the PreKey of involved refactorings
expose the optimization chances. As illustrated in Figure 3.12, we should choose
one better solution between solution1 and solution2. We take the general three-
refactoring sequence for instance illustrated in Figure 3.12.

For the same reason in Situation 1, we need to optimize the sequence and guarantee
that it is executed legally. For example, there is a three-refactoring-operation chain
<RC, RM, MM> where RCC1⇒C2, RMC.M⇒C.newM and MMC.newM |C2⇒C|C2.newM .
In ideal situation, we can compose a three-refactoring operation <RC◦RM◦MM>.
But our concept only supports to merge the pair of refactoring operations. Hence,
we have to choose the better optimization between the <RC, RM ◦ MM > and
the <RM, RC ◦ MM>. Which one is better optimization sequence is based on
the statistics about the cost of checking identifier “C2” and identifier “C.newM”
in the concrete program. The more positions of identifier need to be checked,

Chapter 3. Principle of Optimizing Sequences of Refactorings 35

the higher estimated cost of the identifier. The optimization effect is better by
eliminating the larger cost of checking preconditions. By keeping the order of
optimized refactoring and unoptimized refactoring, the optimized sequence also
can be guaranteed to execute legally.

Situation 3:

In this situation, more than one identifier in the PostKey of involved refactorings
expose the optimization chances. As illustrated in Figure 3.13, we should choose
one better solution between solution1 and solution2. We take the general three-
refactoring sequence for example illustrated in Figure 3.13. For the same reason
in Situation 2, we consider optimizing the sequence and guarantee it is executed
legally. For example, there is a three-refactoring-operation chain <EF, IM, RF>
where EFC.f⇒C.f |C.getf |C.setf , IMC.get⇒... and RFC.f |⇒C.newf . In an ideal situation,
we can compose three refactoring operation < EF ◦ IM ◦RF >. But our concept
only supports to merge the pair of refactoring operations. Hence, we have to choose
the better optimization between the <EF ◦ IM,RF> and the <EF ◦ RF, IM>.
Which one is the better optimization sequence is based on the statistics about the
cost of checking identifiers “C.f” and identifier “C.getf” in concrete program. In
this example, due to the fact that the field are encapsulated and that accessing
field depends on the “C.getf”, the < EF ◦ IM,RF > could be better sequence.

RefOp1 RefOp3RefOp2

RefOp1 RefOp3RefOp2

Solution1

Solution2

PreC1 PreC2 PreC3

PreC1 PreC2 PreC3

" "

" "

" "

RefOp2PreC2

" " : Optimization laws can be applied

Establish satisfaction of preconditions:

RefOp1
�
RefOp3PreC1

�
PreC3

RefOp1 RefOp3RefOp2PreC1 PreC2 PreC3

" "

RefOp1
�
RefOp2 RefOp3PreC1

�
PreC2 PreC3

Figure 3.13: Situation 3

To sum up, as we take account of the concrete program, the optimizing sequences of
refactorings are not easy to implement automatically in physical level. Realistically, in
the step of reordering sequence of logical level, reordering the sequence needs to consider

36 3.4. Optimization

more preconditions checking. The satisfaction of these conditions could consider to ana-
lyze the whole concrete program and preconditions of different types of refactorings. In
practical application, we need more techniques to detect the more complex relationships
among specified refactorings based on the concrete program[MTR06]. When applying
optimization rules in steps of logical level, if it is necessary, the physical optimization is
a good complement to support finding better optimization sequence by statistics about
the detailed program elements.

Chapter 4. Implementation of Prototype 37

Chapter 4

Implementation of Prototype

The concepts of the logical optimization of user-defined sequences of refactorings in RFMs
described so far are implemented in a prototype called RFMoptimizer. RFMoptimizer
is a program for optimizing sequences of RFMs. Its application can be demonstrated
by using it as an additional program for an existing compose tool (RFMcomposer). If
sequences can be optimized, it can generate the optimized sequence of RFMs instead of
the original sequence of RFMs before RFMcomposer composes these RFMs.

In this chapter, we firstly introduce the functional requirements analysis of the ideal
RFMoptimizer in Section 4.1. Moreover, based on the functional requirements analysis,
we design a prototype for the RFMoptimizer to demonstrate the optimization’s effects
in Section 4.2. Finally, we discuss the limitations in the application of this prototype in
Section 4.3.

4.1 The Functional Requirements Analysis

In the preceding chapter, we describe the concepts of optimizing sequences of refactor-
ings. In practical application, as these refactorings are encapsulated in the RFMs, our
implementation focuses on optimizing the composition of RFMs. Figure 4.1 describes
the role of our RFMoptimizer in the whole of composing RFMs. The importance of our
optimization is to generate optimized sequences of RFMs before RFMs are composed.
An ideal RFMoptimizer for optimizing sequences of refactorings in RFMs consists of
four main functions as listed below:

loading refactorings:

This function focuses on loading the user-defined sequence of RFMs. First of all,
it loads the specified refactorings defined in a equation file1. Then it extracts each
individual refactoring from the corresponding refactoring units encapsulated in
RFMs. Lastly, it produces the sequence of specified refactorings. The implementa-
tion of loading RFMs has been reused in the existing tool RFMcomposer[KBA08].
The extension of our implementation only requires recording the corresponding
sequence of refactorings from loading RFMs.

1The equation file is a configuration file for existing compose tool, which includes the user-selected
RFMs and execution order of these RFMs.

38 4.1. The Functional Requirements Analysis

RFMComposer

RenameMethod Refactoring

compilation

source code

compilation result

RenameMethod1.refQueue.jak RenameMethod2.ref

RenameClass Refactoring

EncapsulateField Refactoring

Other refactoring interfaces

F1

R1

C1

Queue.jak

equation file

****.ref

F1

R1

R2

Rn

optimization
RFMOptimizer

RenameMethod1.ref ****.ref

Load RFMs

Rewrite optimized RFMs

and new equation file

!

Expose optimization potential

Apply optimization rules

Figure 4.1: The role of optimization process in composition of RFMs

reordering refactorings:

This function focuses on processing the sequence of refactorings in initial order.
The intention of reordering refactorings is to expose optimization potential among
relevant refactorings. Firstly it checks the potential commutative and dependency
relationships among refactorings. To illustrate, there is a five-refactoring sequence
<RF1, RM1, RC1, RM2, RC2 >, where RF1C1.f1⇒C1.f2

, RM1C9.M1⇒C9.M2
, RC1C1⇒C2

,
RM2C9.M2⇒C9.M3

, RC2C2⇒C3
. In this sequence, the RM2 depends on the RM1, the

RC2 depends on the RC1 and there are commutative relationships among other
refactorings. Secondly it separates the sequence into different chains of refactor-
ings2. We can get three chains of refactorings in the previous example, i.e., <RF1>,
<RC1, RC2>, <RM1, RM2>. However, sometimes we need to reorder the location
of refactorings in more complex situations. For example, in our theory, we men-
tioned the set-up-part-of-identifier dependency, there is three-refactoring sequence
< RC1, RM, RC2 >, where RC1C1⇒C2

, RM
C2.M1⇒C2.M2

, RC2C2⇒C3
. We usually swap

the locations of RM and RC2, because there is optimization potential between
RC1 and RC2. But the PreKey and the PostKey of RM depends on RC1. We
should firstly update the PreKey and the PostKey of RM based on RC2. There-
fore, in this situation, we need to update the corresponding parameters for relevant
refactorings. After the above example is reordered, the updated three-refactoring

2Each chain of refactorings corresponds to a subsequence in which all refactorings depend on each
other

Chapter 4. Implementation of Prototype 39

sequence is < RC1, RC2, RM >, where RC1C1⇒C2
, RC2C2⇒C3

and RM
C3.M1⇒C3.M2

.
In practical application, it could be more complex that we reorder the sequence to
expose the chain of refactorings. Finally, the sequence of refactorings is reordered
to expose optimization chances and guaranteed as a legal sequence.

applying optimization rules:

The updated sequence of refactorings that has already been exposed optimiza-
tion potentials is generated from the above function. This function focuses on
optimizing this sequence. Firstly, it analyzes the pairs of refactorings within
these chains one by one. Secondly, if the pairs of refactorings exposed the
chance of optimization, it applies optimization rules to the pairs of refactorings
by matching the predefined optimization rules. If not, we should keep the or-
der of the refactorings. In practical application, take the chain of refactorings
<RC1, RC2, RM> for example, where RC1C1⇒C2

, RC2C2⇒C3
and RM

C3.M1⇒C3.M2
. it

optimizes the pair of refactorings RC1 and RC2 by matching the optimization rule
[RC1C1⇒C2

⇒ RC2C2⇒C3
≡ RCnewC1⇒C3

, where the PostKey of RC1 = the PreKey
of RC2]. Lastly, the optimized sequences of refactorings is generated. For above
example, after optimization rule is applied, the updated sequence is <RCnew, RM>
where RCnewC1⇒C3

and RM
C3.M1⇒C3.M2

rewriting refactorings and the order of execution:

This function focuses on reflecting the information of optimized sequences of refac-
torings into RFMcomposer. For one thing, it rewrites the updated refactorings into
the corresponding RFMs. For another, the equation file is rewritten to update the
order of the composition of the updated RFMs.

The four functions are the basis of the implementation of an ideal RFMoptimizer. In
order to verify the optimization effect for composition of RFMs in practice, we design one
prototype and implement one demo program RFMoptimizer for optimizing sequences of
RFMs. In the following section, we will describe the framework of Prototype.

4.2 The Design of Prototype

4.2.1 The Framework of Prototype

The framework of prototype consists of four modules to implement the four functions in
the previous section. It includes a refactorings loading module, a refactorings reordering
module, an optimization rules applying module, an equation file and updated RFMs
rewriting module. In the prototype, we integrate these concepts into a program without
influencing the work of existing compose tool. Therefore, we design a simplified program
RFMoptimizer which is independent of the RFMcomposer.

Figure 4.2 depicts a simplified UML for this RFMoptimizer. First of all, the class
UnifiedRefactoring is used to unify the different types of refactorings. Although different
refactorings are implemented in various ways, different types of refactorings have several
specified and unified information required to be extracted. In general, this information

40 4.2. The Design of Prototype

SequenceOptimizer

UnifiedRefactoring

OptimizationRules

PreProcess();

AdjustOrder();

ApplyRules();

RewriteConfiguration();

InitialRules();

RewriteRefactoring();

String refactoringName;

String refactoringInstance;

String dependencyInfo;

String preKey, postKey;

List predefinedMethods;

List argsForMethods;

GetRefactoringContent();

SetRefactoringContent();

RFMOptimizer

Figure 4.2: Simplified UML of the core classes in Prototype

includes a refactoring name 3 and a refactoring instance name 4, the PreKey and the
PostKey, getter/setter methods and corresponding parameters, a dependency descrip-
tion5, a chain information6 and so on. For example, there is a three-refactoring sequence
< RC1, RM, RC2 >, RC1 := (C1, C2), RM := (C2.M1, C2.M2), RC2 := (C2, C3). In
practical application, the three specified refactorings involve two types of refactorings,
namely the “Rename Class” refactoring and the “Rename Method” refactoring. RC1 and
RC2 belong to the “Rename Class” refactoring; RM belongs to the “Rename Method”
refactoring. Before optimization process, the intention of the class UnifiedRefactoring
provides a template that collects the unified information from types of refactorings and
acquires the specified information from the specified refactorings. For RC1, we can cap-
ture the PreKey is C1, the PostKey is C2 and the dependency description is that the
RM depend on it. Besides, we define the optimization rules for a number of pairs of refac-
torings in the class OptimizationRules based on the refactoring instances and correspond-
ing PreKey and PostKey. For example, in the class OptimizationRules, we can define
the optimization rules such as [RC1C1⇒C2

⇒ RC2C2⇒C3
≡ RCnewC1⇒C3

], [RM1C.M1⇒C.M2
⇒

RM2C.M2⇒C.M3
≡ RMnewC.M1⇒C.M3

] and [RF1C.f1⇒C.f2
⇒ RF2C.f2⇒C.f3

≡ RFnewC.f1⇒C.f3
].

Last but not least, we implement the main functions in the class SequenceOptimizer

3A refactoring name corresponds to the type name of refactoring.
4A refactoring instance name corresponds to the name of the specified refactoring.
5The dependency description of this specified refactoring can record the list of other specified refac-

torings that depend on it.
6Chain information can track the original program elements by recording the track of corresponding

refactoring operations.

Chapter 4. Implementation of Prototype 41

by associating with the class OptimizationRules the class UnifiedRefactoring. In the
following section, we will introduce the core algorithms in the main functions.

4.2.2 The Core Algorithms

The class OptimizationRules and the class UnifiedRefactorings are auxiliary classes. The
implementation of both classes is not complicated, so it is omitted here and can be re-
ferred to the source code. In fact, SequenceOptimizer is the main class of our optimiza-
tion tool. Therefore, in this section, we mainly introduce two core algorithms that are
applied for the reordering refactorings and the applying optimization rules function in
the class SequenceOptimizer.

Algorithm 1 Optimizing the order of the initial sequence
Input:

The initial sequence of refactorings(SEQ: < R1, R2, ...Rn >).
Output:

The new order sequence of refactorings(SEQ′),where Rs with updated arguments.
1: Set analyzedIdx and unanalyzedIdx for the position of Rs in SEQ
2: for unanalyzedIdx = 1; unanalyzedIdx < SEQ.length; unanalyzedIdx + + do
3: Let analyzedIdx = unanalyzedIdx− 1;
4: for i = unanalyzedIdx; i < SEQ.length; i + + do
5: if The PostKey of the RanalyzedIdx == The PreKey of the Ri then
6: Detect the relationship between Ri and R;{R are iteratively from

RunanalyzedIdx to Ri}. If the relationship can not be broken, then break;
7: else: Move the Ri into the position unanalyzedIdx; {adjust the order of SEQ}
8: else if The PreKey of Ri depends on the PostKey of RanalyzedIdx then
9: Add Ri to the list of related refactorings for RanalyzedIdx;

10: end if
11: end for
12: end for
13: Let SEQ′ = SEQ;
14: for i = 0; i < SEQ′.length; i + + do
15: if i < SEQ′.length − 1 and Ri ◦ Ri+1

7 and PostKey of Ri = PreKey of Ri+1

then
16: if The list of Ri’s related refactorings is not empty then
17: Update the arguments, PreKey and PostKey to related refactorings of Ri;
18: if The list of Ri+1’s related refactorings is not empty then
19: Add the list of related refactoring to Ri+1;
20: else
21: Set the list of related refactoring to Ri+1;
22: end if
23: end if
24: end if
25: end for

7It checks the pair of refactorings whether can expose optimization potential. if it can, the Ri ◦Ri+1

is TRUE.

42 4.2. The Design of Prototype

The first algorithm is a simplified solution to the problem of rearranging the locations
of refactorings in the user-defined sequence. It is a preparation for applying optimiza-
tion rules. The intention of reordering the locations of refactorings is to separate the
original sequence into several chains of refactorings. As mentioned in the previous chap-
ter, a chain of refactorings means that refactorings in the chain depend on each other.
Therefore, the basic idea of reordering the refactorings is based on finding the potential
dependency relationship. To simplify the practical application, we determine whether
there is a dependency relationship between the two refactorings based on two situations:

- The PostKey of the former refactoring is identical to the PreKey of the latter
refactoring.

- The PostKey of the former refactoring is part of the PreKey of the latter refac-
toring.

The process of reordering locations of refactorings is described as follows: The se-
quence of refactorings is split into two parts. The first part includes refactorings which
have been analyzed. In this part, the positions of refactorings have already been deter-
mined. In our algorithm, the refactorings in this part is called the analyzed refactorings.
The second part includes the refactorings which have not been analyzed. In this part,
the positions of refactorings are unknown and need to analyze. The initial state of op-
timization, the number of the analyzed refactorings is zero; while the number of the
unanalyzed refactorings is the number of rest of refactorings. We start to analyze the
first refactoring of unanalyzed refactorings with the rest of the unanalyzed refactorings.
We reorder the unanalyzed refactorings based on two situations:

- When we have analyzed the first refactoring of part of unanalyzed refactorings, we
move it to the part of analyzed refactorings. Then we iterative this process until
all refactorings is reordered.

- During the iterative process of the first situation, if we have found that one unana-
lyzed refactoring is depend on the first refactoring of part of unanalyzed refactoring,
we move it to the part of reorder refactorings.

In summary, this algorithm shows the process of reordering the sequence by determining
the updated position of the refactorings. The best order of the refactoring is to expose
more optimization potentials. So far, our implementation is a simplified prototype by
simplified dependency analysis. In practical application, if there are complex potential
dependency detections, we should disallow reordering the location of relevant refactorings
to guarantee that reordered sequence is a legal sequence.

The second algorithm is checking the pairs of refactorings step by step within the re-
ordered sequence to find the chance of applying optimization rules. The basic idea is
based on the two aspects:

- We should defined the optimization rules in the class Compositionrules such
as [RC1C1⇒C2

⇒ RC2C2⇒C3
≡ RCnewC1⇒C3

], [RM1C.M1⇒C.M2
⇒ RM2C.M2⇒C.M3

≡
RMnewC.M1⇒C.M3

], [RF1C.f1⇒C.f2
⇒ RF2C.f2⇒C.f3

≡ RFnewC.f1⇒C.f3
], [EI

C1⇒I1
⇒

RC
I1⇒I2

≡ EInewC1⇒I2
] and [RM

C.M1⇒C.M2
⇒ IM

C.M2⇒Null
≡ IMnewC.M1⇒Null

], etc.

Chapter 4. Implementation of Prototype 43

Algorithm 2 Optimizing the sequence of refactorings by applying rules
Input:

The reordered sequence of refactorings(SEQ′: < R1, R2, ...Rn >) generated from
Algorithm1.

Output:
The optimized sequence of refactorings(SEQ′′) after applying the optimization rules.

1: Create an empty SEQ′′;
2: for i = 0; i < SEQ′.length; i + + do
3: if i < SEQ′.length−1 and Ri◦Ri+1 and PostKey of Ri = PreKey of Ri+1 then
4: Create new R by merging the Ri ◦Ri+1;
5: Set Arguments, PreKey and PostKey, etc. to R;
6: Add R into SEQ′′;
7: i++;
8: else
9: Add Ri into SEQ′′;

10: end if
11: end for

- When some pairs of refactorings can match the predefined optimization rules in the
class OptimizationRules. We can generate the updated refactorings for simplifying
the sequence. In other words, the number of refactorings are reduced so that the
user-defined sequence can be optimized. The process of this algorithm start to
create an new sequence, which is step by step filled the original refactorings or
updated refactorings by processing refactorings of the reordered sequence. Then
the refactorings of this sequence and the equation file are rewritten.

4.3 The Limitations of Application

So far, our prototype of RFMoptimizer can successfully be applied to a number of
sequences of refactorings. But it is still not so robust to deal with all disadvantages
sequences. The limitations of application are described as follows:

For one thing, our implementation only integrates five optimization rules. If opti-
mization potentials of disadvantages sequences are based on these optimization rules, our
prototype is available for optimizing these sequences. Otherwise, our prototype cannot
perform the optimization.

For another, our implementation did not integrate the analysis of concrete program.
Therefore, when we execute the step of reordering refactorings in the given sequence,
there exist some situations cannot be optimized. In other words, the physical optimiza-
tion is not implemented in our prototype.

44 4.3. The Limitations of Application

Chapter 5. Case Studies 45

Chapter 5

Case Studies

In the preceding chapter, we implemented a prototype of RFMoptimizer for optimization
of RFMs. To verify the effect of optimization, we now report on four different types of
case studies in this chapter. We will introduce them in detail in Section 5.1. More-
over, we apply RFMoptimizer to these motivating cases and evaluate corresponding the
optimization effect and optimization process in Section 5.2.

5.1 Motivating Cases

In this section, we firstly introduce a simplified program “List”(19 lines of source code)
which is rather small but enough to demonstrate our basic concept. The second case is
derived from “TankWar” game, which is a software produce line demonstration developed
by feature oriented design. Its size(1k lines of source code) is larger than the first case.
The third case is eclipse library “workbench.texteditor” (17k lines of source code), which
is already moved into a normal feature module in paper [KBK09a]. The final case is
from the paper [KBA09] about the “ZipMe”(3k lines of source code) which is a library
to access ZIP archives. Since RFMoptimizer focuses on optimizing sequences of RFMs,
the source code of four case studies have already been derived to one normal feature
module.

SimplifiedList.

The first case is simple, but it is the best one to demonstrate our concept. We
start to show the base program in a normal feature module. To illustrate, Figure
5.1 depicts three classes, List, Element and Queue in the normal feature module.

FM

public class List {

public int position;

private Element _elements ;

public Object get (){

return _elements.get(0);

}

}

public class Element{

public Object get(int i){

return null;

}

}

public class Queue {

public int position;

private Element _elements ;

public Object enqueue (){

return _elements.get(0);

}

}

Figure 5.1: The base program in the feature module in Case SimplifiedList

46 5.1. Motivating Cases

RFM1

RenameFieldRefactoring

Rename List.position into index

RFM2

RenameClassRefactoring

Rename List into TestList

RFM3

RenameClassRefactoring

Rename TestList into ArrayList

RFM4

RenameMethodRefactoring

Rename ArrayList.get into pop

RFM5

RenameClassRefactoring

Rename ArrayList into LinkedList

RFM6

RenameMethodRefactoring

Rename LinkedList.pop into topmost

RFM7

EncapsulateFieldRefactoring

Encapsulate Field LinkedList.index

RFM8

RenameMethodRefactoring

Rename LinkedList.topmost into first

RFM9

RenameMethodRefactoring

Rename LinkedList.first into getHead

RFM10

RenameClassRefactoring

Rename LinkedList into MyList

RFM1

RenameClassRefactoring

Rename List into TestList

RFM2

RenameClassRefactoring

Rename TestList into ArrayList

RFM3

RenameMethodRefactoring

Rename ArrayList.get into pop

RFM4

RenameClassRefactoring

Rename Queue into MyQueue

RFM6

RenameMethodRefactoring

Rename LinkedList.pop into topmost

RFM7

RenameMethodRefactoring

Rename LinkedList.topmost into first

RFM8

RenameClassRefactoring

Rename LinkedList into Queue

RFM5

RenameClassRefactoring

Rename ArrayList into LinkedList

RFM1

ExtractInterfaceRefactoring

Extract List to AbstractList

RFM2

RenameMethodRefactoring

Rename Queue.enqueue into first

RFM3

RenameClassRefactoring

Rename AbstractList into TestList

RFM4

InlineMethodRefactoring

Inline method Queue.first

RFM5

RenameClassRefactoring

Rename TestList into SuperList

Initial Sequence#1 Initial Sequence#2 Initial Sequence#3

Figure 5.2: The three initial sequences of Case SimplifiedList

Chapter 5. Case Studies 47

Then, we design three different sequences in Figure 5.2 and compose them into
the normal feature module. Firstly, the sequence#1 consists of five specified
refactorings: EIList⇒AbstractList, RMQueue.enqueue⇒Queue.first, RCAbstractList⇒TestList,
IMQueue.first⇒... and RCTestList⇒SuperList. It is designed to demonstrate that our
optimization rules which can be successfully applied to different types of refac-
toring. For example, EIList⇒AbstractList⇒RCAbstractList⇒TestList≡EIList⇒TestList and
RMQueue.enqueue⇒Queue.first⇒IMQueue.first⇒...≡IMQueue.enqueue⇒... are implemented
optimization rules which can merge different types of refactorings. Optimizing
the sequence#1 can prove that our optimization approach has an extension po-
tential by integrating more optimization rules. Secondly, in sequence#2, there is
a set-up-deletion-of-identifier dependency between RCQueue⇒MyQueue in RFM4 and
RCLinkedList⇒Queue in RFM8. Based on the concept of set-up-negative-identifier de-
pendency, before executed, RCLinkedList⇒Queue requires RCQueue⇒MyQueue to rename
the class Queue. Our implementation is able to address this kind of dependency
by disallowing reordering the RCLinkedList⇒Queue. In the evaluation section, we will
see the optimized sequence#2 as well as expose the optimization effect about this
sequence. Lastly, the design of the sequence#3 is to evaluate the optimization
effect by compared with the following case.

Before introducing the next case, We firstly start the RFMcomposer 1 to measure
the compilation time for composing these initial sequences of RFMs. After run-
ning, these sequences of RFMs can be performed successfully onto the feature
module. The average compilation time2 of sequence#1 is 12018.6 ms, the average
compilation time of sequence#2 is 12840.7 ms and the average compilation time
of sequence#3 is 16359.3 ms.

TankWar.

The second case about TankWar is a feature oriented program for demonstrat-
ing concepts of software product lines. The base program in the normal feature
module contains twelve classes. The scale of this base program is larger than the
base program from the case SimplifiedList. Similar to the case SimplifiedList,
we design ten RFMs that encapsulate the same type of refactorings as the case
SimplifiedList and compose them as follows:

1. The field TankManager.map is renamed into gameMap in RFM1.

2. The class Maler is renamed into Drawing in RFM2.

3. The class Drawing is renamed into DrawObjects in RFM3.

4. The method DrawObjects.getImage is renamed into storeImage in RFM4.

5. The class DrawObjects is renamed into DrawComponent in RFM5.

6. The method DrawComponent.storeImage is renamed into defineImage in
RFM6.

7. The field TankManager.gameMap is encapsulated in RFM7.

1RFMcomposer is an existing compose tool which can compose RFMs onto the normal feature
module.

2The compilation environment is on Microsoft Window XP Home Edition sp2 and the hardware’s
configuration is Intel(R) Core(TM)2 CPU T550 @ 1.66GHz 980MHz, RAM 0.99 GB.

48 5.1. Motivating Cases

8. The method DrawComponent.defineImage is renamed into defineImage1 in
RFM8.

9. The method DrawComponent.defineImage1 is renamed into defineImage2 in
RFM9.

10. The class DrawComponent is renamed into DrawAll in RFM10.

We also start the RFMcomposer to measure the compilation time for composing
this original sequence of RFMs. The average compilation time of this sequence is
31934.2 ms. It is obvious that this value is larger than that of the first case. The
reason is that the base program in this case is larger than that of the first case.
We expect to get a better optimization effect for the larger program. To further
illustrate, we continue to apply the same type of refactorings to a much larger
program in the next case and evaluate the corresponding result.

workbench.texteditor.

The third case is a large scale program about ‘workbench.texteditor ’. The base
program in the normal feature module is derived from the eclipse library ‘work-
bench.texteditor ’(16K lines of source code). In this case, we design three sequences
of RFMs.

The sequence#1 is similar to the previous two cases. It consists of ten RFMs as
follows:

1. The field DefaultCellComputer.levenstein is renamed into levenshtein in
RFM1.

2. The class Levenstein is renamed into Levenshtein in RFM2.

3. The class Levenshtein is renamed into Levenshteina in RFM3.

4. The method Levenshteina.createLevenstein is renamed into createLevenshtein
in RFM4.

5. The class Levenshteina is renamed into Levenshteinb in RFM5.

6. The method Levenshteinb.createLevenshtein is renamed into createLeven-
shtein1 in RFM6.

7. The field DefaultCellComputer.levenshtein is encapsulated in RFM7.

8. The method Levenshteinb.createLevenshtein1 is renamed into createLeven-
shtein2 in RFM8.

9. The method Levenshteinb.createLevenshtein2 is renamed into createLeven-
shtein3 in RFM9.

10. The class Levenshteinb is renamed into Levenshteinc in RFM10.

We also start the RFMcomposer to measure the compilation time for composing
this original sequence of RFMs. The average compilation time of this sequence is
172162.4 ms. It further proves the compilation time of a sequence is based on the
scale of the program. We expect to reduce more compilation time by optimizing
the unoptimized sequence. Besides, in concept, the compilation time of a sequence

Chapter 5. Case Studies 49

depends on the number of RFMs with optimization potential in this sequence.
Therefore, we expose two extra sequences to demonstrate this assertion.

The sequence#2 is still composed onto this base program and consists of seventeen
RFMs as follows:

1. The class Levenstein is renamed to Levenshtein in RFM1.

2. The field DefaultCellComputer.levenstein is renamed to levenshtein in RFM2.

3. The field OptimizedCellComputer.levenstein is renamed to levenshtein in
RFM3.

4. The field OptimizedCellComputer.levenstein is renamed to levenshteina in
RFM4.

5. The field OptimizedCellComputer.levensteina is renamed to levenshteinb in
RFM5.

6. The field OptimizedCellComputer.levensteinb is renamed to levenshteinc in
RFM6.

7. The field OptimizedCellComputer.levensteinc is renamed to levenshteind in
RFM7.

8. The field OptimizedCellComputer.levensteind is renamed to levenshteine in
RFM8.

9. The field OptimizedCellComputer.levensteine is renamed to levenshteinf in
RFM9.

10. The field OptimizedCellComputer.levensteinf is renamed to levenshteing in
RFM10.

11. The class Levenshtein is renamed to Levenshteina in RFM11.

12. The class Levenshteina is renamed to Levenshteinb in RFM12.

13. The class Levenshteinb is renamed to Levenshteinc in RFM13.

14. The class Levenshteinc is renamed to Levenshteind in RFM14.

15. The class Levenshteind is renamed to Levenshteine in RFM15.

16. The class Levenshteine is renamed to Levenshteinf in RFM16.

17. The class Levenshteinf is renamed to Levenshteing in RFM17.

We also start the RFMcomposer to measure the compilation time for composing
this original sequence of RFMs. The average compilation time of this sequence is
253831.2 ms.

The sequence#3 has already been designed in paper [KBK09a] consists of fifty-
five RFMs. The fifty-five RFMs are composed successfully onto the base feature
module in the following order:

1. The class Levenstein is renamed to Levenshtein in RFM1.

2. The field DefaultCellComputer.levenstein is renamed to levenshtein in RFM2.

50 5.2. Evaluation

3. The field OptimizedCellComputer.levenstein is renamed to levenshtein in
RFM3.

4. The field OptimizedCellComputer.levenstein is renamed to levenshteina in
RFM4.

5. The field OptimizedCellComputer.levensteina is renamed to levenshteinb in
RFM5.

6. ... 28.

29. The field OptimizedCellComputer.levensteiny is renamed to levenshteinz in
RFM29.

30. The class Levenshtein is renamed to Levenshteina in RFM30.

31. The class Levenshteina is renamed to Levenshteinb in RFM31.

32. ... 54.

55. The class Levenshteiny is renamed to Levenshteinz in RFM55.

We also start the RFMcomposer to measure the compilation time for composing
this original sequence of RFMs. The average compilation time of this sequence is
769617.5 ms.

ZipMe Library.

The final case about ZipMe is already derived into the normal feature module in
paper[KBA09] with three RFMs. The three RFMs and their execution order are
described as follows:

1. The class ZipArchive is renamed to ZipFile by performing a RFM.

2. The class ZipFile from the package zipme is moved to the package jazzlib

3. The class ZipEntry from the package zipme is moved to the package jazzlib

We also start the RFMcomposer to measure the compilation time for composing
this original sequence of RFMs. This original sequence of RFMs can be performed
successfully onto the feature module. The average compilation time of this sequence
is 20461 ms.

After describing eight sequences of four cases and the compilation time of these
original sequences, we will reveal the optimized sequences and evaluate the compilation
time of optimizing and composing these sequences in the next section. At the same time,
we also discuss some limitations in these cases and evaluate optimization effects.

5.2 Evaluation

By performing the RFMoptimizer to optimize the sequence of refactorings, we can pro-
duce new updated refactorings to replace some original refactorings. At the same time,
the new compilation order of these refactorings is rewritten to the equation file of the
existing compose tool. So far our prototype is independent of the RFMcomposer. The

Chapter 5. Case Studies 51

total optimization process of our prototype consists of loading RFMs, optimizing RFMs,
rewriting updated RFMs and their corresponding order, as well as deleting temporary
files. We will evaluate the compilation time of the four parts of optimization process and
total optimization process for each case in this section. After performing optimization
process, we start the RFMcomposer to compose the optimized sequence of new RFMs
onto the feature module based on the new execution order of these new RFMs. Using
this way, we can get the compilation time of composing new sequence. Calculating the
optimization effect is the main intention of our evaluation, which is given by the following
equation:

Optimization Effect = (1− Toptimization + Tnewcomposition

Toldcomposition

) ∗ 100% (5.1)

In the equation 5.1, the optimization effect is the percentage by which the compila-
tion time of composition can be reduced. Toldcomposition denotes the compilation time of
composing the original sequence. Tnewcomposition denotes the compilation time of compos-
ing the optimized sequence. Toptimization denotes the compilation time of optimization
process.

For the case SimplifiedList, three optimized sequences consist of some merged refac-
torings and some original refactorings. These refactorings are encapsulated in the
corresponding RFMs and the optimized composition order of RFMs, calculated by
our prototype, shown in Figure 5.3 are top to down.

RFM1

RenameFieldRefactoring

Rename List.position into index

NewRFM1

RenameClassRefactoring

Rename List into MyList

RFM7

EncapsulateFieldRefactoring

Encapsulate Field MyList.index

NewRFM2

RenameMethodRefactoring

Rename MyList.get into getHead

InlineMethodRefactoring

Inline method Queue.enqueue

NewRFM1

ExtractInterfaceRefactoring

Extract List into SuperList

RenameClassRefactoring

Rename List into LinkedList

NewRFM2

RenameMethodRefactoring

Rename LinkedList.get into first

RFM8

RenameClassRefactoring

Rename Queue into MyQueue

NewRFM2

NewRFM1

RFM4

RenameClassRefactoring

Rename LinkedList into Queue

Optimized Sequence#1 Optimized Sequence#2 Optimized Sequence#3

Figure 5.3: The three optimized sequences of Case SimplifiedList

Because of the limitation of our prototype’s implementation, our prototype now
just optimize a sequence by matching existing predefined optimization rules. It
could be extended to include more optimization rules but now unimplemented
optimization rules are not measured. As illustrated in Figure 5.3, the pair of
‘Rename Field’ refactoring and ‘Encapsulated Field’ refactoring are not composed
in optimized sequence#3. The other cases also have this limitation. However, the

52 5.2. Evaluation

existing optimization rules can be applied to optimize the rest of refactorings for
three sequences in this case.

The average compilation time of composing optimized sequence#1 is 9870.4 ms,
the average compilation time of composing optimized sequence#2 is 9546.8 ms
and the average compilation time of composing optimized sequence#3 is 10412.3
ms. these values which are less than that of unoptimized sequences. But we also
consider the compilation time of optimization process itself. The average com-
pilation time of total optimization process of sequence#1 is 8934.6 ms, that of
sequence#2 is 9401.4 ms and sequence#3 is 9074.6 ms. Based on the equation
5.1, the optimization effect of sequence#1 = -56.4%, that of sequence#2 = -47.6%
and that of sequence#3 = -19.1%. It shows negative optimization effects in opti-
mization process. There are two factors lead to this kind of negative optimization
effect. First is that we repeat computing the cost of loading RFMs during total
optimization process. In fact, the process of loading RFMs in our prototype can
be eliminated if our implementation will be integrated to the RFMcomposer. Sec-
ond is that the cost of rewriting the optimized sequence of RFMs also could be
ignored, when the RFMoptimizer will be integrated into the existing composition
tool. In other words, the loaded RFMs of the optimized sequence can directly be
executed without writing them to hard disk after RFMoptimizer integrated into
the existing composition tool. If we remove the cost of loading RFMs and rewriting
RFMs/equation file, the optimization effect of sequence#1 without loading RFMs
and rewriting RFMs/equation file= 17.4%, that of sequence#2 = 25.1% and that
of sequence#3 = 35.8%. Besides, the compilation time of composing a RFM is
based on the scale of a base program. The larger the scale of the base program is,
the more compilation time of composing a RFM it needs. If the scale of program
is too small, the optimization effect could be not obvious. In the following cases,
we discuss the positive optimization effect for two larger base programs in the next
two cases.

For the case TankWar, the new generated sequence consists of two new refactorings
generated by RFMoptimizer and two original refactorings. The four refactorings
are encapsulated in the corresponding RFMs and the new composition order of
RFMs are describe as follows:

1. The field TankManager.map is renamed into gameMap in RFM1.

2. The class Maler is renamed into DrawAll in NewRFM1.

3. The method DrawAll.getImage is renamed into defineImage2 in NewRFM2.

4. The field TankManager.gameMap is encapsulated in RFM7.

Similar to the evaluation of the case “SimplifiedList”, the compilation time of com-
posing optimized sequence is 14093.6 ms which is less than that of the unoptimized
sequence. But we also consider the compilation time of optimization process itself.
The average compilation time of total optimization process is 8206.3 ms and that
of optimization process without loading RFMs and rewriting RFMs/equation file
is 89 ms. Based on the equation 5.1, the optimization effect = 30.1%. The opti-
mization effect without loading RFMs and rewriting RFMs/equation file = 55.6%.

Chapter 5. Case Studies 53

If the scale of base program is larger than the base program of the case “Sim-
plifiedList” and the composed RFMs are similar, the optimization effect is more
obvious.

For the case workbench.texteditor, we have already designed three unoptimized
sequences of RFMs for the base program derived from eclipse library “work-
bench.texteditor”. After optimizing the original sequence#1, we generated the
optimized sequence#1 that consists of two refactorings generated by RFMopti-
mizer and two original refactorings. The four refactorings are encapsulated in the
corresponding RFMs and the new composition order of these RFMs is described
as follows:

1. The field DefaultCellComputer.levenstein is renamed into levenshtein in
RFM1.

2. The class Levenstein is renamed into Levenshteinc in NewRFM1.

3. The method Levenshteinc.createLevenstein is renamed into createLeven-
shtein3 in NewRFM2.

4. The field DefaultCellComputer.levenshtein is encapsulated in RFM7.

Similar to the evaluation of the case “SimplifiedList” and the case “TankWar”, the
compilation time of composing optimized sequence#1 is 83561.1 ms which is much
less than that of the unoptimized sequence. The average compilation time of total
optimization process is 18749.9 ms and that of optimization process without loading
RFMs and rewriting RFMs/equation file is 343.6 ms. Based on the equation 5.1,
the optimization effect = 40.6%. The optimization effect without loading RFMs
and rewriting RFMs/equation file= 51.3%. As we can see from these data, if types
of refactorings encapsulated in the composed RFMs are similar, the optimization
effect is based on the scale of base program. The larger the base program is, the
better the optimization effect is. In the following two sequences in this case, we
expect to see the relationship between the optimization effect and the number of
RFMs.

After optimizing sequence#2, we generate optimized sequence#2 which consists
of two new refactorings generated by RFMoptimizer and one original refactoring.
The three refactorings are encapsulated in the corresponding RFMs and the new
composition order of these RFMs is described as follows:

1. The ‘Rename Class’ refactoring encapsulated in NewRFM1 renames class Lev-
enstein into Levenshteing.

2. The ‘Rename Field’ refactoring encapsulated in RFM2 renames field Default-
CellComputer.levenstein into levenshtein.

3. The ‘Rename Field’ refactoring encapsulated in NewRFM2 renames field Op-
timizedCellComputer.levenstein into levenshteing.

About the sequence#2, the compilation time of composing optimized sequence#2
is 59731.2 ms which is much less than that of the unoptimized sequence. The
average compilation time of total optimization process is 18448.4 ms and that
of optimization process without loading RFMs and rewriting RFMs/equation file

54 5.2. Evaluation

is 241.9 ms. Based on the equation 5.1, the optimization effect = 69.2%. The
optimization effect without loading RFMs and rewriting RFMs/equation file =
76.4%.

After optimizing sequence#3, we generate optimized sequence#3 which consists
of two new refactorings generated by RFMoptimizer and one original refactoring.
The three refactorings are encapsulated in the corresponding RFMs and the new
composition order of these RFMs is described as follows:

1. The ‘Rename Class’ refactoring encapsulated in NewRFM1 renames class Lev-
enstein into Levenshteinz.

2. The ‘Rename Field’ refactoring encapsulated in RFM2 renames field Default-
CellComputer.levenstein into levenshtein.

3. The ‘Rename Field’ refactoring encapsulated in NewRFM2 renames field Op-
timizedCellComputer.levenstein into levenshteinz.

About the sequence#3, the compilation time of composing optimized sequence#3
is 61292.1 ms which is much less than that of the unoptimized sequence. The
average compilation time of total optimization process is 77632 ms and that of
optimization process without loading RFMs and rewriting RFMs/equation file is
1698.3 ms. Based on the equation 5.1, the optimization effect = 81.9%. The
optimization effect without loading RFMs = 91.8%. As we can see from these
data, if the scale of the program is similar, the optimization effect is based on
the number of RFMs which expose optimization potential. The more RFMs with
optimization potential, the better the optimization effect is.

For the case ZipMe Library, we cannot produce optimized sequence, because the re-
lationship among three refactorings do not expose the optimization chance. There-
fore, the three refactorings and the composition order of RFMs are the same to
the original sequence are described as follows:

1. The class ZipArchive is renamed to ZipFile by performing a RFM.

2. The class ZipFile from the package is moved zipme to the package jazzlib

3. The class ZipEntry from the package is moved zipme to the package jazzlib

About evaluation of this sequence, the compilation time of composing optimized
sequence is 20281.4 ms which is approximately equal to 20461 ms of the unoptimized
sequence. The average compilation time of total optimization process is 7867.1 ms which
is checking the optimization potential in this sequence. Based on the equation 5.1, the
optimization effect = -37.5%. The optimization effect without loading RFMs and rewrit-
ing RFMs/equation file = 0.34%. As we can see from data, there is not an optimization
potential. After optimizing the sequence, the sequence is unchanged and the compi-
lation time of composing the sequence is a constant value. The compilation time of
optimization process causes a few negative effects.

In summary, when we compose the unoptimized and the optimized sequences of RFMs
into the base program in the normal feature module for the four cases respectively,
the results of composition is same. Furthermore, we can capture the corresponding

Chapter 5. Case Studies 55

compilation time of optimizing and composing sequences to observe the optimization
effect. We summarize the relevant data3 in Table 5.1 and Table 5.2. More detailed
data can be referred in Appendix C. As we can see from Table 5.2 and Figure 5.4, the
optimization effect is based on the scale of the base program and the number of RFMs
which expose optimization potentials.

Composition Time Optimization Time

8 sequences in 4 case studies Tunoptimized Toptimized Toptimization T ′
optimization

4

SimplifiedList#1(5RFMs) 12018.6 ms 9870.4 ms 8934.6 ms 59.6 ms
SimplifiedList#2(8RFMs) 12840.7 ms 9546.8 ms 9401.4 ms 73.7 ms
SimplifiedList#3(10RFMs) 16359.3 ms 10412.3 ms 9074.6 ms 82.6 ms
TankWar(10RFMs) 31934.2 ms 14093.6 ms 8206.3 ms 89 ms
workbench.texteditor#1(10RFMs) 172162.4 ms 83561.1 ms 18749.9 ms 343.6 ms
workbench.texteditor#2(17RFMs) 253831.2 ms 59731.2 ms 18448.4 ms 241.9 ms
workbench.texteditor#3(55RFMs) 769617.5 ms 61292.1 ms 45103 ms 1698.3 ms
ZipMe Library(10RFMs) 20461 ms 20281.4 ms 7867.1 ms 109.2 ms

Table 5.1: The unoptimized/optimized composition time and the optimization time

8 sequences in 4 case studies Optimization Effect Optimization Effect′5

SimplifiedList#1(5RFMs) -56.5% 17.4%
SimplifiedList#2(8RFMs) -47.6% 25.1%
SimplifiedList#3(10RFMs) -19.1% 35.8%
TankWar(10RFMs) 30.2% 55.6%
workbench.texteditor#1(10RFMs) 40.5% 51.3%
workbench.texteditor#2(17RFMs) 69.2% 76.4%
workbench.texteditor#3(55RFMs) 81.9% 91.8%
ZipMe Library(10RFMs) -37.6% 0.34%

Table 5.2: The comparison of the optimization effect for given sequences

3The evaluation environment is on Microsoft Window XP Home Edition sp2 and the hardware’s
configuration is Intel(R) Core(TM)2 CPU T550 @ 1.66GHz 980MHz, RAM 0.99 GB.

4Toptimization denotes the compilation time of total optimization process and T ′optimization denotes
the compilation time of optimization process without loading RFMs and rewriting RFMs/equantion file.

5Optimization Effect denotes the compilation time of total optimization process and Optimization
Effect′ denotes the compilation time of optimization process without loading RFMs and rewriting RFM-
s/equantion file.

56 5.2. Evaluation

������� ������� ������� ����� ������� ������� ������� �����	
��
������� ������ ������� ������� ������� ������� ������� ������� ������� �������	
��
������� ������� ������� ������� ������� ������� ������� ������� ������� �������������������������������������� � ! "! #$! %&

'(()* +,-

./012345/6

/7

/184049284/6

-77-.85

/7

 :
5-;<-6.-5

Figure 5.4: The comparison of the optimization effect for given sequences

Chapter 6. Related Work 57

Chapter 6

Related Work

The concepts presented in this thesis related to work from several fields: program trans-
formation, program synthesis, artificial intelligence (AI) planning and more. In this
chapter, we give a brief overview over category theory of computational design, rela-
tional query optimization of database, static composition of refactorings, detection of
the relationships among refactorings, AI planning for optimization of refactorings and
an algebra of patches.

Category theory for computational design.

Category Theory is a general theory of mathematical structures and their
relationships[Pie91][Ste97]. Datory et al. use the concept of category theory as
informal modeling language to explain Computational Design which is a paradigm
where both program design and program synthesis are computations[BAS08]. Its
foundation is that programs are values, transformations map programs to programs
and operators map transformations to transformations[BAS08].

The paper[BAS08] describes how Software Product Lines(SPL) ideas map to cat-
egorical concepts. In the concept of Category Theory, a category is a collection of
objects and arrows. As recursion is fundamental to category theory, an object is
a domain of points and a single point can be seen as a special object. An arrow
is a mapping relationship, a transformation is an implementation of an arrow as
expressed by composition of features. From another perspective, The SPL is a
set of similar programs. Programs are generated by composing different features,
which are increments in program functionality[BAS08]. The transformation of
adding features to the base program usually add codes (classes, methods, field and
statements), while the transformation of refactorings to the base program usually
create and delete code elements[KBK09a]. So Category Theory is also appropriate
to support us for theoretical foundation of combination of refactorings. We extend
the concept of refactorings to FOP and Category Theory terminology in Table 6.1.

Table 6.1 shows the terminological correspondence with concept of the refactorings.
A program can be seen as an object in category theory and identifiers of program
elements in the program can be seen as points in that category. Refactorings can
be seen as arrows that map points (identifiers) of one object (transformed program)
to points (identifiers) of another object.

58

Paradigm Point(Object) Object Arrow

FOP program element program feature
RFMs program element program refactoring in RFM

Table 6.1: Category Theory, FOP and RFMs Terminology

Based on Category Theory, the paper proposes the optimization of synthesizing
programs[Bat08]. To illustrate in Figure 6.1(a), we can get the final program ‘Goal’
by composing a series of features to the program ‘Base’. Goal=F3 •F2 •F1•Base
or Goal=F2 • F3 • F1•Base or Goal=F4 • F5•Base. We assume the F2 and F1
are commutative. At the same time, F4 and F5 can instead of F1, F2 and F3.
So the concept of optimization problem of composition arrows is to determine how
to find out the shortest composition paths[BAS08]. The RFMs that encapsulated
refactorings also can be seen as normal features. Therefore these concepts are
related to the optimizing sequences of RFMs. Similarly, to illustrate in Figure
6.1(b), we find out the shortest path ‘C1’ from composition paths of RFMs. In
our approach, the basic concept of merging ‘R1’ and ‘R2’ to ‘C1’ is a foundation
of optimization of sequences of RFMs.

Base Goal

F1•Base

F1•Base

F2•F1•Base

F4•Base

F
1 F3

F
1

F4

F2

F3•F1•BaseF3

F5

F
2

(a) paths of composition normal features

Base

Goal

R1•BaseR1

R2

(b) paths of composition RFMs

Figure 6.1: Different paths of composition features from ‘Base’ to ‘Goal’

Relational query optimization in database

The principle of the optimization technique is from the Relational Query Opti-
mization (RQO) that is a typical example of logical optimization and physical
optimization[RGRG02].

In the logical level of RQO, the key insight is to transform query plan to rela-
tional algebra expressions. At the same time, several relational algebra equiv-
alences can be applied to the relation algebra expression of query plan. For
example, the two important equivalences that involves the selection operation,
namely cascading of selections: σc1∧c2∧...cn ≡ σc1(σc2(. . . σcn(R))) and commutative:
σc1(σc2(R)) ≡ σc2(σc1(R))[RGRG02]. We also review one of the typical equiva-
lences involve two or more operators, which is πa(σc(R)) ≡ σc(πa(R))[RGRG02].
We can commute a selection with a projection if the selection operation involves
only attributes that are retained by the projection. Every attribute mentioned in
the selection condition c must be included in the set of attribute a. In order to
find alternative query plans, we can apply these predefined equivalences to relevant
query operations of query plan in logical level. Relational algebra equivalences play

Chapter 6. Related Work 59

a central role in identifying alternative plans to the original query plan. Distin-
guished with logical optimization level in database, there is no set theory supply
deriving equivalences of our approach. But we can define the optimization rules
by manually analyzing among standard refactorings. These optimization rules also
can be seen as equivalences of pair of refactorings and used to derive the optimized
sequence of refactorings to an original sequence.

If the estimated cost of the alternative plan is lower, we think it to be better than
the original query plan. To estimate the cost of a plan, statistics of the relation
instances in physical level should be considered. In physical level, there are differ-
ent kinds of storage and access way about the data stored in a database. Take one
typical example about access way, we can use direct scan a relation to find the rele-
vant tuples or use an index to access only the relevant parts. Second, the algebraic
operators used in the logical plan may have different alternative implementations.
For example, the join operator that has many different implementations: nested
loop join, hash join, sort merge join. Similar to our discussion about physical op-
timization, if the type of optimization rules is composition rule, it is impossible to
optimize all refactorings which expose the optimization potential. At this time, the
concrete program should be considered. Besides, due to the fact that our standard
refactorings operate program elements of source code, the expression of source code
also influence the efficiency of accessing program elements.

Static composition of refactorings.

Roberts’ dissertation mentions composition of refactorings. He shows how to derive
the precondition of a composite refactoring from the preconditions of the individual
refactorings in a chain of refactorings[Rob99]. In our optimization approach, the
optimization rules can be applied to pairs of refactorings that expose optimization
potentials. Our optimization rules are divided to two categories: composition
rules or simplification rules. Similar to the Roberts’ concept, the composition
rules can eliminate the precondition of a pair of refactorings and keep the two
transformations. Distinguished from the Roberts’ concept, the simplification rules
not only eliminate the precondition of a pair of refactoring but also compose both
transformations to one update transformation.

For a practical composition tool of primitive transformations, Guenter Kniesel et
al come up with the concept of static composition of refactorings. The concept
provides a formal model for automatic, program-independent composition of con-
ditional program transformations[KK04]. In his concept, the conditional transfor-
mations can be composed from a limited set of primitive operations. Refactorings
are a special form of conditional transformations whose preconditions ensure that
the transformations are behavior preserving. They define a conditional transfor-
mation (CT) is a sequence of program transformations with a precondition. The
precondition should be satisfied for their correct execution. If the precondition is
satisfied, the transformation sequence is executed on a given program. The pre-
condition may contain atomic conditions or complex ones created by conjunction,
disjunction and negation of subconditions. Atomic conditions refer to the typical
structure of a Java program (existence of classes, interfaces, fields, methods, pa-
rameters, etc.). Transformations can change such structures (add/delete/rename

60

class, method, field, parameter, etc). Every transformation is associated with a
transformation description which describes the effect of a transformation on the
conditions that hold on a program. Furthermore, they automatically compute the
joint preconditions for a chain of two transformations by two ways:

- Applying the transformation description of the first transformation to the
precondition of the second one.

- Adding the derived precondition as an additional conjunction to the precon-
dition of the first transformation.

If a chain contains more than two conditional transformations, then the process
starts with the last precondition and the description of the preceding transforma-
tion and the process is iterated until it reaches the first conditional transformations
in the chain.

This work describes how to derive a composite refactoring from primitive trans-
formations in detail. The condition of primitive transformation is eliminated. But
the transformation of the composite refactoring is conjunction of primitive trans-
formation. Therefore, there are two different points from our work: one is that
our work is to deal with the composition of standard refactorings and not to con-
sider composition of primitive transformation. Another is that our work not only
can merge the preconditions of refactorings but also can replace transformations
of refactorings by one updated transformation of a standard refactoring.

Detection of the relationships among refactorings

At present, the related work about automatic analysis of dependencies of refac-
torings based on three types of program’s representation namely abstract tree-
based representation[Rob99], logic-based representation[Kni04] and graph-based
representation[MVEDJ05]. So far there are some available tools to express and
analyze program refactorings but no existing tool automatically to produce an op-
timized sequence of refactorings. In terms of our optimization approach, one key
challenge is required to be considered. The challenge is to detect dependency and
commutative relationships among standard refactorings. So far, we integrate one
simplified way of exposing dependencies between two refactorings into our imple-
mentation of prototype. For instance, we detected a kind of dependencies for two
refactorings by the PostKey of the former refactoring is identical to the PreKey
of the latter refactoring. In fact, sometimes, detection of dependencies based on
source code should be considered. For example, information of the overridden
method could be acquired from the source code. Unfortunately, the textual repre-
sentation of source code is difficult to express many of the relationships between
program elements. After we investigated relevant researches, abstract syntax trees
are suitable for expressing general Java program. At the same time, application of
graph based expression and logic based expression are also created for representa-
tion of Java program to analyze the program elements.

Although the existing tools are still unavailable directly to do sequential analysis of
program transformation, critical pair analysis and sequential dependency analysis
on graph transformation are active research area [MVEDJ05]. For example, AGG

Chapter 6. Related Work 61

system1 that is a general purpose graph transformation tool developed by TU Berlin
provides a possible solution for critical pair analysis and sequential dependency
analysis. However it is still tedious procedures that we change object oriented
semantic source program to graph-based expressions[MKR06a]. Moreover, critical
pair analysis and sequential dependency analysis in the graph-based transformation
need much execution time[MKR06a].

Another state of the art approach of critical pair analysis for refactorings is based on
logic-based representation of Java program2. In this approach, the source program
is translated to logic expressions. By Prolog language, which is a logic program-
ming, checking the precondition and producing an updated program transformation
are more efficient than graph-based transformation[MKR06a].

These work focus on dependency analysis for refactorings which is an important
part of our approach. In our optimization approach, before applying optimiza-
tion rules, we need to reorder refactorings to expose optimization potentials by
analyzing the dependencies among these refactorings.

AI Planning for optimization of refactorings

During the reordering refactorings step of the optimization process, we want to
find a reordered sequence of refactorings which exposes optimization potentials.
This procedure is similar to rearranging individual actions from the starting state
of world to the ending state in the field of artificial intelligent planning. There
are some research works concentrating on applying the AI planning for performing
the refactorings[P0́8]. Traditionally, automated planning is an artificial intelligence
technique to generate sequences of actions that will achieve a certain goal when
they are performed. Among all the existing planning approaches, Javier Perez in-
troduces a proposal for generating refactoring plans with hierarchical task network
(HTN) planning.

A refactoring plan is a specification of a sequence of refactorings which matches
a program redesign proposal. It can be automatically executed to modify the
program in order to obtain that desirable system redesign without changing the
program’s behavior.

A typical automated planning approach represents the current state of the world as
a set of logical terms which are changed by application of operators. The operator
also consists of a precondition and two separate sets of actions. A precondition
specifies the condition under which they can be executed and actions specify how
the operator modifies the state of the world. The goal is a list of terms which
represents a certain state of the world we want to achieve. The task of the au-
tomated planning is to produce a plan as a sequence of operator instances that
changes the world to achieve the desired goal in the final state. Furthermore, the
actions of HTN planning composed by simple operators or by other tasks. Task
networks allow including domain knowledge describing which subtasks should be
performed to accomplish another one. HTN planning and forward search allows
very expressive domain definitions which lead to detailed domains with a lot of

1http://user.cs.tu-berlin.de/ gragra/agg/
2http://roots.iai.uni-bonn.de/research/condor/

62

domain knowledge which can guide the planning process in a very efficient way.
For finding out a better refactoring plan, the HTN planning should be tailored
to search for plans which achieve a certain design structure. In the future, the
feasibility of this concept might be implemented.

This kind of work focuses on finding out a refactoring plan by some AI algo-
rithm. Its limitation is requiring a complete set of refactorings. It is impossible
that generating a new refactoring instead of a group of refactorings which exposes
optimization potential. But during the step of reordering refactorings of the op-
timization process, we do not require a new refactoring and only require a legal
sequence of refactorings which exposes optimization potentials. The AI planning
for refactorings is a complement to this step.

An algebra of patches

Darcs is a symmetric, distributed revision control system and working with se-
quences of patches. Lynagh introduces algebra of patches in his paper[Lyn06] to
discuss how Darcs works, especially how to deal with conflicting patches. The
core concept is to revert and commute patches for merging patches. The resulting
sequence could shrink by merging sequences of patches. Similarly, our concept of
commuting refactorings is to expose the optimization potential among some refac-
torings and merging these refactorings to a updated refactoring. Here, we compare
the concept of commutation for patches with our concept as follows:

X...

Y...

Z...

X...

A...

Y...

Z...
X...

A...

Y...

B...

Z...

A
(2,A)

B

(4,B)

X...

A...

Y...

Z...

(3,B)

B

(2,A)

A

(a) The sequence of two patches[Lyn06]

Class List

{

get()

{...

}

}

List
TestL

ist

RC

Class TestList

{

get()

{...

}

}
Class TestList

{

pop()

{...

}

}

Class List

{

pop()

{...

}

}

TestList.get
TestList.pop

RM

Lis
t

Tes
tL

is
t

R
C
'

List.get
List.pop

RM'

(b) The sequence of two refactorings

Figure 6.2: The example of commutation operation

The concept of commutation operator for the primitive patches is similar to our
conditional commutation operator for the standard refactorings. The concrete ex-
ample of commutation from the paper[Lyn06] is shown in Figure 6.2(a). Similarly,
we describe our conditional commutation operator in Figure 6.2(b).

In Figure 6.2(a), the starting point is a repository containing the set of patches S
which result in a file containing lines “X”, “Y” and “Z”. The effect of patch A is to
add a line “A” as line 2 and the effect of patch B is to add a line “B” as line 4. Two
new patches, B’ and A’, are created. The effect of patch B’ is to add a line “B” as
line 3 and the effect of patch A is to add a line “A” as line 3. The patch sequences
AB and B’A’ have the same start and the end repository state, but go through a

Chapter 6. Related Work 63

different intermediate result. In other words, if we want to commute the A and the
B, the corresponding actions require being adjusted. Similarly, in Figure 6.2(b),
the starting point is a base program containing a class List and method get. The
first refactoring RC is “rename class” refactoring which renames the class name
“List” to “TestList”, the second refactoring RM is “rename method” refactoring
which renames the method name “TestList.get” to “TestList.pop”. If we want to
commute the two refactorings, updating corresponding parameters are necessary.
The parameters of RM’ are changed from “TestList.get” and “TestList.pop” to
“List.get” and “List.pop”. The parameters of RC’ are identical to that of RC. As
we can see from Figure 6.2, the concept of our commutation operation is similar
to the concept of commuting the patches.

64

Chapter 7. Conclusion and Future Work 65

Chapter 7

Conclusion and Future Work

7.1 Conclusion

The concept of RFMs is to combine refactorings with feature modules by defining refac-
torings in refactoring units that become elements of feature modules. Similar to the fea-
ture module sequences are composed to base programs, the refactorings can pre-defined
in the RFMs and the RFMs also can be composed to base programs in a user-defined
selection order to given base programs. However the user-defined original sequence of
RFMs is composed by the existing compose tool might cause a high compilation effort
because the existing compose tool write intermediate results into the disk during com-
posing RFMs. In this thesis, we concentrated on providing the approach to optimize the
sequences of refactorings so that the existing tool can eliminate the compilation effort
when user-defined sequences of RFMs are disadvantageous sequences

In order to optimize sequences of refactorings, we presented a theoretical approach
for optimization of sequences of refactorings from the RFMs. Firstly, we explored the
standard refactorings, which could be all implemented in the RFMs. Based on the prop-
erties of legal sequences of RFMs, we revealed the potential relationships among the
refactorings in given the sequence of refactorings from the corresponding RFMs. Be-
sides, we defined relevant notions for refactorings and sequences of refactorings from a
formal perspective. Furthermore, we revealed optimization rules for the pairs of refac-
torings among the standard refactorings. Finally, we presented the concept of logical
optimization and physical optimization for sequences of refactorings.

As a proof of concept, we sketched an optimization prototype of optimizing sequences
of refactorings. Based on implementation of this prototype, we design four case studies
to evaluate our optimization approach and optimization effect. By evaluating, we showed
that the prototype is available to optimize sequences of refactorings in four case studies.
If the type of a sequence is the disadvantageous sequence, the compilation effort can
be obviously eliminated by composing the optimized sequence of RFMs in these case
studies. In addition, we reported some related works which inspire our approach.

The contribution of this thesis was significant to manually defined the optimization
rules between standard refactorings. After optimization potentials are exposed by re-
ordering a sequence of refactorings, these optimization rules can applied to optimize
sequences of refactorings in logical level. However, there are still improvements for opti-
mization in future work.

66 7.2. Future Work

7.2 Future Work

So far, the optimization approach has already been integrated into the prototype of
optimization tool (RFMoptimizer). We have already optimized some different sequences
of refactorings in four case studies by using RFMoptimizer. Due to optimization effects
in these cases is obvious, the concept of optimization approach is proved to be available
for optimizing sequences of refactorings. But the RFMoptimizer cannot optimize all
kinds of sequences of refactorings in practical application. Therefore, a central topic in
future work is to improve the implementation of the prototype of optimization tool. The
considered improvements related to the following four aspects:

1. Our concept is to optimize sequences of refactorings. These refactorings should
be derived from all the standard refactorings1. But our implementation only inte-
grated some parts of standard refactorings. In future work, we could integrate more
standard refactorings, especially implement more optimization rules for different
types of standard refactorings in practical application.

2. In our present implementation of prototype, we detected optimization potentials
between the pair of refactorings by the PostKey of the former refactoring is iden-
tical to the PreKey of the latter refactoring. Essentially, this way of detection is
one simplified way of exposing dependencies between two refactorings. In fact, the
more complicate approaches of detecting dependencies among different refactorings
need to be considered in the future. Moreover some kinds of dependencies even
need to consider concrete programs. Involving the concrete programs could add the
complexity and cost of detecting the dependencies. The concrete programs should
find a suitable expression to improve efficiency of dependency analysis. For exam-
ple, in the related work about dependency analysis among refactorings[MKR06b],
the source code of the given program is transformed to graphical expressions or
logical expressions. At the same time, it proves that the dependency analysis of
refactorings based on logical expressions of concrete programs is more efficient than
that based on other expressions of concrete program[MKR06b]. In future work, if
considering the concrete programs, we could transform program elements to ele-
ments of logical knowledge base. This way could be more efficient than the way of
accessing program element in the representation of other forms about source code.

3. We still need to predefine optimization rules for implementing merging refactorings
of our prototype. In future work, we expect that automatic composition of the
refactorings could be implemented in two aspects: For one thing, the concept of
applying optimization rules not only cover the pair of the refactorings but also cover
more than two refactorings each time. For another, the composition rules could
be automatically implemented. The idea inspired by the paper about the static
composition of refactorings[KK04]. Although his concept is about the primitive
conditional transformation for user-defined standard refactorings, it is similar to
composing individual refactorings to a large refactoring. By using this ways, we
will not focus on predefine the simplification rules for the chain of refactorings.

1The standard refactorings are from the book[Fow99]

Chapter 7. Conclusion and Future Work 67

4. In the step of reordering refactorings of the optimization process, we want to find
a reordered sequence of refactorings which exposes optimization potentials. This
procedure is similar to rearranging individual actions from the starting state of
world to the ending state in the field of artificial intelligent planning. A typical AI
planning approach represents the current state of the world as a set of logical terms
which are changed by application of operators[P0́8]. The operator also consists of
a precondition and two separate sets of actions. Similar to the application of AI
Planning in other fields, if starting state of program corresponds to the start of the
task of AI planning, the final state of program transformation to the goal of the task
and the refactorings correspond to the operators, we could integrate AI Planning
into the optimization of sequences of refactorings. For instance, the related work
proposed by Javier Perez, the HTN planning should be tailored to search for plans
which achieve a certain design structure in order to find out a better refactoring
plan. In future work, the way of finding out the reordered sequence of refactorings
could be considered to integrate the AI planning.

68 7.2. Future Work

BIBLIOGRAPHY 69

Bibliography

[AB06] Apel, S.; Batory, D.: When to use features and aspects?: a case study. In
GPCE ’06: Proceedings of the 5th international conference on Generative
programming and component engineering, S. 59–68. ACM, New York, NY,
USA, 2006.

[BAS08] Batory, D.; Azanza, M.; Saraiva, a., J.: The objects and arrows of com-
putational design. In MoDELS ’08: Proceedings of the 11th international
conference on Model Driven Engineering Languages and Systems, S. 1–20.
Springer-Verlag, Berlin, Heidelberg, 2008.

[Bat05] Batory, D.: Feature models, grammars, and propositional formulas. In to
be published at Sofware Product Line Conference (SPLC 2005), 2005.

[Bat06] Batory, D.: A tutorial on feature oriented programming and the ahead tool
suite. In Generative and Transformational Techniques in Software Engi-
neering, Lecture Notes in Computer Science, Band 4143, S. 3–35. Springer,
2006.

[Bat08] Batory, D.: Using modern mathematics as an fosd modeling language. In
GPCE ’08: Proceedings of the 7th international conference on Generative
programming and component engineering, S. 35–44. ACM, New York, NY,
USA, 2008.

[Bec99] Beck, K.: Extreme Programming Explained: Embrace Change. Addison
Wesley, 1999.

[BF01] Beck, K.; Fowler, M.: Planning Extreme Programming. Addison-Wesley,
2001.

[BSR03] Batory, D.; Sarvela, J. N.; Rauschmayer, A.: Scaling step-wise refinement.
In ICSE ’03: Proceedings of the 25th International Conference on Software
Engineering, S. 187–197. IEEE Computer Society, Washington, DC, USA,
2003.

[CE00] Czarnecki, K.; Eisenecker, U.: Generative Programming: Methods, Tools,
and Applications. Addison-Wesley Professional, June 2000.

[CN00] Cinnéide, M. O.; Nixon, P.: Composite refactorings for java programs. In
Workshop on Formal Techniques for Java Programs, S. 129–135, 2000.

70 BIBLIOGRAPHY

[Coc06] Cockburn, A.: Agile Software Development: The Cooperative Game (2nd
Edition) (Agile Software Development Series). Addison-Wesley Profes-
sional, 2006.

[Fow99] Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 1999.

[KBA08] Kuhlemann, M.; Batory, D.; Apel, S.: Refactoring feature modules. Tech-
nischer Bericht Nr. 15, Faculty of Computer Science, University of Magde-
burg, 2008.

[KBA09] Kuhlemann, M.; Batory, D.; Apel, S.: Refactoring feature modules. In
Proceedings of the International Conference on Software Reuse, S. 106–115,
2009.

[KBK09a] Kuhlemann, M.; Batory, D.; Kästner, C.: Safe composition of non-
monotonic features. In Proceedings of the International Conference on Gen-
erative Programming and Component Engineering, 2009.

[KBK09b] Kuhlemann, M.; Batory, D.; Kästner, C.: Safe composition of refactoring
feature modules. Technischer Bericht Nr. 7, Faculty of Computer Science,
University of Magdeburg, 2009.

[KK04] Kniesel, G.; Koch, H.: Static composition of refactorings. Science of Com-
puter Programming, Band 52, Nr. 1-3, S. 9 – 51, 2004.

[Kni04] Kniesel, G.: A logic foundation for program transformations. Technischer
Bericht, CS Dept. III, University of Bonn, Germany, 2004.

[Kuh07] Kuhlemann, M.: Design Patterns Revisited. Technischer Bericht Nr. 2,
Faculty of Computer Science, University of Magdeburg, 2007.

[Lyn06] Lynagh, I.: An algebra of patches. Technischer Bericht, 2006.

[MKR06a] Mens, T.; Kniesel, G.; Runge, O.: Transformation dependency analysis -
a comparison of two approaches. Série L’objet - logiciel, base de données,
réseaux, 2006.

[MKR06b] Mens, T.; Kniesel, G.; Runge, O.: Transformation dependency analysis -
a comparison of two approaches. Série L’objet - logiciel, base de données,
réseaux, 2006.

[MTR06] Mens, T.; Taentzer, G.; Runge, O.: Analysing refactoring dependencies
using graph transformation. Software and Systems Modeling, 2006.

[MVEDJ05] Mens, T.; Van Eetvelde, N.; Demeyer, S.; Janssens, D.: Formalizing refac-
torings with graph transformations: Research articles. J. Softw. Maint.
Evol., Band 17, Nr. 4, S. 247–276, 2005.

[Opd92] Opdyke, W. F.: Refactoring object-oriented frameworks. Dissertation,
Champaign, IL, USA, 1992.

BIBLIOGRAPHY 71

[P0́8] Pérez, J.: Enabling refactoring with htn planning to improve the de-
sign smells correction activity. In BENEVOL 2008 : The 7th BElgian-
NEtherlands software eVOLution workshop, 2008.

[Pie91] Pierce, B. C.: Basic Category Theory for Computer Scientists. MIT Press,
1991.

[RGRG02] Ramakrishnan, R.; Gehrke, J.; Ramakrishnan, R.; Gehrke, J.: Database
Management Systems. McGraw-Hill Science/Engineering/Math, August
2002.

[Rob99] Roberts, D. B.: Practical analysis for refactoring. Technischer Bericht,
Champaign, IL, USA, 1999.

[SKAP10] Siegmund, N.; Kuhlemann, M.; Apel, S.; Pukall, M.: Optimizing non-
functional properties of software product lines by means of refactorings. In
Proceedings of Workshop Variability Modelling of Software-intensive Sys-
tems (VaMoS), S. 115–122, January 2010.

[Ste97] Stephen: Conceptual Mathematics: A First Introduction to Categories.
Cambridge University Press, 1997.

72 BIBLIOGRAPHY

Appendix A. 70 Basic Refactoring Operators 73

Appendix A

Table A.1: 70 Basic Refactoring Operators 1

RefOps Transformation Description

RF The “RenameField” refactoring transforms a name of the field to a new
one.

RC The “RenameClass” refactoring transforms a name of the class to a new
one.

EM The “ExtractMethod” refactoring turns the fragment of code into a method
whose name is meaningful.

IM The “InlineMethod” refactoring puts the method’s body into the body of
its callers and remove the method.

IT The “InlineTemp” refactoring replaces all references to that temp field with
the expression.

RTwQ The “ReplaceTempwithQuery” refactoring extracts the expression into a
method. Replace all references to the temp with the new method.

IEV The “IntroduceExplainingVariable” refactoring puts the result of the com-
plex expression, or parts of the expression, in a new field.

STV The “SplitTemporaryVariable” refactoring makes a separate temporary
field for each assignment.

RAtP The “RemoveAssignmentstoParameters” refactoring makes a temporary
field instead of one parameter in some method.

RMwMO The “ReplaceMethodwithMethodObject” refactoring turns the method
into its own object so that all the local variables become fields on that
object.

SA The “SubstituteAlgorithm” refactoring replaces the body of the method
with the new algorithm.

MM The “MoveMethod” refactoring moves one method from the source class to
the target class.

MF The “MoveField” refactoring moves the field into the target class from the
source class can change all its users.

ExtractC The “ExtractClass” refactoring creates a new class and moves the relevant
fields and methods from the old class into the new class.

IC The “InlineClass” refactoring moves all its features into another class and
deletes it.

next page. . .

74

RefOps Transformation Description

HD The “HideDelegate” refactoring creates methods on the server to hide the
delegate.

RMM The “RemoveMiddleMan” refactoring removes middle methods and get the
client to call the delegate directly.

IFM The “IntroduceForeignMethod” refactoring creates a method in the client
class with an instance of the server class as its first argument.

ILE The “IntroduceLocalExtension” refactoring creates a new class that con-
tains these extra methods.

SEF The “SelfEncapsulateField” refactoring creates getting and setting methods
for the field and only use the two methods to access the field.

RDVwO The “ReplaceDataValuewithObject” refactoring turns the field of data item
into an object.

CVtR The “ChangeValuetoReference” refactoring turns the value object into a
reference object.

CRtV The “ChangeReferencetoValue” refactoring turns the reference object into
a value object.

RAwO The “ReplaceArraywithObject” refactoring replaces the array with an ob-
ject that has a field for each element.

DOD The “DuplicateObservedData” refactoring copys the data to a new domain
object and establishes an observer to synchronize the two pieces of data.

CUAB The “ChangeUnidirectionalAssociationtoBidirectional” refactoring adds a
field for back pointer and change modifiers to update both sets for new
association between referring class and referred class.

CBAU The “ChangeBidirectionalAssociationtoUnidirectional” refactoring drops
the unneeded end of the association between referring class and referred
class.

RMNwSC The “ReplaceMagicNumberwithSymbolicConstant” refactoring creates a
constant, name it after the meaning, and replace the number with it.

EF “EncapsulateField” refactoring deals with the public field and make it pri-
vate and provide accessors for other classes.

EC The “EncapsulateCollection” refactoring makes it return a read-only view
and provide add/remove methods replaces set method

RRwDC The “ReplaceRecordwithDataClass” refactoring makes a dumb data object
for the record.

RTCwC The “ReplaceTypeCodewithClass” refactoring replaces the numeric type
code by adding a new class.

RTCwS The “ReplaceTypeCodewithSubclasses” refactoring replaces the immutable
type code with new subclasses.

RTCwS/S The “ReplaceTypeCodewithState/Strategy” refactoring replaces the type
code with a state object.

RSwF The “ReplaceSubclasswithFields” refactoring changes the methods to su-
perclass fields and eliminates the subclasses.

DC The “DecomposeConditional” refactoring extracts methods from the con-
dition, then part, and else parts.

next page. . .

Appendix A. 70 Basic Refactoring Operators 75

RefOps Transformation Description

CCE The “ConsolidateConditionalExpression” refactoring combines them into a
single conditional expression and extracts it.

CDCF The “ConsolidateDuplicateConditionalFragments” refactoring moves it
outside of the expression.

RCF The “RemoveControlFlag” refactoring uses a break or return instead of a
variable that is acting as a control flag for a series of boolean expressions.

RNCwGC The “ReplaceNestedConditionalwithGuardClauses” refactoring uses guard
clauses for all the special cases.

RCwP The “ReplaceConditionalwithPolymorphism” refactoring moves each leg of
the conditional to an overriding method in a subclass. Make the original
method abstract.

INO The “IntroduceNullObject” refactoring replaces the null value with a null
object.

IA The “IntroduceAssertion” refactoring makes the assumption explicit with
an assertion.

RM The “RenameMethod” refactoring transforms a name of the method to a
new one.

AP The “AddParameter” refactoring adds a parameter to one method.
RP The “RemoveParameter” refactoring removes a parameter from the

method.
SQfM The “SeparateQueryfromModifier” refactoring replaces one method that

returns a value but also changes the state of an object by create two meth-
ods, one for the query and one for the modification.

PM The “ParameterizeMethod” refactoring creates one method that uses a
parameter for the different values to replaces several methods.

RPwEM The “ReplaceParameterwithExplicitMethods” refactoring creates a sepa-
rate method for each value of the parameter in the method.

PWO The “PreserveWholeObject” refactoring sends the whole object instead of
several parameters from this object.

RPwM The “ReplaceParameterwithMethods” refactoring removes parameter and
invokes the method.

IPO The “IntroduceParameterObject” refactoring replaces parameters with an
object.

RSM The “RemoveSettingMethod” refactoring removes any setting method for
that field.

HM The “HideMethod” refactoring makes the method private.
RCwF The “ReplaceConstructorwithFactoryMethod” refactoring replaces the

constructor with a factory method.
ED The “EncapsulateDowncast” refactoring moves the downcast to within the

method.
RECwE The “ReplaceErrorCodewithException” refactoring throws an exception in-

stead of a special code which indicates an error.
REwT The “ReplaceExceptionwithTest” refactoring changes the caller to make

the test first.

next page. . .

76

RefOps Transformation Description

PUF The “PullUpField” refactoring moves the field to the superclass from the
subclasses.

PUM The “PullUpMethod” refactoring moves the method to the superclass from
the subclasses.

PUCB The “PullUpConstructorBody” refactoring creates a superclass construc-
tor; call this from the subclass methods.

PDM The “PushDownMethod” refactoring moves the method to the subclasses
from the superclass.

PDF The “PushDownField” refactoring moves the field to the subclasses from
the superclass.

ESubc The “ExtractSubclass” refactoring creates a subclass for that subset of
features.

ESuperc The “ExtractSuperclass” refactoring creates a superclass and moves the
common features to the superclass.

EI The “ExtractInterface” refactoring extracts the subset into an interface.
CH The “CollapseHierarchy” refactoring merges superclass and subclass to-

gether
FTM The “FormTemplateMethod” refactoring transforms the original methods

to template methods and pulls them up to superclass.
RIwD The “ReplaceInheritancewithDelegation” refactoring creates a field for the

superclass, adjusts methods to delegate to the superclass, and removes the
subclassing.

RDwI The “ReplaceDelegationwithInheritance” refactoring makes the delegating
class a subclass of the delegate.

1The transformation descriptions of each operators are derived from the book[Fow99].

Appendix B. Optimization Rules 77

Appendix B

Table B.1: Optimization Rules

Former Refactoring Latter Refactoring Merged Refactoring

RFC.f1⇒C.f2 RFC.f2⇒C.f3 RFC.f1⇒C.f3

RFC.f1⇒C.f2 ITC.f2⇒C.expression ITC.f1⇒C.expression

RFC1.f1⇒C1.f2 RTwQC1.f2⇒C1.M RTwQC1.f1⇒C1.M

IEVexpression⇒C.f1 RFC.f1⇒C.f2 IEVC.expression⇒C.f2

RMC.M1⇒C.M2 RMC.M2⇒C.M3 RMC.M1⇒C.M3

RMC.M1⇒C.M2 IMC.M2⇒... IMC.M1⇒...

RMC.M1⇒C.M2 ECC.M2⇒C.M3|C.M4 ECC.M1⇒C.M3|C.M4

RMC.M1⇒C.M2 SQfMC.M2⇒C.M3|C.M4 SQfMC.M1⇒C.M3|C.M4

RMC.M1⇒C.M2 RSMC.M2⇒null RSMC.M1⇒null

EM...⇒C.M2 RMC.M2⇒C.M3 EM...⇒C.M3

IFM...⇒C.M2 RMC.M2⇒C.M3 IFM...⇒C.M3

ECC.M⇒CM1|C.M2 RMC.M2⇒C.M3 ECC.M⇒CM1|C.M3

SQfMC.M⇒CM1|C.M2 RMC.M2⇒C.M3 SQfMC.M⇒CM1|C.M3

PMC.M1|C.M2|...⇒C.M0 RMC.M0⇒C.M PMC.M1|C.M2|...⇒C.M

RPwEMC.M⇒C.M |C.M1|C.M2|... RMC.M1⇒C.M0 RPwEMC.M⇒C.M |C.M0|C.M2|...
RCwFMC.constructor⇒C.factoryM RMC.factoryM⇒C.factoryM1 RCwFMC.constructor⇒C.factoryM1

IPOC.M⇒C1 RCC1⇒C2 IPOC.M⇒C2

RCC1⇒C2 RCC2⇒C3 RCC1⇒C3

RCC1⇒C2 ICC|C2⇒C ICC|C1⇒C

RCC1⇒C2 CHC|C2⇒C CHC|C1⇒C

ExtractC...⇒C2 RCC2⇒C3 Extract...⇒C3

ILEC1⇒C1|C2 RCC2⇒C3 ILEC1⇒C1|C3

RAwOC.f [3]⇒C|C1|C1.f1|C1.f2|C1.f3 RCC1⇒C2 RAwOC.f [3]⇒C|C2|C2.f1|C2.f2|C2.f3

ExtractSubclassC1⇒C1|C2 RCC2⇒C3 ExtractSubclassC1⇒C1|C3

ExtractSuperclassC|C1⇒C|C1|C2 RCC2⇒C3 ExtractSuperclassC|C1⇒C|C1|C3

EIC1⇒C1|I RCI⇒I1 EIC1⇒C1|I1

DODC1⇒C1|C2 RCC2⇒C3 DODC1⇒C1|C3

RTwQC.f⇒C.M1 RMC.M1⇒C.M2 RTwQC.f⇒C.M2

SEFC.f⇒C.f |C.M1|C.M2 RMC.M1⇒C.M3 SEFC.f⇒C.f |C.M3|C.M2

EFC.f⇒C.f |C.M1|C.M2 RMC.M1⇒C.M3 EFC.f⇒C.f |C.M3|C.M2

RDVwOC.f⇒C|NewClass|NewClass.fRCNewClass⇒C2 RDVwOC.f⇒C|C2|C2.f

next page. . .

78

Former Refactoring Latter Refactoring Merged Refactoring

RRwDCRecord⇒C1 RCC1⇒C2 INORecord⇒C2

RTCwCC1.f1|C1.f2|C1.f3⇒
C1|C2.f1|C2.f2|C2.f3

RCC2⇒C3 RTCwCC1.f1|C1.f2|C1.f3⇒
C1|C3.f1|C3.f2|C3.f3

RTCwSC1|C1.f1|C1.f2⇒
C1|C2|C3|C2.f1|C3.f2

RCC2⇒C4 RTCwSC1|C1.f1|C1.f2⇒
C1|C4|C3|C4.f1|C3.f2

RTCwSSC1.f1|C1.f2⇒C1|C2.f1|C3.f2RCC3⇒C4 RTCwSSC1.f1|C1.f2⇒C1|C2.f1|C4.f2

INO...NULL...⇒C1 RCC1⇒C2 INO...NULL...⇒C2

RMNwSCC.NUMBER⇒C.f1 RFC.f1⇒C.f2 RMNwSCC.NUMBER⇒C.f2

Appendix C. Detailed Evaluation Tables 79

Appendix C

No. Tunoptimizedms Toptimizedms T1ms T2ms T3ms T4ms Toptimizationms1

1 12828 10328 10890 16 15 63 10984
2 11875 10297 8609 16 31 63 8719
3 11906 10281 8594 0 47 47 8688
4 11968 10453 8625 0 47 63 8735
5 12093 5891 8610 15 47 47 8719
6 11828 10282 8625 0 31 47 8703
7 11844 10266 8750 15 63 47 8875
8 11953 10234 8516 16 31 47 8610
9 11938 10281 8547 0 47 47 8641

10 11953 10391 8578 16 47 31 8672
Taverage 12018.6 9870.4 8834.4 9.4 40.6 50.2 8934.6

Table C.1: Detailed data of 5-RFM sequence#1 in “SimplifiedList” case

No. Tunoptimizedms Toptimizedms T1ms T2ms T3ms T4ms Toptimizationms
1 12828 10296 9688 0 93 125 9906
2 12875 10469 9219 0 46 63 9328
3 12890 10406 9328 16 62 47 9453
4 12813 10515 9203 0 62 63 9328
5 12844 5984 9187 16 62 47 9312
6 12813 10328 9234 16 47 62 9359
7 12875 10578 9157 15 47 63 9282
8 12766 5954 9203 16 46 63 9328
9 12859 10328 9234 16 46 47 9343

10 12844 10610 9266 0 47 62 9375
Taverage 12840.7 9546.8 9271.9 9.5 55.8 64.2 9401.4

Table C.2: Detailed data of 8-RFM sequence#2 in “SimplifiedList” case

1“No.”: test’s times; “Tunoptimized”: the compilation time of composing unoptimized sequence;
“Toptimized”: the compilation time of composing optimized sequence; “T1”: the compilation time of
loading RFMs into the optimization tool; “T2”: the compilation time of optimizing RFMs; “T3”: the
compilation time of rewriting RFMs and equation file; “T4”: the compilation time of deleting temp
folders; “Toptimization”: the compilation time of total optimization process; “ms”: millisecond.

80

No. Tunoptimizedms Toptimizedms T1ms T2ms T3ms T4ms Toptimizationms
1 16625 10422 10422 62 47 62 10593
2 16375 10344 9703 15 32 62 9812
3 16344 10343 9687 16 31 63 9797
4 16359 10547 9843 16 47 62 9968
5 16390 10343 5250 16 31 62 5359
6 16390 10484 9812 16 125 62 10015
7 16266 10312 9734 16 46 63 9859
8 16281 10578 9781 16 93 63 9953
9 16266 10391 9891 15 16 62 9984

10 16297 10359 5297 15 32 62 5406
Taverage 16359.3 10412.3 8942 20.3 50 62.3 9074.6

Table C.3: Detailed data of 10-RFM sequence#3 in “SimplifiedList” case

No. Tunoptimizedms Toptimizedms T1ms T2ms T3ms T4ms Toptimizationms
1 32657 14156 10110 15 47 63 10235
2 31797 14140 5359 16 31 78 5484
3 31875 14094 9828 15 32 62 9937
4 31843 14094 5344 16 47 62 5469
5 31797 13984 9938 15 16 78 10047
6 31843 14188 5391 16 31 62 5500
7 31828 14016 9796 32 31 78 9937
8 32015 14062 5328 31 32 78 5469
9 31828 14046 9812 16 94 78 10000

10 31859 14156 9875 16 31 63 9985
Taverage 31934.2 14093.6 8078.1 18.8 39.2 70.2 8206.3

Table C.4: Detailed data of 10-RFM sequence in “TankWar” case

No. Tunoptimizedms Toptimizedms T1ms T2ms T3ms T4ms Toptimizationms
1 176063 83328 18453 16 31 375 18875
2 168500 79469 18312 31 32 328 18703
3 169235 100375 16938 16 46 313 17313
4 175218 97984 18812 16 47 312 19187
5 162609 79313 18157 15 47 328 18547
6 175609 79547 18907 15 47 313 19282
7 166375 79094 18406 16 31 312 18765
8 187578 79797 18781 16 47 312 19156
9 173375 78157 18203 16 47 343 18609

10 167062 78547 18687 15 32 328 19062
Taverage 172162.4 83561.1 18365.6 17.2 40.7 326.4 18749.9

Table C.5: Detailed data of 10-RFM sequence#1 in “workbench.texteditor” case

Appendix C. Detailed Evaluation Tables 81

No. Tunoptimizedms Toptimizedms T1ms T2ms T3ms T4ms Toptimizationms
1 250078 63375 18531 31 32 203 18797
2 247265 59078 18266 15 32 203 18516
3 244375 59625 17672 15 32 234 17953
4 251359 59782 18516 31 32 203 18782
5 274938 59453 18047 31 31 297 18406
6 275578 58922 18359 16 31 203 18609
7 254813 59031 18187 16 47 234 18484
8 247625 59453 18578 16 31 203 18828
9 248328 58968 17906 31 32 203 18172

10 243953 59625 17687 31 16 203 17937
Taverage 253831.2 59731.2 18174.9 23.3 31.6 218.6 18448.4

Table C.6: Detailed data of 17-RFM sequence#2 in “workbench.texteditor” case

No. Tunoptimizedms Toptimizedms T1ms T2ms T3ms T4ms Toptimizationms
1 753422 73422 76640 94 47 1531 78312
2 769609 58735 77093 94 47 1531 78765
3 802047 59156 71813 109 31 1485 73438
4 747875 59359 77297 109 328 1578 79312
5 754844 58656 73906 94 63 1687 75750
6 736412 60032 77516 109 344 1609 79578
7 810604 59968 75828 94 109 1516 77547
8 802047 59062 76094 109 375 1657 78235
9 745472 65109 76297 109 47 1531 77984

10 773843 59422 75422 93 47 1844 77406
Taverage 769617.5 61292.1 75790.6 101.4 143.8 1596.9 77406

Table C.7: Detailed data of 55-RFM sequence#3 in “workbench.texteditor” case

No. Tunoptimizedms Toptimizedms T1ms T2ms T3ms T4ms Toptimizationms
1 20891 20203 10344 31 31 250 10656
2 20860 20265 8438 16 31 94 8579
3 20453 20281 8375 0 93 78 8546
4 20391 20344 8438 15 47 78 8578
5 20203 20282 8438 0 47 78 8563
6 20391 20313 3922 0 31 78 4031
7 20422 20360 8406 0 47 78 8531
8 20281 20265 3953 15 16 78 4062
9 20328 20266 8438 15 31 79 8563

10 20390 20235 8437 16 16 93 8562
Taverage 20461 20281.4 7718.9 10.8 39 98.4 7867.1

Table C.8: Detailed data of 3-RFM sequence in “ZipMe” case

82

83

Selbststädigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und nur mit erlaubten
Hilfsmitteln angefertigt habe.

Magdeburg, March 1, 2010

Liang Liang

84

