
University of Magdeburg

Faculty of Computer Science

D
S E
B

Databases

Software
Engineering

and

Master’s Thesis

Analyzing Software Evolution Datasets
and Their Use Cases

Author:

Sebastian Kittan

27. February 2023

Advisors:

Prof. Dr. rer. nat. Gunter Saake

Department of Technical and Business Information Systems

Dr.-Ing. David Broneske

German Centre for Higher Education Research and Science Studies

Dr.-Ing. Jacob Krüger

Eindhoven University of Technology

Kittan, Sebastian:
Analyzing Software Evolution Datasets and Their Use Cases
Master’s Thesis, University of Magdeburg, 2023.

Abstract

Sharing research artifacts (e.g., software, data, protocols) is an immensely important
topic for improving transparency, replicability, and reusability in research (i.e., open
science), and has recently gained more and more traction in software engineering.
For instance, recent studies have focused on artifact reviewing, the impact of open
science, and specific legal or ethical issues of sharing artifacts. Most of such studies
are concerned with artifacts created by the researchers themselves and processes
for quality assuring these artifacts (e.g., through artifact-evaluation committees).
In contrast, the more specific practices and challenges (e.g., technical, ethical, le-
gal) of sharing software-evolution datasets (i.e., republished version control data)
have only been scratched in such studies. To tackle this gap, we report a qualita-
tive literature analysis of software-evolution datasets published at the International
Conference on Mining Software Repositories from 2017 until 2021 and papers that
build upon these datasets. By investigating 200 papers, we elicit what types of
software-evolution datasets are shared, what use cases the datasets are (intended
to be) used for, and what challenges researchers experience with sharing as well as
using such datasets. Building on the results, we discuss challenges of, and propose
recommendations for, sharing software-evolution datasets in a way that avoids typi-
cal problems (e.g., technical limitations, ethical concerns, data privacy). Our results
extend and complement current research, and we are confident that it helps future
researchers share software-evolution datasets in a reliable and trustworthy way.

iv

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

2 Background 5
2.1 Datasets . 5
2.2 Software-Evolution . 6
2.3 Version Control Systems . 6
2.4 Artifact Sharing . 8

3 Methodology 9
3.1 Research Questions . 10
3.2 Literature Search . 11

3.2.1 Selection Criteria . 11
3.2.2 Manual Literature Search . 12
3.2.3 Snowballing . 13

3.3 Data Extraction and Analysis . 14

4 Data 15
4.1 Dataset Characteristics . 15
4.2 Dataset Use Cases . 22
4.3 Problems . 30

5 Result 37
5.1 RQ.1: Dataset Sharing . 37

5.1.1 Identified Software-Evolution Datasets 37
5.1.2 Trend of published datasets 39
5.1.3 Datasets Source . 40
5.1.4 Sharing Platforms . 41
5.1.5 Data Storing . 42
5.1.6 Quantity . 43
5.1.7 Summary RQ.1: Dataset Sharing 43

5.2 RQ.2: Analysis Use Cases . 44
5.2.1 Well-Established Use Cases 44
5.2.2 Unaware and Novel Use Cases 45
5.2.3 Summary RQ.2: Analysis Use Cases 46

5.3 RQ.3: Challenges of Sharing . 47
5.3.1 Challenges/Problems/Limitations of Sharing 47
5.3.2 SummaryRQ.3: Challenges of Sharing 50

vi Contents

6 Discussion 51
6.1 Privacy, Licensing, and Ethical Concerns 51

6.1.1 Privacy . 51
6.1.2 Licensing . 51
6.1.3 Ethics . 52

6.2 Technical Concerns . 52
6.3 Validity . 53

6.3.1 Internal Validity . 53
6.3.2 External Validity . 53

6.4 Closing Remarks . 53

7 Related Work 55

8 Conclusion 57

A Appendix 59

Bibliography 61

List of Figures

2.1 Distributed Version Control System 7

3.1 Overview of our methodology. 9

5.1 Overview datasets use cases . 44

5.2 Overview publications use cases . 45

viii List of Figures

List of Tables

3.1 Manual search overview . 13

4.1 Characteristics of Datasets . 21

4.2 Specific use cases from dataset . 24

4.3 Specific use cases from real world application 29

4.4 Predicted challenges . 33

4.5 Grouped challenges . 34

5.1 Overview of grouped datasets by type 37

5.2 Publication of the datasets . 39

5.3 Dataset sources . 40

5.4 Host of the Dataset . 41

5.5 Datasets storage format . 42

5.6 Overview challenges . 47

A.1 Overview datasets to snowballed documents 59

x List of Tables

1. Introduction

Sharing research artifacts has become a vital concern of most researchers in any
field, and has gained major attention in software-engineering research, too [14, 15,
44, 83, 129, 131, 212, 213]. Making artifacts (e.g., software, data, protocols) used for
a piece of research available promises many benefits for the research community. For
instance, a shared artifact allows researchers to easily reuse it rather than needing
to re-implement it, helps to validate the corresponding findings, and builds trust by
contributing to open-science practices. Consequently, many researchers have started
to investigate the practices, challenges, and benefits of artifact sharing within soft-
ware engineering (cf. Chapter 7). In parallel, conferences (e.g., the Joint European
Software Engineering Conference and Symposium on the Foundations on Software
Engineering [165]), journals (e.g., Empirical Software Engineering [213]), publishers
(e.g., the Association for Computing Machinery1), and funding institutions (e.g.,
the European Union [295]) are pushing for more open science, for instance, by intro-
ducing reviews, awards, badges, or legal frameworks for sharing research artifacts.
Despite such efforts and a general agreement on the pros of open science, artifact
sharing also faces critique, for example, because of the effort it takes to review arti-
facts, vague definitions of badges, or enforcing open-science on unfit types of artifacts
(e.g., confidential data).

Interestingly, most artifact-sharing practices focus on the accessibility and reusabil-
ity of artifacts created by researchers themselves (e.g., software, data measured
during experiments). In contrast, other aspects of how artifacts are shared have
often been neglected, for instance, what format an artifact is stored in, whether an
artifact fulfills legal requirements (e.g., data protection, licenses), or ethical concerns
like data privacy [17, 90, 92]. These aspects are particularly relevant when sharing
data not created by the researchers themselves. A primary example for such data is
version-control data extracted from software repositories, which is extensively used
in empirical studies, such as mining studies, case studies, or benchmarks. Software
repositories (e.g., from Git, GitHub, BitBucket) exhibit various types of data on
the evolution of a software system, for example, source code, developer names, mail
addresses, natural-language comments, commits, pull requests, or documentation.
The diversity of this data poses several challenges to researchers when sharing and
reusing software-evolution datasets (i.e., data extracted from a software repository’s
version-control and associated systems):

How to best organize the data (e.g., relational database versus csv files) in a way
that enables others to reuse it (e.g., not requiring high-performance computer clus-
ters)? How to ensure data privacy and anonymity (e.g., developer names, callouts
in natural-language comments)? What is allowed to share under what license and
legal requirements (e.g., data protection)? Is the dataset representative and feasi-
ble for the use case the research is concerned with (e.g., are bug reports somehow

1https://www.acm.org/publications/policies/artifact-review-and-badging-current

https://www.acm.org/publications/policies/artifact-review-and-badging-current

2 1. Introduction

linked to code changes)? To support the ongoing research in this direction and in-
tegrate such aspects into current practices, a more profound understanding of how
software-evolution datasets are and should be shared is required.

Therefor we want to answer the following research question:

RQ.1 What are the practices of sharing software-evolution datasets?

RQ.2 What are the originally intended and actually performed use cases for software-
evolution datasets?

RQ.3 What challenges have researchers experienced with sharing and using software-
evolution datasets?

In this thesis, we contribute to this understanding by reporting an in-depth litera-
ture analysis of 200 papers that have shared, modified, or used software-evolution
datasets. For this purpose, we started collecting 43 relevant datasets and mining-
challenge papers from recent iterations (2017–2021) of the International Conference
on Mining Software Repositories (MSR), a prime venue for software-evolution re-
search that has such dedicated tracks. We forwards-snowballed through the citing
papers to obtain a broader picture of how the datasets have (not) been reused and
what challenges researchers experienced while doing so. Building on a qualitative
analysis of all papers, we contribute the following:

� We contribute an overview of 41 shared software-evolution datasets and their
properties.

� We compare typical use cases for which software-evolution datasets are shared
and used.

� We present a classification of the challenges of creating, sharing, and reusing
software-evolution datasets.

� We discuss the previous three contributions to provide an understanding of
current practices and challenges for researchers.

� We publish our own dataset of the 200 papers we analyzed in a persistent
open-access repository.

Our results show the diversity of software-evolution datasets and their use cases, even
though this is only a subtype of all software-engineering datasets. We highlight and
discuss various problems regarding the sharing of software-evolution datasets (e.g.,
data formats, topicality). The consequent conflicts are important for researchers to
consider when sharing, but also when reviewing and using, such datasets. Overall,
we hope that our contributions help the community improve their artifact sharing of
software-evolution artifacts, and thus increase the extent of open-science practices.

These remainder of the thesis is structured as follows. In Chapter 2 we describe the
basic topics that are required for the continuation of the thesis. Next we specify in

3

Chapter 3 our methodology, that we employ to study our research question. Within
Chapter 4 we present our data in unprocessed form and then in Chapter 5 we report
the results we obtained for each of our research question. Then we discus this result
in Chapter 6. Finally, we present in Chapter 7 the related work and then we finish
in Chapter 8 with a conclusion and future work.

4 1. Introduction

2. Background

In this chapter we describe the technicalities of concepts that are needed for the
following chapters. First we give an overview why datasets are important. Then we
show what software evolution is and the connection with Version Control Systems
(VCS). Finally we describe how the artifact sharing is related to them.

2.1 Datasets

Nowadays everybody comes in contact with mountain of information. This data
influences our everyday life, as data reflects knowledge. This is especially true for
Software Engineers (SE). They need this data to do their day to day work. One of
their task is to handle this data in form of information. Here to get a better overview
and insight of the data they are using dataset as a representation of the data. This
allows the SE to present the data in a more understandable way for themselves,
colleagues or customers. As written in [255] organized data allows SE to measure
data and take appropriate action. Good data provides SE indisputable evidence to
taking action based on. This includes finding the problems, solving the problems
and monitoring the data for emerging problems. Most of the time SE monitors data
and explore new data. To meet these goals SE organize the data in datasets. These
are data, which are collected and managed for a specific purpose.

In this work we deal with software-evolution datasets. These datasets are created
from version control system (VCS) data. SE always endeavors more insight of this
data, because most of the time developer are using this system to program the
solution of the SE and to get it they analyze VCS data and organize them in software-
evolution datasets to share them with other specialists in this field. The goal is to
discuss the purpose of the created dataset and to further develop their knowledge.

The data generated by SE are also important information for all other software
engineering related topics and therefore interface too many other important stake-
holders.

� The project management needs the data and the data evolution for effort
estimations and progress monitoring.

� The requirements engineer needs the data to track down the implementation
of requirements.

� The contractor manager needs the data to integrate contractors into the project
e.g. for interface information.

� The integrator needs the data evolution to update the build.

6 2. Background

� The test engineer needs the data to relate software modules to requirements
for test case creation and coverage as well as the data evolution for regression
tests.

All this specialist need different views on the SE data and this means that, depending
on the target group, specialized data sets are required and have to be created.

In summary dataset are important tools to organize data and present them to other
specialist of the field, to understand correlations and abstract difficult data to easier
to understand datasets.

2.2 Software-Evolution

As described by geeksforgeeks1 Software-evolution is a process to develop software
initially and then update in time steps to add features or remove functionality. The
process of evolution includes topics of fundamental activities of change analysis,
release planning, system implementation and releasing a system to customers. Fist
is the cost of a change weighed against the feature that is to change, if this is accepted
then the change of the system are designed, implemented and tested and released.
After that the cycle starts again until the system is obsolete.

Software-evolution is necessary, because of the following reasons:

1. Change in requirement with time: Over time the organizations need and op-
erations change and so must the software change.

2. Environment change: Over time the tools such as programming languages and
other things change and the system adopt to the new environment.

3. Errors and bugs: With the age of deployed software their preciseness or impec-
cability decrease and the efficiency to bear the increasing complexity workload
also continually degrades. In order to counteract this, old and no longer re-
quired software has to be evolved.

4. Security risks: Over time new software based cyberattacks are found. So it
became necessary to avoid security breaches with assessments of the software
and follow up patches of this security breaches.

5. For having new functionality and features: In order to implement new features
or increase the performance, the organization need to continuously evolve the
software to remain competitive with other products.

2.3 Version Control Systems

“Version control system (VCS) allows you to track the iterative changes you make
to your code.”[32] VCS are important tools for SE that work in groups and are

1https://www.geeksforgeeks.org/software-engineering-software-evolution/

https://www.geeksforgeeks.org/software-engineering-software-evolution/

2.3. Version Control Systems 7

located in different locations. It also helps the developer of software to efficiently
communicate and track the changes that have been made by a specific developer.
The most popular VCS are Git2, standalone or as Git server with GitHub or GitLab,
or Mercurial.

The basics of VCS are repositories that encompasses the entire collection of files and
folders associated with a project, along with each file’s revision history. A developer
that want to work on the project creates a personal copy of the files in the project
and changes the files. To add this changes to the project the developer commits
this changes to the repository. When the developer wants to get the version of the
project on another time of the project he must update his local copy with one of
the commits in the repository.

In the type of distributed VCS that we use mainly in this work, the repository
is saved by a Git server service as GitHub. Multiple developer use separate local
repository to commit too and update his local working copy. To save the changes
from the local repository to the server repository the developer must push them
to the server repository. Then all other developer can also use this changes of
the developer after they pull the changes from the server repository to their local
repository and update their local working copy. See this in Figure 2.1.

Client

Server REPOSITORY

REPOSITORY REPOSITORY REPOSITORY

WORKING COPY WORKING COPY WORKING COPY

co
m

m
it

p
u

sh

p
u

ll

co
m

m
it

co
m

m
it

u
p

d
ate

u
p

d
ate

u
p

d
ate

Figure 2.1: Distributed Version Control System3

There can be branches, means different changes of the same file. Each branch is
represented by a pointer on the last committed file version. With only one branch
the pointer points to the last commit and this branch is named master. Developer
can create multiple branches, for example to create a version of the project that is
used in production and a new branch that is used for developing and testing. The

2https://git-scm.com
3https://www.geeksforgeeks.org/version-control-systems/

https://git-scm.com
https://www.geeksforgeeks.org/version-control-systems/

8 2. Background

developer can change the branch and merge pull request branches for example when
new features should be added in the development branch to the production branch.

When a new group of developer want to add features to a existing repository then
they can fork a repository. This create a new copy of the repository for the new
group, were they can add features that they want. Later they can choose to pull with
a pull request individual feature to the original repository or let it be a standalone
repository.

2.4 Artifact Sharing

Software artifacts are every thing that isn’t the code. This includes according to
techtarget4:

� Code related artifacts that act as foundation of the software and tests such as
compiled code, setup scripts, test suits and the logs of this test.

� Project management artifacts that ensure to fulfill the functionality such as
minimum required standards, benchmarks, project vision statements, roadmaps,
change logs, scope management plans and quality plans.

� Documentation artifacts that keep track of relevant documents such as dia-
grams, end-user agreements, internal documentation or written guides.

With the ever increasing amount of data and software products, it has become more
and more important to improve the software development process and keep up with
the times. This is exactly why artifact sharing has become more and more im-
portant, as it simplifies the software-evolution process and makes it more efficient
by making it more structured and traceable. First of all, the creation of artifacts
requires additional time, which can be recovered and improved by the increased
traceability and thus reduced resources (manpower and time). It is in the interest
of all organizations and researchers to share artifacts so that everyone in the orga-
nization can work with them and researchers to find more efficient ways to create
and share them.

4https://www.techtarget.com/searchsoftwarequality/definition/artifact-software-development

https://www.techtarget.com/searchsoftwarequality/definition/artifact-software-development

3. Methodology

In this chapter of this work we describe our explained research questions and the
methodology we used to address these. We display the steps of our methodology in
Figure 3.1.

124 potential papers

41 dataset papers (IC2-1)

43 dataset papers

324 potential papers

23 uses papers (IC2-2)

43 dataset papers (IC2-1)
112 uses papers (IC2-2)
24 problems papers (IC2-3)

202 papers

perform manual search
MSR 2017-2021

challenge and data-showcase tracks

perform forward snowballing
Google Scholar Nov/Dec 2022

10 most cited papers of each paper

apply selection criteria

synthesize papers

add GitHubTorrent papers

apply selection criteria

200 papers

remove duplicates

extract data

analyze data

Figure 3.1: Overview of our methodology.

10 3. Methodology

3.1 Research Questions

While artifact sharing has become a widely established practice in research and is
actively investigated (cf. Chapter 7), there are still many challenges associated to
it. A notable challenge is how datasets handle the involvement of VCS information
about software evolution and their developers. This topics had rarely be studied
and there exist several challenges like copyrighting, anonymity, ethics, or feasible
data storing. Our goal in this study is to shed light into current practices as well as
challenges of sharing software-evolution datasets.

For this intended purpose we have developed 3 research questions (RQ):

RQ.1 What are the practices of sharing software-evolution datasets?

With this first RQ, we aim to discover datasets that are shared recently at a
high-quality venue (i.e. dataset paper that where accepted and have thus gone
through a peer review). With this purpose in mind, we decided to conduct a
manual search through five years of Mining Software Repositories Conference
(MSR) (cf. Section 3.2). Instead of using a survey to research what is claimed
to be done, we performed a literature analysis of actually published datasets
to know what is actually done. We want to contribute an overview of current
practices for sharing software-evolution datasets, by analyzing the properties
(e.g., storage format, size, where published, types of data) of these datasets.

RQ.2 What are the originally intended and actually performed use cases for
software-evolution datasets?

In this second RQ, we aim to discover the sharing researcher’s specified use
cases of their software-evolution datasets and compare them to the use cases
that are actually used by other researchers. For this purpose, we extended our
literature search with a snowballing phase to identify additional papers that
(try to) use one of the datasets we collected before (cf. Section 3.2). We want
to contribute an overview of typical use cases for software-evolution datasets
and show to what extent the sharing researchers can anticipate in advance for
what analyses their datasets may be used for.

RQ.3 What challenges have researchers experienced with sharing and using software-
evolution datasets?

In the last RQ we aim to link the different challenges researchers report on
sharing as well as using software-evolution datasets. For this purpose, we an-
alyzed our two datasets from the literature search and the snowballing using
open-coding and open-card sorting to identify common topics. That mean
we classify significant statements and then we group them into different cate-
gories. We want to contribute an overview of typical challenges of publishing
software-evolution datasets and what concerns should be taken into account
for new datasets.

These three RQs provide the context for the results we aim to achieve with our
literature review (cf. Chapter 5). We then proceed to discuss these results in
combination (cf. Chapter 6) to contribute a detailed understanding of practices,
challenges, and recommendations connected to sharing software-evolution datasets.

3.2. Literature Search 11

3.2 Literature Search

To identify relevant papers for answering our RQs, we performed a two-step process
based on guidelines and recommendations for searching papers for literature reviews
and mapping studies in software engineering [36, 141, 158, 159, 167, 298, 344].

First, we performed a manual search through the mining-challenge and dataset tracks
of the MSR, which are dedicated tracks at a high-quality conference for publishing
(particularly software-evolution) datasets and solving challenges associated to them.

Second, we performed a snowballing search on all relevant papers from MSR. Thus,
we extended our analysis of the research community and collected particularly pub-
lications that used the software-evolution datasets we identified in the first step.
Next, we describe our selection criteria before explaining these two steps of our
search in more detail.

3.2.1 Selection Criteria

To select feasible papers, we defined three inclusion criteria (ICs):

IC1 The paper is written in English.

IC2 The paper (non-exclusive OR)

IC2-1 shares a software-evolution dataset (e.g., version-control data, issues,
pull requests); or

IC2-2 uses a software-evolution dataset and does not just mention it, for in-
stance, in the related work; or

IC2-3 describes or analyzes why software-evolution datasets could not be reused.

We remark that we also considered non-peer-reviewed papers (e.g., master theses,
technical reports), since these are often longer and comprise more technical details.
As a consequence, such papers helped us elicit problems of using software-evolution
datasets that are often omitted in space-restricted peer-reviewed papers. Regarding
IC2, we had to identify whether a publication shares a software-evolution dataset
(IC2-1); uses such a dataset, for instance, to evaluate a new technique (IC2-2); or
analyzes the problems of using a dataset, for example, by attempting to reuse it or
comparing datasets (IC2-3). Note that sharing in this context can also mean that an
existing dataset has been modified and reshared, in which case a publication would
fulfill both IC2-1 and IC2-2. We elicited papers fulfilling IC2-3 to ensure that we do
not only capture finally successful attempts of reusing a dataset, but also challenges
(with the dataset) that prevented other researchers from that reuse.

12 3. Methodology

3.2.2 Manual Literature Search

As our first step, we analyzed papers published at the MSR mining-challenge and
dataset tracks. MSR is being one of the premier venues for research on software-
evolution and sharing corresponding datasets. MSR is ranked A in the CORE1

(Computing Research & Education) ranking since 2018 and the following years.
The conference is only one rank under a flagship conference, hence it is an excellent
conference and that is highly respected in the discipline area. We decided to perform
a manual search through MSR, because

1. MSR has such dedicated tracks, in contrast to other flagship software-engineering
venues (e.g., International Conference on Software Engineering, International
Conference on Automated Software Engineering, Joint European Software En-
gineering Conference and Foundations on Software Engineering);

2. the primary topics of MSR relate to software-evolution data, which is why
we expect high levels of expertise, quality, and best practices when sharing
software-evolution datasets; and

3. a manual search through dedicated MSR tracks promises a high ratio of rel-
evant and high-quality papers, in contrast to an automated search that faces
technical problems, is hard to replicate, and yields many irrelevant or low-
quality publications.

Both tracks we considered involve papers that share software-evolution datasets and
the challenge track also involves papers reusing these datasets (i.e., solutions tackling
the proposed challenge). As a consequence, we argue that MSR provides an ideal
starting point for eliciting papers that are relevant to address our RQs, essentially
following a similar search strategy as Gold and Krinke [90, 92] to focus our literature
search and avoid the problems of automated searches (e.g., replicability, technical
problems).

To identify relevant papers, we manually inspected the MSR entries in dblp.2 Pre-
cisely, we analyzed papers from 2017–2021, which we considered a feasible time span,
covering current practices (compared to older papers) while also providing time for
datasets to be reused (compared to newer papers from 2022 or 2023). We then iden-
tified all papers that are part of either the dataset or mining-challenge (proposal
and solution) tracks.

Unfortunately, the naming in dblp is inconsistent with these track names, for in-
stance, in 2019 the dataset-track papers are listed under the publisher-provided
categories “representations for mining” and “large-scale mining.” To handle such in-
consistencies, we verified that we identified the right and all papers of these tracks
against the MSR conference website of each respective year.

Of the 124 papers in these five years and two tracks, we considered 64 relevant
according to our ICs (i.e., 41 papers based on IC2-1 and 23 according to IC2-2).

3.2. Literature Search 13

Year Track
Papers

all Datasets (IC2-1) Uses (IC2-2)

ds 7 4 0
2017

mc 15 1 13

ds 15 9 0
2018

mc 14 0 0

ds 11 2 0
2019

mc 15 0 0

ds 19 14 0
2020

mc 4 1 2

ds 16 10 0
2021

mc1 8 0 8

Total 124 41 23

ds: data showcase – mc: mining challenge
1 Note that the challenge case of this year [150] had already been published as

a data showcase at MSR 2020, and thus is included in our dataset.

Table 3.1: Number of papers we manually elicited from MSR.

We show an overview of the number of papers we included for each year and track
in Table 3.1.

As we can see, focusing on the two MSR tracks yielded the rather high ratio (51.61%)
of relevant papers we hoped for, drastically facilitating our search compared to
an automated one. Moreover, it was easier to identify papers that did not fulfill
our ICs, for instance, the challenge cases (and consequent solutions) of MSR 2018
(developer activities in IDEs [265]) and 2019 (SOTorrent [19]) did not build on
software-evolution datasets. During an exploratory analysis of the papers, we noted
that many papers refer and sometimes use parts of the GHTorrent dataset [99, 101].
Since this dataset has been widely used in software-engineering research, we decided
to add the two papers relating to it into our analysis, even though these papers do
not fulfill our ICs. So, we ended up with a total of 126 papers, 43 of which share a
software-evolution dataset.

3.2.3 Snowballing

In November and December 2022, we performed a forwards snowballing using Google
Scholar to extend our dataset. Snowballing is a technique to increase a pool of
elements with further elements starting from previous ones. Particularly, we aimed
to identify more papers that use one of the shared datasets and that report on the
challenges of doing so. To limit the effort of this process, we elicited for each of the
43 dataset papers we collected the ten most cited papers at that point in time. Since
not all datasets have been cited at least ten times, we ended up with 324 snowballed
papers.

1https://www.core.edu.au/conference-portal
2https://dblp.org/db/conf/msr/index.html

https://www.core.edu.au/conference-portal
https://dblp.org/db/conf/msr/index.html

14 3. Methodology

We then checked whether these ten publications fulfill our ICs, particularly whether
they use (IC2-2) and potentially re-share (IC2-1) a dataset or analyze problems of
using the dataset (IC2-3). After this step, we ended up with 136 new papers, 112
that use a dataset and 24 that do not use a dataset but analyze or report problems
that prevent such a use. So, after both searches, we considered 448 papers, of which
we included 200 as relevant to answer our RQs (44.64%).

3.3 Data Extraction and Analysis

We used a spreadsheet to collect all papers and their bibliographic information (e.g.,
authors, publication year, title, and venue). Then, we performed an open-coding
process in which the first author (alone to ensure consistency) extracted relevant
statements and data from each paper into individual text documents.

Based on our RQs, we defined the following data as relevant:

� A non-exclusive categorization for each paper, namely if it shares a software-
evolution dataset (IC2-1), uses such a dataset (IC2-2), or is relevant due to
analyzing problems of such datasets (IC2-3).

� The dataset itself and its properties, for which we also studied the actual
dataset (RQ.1):

– The name of the dataset.

– The types of data included in the dataset (e.g., repository metadata,
developer behavior).

– The platform where it has been shared (e.g., Zenodo, GitHub).

– The storage format and potentially supported queries (e.g., relational
database, csv files).

– The size of the dataset.

� The use cases proposed (when sharing) or researched (when using) for a
dataset (RQ.2).

� The problems of sharing or using a dataset as reported by the authors of a
paper (RQ.3).

After extracting this data, we performed an open card-sorting-like process [376] to
triangulate common themes from the extracted data to answer our RQs.

During this process, we revisited the individual papers and datasets to check the
correctness and level of detail of the data extraction. After agreeing on the final
themes, we added these into our spreadsheet to complete our dataset.

4. Data

In this chapter, we present the raw/exact data in order to be able to assign accurate
values to the datasets. The synthesis of the data is presented in the Chapter 5. In
the following sections we give for every section the needed data to answer the 3 RQ.

In the Section 4.1 we collected an overview of the datasets and their characteristics
to answer RQ.1. In the Section 4.2 we collect data to answer RQ.2. Therefor
we identified the proposed use cases of the dataset researchers and then the real
world use cases of the snowballed publications. In the Section 4.3 we identified the
possible problems that the researcher have predicted and the actual problems in the
snowballed publication to answer RQ.3.

4.1 Dataset Characteristics

In this section we describe the dataset and their characteristics. There are 41
datasets and 43 papers that describe them. Two datasets are described by 2 papers.
For each paper from the Section 3.2.2 we extracted bibliographic data, namely the
title, the authors, the publisher and the publication year. In addition we extracted
significant data for our RQ.1:

� the nickname of the title (that we will use from now on and the following
tables) and a reference to the paper in the bibliography

� the data source or sources of the dataset described in the papers

� the host and the number of cites

� the data format of the data that it is published

� quantitative data of the dataset

In addition we extracted the availability of every dataset.

In the table (cf. Table 4.1) are the results of the work:

Title Source Host, Cites Data Format Quantity
GE526
[323]

Git CLI,
GitHub

osf.io, 0 � .csv � 526 repositories
� metadata, 582.079 commits,

20.138 pull requests, 30.287 is-
sues reports and 2.111 releases

Qscored
[300]

GitHub zenodo.org,
2

� PostgreSQL
database

� 86.652 repositories

16 4. Data

Title Source Host, Cites Data Format Quantity
Duets
[72]

GitHub github.com,
3

� folder structure
with .json, .xml,
.log

� has dataset,
project and
commits

� 395 Libraries
� 2.874 Clients

Wonderless
[76]

GitHub zenodo.org,
3

� .csv � 1.877 repositories

Andror2
[340]

GitHub zenodo.org,
3

� folder struc-
ture (with
information to
reproduce as
metadata, apk,
scripts, code and
issues

� has bug reports
as .html

� 90 manually reproduced bug re-
ports

Quantifying
[66]

GitHub zenodo.org,
5

� MongoDB data
dump

� GitHub projects 3.000
� Commits 3.948.945
� Commit Comments 41.099
� Issues 819.031
� Issue Comments 1.898.101
� Issue Events 2.300.490
� Contributors 62.597
� Lines of Code Analyzed

5.216.361.494
� database size 125GB (19.8GB

compressed)

JTeC [49] GitHub zenodo.org,
3

� .csv � JTeC (Java Test Classes), pro-
vides 2,5M+ test classes col-
lected from a set of 31K+
projects

Android
Compass
[226]

Git,
GitHub

zenodo.org,
4

� .csv � 80.324 individual single-line
code changes of Android com-
patibility checks and their
respective meta data, which we
collected from 1.394 projects of
the F-Droid catalog

Denchmark
[155]

GitHub github.com,
4

� .xlsx � 193 Project

Andromeda
[237]

Ansible
Galaxy,
GitHub

figshare.com,
3

� .yaml � Andromeda, a dataset consist-
ing of four parts:

� Metadata 140K entities spread
across seven entity types

� Git commit and tag metadata
from more than 25K repositories
containing roles

� Structural models for over 125K
role versions

� Distilled changes between struc-
tural model versions, total-
ing more than 800K concrete
changes categorized into 41
change types

4.1. Dataset Characteristics 17

Title Source Host, Cites Data Format Quantity
Mixed
Graph-
Relational
[11]

GitHub,
Jira

zenodo.org,
4

� MySQL
database

� Neo4J graphs

� 20 open source projects

Linux
Kernel
[351]

Linux
kernel
mailing
list, Git

zenodo.org,
7

� MySQL 5.7
dump

� Patch: 666.550
� Author: 9.243
� Patch linked to commits:

139.664
� Comment to patch: 1.208.320
� Patch set: 136.139

Enterprise-
Driven
[308]

[101] zenodo.org,
7

� 2 txt files � 17.264 record tab-separated

Shoulders
of Giants
[365]

[103],[99] zenodo.org,
5

� .csv
� .SQL

� 11.230 projects comprising of
3.347.937 pull requests

� 96 features
LogChunks
[35]

Travis,[101] zenodo.org,
6

� .xml
� .csv

� 797 annotated Travis CI build
logs from 80 GitHub reposito-
ries

20-MAD
[48]

Apache’s
list of Git
reposi-
tories,
Apache’s
Jira

osf.io, 6 � Apache Parquet
files(column-
oriented data file
format)

� 765 projects, 3.4M commits,
2.3M issues, and 17.3M issue
comments

Many
Types4Py
[217]

GitHub zenodo.org,
7

� zip file
� .json for Python

projects
� with projects’

URL and their
latest commit
hash an dupli-
cate files in the
dataset

� .csv list of files
and their corre-
sponding set

� 5.382 Python projects with
more than 869K type annota-
tions

Software
evolution
[352]

Subversion
(SVN),
later Git,
GitLab

opendata.
soccerlab.
polymtl.ca,
8

� .Xsl/.xlsx � 6 projects

SHGD
[260]

GitHub,
GitLab,
Debian,
and PyP

zenodo.org,
9

� same as [259] � same as [259]

Dockerfiles
[127]

GitHub zenodo.org,
11

� Abstract Syntax
Trees (ASTs)
with .json

� 178.000 unique Dockerfiles with
structured representations

Andro
ZooOpen
[187]

GitHub,
[5]

knowledgezoo
.xyz, 17

� knowledge graph
(announced by
Google in May
2012)

� 46.521 app repositories

18 4. Data

Title Source Host, Cites Data Format Quantity
Git
Repos-
itories
[219]

[101, 197] github.com,
14

� ultimateMap2.s
(gzipped
semicolon-
separated list of
repositories

� ghForks.gz pro-
duce each forked
repository, its ul-
timate parent

� Set the megacluster of [197]
from 14 mio repositories to un-
der 400k

Repository
Dedupli-
cation
[309]

[101] zenodo.org,
15

� 2 txt files with
tab-separated
records

� 10.649.348 records mapping a
duplicated source project to a
definitive target project

� forks clones noise names is a
50.324.363 member superset of
the source projects, containing
also projects that were excluded
from the mapping as noise.s

Semantic
Changes
[372]

GitHub github.com,
16

� .yaml � 81 semantic change data from 8
open source Java projects

50K-C
[206]

[99] mondego.ics.
uci.edu, 21

� 3 .tgz as projects
(source code),
.jar (depen-
dencies),
buildresults
(metadata) and
mapping .txt

� 50.000 compilable Java projects

Sampling
Projects
[52]

GitHub zenodo.org,
23

� API: .json, .xml,
.csv

� data dump: .csv,
.sql

� 25 characteristics (e.g., number
of commits, license, etc.) of
735,669 repositories

OCL ex-
pressions
[233]

GitHub github.com,
24

� original meta-
models and the
generated ab-
stract syntax
trees

� 9.188 OCL expressions originat-
ing from 504 EMF meta-models
in 245 systematically selected
GitHub repositories

Duplicate
Pull-
Requests
[359]

GitHub github.com,
26

� MySQL
database dump

� 2.323 pairs of duplicate Pull Re-
quests, collected from 26 popu-
lar open source projects

Identity
Reso-
lution
[84]

[197] zenodo.org,
25

� compressed .csv
with ‘;’ as the
separator for du-
plication and sec-
ond .csv for char-
acteristic

� 5.427.024 commit authors

CROP
[242]

Gerrit(git) github.io,
30

� three main di-
rectories: Meta-
data (.csv), Git
Repositories and
Discussion (.txt)

� 8 repositories
� 48.975 reviews and 112.617

patches

4.1. Dataset Characteristics 19

Title Source Host, Cites Data Format Quantity
Structured
inf [293]

GitHub,
Google
Big-
Query,
Docker-
Hub

github.com,
29

� PostgreSQL
database archive

� over 100.000 unique Dockerfiles
in over 15.000 GitHub projects

Git
Archive
[204]

[99] github.com,
34

� Siva files with
Git repositories

� Index file (.csy)

� 182.014 top-bookmarked Git
repositories

A
C C++
Code
Vuly [78]

CVE
database,
GitHub

github.com,
42

� .csv � 3.754 code vulnerabilities span-
ning 91 different vulnerability
types are extracted from 348
Github projects

SHG
[259]

GitHub,
Git-
Lab.com,
Debian,
and PyP

zenodo.org,
39

� encoded in the
dataset as a
set of relational
tables—roughly,
one for each
node type with
different sources

� PostgreSQL
database dump
in CSV format

� Apache Parquet
files

� public dataset on
Amazon Athena

� spans more than 5 billion unique
source code files

� one billion unique commits,
coming from more than 80 mil-
lion software projects

UML
models
[277]

[101] oss.models-
db.com,
48

� 2 .csv (UMLFiles
List, Project
FileTypes) as re-
lational database

� over 93.000 UML diagrams from
over 24,000 projects

VulinOSS
[88]

nvd, Git,
Mercu-
rial, and
Subver-
sion

github.com,
52

� Mysql database
dump

� Projects: 153
� Project versions: 23.884
� Mapped Versions: 8.694
� Number of Vulnerabilities:

17.738
� Project Versions with Testing

Code: 38.650
� Project Version employing CI:

1.538
Android
apps [86]

GitHub github.io,
55

� Neo4j graph
database

� repositories
cloned to a local
GitLab instance

� 8.431 real open-source Android
apps

World of
code [197]

GitHub,
Bit-
bucket,
GitLab,
Source-
Forge
and other
git

bitbucket.org,
62

� C database
library called
TokyoCabi-
net split in 24
(hashed)

� 5.313.256.585 blob (considered
by git to be text files)

� 1.419.161.099 commit
� 5.786.313.329 tree
� 9.518.401 tag

20 4. Data

Title Source Host, Cites Data Format Quantity
Many
SStuBs4J
[150]

[99] zenodo.org,
84

� .json, .csv � 100 Java Maven Project Bugs
� 1.000 Java Project Bugs

bugsLarge.json
� 100 Java Maven Project SStuBs

sstubs.json
� 1.000 Java Project SStuBs

sstubsLarge.json
� Top 100 Ranked Java Maven

Projects topJavaMavenPro-
jects.csv

� Ranked Java Projects topPro-
jects.csv

Bugs.jar
[284]

GitHub github.com,
129

� every bug in-
stance is in
one branch of
the GitHub
repository (tree
structure)

� 1.158 bugs and patches, drawn
from 8 large, popular open
source Java projects

Travis
Torrent
[25]

Travis
CI, [99]

travistorrent.
test-
roots.org,
175

� in-browser SQL
shell to run their
queries on our in-
frastructure

� download SQL
dumps or the
compressed data
set as a CSV
file (1.8 GB
unpacked)

� 1.300 projects
� 691,184 builds

GHTorrent
[101]

GitHub ghtorrent.org,
297

� Bit-Torrent peer-
to-peer protocol
as incremental
database

� Every month one
MongoDB data
dump

� later MySQL
as .csv file and
offline dblite
querry on web-
site

� Commits: 8.817.685
� Events: 4.512.000
� Repositories: 424.995
� Committers: 303.470

4.1. Dataset Characteristics 21

Title Source Host, Cites Data Format Quantity
The
GHTorent
[99]

GitHub ghtorrent.org,
676

� same as [101] � Events: 43.090.195
� Projects (repositories):

1.326.900
� Users: 793.855
� Project members

(repo collabs): 34.924
� Organization members

(org members):34.924
� Commits: 29.978.291
� Watchers: 7.744.61ß
� Followers: 1797.343
� Issues: 2.326.069
� Issue events: 4.085.294
� Issue comments: 2.886.006
� Pull requests: 1.144.251
� Pull request comments (pull-

req comnts): 2.228.894

Table 4.1: Characteristics of the datasets with, bibliographic data, source, host,
cites, data format and quantity

In summary the 43 papers that describe 41 datasets have many similarity like the
host as zenodo and github, but differences like the citation and quantity exist. More
detailed analyzes are shown in Section 5.1.

22 4. Data

4.2 Dataset Use Cases

For each found paper in Section 3.2.2 we identified the use cases that the researcher
have described in the paper for the datasets and sorted them to types of use cases.
The types are software evolution, quality issue detection and repair, process, study
quality, system analyse and other analyses. A more detailed description is shown in
Section 5.2.

The results are shown in Section 4.2 as below:

Title Use Cases Type Use Case
GE526
[323]

� software evolution data
� release engineering
� natural language processing for developer sen-

timent

� software evolution

Qscored
[300]

� Prediction, Maintenance Code Smells/Bugs
� Maintenance

� software evolution
� quality issue detection and

repair

Duets
[72]

� software evolution API liberties and client
� quality (test generation, changed liberties not

break clients, repair)

� software evolution
� quality issue detection and

repair

Wonderless
[76]

� software evolution Serverless application
� antipattern analysis

� software evolution
� system analyse

Andror2
[340]

� NL processing to reproduce crashes
� fault localization

� quality issue detection and
repair

Quantifying
[66]

� Behavior extraction(issue labeling and resolve
time, issue resolving as fast as possible helpful)

� software evolution

� software evolution
� process

JTeC [49] � static analysis (tests smells, pattern, code
refactoring)

� test case generation
� benchmark(Regression technics)

� software evolution
� quality issue detection and

repair
� process

Android-
Compass
[226]

� Automated Program Repair
� Benchmark

� quality issue detection and
repair

Denchmark
[155]

� locating and fixing DLSW bugs � quality issue detection and
repair

Andromeda
[237]

� analyzing the structure and evolution of role
implementations

� software evolution

Mixed
Graph-
Relational
[11]

� developer interaction
� socio-technical congruence in micro-service ar-

chitecture

� developers
� process

Linux
Kernel
[351]

� collecting, cleaning, and processing patch data � software evolution

Enterprise-
Driven
[308]

� involvement enterprises in OSS development
� OSS business model and supply, value chain

� process

Shoulders
of Giants
[365]

� collaborative environment
� software maintenance
� development process
� human factor in computing systems

� developers
� process
� quality issue detection and

repair

LogChunks
[35]

� Build analysis � quality issue detection and
repair

4.2. Dataset Use Cases 23

Title Use Cases Type Use Case
20-MAD
[48]

� natural language processing
� repository mining tasks (that need daily,

weekly developer pattern, sentiment analysis or
NLP)

� developers

Many
Types
4Py [217]

� ML-based type inference
� Learning-based code completion

� quality issue detection and
repair

Software
evolution
[352]

� quality issue detection and repair
� software evolution
� developers

� defect prediction
� analyzing software evolution
� developer activities

SHGD
[260]

� Cross-repository analysis
� Cross-origin analysis

� software evolution

Dockerfiles
[127]

� program repair
� Dockerfile analysis of software dependencies

� quality issue detection and
repair

Andro-
ZooOpen
[187]

� fixes of bugs (Android)
� energy anti-patterns and performance bottle-

necks
� security vulnerabilities, compatibility issues

and code smells
� evolution of open-source Android apps

� quality issue detection and
repair

� software evolution
� system analyse

Repositories
[219]

� community detection algorithms � software evolution
� developers

Repository
Dedupli-
cation
[309]

� repeat studies with deduplication projects � study quality

Semantic
Changes
[372]

� Semantic History Slicing
� benchmark for semantic history slicing
� dynamic feature location

� system analyse

50K-C
[206]

� studies that need mapped static source code
and runnable components

� quality issue detection and
repair

Sampling
Projects
[52]

� support researchers in sampling projects from
GitHub

� study quality

OCL ex-
pressions
[233]

� measuring frequency of OCL constructs and
called operations

� limiting a threat to validity of another study

� other analyses
� software evolution
� study quality

Duplicate
Pull-
Requests
[359]

� redundant/duplicate Pull request detection
� software evolution of duplicates
� developer activities spanning across redundant

contributions

� software evolution
� developers
� process

Identity
Reso-
lution
[84]

� identity resolution � developers

CROP
[242]

� SE research
� code review influence build, tests
� process of patch quality over submissions
� review transfer between developer

� process
� software evolution

Structured
informa-
tion [293]

� software evolution Dockerfiles
� quality (build quality quantity, documentation

connection with StackOverflow and GitHub
� build analysis

� quality issue detection and
repair

� software evolution

24 4. Data

Title Use Cases Type Use Case
Git
Archive
[204]

� statistical machine learning and natural lan-
guage processing on source code

� automatic naming suggestion , program predic-
tion , topic modeling and semantic clustering
, bug detection, and automated software tran-
spiration

� inter-project source code clone detection

� software evolution
� quality issue detection and

repair
� system analyse

A C/
C++
Code
Vulner-
abilities
[78]

� vulnerability (characteristic, code changes, de-
tection, repair)

� quality issue detection and
repair

� software evolution

SHG
[259]

� Cross-repository analysis
� Cross-origin analysis

� software evolution

UML
models
[277]

� pro and contra UML
� UML use

� other analyses

VulinOSS
[88]

� relation between bugs and CI � quality issue detection and
repair

Android
apps [86]

� ”automatically analyzing, understanding, re-
producing, localizing and fixing bugs

� quality issue detection and
repair

World of
code [197]

� Cross-ecosystem comparison studies
� Python ecosystem analysis
� Correcting Developer Identity Errors
� Repository filtering tool

� software evolution
� developers
� study quality

Many-
SStuBs4J
[150]

� bug localization (how and when)
� evaluation of program repair technique
� SSTubs common, spotted by tools, test cover

� quality issue detection and
repair

� software evolution

Bugs.jar
[284]

� benchmark suite (automated debugging,
patching, and testing)

� techniques for testing(coverage, selection, gen-
eration, anomaly detection, repair, etc.)

� bug (localization, quality, etc.)

� quality issue detection and
repair

Travis-
Torrent
[25]

� with CI:
� more quality with faster bug localization?
� fewer test regression?
� successful projects more CI runs and tests?
� Compatible with CD?
� Failed builds effect developer?
� Development models: “holy grail” or embrace

breaking and fixing

� software evolution
� quality issue detection and

repair
� developers
� process

GHTorrent
[101]

� community dynamics
� global software engineering
� distributed collaboration
� code authorship and attribution

� software evolution

The
GHTorent
[99]

� Unified developer identities
� Software ecosystems
� Network analysis
� Collaboration and promotion
� Replications of existing studies

� developers
� software evolution
� study quality

Table 4.2: Specific use cases from shared researcher about their datasets and group-
ing in types

4.2. Dataset Use Cases 25

Then as described in Section 3.2.3 we snowballed on the base of the datasets. There
we differentiated between publication that applied the dataset on problems and
publications that not applied the dataset on problems (e.g. where the dataset is
only mentioned in the introduction or related work). After that we picked the 135
publication (112 from Section 3.2.3 and 23 from Section 3.2.2) that are applied
and analyzed their use cases. There are datasets that have no publications that
applied them in our 10 snowballed publications, that are GE526 [323], Qscored [300],
Andror2 [340], Quantifying [66], Shoulders of Giants [365], LogChunks [35], Software
evolution [352], Identity Resolution [84], Structured information [293], UML models
[277] and VulinOSS [88].

In the Table 4.3 there is shown the title of the dataset, the publications that applied
the dataset, the related use cases and their type of use case. The type of the
use case is determined by the best matching type determined by us, for example
ManySStuBs4J [150] has the publication, Mea culpa: How developers fix their own
simple bugs differently from other developers [374], that the quality and developers
addressed, but we decided it treats the side developer more. The publications that
use the software-evolution datasets as a collection of subject systems, for instance,
for evaluating techniques for scheduling in serverless software systems, we marked
them as “subject systems in study unrelated to software evolution” for short utse.

The use cases for the publications are shown in the following:

Dataset Used
by

Use Case Type Use Case

Duets [72] [329] � visualizing library dependencies for change
impact analysis

� system analyse

Wonderless
[76]

[363] � topology-based scheduling � utse

[55] � topology-based scheduling � utse

JTeC [49] [336] � relation of test automation maturity with
product quality

� process

Android-
Compass
[226]

[228] � program repair, misuse detection � quality issue detection
and repair

[188] � benchmark on bug localization � quality issue detection
and repair

Denchmark
[155]

[156] � bug localization � quality issue detection
and repair

Andromeda
[237]

[238] � empirical study on semantic versioning � system analyse

[236] � Smelly Variables: Detection, Prevalence, and
Lifetime

� quality issue detection
and repair

[235] � code smell prevalence � utse

Mixed
Graph-
Relational
[11]

[12] � evolution of developer communities � developers

Linux Ker-
nel [351]

[313] � developer communication during patch sub-
mitting

� process

Enterprise-
Driven
[308]

[87] � relation of software reuse and security � utse

[8] � analysis of security activities in continuous in-
tegration pipelines

� process

[342] � cryptographic misuses � quality issue detection
and repair

26 4. Data

Dataset Used
by

Use Case Type Use Case

[330] � software vulnerability, benchmark � quality issue detection
and repair

20-MAD
[48]

[170] � Benchmark on identifying technical debt
(change dependent)

� quality issue detection
and repair

[336] � Empirical study on the impact of test automa-
tion on continuous integration activities

� quality issue detection
and repair

[211] � new technique for link recovery between issues
and commits

� quality issue detection
and repair

Many
Types 4Py
[217]

[252] � type inference � utse

[180] � knowledge graph creation � utse

[107] � evaluation of a deep learning-based type infer-
ence system

� utse

[194] � evaluation of a unit test creation tool with re-
gression testing

� process

SHGD
[260]

[29] � analyzing software evolution (Cross-platform
forking)

� software evolution

[9] � analyzing software security awareness (how
fast developers identify/discuss security prob-
lems)

� developers

[257] � improving software-evolution dataset analyses
(deduplication, server side tool, graph com-
pression)

� improve dataset

[337] � data analysis performance � utse

[338] � data analysis performance � utse

Dockerfiles
[127]

[128] � program repair � quality issue detection
and repair

[264] � misconfiguration localization and repair and
benchmark for misconfiguration localization

� quality issue detection
and repair

AndroZoo-
Open [187]

[268] � malicious software detection � quality issue detection
and repair

[267] � static analyze detect malicious software � quality issue detection
and repair

[319] � malware detection � quality issue detection
and repair

[358] � subject systems not related to software evolu-
tion (test script documentation)

� utse

Git Reposi-
tories [219]

[309] � creating a new software-evolution dataset � new dataset

Repository
Deduplica-
tion [309]

[356] � developer collaboration and awarding of con-
tributions

� developers

[308] � creating a new software-evolution dataset � new dataset

[310] � empirical study of software evolution (lifespan
of fine grained changes)

� software evolution

[196] � developer identification � developers

Semantic
Changes
[372]

[176] � feature location � system analyse

[346] � eliciting software-change patterns to manage
software evolution

� software evolution

[373] � semantic slicing � process

[177] � semantic slicing � process

50K-C [206] [286] � variable naming � utse

[152] � benchmarking AI � utse

4.2. Dataset Use Cases 27

Dataset Used
by

Use Case Type Use Case

Sampling
Projects
[52]

[46] � code completion � utse

[262] � software licensing � utse

[96] � detection of bots in software evolution � bot detection
[53] � create other dataset � new dataset
[333] � programming language usage � process

[56] � empirical analysis of continuous integration
tooling

� quality issue detection
and repair

[106] � coding style � utse

[45] � improving regression testing � process

[234] � program repair � quality issue detection
and repair

OCL
expressions
[233]

[294] � analyze of model-driven artefacts � utse

[253] � Optical Character Recognition � utse

[214] � difference industrial and open source OCL � utse

Duplicate
Pull-
Requests
[359]

[274] � Identifying development redundancy(training
and test dataset)

� process

[178] � Identifying development redundancy � process

[335] � Identifying development redundancy(training
and test dataset)

� process

[179] � Identifying development redundancy(new ap-
proaches and evaluation on dataset)

� process

[155] � creating another software-evolution dataset � new dataset

CROP
[242]

[245] � empirical study on software evolution - refac-
toring in code reviews

� process

[243] � empirical study on software evolution - impact
of code reviews on design changes

� process

[320] � empirical study on software evolution - pre-
dicting design impactful changes

� process

[249] � empirical study on software evolution - code
smells

� quality issue detection
and repair

[244] � empirical study on software evolution - rebas-
ing in code reviews

� process

[321] � empirical study on software evolution - code
review on software degradation

� process

Git Archive
[204]

[95] � analyze code clone and license violations � utse

[74] � transformer models � utse
[205] � identifier identification � utse

A C/C++
Code Vul-
nerabilities
[78]

[175] � vulnerability detection � utse

[42] � vulnerability detection � utse

[232] � vulnerability injection � utse

[273] � program repair � quality issue detection
and repair

[43] � creating a new software-evolution dataset � new dataset

SHG [259] [361] � impact of gender on code contributions � developers

[282] � analyzing code provenance � software evolution

[33] � improving techniques/guidelines for software
evolution analysis

� improve dataset

[281] � analyzing code provenance � software evolution

[82] � improving techniques/guidelines for software
evolution analysis

� improve dataset

28 4. Data

Dataset Used
by

Use Case Type Use Case

Android
apps [86]

[89] � empirical study of quality change when intro-
ducing new programming language

� process

[287] � empirical study of versioning of APIs � software evolution

[224] � subject systems not on software evolution
(API recommender)

� utse

World of
code [197]

[61] � bot identification � bot detection
[84] � identity resolution � developers

[62] � bot identification � bot detection
[57] � evolution of developer communities � developers

[219] � empirical study of repository relationships � software evolution

[60] � predictor of pull request acceptance � software evolution

Many-
SStuBs4J
[150]

[220] � empirical study on the evolution of bugs � quality issue detection
and repair

[169] � study on the impact of CI on bugs � quality issue detection
and repair

[207] � program repair � quality issue detection
and repair

[199] � program repair � quality issue detection
and repair

[374] � difference if bug fixed by orginal and other
developer

� developers

[149] � occurrences of bugs in Python � quality issue detection
and repair

[254] � occurrences of bugs in test code � quality issue detection
and repair

[138] � vulnerability detection � utse

[314] � program repair � quality issue detection
and repair

[151] � language models � utse

[345] � program repair � quality issue detection
and repair

[208] � AI, as training set � utse

Bugs.jar
[284]

[174] � program repair � quality issue detection
and repair

[71] � program repair � quality issue detection
and repair

[200] � creating a new software-evolution dataset � utse

[285] � program repair � quality issue detection
and repair

Travis-
Torrent
[25]

[239] � studying integration testing � quality issue detection
and repair

[225] � predicting testing efforts/time � process

[306] � sentiment analysis for CI � system analyse

[140] � CI build failures � quality issue detection
and repair

[203] � development overhead of CI � process

[270] � software developer/development � developers

[241] � non functional requirements and CI � process

[303] � social attributes for commit success � developers

[31] � predicting testing efforts/time � process

4.2. Dataset Use Cases 29

Dataset Used
by

Use Case Type Use Case

[110] � developer attraction and retention due to CI � developers

[85] � software development � software evolution

[223] � CI integration errors � quality issue detection
and repair

[201] � predicting defects � quality issue detection
and repair

[24] � CI build failures � quality issue detection
and repair

[362] � software development usage analyse tools � software evolution

[328] � program repair benchmark � quality issue detection
and repair

GHTorrent
[101]

[145] � perils and promise of GitHub mining � improve dataset

[100] � study development processes � process

[2] � code summarization � utse
[325] � study development processes � process

The
GHTorent
[99]

[145] � perils and promise of GitHub mining � improve dataset

[100] � study of development process � process

[327] � quality and continuous integration � quality issue detection
and repair

[105] � study of development process � process

[326] � gender diversity in developer communities � developers

[133] � understanding CI practices � quality issue detection
and repair

[221] � improve software evolution analytics � software evolution

[111] � sentiment analysis � system analyse

Table 4.3: Specific use cases from real world publications that applied the dataset
and grouping in types

30 4. Data

4.3 Problems

In this part we present the problems/challenges of the analyzed datasets. First we
identify the predicted problems of the datasets and then we collect the real-world
problems of the datasets and mark connections between them.

At first we identified in Table 4.4 the limitations or problems that the authors
of the datasets describe. For each paper of the datasets, we ordered the paper
to the predicted problems and issues that the dataset may have according to the
researchers. Entries with null mean that no specific problems were named.

Title Predicted Issues
GE526
[323]

� game engines repositories that are not in this topic but game engines are not
represented

� quality dataset obtained only from stargazers count and fork count metrics
� likelihood of unintentional noisy data

Qscored
[300]

� repositories only written in Java and C#

Duets
[72]

� null

Wonderless
[76]

� Wonderless is restricted to the applications developed with Serverless Framework,
not every developer uses a framework to program Serverless applications

� possibility of uninteresting cases, including toy software and stub applications

Andror2
[340]

� null

Quantifying
[66]

� null

JTeC [49] � null
Android-
Compass
[226]

� null

Denchmark
[155]

� some bugs exist without test files in the fixing commit and some bug reports are
linked to changed test files (35 %)

Andromeda
[237]

� auxiliary files or other types of content for the roles(tests, plugin in Python) are
not captured by the models we build

� other IaC languages with similar ecosystems as Galaxy such as Puppet’s Pup-
petForge3, and Chef’s Supermarket4 exist and can be used to construct similar
datasets

Mixed
Graph-
Relational
[11]

� Mapping between Jira and GitHub component not absolutely certain
� other communication channel used such as mailing list

Linux
Kernel
[351]

� Recognizing the multiple identities of a single author and recovering relationships
between sub-patches in a patch set can never be accomplished perfectly

Enterprise-
Driven
[308]

� null

Shoulders
of Giants
[365]

� builds on decade of research on pull based development and inherit limitation of
the feature they used

� data sources have different level of abstraction, that can lead to differences in the
outcome for more representation of the dataset there can be code-related metrics
which otherwise are found not important for decision making and less explored
or metrics that cannot be studied objectively

4.3. Problems 31

Title Predicted Issues
LogChunks
[35]

� bigger dataset
� Build failure cause add
� more metadata

20-MAD
[48]

� timestamps are incomplete, there are no timezone information
� identity merging performed rudimentary
� NLoN’s prediction model hasn’t been retrained with any Apache data

Many-
Types-
4Py [217]

� Cannot parse Python 2

Software
evolution
[352]

� only use medium-sized, Java-based, three layered architecture, web-based, infor-
mation systems

� only individual task edited, work not useful for collaborative environments
� tasks resemble backlog items in a single sprint/iteration within the Agile context
� use 14 years old technology
� tools are not available anymore
� no explicit corrective tasks
� not straightforward, which commit counts to which task
� not all the commit logs were associated with an issue

SHGD
[260]

� not reproducible because data source started of 2015
� cannot claim full coverage of the entire software commons and several forges and

package repositories are still missing from it

Dockerfiles
[127]

� challenges and techniques are, in theory, applicable to a wide range of DevOps
artifacts, the dataset consists solely of Dockerfiles

� single source: GitHub
� possible that other DevOps artifacts are not as amenable to the ideas we present

Andro-
ZooOpen
[187]

� other open-source Android app repositories that do not come with the Android
topic and thereby overlooked by our approach

� open-source Android apps may not only be hosted on GitHub

Git
Repos-
itories
[219]

� not investigating finer types of relationships, for example, light forks done for a
single pull request vs hard forks where projects evolve independently or all shades
of grey in between

� accuracy of our approach is not easy to establish

Repository
Dedupli-
cation
[309]

� null

Semantic
Changes
[372]

� extending the dataset require that the projects have well-organized version con-
trolled histories (so that there is a clear way of identifying a particular function-
ality) and have corresponding test cases

� can be extended to include project histories containing known bugs and failed
test cases that manifest the buggy behaviors

50K-C
[206]

� null

Sampling
Projects
[52]

� SEART GitHub search engine (seart-ghs) does not offer an overview of the historic
evolution of said characteristics

OCL ex-
pressions
[233]

� limitations of the search functionality of GitHub
� only files smaller than 384 KB are searchable
� GitHub search covers only repositories with fewer than 500,000 files

Duplicate
Pull-
Requests
[359]

� Only small size
� Rules maybe incomplete

32 4. Data

Title Predicted Issues
Identity
Reso-
lution
[84]

� author has no first last name only alias
� method not clear to work with foreigner names
� blank names make method inefficient
� ID that are shared by many people(organizational IDs or admin IDs)
� size of test sample is small(check of correctness)

CROP
[242]

� null

Structured
informa-
tion [293]

� null

Git
Archive
[204]

� not up to date because of GHTorrent
� Selecting repositories based on the number of stargazers is arguable and may

introduce bias
A C/
C++
Code
Vulner-
ability
[78]

� rows related to the Chrome project miss out some descriptive information of some
CVEs, e.g., the CVE IDs, CWE IDs, etc

SHG
[259]

� not reproducible because data source get from start of 2015
� cannot claim full coverage of the entire software commons, and several forges and

package repositories are still missing from it

UML
models
[277]

� Don’t cover all possible file types for UML
� GitHub is dynamic so repository may have been deleted
� Filter not desired project out e.g. student projects files identified as UML are

false positives

VulinOSS
[88]

� threat to the internal validity of our dataset construction could be the limited
analysis that our worker processes perform to identify test code

Android
apps [86]

� mined Google Play only in researcher region
� only mined GitHub
� Resorting to a heuristic approach for matching Google Play listings to GitHub

repositories entails the risk of mismatches

World of
code [197]

� only used git and no older version control systems
� no guarantee it closely approximates the entirety of public version control systems

as the project discovery procedure is only an approximation
� Reproducibility may pose an issue in a constantly updated database it is a concern

how reliably clean, correct, integrate, and augment the collected data are, because
of the

� tradeof with the performance of the analytic layer

Many-
SStuBs4J
[150]

� possible to extract a pair of aligned statements that are unrelated
� not useful for evaluating whether repair systems are good at fixing larger bugs
� restricted to Java but could be replicated for other languages by using a parser

and creating a module that checks if an AST pair fits any of the SStuB patterns

Bugs.jar
[284]

� For automatic program repair, we needed to run test cases using JUnit APIs
� using APIs was tricky for subjects with many dependent libraries since correctly

specifying configurations, such as classpaths was considerably more difficult with
the APIs

� instrumentation was an issue for a subject such as Log4J2 due to library conflicts

Travis-
Torrent
[25]

� null

GHTorrent
[101]

� To reconstruct API schema need initial state for events that is not there
� plan to automate the generation and distribution of torrent files through RSS

feeds and scripts that will monitor those and automatically download and update
remote databases

4.3. Problems 33

Title Predicted Issues
The
GHTorent
[99]

� Data is additive and deletions are not reported
� Important entities are not timestamped
� Creates a fake user entry, when commit user can not been resolved
� Pull requests merged outside GitHub
� Issue tracking is open ended
� During the lifetime of the project, the commit entry schema changed twice, while

the watchers entity has been renamed to stargazers
� Some events may be missing (Malfunctions in the mirroring system (software or

network))

Table 4.4: Predicted challenges from the sharing researchers

In the Table 4.5 we showed the categorized problems that the datasets have in the
real-world (analyzed paper of the snowballing). Therefor we collected the problems
and grouped them to categories. This is then presented by specifying if the dataset
belongs to one of the categories.

The seven categories are:

1. Faulty or Invalid Data

To these problem count datasets that have incorrect metadata (e.g. times-
tamps).

2. Redundant Data

To these problem count datasets that use ”toy”projects such as student projects,
”example” projects such as server blueprints, not useful code/data for the user
of the dataset and forked data (most don’t want to have forked repositories in
datasets).

3. Quantity and Reliability

To these problem count datasets that have not enough ground truth or are
not representable for the problem. Most of the time it is not big enough or
respected in the community, so additional datasets or queries from the original
data source are needed for supplementation.

4. Topicality

To these problem count datasets that the researcher from the snowballing want
an updated version of but the dataset is not updated with new edition of the
dataset or a periodic update such as GHTorrent.

5. Missing data

To these problem count datasets that need for the studies that are based
on them more available attributes that can possible be useful e.g. version
information of bug reports [155].

6. Accessibility

To these problem count datasets that have complicated structures for the
dataset or high hardware challenges for researchers.

34 4. Data

7. Others

To these problem count datasets which is not one of the others e.g. the problem
of no common tool support by Semantic Changes [372]

Title 1 2 3 4 5 6 7
GE526
Qscored ✓

Duets ✓

Wonderless (✓) ✓

Andror2
Quantifying
JTeC ✓

AndroidCompass ✓ ✓

Denchmark ✓

Andromeda ✓

Mixed Graph-Relational
Linux Kernel
Enterprise-Driven ✓ ✓

Shoulders of Giants
LogChunks ✓

20-MAD ✓ ✓

ManyTypes4Py ✓ ✓ ✓

Software evolution
SHG ✓

Dockerfiles ✓ ✓

AndroZooOpen ✓

Git Repositories
Repository Deduplication ✓ ✓

Semantic Changes ✓ ✓ ✓

50K-C
Sampling Projects ✓ (✓)
OCL expressions ✓ ✓ ✓

Duplicate Pull-Requests ✓ ✓

Identity Resolution
CROP ✓

Structured information
Git Archive ✓ ✓ ✓ (✓) ✓ ✓

Code Vulnerability ✓ ✓

SHG ✓ ✓ ✓

UML models ✓

VulinOSS ✓

Android apps ✓ ✓ ✓ ✓

World of code ✓ ✓

ManySStuBs4J ✓ ✓ ✓ ✓ ✓ ✓

Bugs.jar ✓ ✓

TravisTorrent ✓ ✓ ✓ ✓ ✓

GHTorrent (✓)
The GHTorent ✓ ✓

1: Faulty or Invalid Data, 2: Redundant Data, 3: Quantity and Reliability, 4:
Topicality, 5: Missing data, 6: Accessibility, 7: Others

Table 4.5: Grouped challenges

4.3. Problems 35

It is to note that in the Software Heritage Graph Dataset, ManySStuBs4J and
TravisTorrent datasets there are more problems/challenges, this can partly be due
to the fact that there are more analyzed paper, because we analyzed the 10 paper of
the snowballing and the paper from the manual search. Furthermore the embraced
entries means, that the predicted problem is a real-world problem, that was worth
mentioning.

36 4. Data

5. Result

In this section we analyze and discuss the results for each of our research question
individually. We use the data from Chapter 4 and arrange them according to the
related research questions.

5.1 RQ.1: Dataset Sharing

For RQ.1, we are concerned with how software-evolution datasets are shared. To
this end, we investigated (cf. Section 3.3) the datasets themselves, where they are
shared with the use of the previous Chapter 4, the included data, and how they are
stored (i.e., formats, size).

5.1.1 Identified Software-Evolution Datasets

Type Datasets #

Repository
metadata

20-MAD [48], Andromeda [237], CROP [242], Dockerfiles [127], Du-
plicate Pull-Requests [359], Enterprise-Driven [308], GE526 [323], Git
Archive [204], Git Repositories [219], GHTorrent [99, 101], Linux
Kernel [351], ManyTypes4Py [217], OCL expressions [233], Quantify-
ing [66], Repository Deduplication [309], Sampling Projects [52], Seman-
tic Changes [372], Shoulders of Giants [365], Software Heritage Graph
Dataset [259, 260], Structured information [293], UML models [277],
Wonderless [76], World of code [197]

23

Software quality Andror2 [340], Bugs.jar [284], C/C++ Code Vulnerabilities [78], Dench-
mark [155], ManySStuBs4J [150], QScored [300], Software evolu-
tion [352], VulinOSS [88]

8

Human factors CROP [242], Enterprise-Driven [308], Identity Resolution [84], Linux
Kernel [351], Mixed Graph-Relational Dataset [11], Software evolu-
tion [352]

6

Testing and de-
ployment

50K-C [206], Duets [72], JTeC [49], LogChunks [35], TravisTorrent [25] 5

Mobile apps Android apps [86], AndroidCompass [226], Andror2 [340], Andro-
ZooOpen [187]

4

Table 5.1: Overview of the 41 datasets we identified and the type we assigned them
to (five datasets have two types).

In Table 5.1, we display an overview of the 41 software-evolution datasets we identi-
fied as our search criteria in Section 3.2 demonstrated. There is shown the high-level
types of datasets described further below, then the datasets that are sorted to them
and at last the count (#) of the datasets that are sorted to them. Note that two
datasets have two publications describing them, namely GHTorrent [99, 101] and
the Software Heritage Graph Dataset [259, 260]. Furthermore, we assigned five

38 5. Result

datasets [242, 308, 340, 351, 352] to two types, which is why the counts do add up
neither to the 41 datasets nor the 43 publications.

During our card sorting, we derived five high-level types of datasets:

Repository metadata refers to datasets that have collected and share typical version-
control data (e.g., commits, pull requests). While such datasets usually involve
various other types of data (e.g., software quality through bug reports or hu-
man factors through commit authors), we did not assign such datasets to
another type except if the authors enriched their dataset for or with such
other data. For instance, Yamashita et al. [352] combine software-evolution
and software-quality data, which is why we assigned their dataset to repository
metadata as well as software quality.

Software quality refers to datasets that involve data about the quality of evolving
software systems. Such datasets are enriched or narrowed down to focus on,
for instance, bugs [284], code smells [300], or code vulnerabilities [78].

Human factors refers to datasets that focus on the stakeholders of a software sys-
tem. For example, Fry et al. [84] share a dataset on which they performed
identity resolution using Git commit author identifiers.

Testing and deployment refers to datasets that are concerned with the respective
development activities. For instance, such datasets include additional data on
build logs [35] or continuous integration [25].

Mobile apps refers to datasets that collect software-evolution data related partic-
ularly to mobile apps. For example, these datasets represent collections of
Android apps [187] or commits that touch Android compatibility checks [226].

Not surprisingly, we can see that software-evolution datasets are mostly concerned
with typical repository metadata. This includes datasets that represent the entire
software-evolution data corpus, that means datasets that want to describe the to-
tality of the given data sources (i.e. GHTorrent [99, 101], Software Heritage Graph
Dataset [259, 260], Sampling Projects [52] and World of code [197]), as well as indi-
vidual datasets that represent specific branches of the corpus (e.g. duplicated data
and specific file types). Moreover, it is not surprising that various other important
software-engineering research topics have led to dedicated datasets (e.g., software
quality datasets for bug localization). Reflecting on the datasets and their types, we
argue that they seem representative for the broader research on software-evolution.

5.1. RQ.1: Dataset Sharing 39

5.1.2 Trend of published datasets

Year Count of Datasets Citations Avg. Citations
per Paper/ per

Year
2012 1 297 29.7
2013 1 676 75.11
2017 5 271 9.03
2018 9 383 8.51
2019 2 101 12.65
2020 15 253 5.62
2021 10 52 2.6
Total 43 2033 -

Table 5.2: Count of dataset and cites of every year. The average of citations per
paper and year have been calculated by dividing the number of citations by the
amount of papers in that year and by the number of years between their publishing
year and 2022, which is the last possible publishing year of citing papers in our
corpus.

In Table 5.2, we look at the practice of how often software-evolution datasets are
published in the 5-year period that we considered in our work. The table shows for
every year the datasets that are used in this thesis with the sum of the citations of
them and the average citation per paper per year. For example 2021 there are 10
datasets that were published and they have a sum of 52 citations, then the average
citation is 52 divided by 10 papers and that divided by 2 (year 2021 and 2022) and
the result is the 2.6 average citation.

Through the Section 3.2.2 we identified that software-evolution datasets are a stable
component of the datasets from the data showcase of the MSR over the years.
With 60.29% of the datasets in there are software-evolution datasets. The software-
evolution datasets as a whole are a constant popular theme. They have every year
more than 100 citations with the exception of 2021, because the dataset has not
yet 1 year time to accumulate citations. As the number of datasets has increased
over the years, it has become apparent that there are also some not so popular
datasets and therefore the average number of citations has decreased. However,
the total number of citations has remained relatively constant. Unlike the newer
datasets, GHTorrent [99, 101] demonstrates that it is well established dataset in the
community. It has in total 973 citations with the 2 papers and the avg. citations
are also higher as the other datasets. The higher average of the citations for the
GHTorrent can be distributed to the less concurrence in the beginning of the dataset,
since other datasets are recently published that cover the same data corpus.

In summary the software-evolution datasets are strong representatives of the datasets
at MSR and consistently possess strong attention from researchers in the area.

40 5. Result

5.1.3 Datasets Source

Data Source #

Version-Control Data 30
GitHub 26
“other” Gits 3
GitLab 3
Subversion (SVN) 2
Apache Git 1
BitBucket 1
Gerrit 1
Mercurial 1
SourceForge 1

Existing Datasets 13
GHTorrent [99, 101] 11
World of Code [197] 2
AndroZoo [4] 1
Pull-based development [104] 1

Other Sources 9
Jira 2
Google Big Query 2
security databases (CVE, NVD) 2
Travis CI 2
DockerHub 1
Google Play 1
Linux Kernel Mailing List 1
package repositories (e.g., Debian,
PyPi, NPM)

1

Table 5.3: Data sources used to create the 41 datasets.

We investigated from what sources the researchers elicited the involved data, which
we display in Table 5.3. There we show the dataset sources as a part of one of three
groups (version-control data, existing datasets and other sources) with the count of
how many use this source. It should be noted that datasets can use more than one
source as example World of Code [197], that use GitHub, Bitbucket, GitLab, and
SourceForge and other git as a source. The groups represent how many datasets
use this type of source and not how often they use this type. For example World
of Code use version-control data, but it count only as one in the count of the group
even if it uses several of them.

Since we are studying software-evolution datasets, it is not surprising that all datasets
but one involve version-control data. The exception is the dataset of Linux mails by
Xu and Zhou [351], which also refers to software-evolution and version-control data
within the mails.

In detail, 26 of the 41 datasets have extracted data from GitHub directly, while
11 other datasets have built on the GHTorrent data dump. Consequently, GitHub

5.1. RQ.1: Dataset Sharing 41

contributes to more than 90% of the datasets. A few other datasets used different
version-control systems or software-hosting platforms, such as BitBucket, Subver-
sion, and SourceForge. Some datasets (e.g., the Software Heritage Graph, World of
Code) also combine data from various version-control systems.

Only nine of our datasets explicitly involve additional data from other sources, such
as Jira, security databases, or different package repositories. Such other data sources
do not only help to enrich a dataset with diverse projects, but to achieve a certain
goal and consequent type from Table 5.1 (e.g., using security databases for data on
software quality).

Still, datasets that are systematically enriched with additional data are sparse in
our sample.

5.1.4 Sharing Platforms

Host #
zenodo.org 18
github.com 13
osf.io 2
ghtorrent.org 1
travistorrent.testroots.org 1
figshare.com 1
oss.models-db.com 1
mondego.ics.uci.edu 1
opendata.soccerlab.polymtl.ca 1
bitbucket.org 1
knowledgezoo.xyz 1
Total 41

Table 5.4: Host of the Datasets

We identified on what platform each dataset has been shared (i.e., is hosted), which
we display in Table 5.4.

This results in two dominant ones:

� Zenodo with 18 and

� GitHub with 13 datasets.

Other sharing platforms are used by one or two datasets only, specifically those
platforms are OSF (2), BitBucket (1), and figshare (1). Thus, 85.36% percent of
the published datasets are stored on sharing platforms.

While it is a valuable trend that more datasets are published in persistent reposi-
tories, we also found six instances in which datasets are still shared on apparently
personal or university websites. In this instances, the probability to lose the datasets
is higher, than the one on sharing platforms, because no dataset in our work has been

42 5. Result

deleted that was hosted by a sharing platform. In October 2022, three of those six
websites were not accessible anymore, namely those of AndroZooOpen [187], where
the website no longer exists, UML models [277], where it was hosted on an university
website (forwarded to main page) and no longer available is and TravisTorrent [25],
where we only get the main domain of the website and are shown similar sites on the
domain. All other software-evolution datasets were still accessible via the platform
linked in the papers.

In summary, datasets are mostly hosted on Zenodo and Github, and unlike the other
hosts also still available.

5.1.5 Data Storing

Format Example Storage Formats #

spreadsheet .csv, .xlsx 19
text files .txt, .xml, .yaml, .json 14
relational database MySQL, PostgreSQL 11
repository GitHub repository 4
graph database Neo4j, Google knowledge graph 3
document-oriented database MongoDB 2

Table 5.5: Formats used to store data in the datasets.

Here, we investigated the formats researchers have used to store their datasets and
their frequency of occurrence. We display an overview of the primary format types
and respective examples and their count in Table 5.5. Note that some of the datasets
use multiple storage formats, which is why the sum of the rightmost column in
Table 5.5 does not add up to the 41 datasets.

As we can see, we identified six primary formats, the two most common ones are
spreadsheets (19) and text files (14).

While the two formats are also sometimes a means to import data into a database,
some researchers offer their datasets directly as an exported database scheme. Align-
ing to the previous two formats, the relational scheme is most common (11) of
the directly exported database scheme, with graph (3) and document-oriented (2)
databases being rarer.

The last format are GitHub repositories with four datasets. One of these datasets
form the GitHub repositories format stores its data in a particularly interesting way.
It (Bugs.jar [284]) links the researched bugs as branches to the solving commits.

In summary, datasets are for the most part stored in formats that are structured as
tables, such as spreadsheets, text files or direct exported database scheme.

5.1. RQ.1: Dataset Sharing 43

5.1.6 Quantity

Interestingly, the datasets span a variety of sizes of data, ranging from six projects
in a dataset to far more than 14 million software projects. This include, for instance,
plain version-control data (e.g., commits pull requests, issues), blobs, compiled bi-
naries, additional documents, and metrics. As a consequence, the data storing of
the datasets is quite diverse, in both the quantity of the datasets and the overall
additional data to the version-control data.

5.1.7 Summary RQ.1: Dataset Sharing

To summarize the section there are four points to be considered:

� The 41 software-evolution datasets we identified involve primarily repository
metadata (23), sometimes enriched or narrowed down with respect to software
quality (8), human factors (6), testing and deployment (5), or mobile apps (4).

� The primary source for the datasets is version-control data, either crawled di-
rectly (30) or reused from another dataset (13), that is sometimes (9) enriched
with other sources.

� The data is often shared on established platforms like Zenodo (18) or GitHub
(13), but six datasets were shared on individual websites, of which three seem
to be offline.

� The datasets span a variety of data and sizes, resulting in different storage
formats, primarily spreadsheets (19), text files (14), and relational databases
(11).

Overall, our results for RQ.1 show a highly diverse landscape of practices for sharing
software-evolution datasets.

44 5. Result

Figure 5.1: Overview of the high-level use cases suggested in dataset papers.

5.2 RQ.2: Analysis Use Cases

For RQ.2, we are interested in the use cases for which researchers have shared
software-evolution datasets, and for which they have been used. To this end, we
synthesized high-level use cases based on the individual use cases we extracted from
each paper, the types of datasets we defined (Table 5.1), and ensuring that at least
three papers fit into each category. We display the resulting numbers and use cases
in Figure 5.1 and Figure 5.2. Please note that we put each paper of the dataset use
cases in possible more than one category and every each publications that use them
is sorted in one category.

5.2.1 Well-Established Use Cases

We summarized most use cases by the datasets into one of two categories software-
evolution or quality issue detection and repair. The former is concerned with any
type of research that aims to improve our understanding of software-evolution and
is mentioned on this high level as a motivating use case in many dataset papers.
The latter summarizes all research related to studying or resolving quality prob-
lems, including bug evolution, code smells, and automatic program repair. The
next two topics occur less often, even though they are concerned with the develop-
ers (e.g., identification, collaboration, interactions, gender) as well as the processes
they employ (e.g., regression testing, reviewing, economical reasons). Unfortunately,
such human(-centered) aspects are mentioned and researched fewer times than plain
software-evolution or quality; even though they raise serious ethical and legal con-
cerns (e.g., of identifying individuals). One other group is related to the improve-
ment of other studies in the respective research field, which the datasets explicit
mentioned. That are for example dataset that want to repeat studies, support the
sampling of projects or limit the threat to validity of another study. One last group
of papers is related to typical system (e.g., history slicing, feature location) and
other analyses (e.g., evolution of UML models).

5.2. RQ.2: Analysis Use Cases 45

Figure 5.2: Overview of the high-level use cases addressed in publications using the
datasets.

By the use cases of the papers that use the datasets the distribution of the cat-
egories is slightly changed. The most cases they deal with studying or resolving
quality problems or the process that the developer employ. The next two topics
are concerned with the developers and software evolution. Here by the publication
that use the dataset for software evolution, the picture got a bit broader, for in-
stance, such papers are concerned with redundant development effort in forks and
branches or with eliciting change patterns. The following 2 topics are concerned
with the improvement of datasets (e.g. improving techniques/guidelines, deduplica-
tion and graph compression or the mining of datasets in general) and the creation
of new datasets (e.g. the use of the same tool or lessons learned from analyzing the
strengths and weaknesses of the datasets). The last group of well-established use
cases is related to typical system, the same as by the datasets.

5.2.2 Unaware and Novel Use Cases

From Figure 5.1 and Figure 5.2, we can also see that novel use cases, such as bot
identification, are logically hard to anticipate (particularly since the relevant tools
may not even exist). This is quite normal, and the further advances in software
engineering will continue to lead to new technologies that change how (and whether)
software-evolution datasets can be used.

However, we are surprised that only one of the datasets mentioned any use cases
related to improving research itself, for instance, using the datasets to design better
methods for mining software repositories or combining them to create novel datasets.
It exist dataset that want to improve the quality of follow-up studies, but all but
one dataset (Sampling Projects [52]) that can also be used in general to create new
datasets, this was also found in our study with this publication [53]. This topic was
taken up more on the side of the used publications, but also only sporadically, 10 of
the 135 publication discuss improvement and new datasets.

46 5. Result

Also to note is that 57 of the use cases of the publication matched with the use
cases of the datasets of 135, which is a percentage of 42.22%. Especially to observe
is that studying or resolving quality problems matches the use cases and software
evolution splits into the other categories of use cases, which are used by the used
publications.

Lastly, we excluded 30 use cases from the papers that use a dataset, since these were
not concerned with software-evolution and did not require these specific datasets.
Instead, they perceived the software-evolution datasets as a collection of subject
systems, for instance, for evaluating techniques for scheduling in serverless software
systems.

5.2.3 Summary RQ.2: Analysis Use Cases

To summarize the section there are three points to be considered:

� The most common use cases are related to achieving general insights on software-
evolution, quality and testing concerns, developers, and development pro-
cesses.

� The distribution of use cases matches quite well between those assumed in
shared datasets and those the datasets are used for.

� The idea of using datasets to improve research itself and derive new datasets
is in the queue at the back.

Overall, our results indicate a good alignment between the software-evolution use
cases assumed when sharing a dataset and those for which it will be used.

5.3. RQ.3: Challenges of Sharing 47

5.3 RQ.3: Challenges of Sharing

In this section we analyze the results of the collected data from Section 4.3. First
we show the categorized problems and the connection to the challenges that the
researcher predicted in their papers about the datasets.

5.3.1 Challenges/Problems/Limitations of Sharing

Problem Description Impacted Datasets #

quantity and reliability datasets may not
involve entries or a
reliable ground-truth
to serve as a feasible
databasis

Android apps [86], AndroidCompass [226],
Bugs.jar [284], C/C++ Code Vulnerabilities [78],
Duets [72], Enterprise-Driven [308], Git Archive [204],
GHTorrent [99, 101], ManySStuBs4J [150], Repository
Deduplication [309], Sampling Projects [52], Semantic
Changes [372], TravisTorrent [25], UML models [277],
Wonderless [76]

15

missing data datasets may not in-
volve the right data for
an analysis

20-MAD [48], Android apps [86], Bugs.jar [284],
Denchmark [155], Dockerfiles [127], Duplicate Pull-
Requests [359], Git Archive [204], ManySStuBs4J [150],
ManyTypes4Py [217], OCL expressions [233], Semantic
Changes [372], TravisTorrent [25], VulinOSS [88]

13

redundant data datasets may involve
example, toy, or stale-
fork data

20-MAD [48], CROP [242], Git Archive [204],
LogChunks [35], ManySStuBs4J [150], Many-
Types4Py [217], OCL expressions [233] Sam-
pling Projects [52], Software Heritage Graph
Dataset [259, 260], TravisTorrent [25], Wonderless [76],
World of code [197]

12

topicality datasets age and
thereby may become
outdated or even un-
available

Android apps [86], AndroidCompass [226], Docker-
files [127], Enterprise-Driven [308], Git Archive [204],
GHTorrent [99, 101], ManySStuBs4J [150], Many-
Types4Py [217], TravisTorrent [25], Repository Dedupli-
cation [309]

10

faulty or invalid data datasets may involve
manipulated or incor-
rectly extracted data

Android apps [86], Duplicate Pull-Requests [359], Git
Archive [204], GHTorrent [99, 101], ManySStuBs4J [150],
OCL expressions [233], Software Heritage Graph
Dataset [259, 260], World of code [197]

8

accesibility datasets may ex-
hibit complicated
structures or require
high-performance re-
sources

C/C++ Code Vulnerabilities [78], Git Archive [204],
ManySStuBs4J [150], Semantic Changes [372], Software
Heritage Graph Dataset [259, 260], TravisTorrent [25]

6

others datasets may face
other problems, such
as missing tool support
for analyses

Andromeda [237], AndroZooOpen [187], Qscored [300] 3

reused without prob-
lems (mentioned)

50K-C [206], Andror2 [340], Git Repositories [219], Iden-
tity Resolution [84], Linux Kernel [351], Mixed Graph-
Relational Datase [11], Quantifying [66], Shoulders of
Giants [365], Software evolution [352], Structured infor-
mation [293]

10

no reuse (attempted) GE526 [323], JTeC [49] 2

Table 5.6: Overview of the most commonly reported problems we identified from
the papers (aiming to) use the 41 datasets.

For RQ.3, we are concerned with the problems other researchers experienced with
reusing (or attempting to do so) the software-evolution datasets, which represent

48 5. Result

challenges for researchers creating a software-evolution dataset. Consequently, we
are now reporting on the 158 papers that used (133) or analyzed problems with
(24) the datasets we identified in our manual search as well as the snowballing. We
provide an overview of the six problems we identified most often and the impacted
datasets in Table 5.6.

In more detail, these problems are:

Quantity and Reliability: We found 15 instances in which authors raised the prob-
lem that a dataset is not large or representative enough to serve as a reliable
ground-truth. Most often, these authors argued that a dataset is too small
or is not respected in a community. As a consequence, the using researchers
had to replicate the original queries, construct their own mining pipeline, or
extend a dataset. As a concrete example, the C/C++ Code Vulnerability [78]
dataset has been considered too small to employ deep-learning models on it.

Missing Data: In 13 instances, we identified the problem that a dataset does not in-
volve enough of the right data to properly represent the studied phenomenon.
For instance, it has been argued that Denchmark [155] lacks version infor-
mation for the included bug reports, which would be helpful in attribute for
different analyses.

Redundant Data: Quite on the opposite, we also found 12 instances in which au-
thors argued that a dataset involves too much redundant or irrelevant data.
Particularly, the typical concern of toy and example projects (e.g., server
blueprints) or stale forks (which most researchers consider not useful to ana-
lyze) have been raised. As a concrete example, some researchers aimed to use
the World of code [197] dataset to conduct an expertise-identification analysis.
However, they argue that the existence of projects with many forks and other
clones biases such an analysis, since the respective developers may occur in
many more commits.

Topicality: Since software-evolution is continuous, any shared dataset will become
outdated if it is not regularly updated. Specifically, we found 10 instances in
which authors raised this concern and argued that they required more recent
data (e.g., mining it themselves) or periodic updates of existing datasets (e.g.,
as was the case with GHTorrent [99, 101]). In the most extreme cases (cf.
section Section 5.1), the datasets may even become unavailable, not because
they are outdated but simply because a sharing platform shuts down.

Faulty or Invalid Data: Faulty or invalid data threatens all scientific work, making
the obtained results meaningless. We identified eight instances in which re-
searchers raised the problem of incorrect metadata (e.g., timestamps). Two
examples that are prone to this problem are the GHTorrent dataset in which
the authorship date of commits can be overwritten and the Software Heritage
Dataset in which duplicated commit identifiers are relabeled to make them
unique. Even typical version-control systems and research tools [121] allow
developers to manipulate recorded version histories. All such things threaten
a dataset and may make it useless for the intended analysis.

5.3. RQ.3: Challenges of Sharing 49

Accessibility: We found six instances in which researchers reported on accessibility
problems, for instance, because the storage format and structure of a dataset
are complicated. Furthermore, software-evolution data is constantly growing,
which means that researchers also need more and more computing power as
well as hardware to analyze this data. For example, the Software Heritage
Graph requires around 850 TiB storage, and even smaller datasets that have
been re-shared from it are often too large for typical computers.

Others: Lastly, we identified three individual problems that do not fit into the pre-
vious themes. For instance, we found that there is apparently no common tool
support for semantic changes, and thus using the corresponding dataset [372]
remains a challenge.

Also we analyzed the predicted problems/ limitations of the dataset that the re-
searcher of the datasets presented. There it is necessary to consider that we only
found four cases, where the predicted problems/limitations match with the found
problem of our analyze. The four datasets are:

� Wonderless [76], where the researcher warn against toy software and that prob-
lem also exist by the analyzed papers

� Sampling Projects [52], where it is said it is needed to get extra data to analyze
historic evolution of said characteristics

� Git Archive [204], where the dataset is only so actual as the GHTorrent dataset

� GHTorrent , where it is reported that data without timestamps get a selected
timestamp and the event stream doesn’t report deletion

That are the only matches of the predicted and analyzed problems/challenges. A
large part of the predicted limitation/problems are that the dataset can be extended
and that is not relevant for the paper that selected the dataset. It can be assumed
that the other predicted problems are included in the selection process of the datasets
that are used and thus not not considered so important to include them again in
their work as they have already been mentioned in the datasets and they always
work within the boundaries of the datasets.

On a final note, we would like to remark that all problems mentioned relate to
methodological or technical decisions, but we found no statements about ethical or
legal concerns related to the datasets.

50 5. Result

5.3.2 SummaryRQ.3: Challenges of Sharing

The six recurring challenges for sharing and using a software-evolution dataset are

1. ensuring quantity and reliability;

2. having the right data;

3. handling redundant data;

4. reasoning on topicality;

5. preventing faulty or invalid data; and

6. considering the accessibility of computing resources.

Overall, our results for RQ.3 indicate key technical and methodological challenges
for sharing software-evolution datasets.

6. Discussion

In the following, we discuss the implications of our findings and of what we did not
find, which are concerns about the ethical and legal aspects of sharing software-
evolution datasets. We consider these topics critical and discuss them first, since we
argue that such concerns must be solved before any technical solution.

6.1 Privacy, Licensing, and Ethical Concerns

There are many concerns that should be incorporated into the practices of sharing
software-evolution datasets, and we were surprised that these were not mentioned.

6.1.1 Privacy

While software-evolution data is mostly concerned with code and changes, human
factors are always an important research area (cf. Section 5.2). Usually, developers’
information must be anonymized via identifiers in the datasets. However, this is not
easy if, for instance, personal information (e.g., names, mail addresses) are scattered
across a datasets, for instance, in commit messages, code comments, or discussions.
Thus, it is surprising to us, that privacy concerns have not been raised as a challenge
in the 200 papers.

Despite the importance of anonymization, it is sometimes necessary to reach out
to developers, for example, to fill in a questionnaire to characterize their intentions.
This is one of the numerous cases where privacy requirements may harm downstream
analyses. Finding the right granularity of anonymization in such cases is known as
the privacy-utility challenge.

Furthermore, when creating a dataset, the original personal data is not in charge of
the original system anymore. If a developer demanded the erasure of their personal
data, that dataset is a serious violation of this demand. Consequently, we must be
more careful about how we share software-evolution artifacts and must assess the
usefulness of the data against developers’ privacy right in different countries.

6.1.2 Licensing

A critical concern when creating and sharing software is the license [16, 276]. Since
software-evolution datasets combine a set of software artifacts, the challenge is that
all these licenses need to be interoperable so that it is legal to share a dataset.
None of the dataset papers mentions this issue, which is quite critical considering
also other legal aspects, for instance, of the developers and other stakeholders (e.g..,
privacy). We stress that the community needs more guidelines regarding licensing
for shared software-evolution datasets and ways to enforce it.

52 6. Discussion

6.1.3 Ethics

The above points are only some of the major concerns with current practices of shar-
ing software-evolution datasets. Recently, Gold and Krinke [93] have analyzed these
and other ethical concerns with mining software repositories. For instance, Gold
and Krinke stress for consent (by checking the license) and privacy (via pseudony-
mosation). Their work is a great step in the right direction, but we need to advance
further and enforce ethical sharing of software-evolution datasets, for example, by
getting approval from an ethics review board.

6.2 Technical Concerns

A core outcome of our study is the dominance of text and spreadsheet formats for
storing version-control data (cf. Section 5.1, directly causing several of the problems
described by researchers (cf. Section 5.3). While these formats can be easily reused
due to their simplicity, they inherently cause problems in later analyses:

� Missing data types and encoding issues create problems when a dataset is used
on different systems and across different tools. Each tool has its own encoding of
files and only supports a limited set of data types and representations (e.g., date
formats, identifier sizes). A system-independent format or a clean description
of the data types is mostly missing, which creates conversion effort when being
reused by other researchers. Such conversion errors and technical problems are
well-known sources of errors.

� Use-case specific data representation means that the underlying representation of
data differs between use cases (e.g., different ways of storing commits and their
branches, different format for pull requests). Currently, extracting the right data
from the internal representation is not standardized and needs familiarization for
each new use case (cf. Section 5.2).

� Non-standardized analysis pipelines lead to the problem of reinventing the same
analyses. Mostly, each research team that reuses a shared datasets implements
their own analysis pipeline, which usually involves the redundantly implemented
steps of data cleaning and data transformation. As a result, the initial investment
when reusing the data is quite high, which discourages researchers to reuse shared
datasets.

Some of the datasets already come with more semantic information or formats, for
instance, as a relational, document-oriented, or graph database. These representa-
tions cause initial overhead when setting up these systems. However, they promise to
improve the understandability and reuse due to their inherent standardization. We
argue that exploring different data-storing techniques can help with solving problems
when reusing software-evolution dataset.

Most of the problems that we identified in RQ.3 are due to missing standardization
in the datasets, but also in the analysis pipeline. The former means that cleaning the
data is a major challenge when reusing a shared dataset, which keeps researchers

6.3. Validity 53

from achieving their actual goal: analyzing the dataset to answer their research
questions. Furthermore, problems and inconsistencies within the data are still found,
which questions the reliability of conclusions drawn from that data.

The latter (i.e., missing standardization in analysis pipelines), may lead to inconsis-
tencies between the results of two different pipelines, a problem uncovered by repro-
ducibility papers. This problem is even exacerbated when using artificial-intelligence
techniques, due to their individual hyperparameters.

To increase the efficiency of research, we argue that it is a major goal to create
a standard representations for software-evolution datasets and the corresponding
analyses tooling.

6.3 Validity

6.3.1 Internal Validity

Regarding the internal validity, our data analysis is prone to interpretations. We
employed open coding and card sorting methods to reduce the risks, but in the end
all categories are our interpretation of the data. Similarly, we may have misinter-
preted some statements in the papers we read or in additional documentation of the
datasets. To allow other researchers to verify and replicate our analysis, we share
our data in a persistent open-access repository.

6.3.2 External Validity

Considering the external validity, we recognize that we have performed a manual
search and snowballing starting from a single conference only. As a consequence,
we may have missed highly relevant papers from other venues that would lead to a
different outcome. However, MSR is a prime conference on software evolution, and is
the only conference with dedicated tracks (challenges, datasets) that are promoting
researchers to publish (high-quality) software-evolution datasets. For this reason,
we argue that using MSR’s dedicated tracks provides a reliable overview of current
(best) practices in terms of sharing such datasets in our community; thus our findings
should be transferable to other such datasets, too.

For our snowballing search, we used Google Scholar and considered only the ten
most cited papers. So, we may have missed relevant papers. For example topics in
use cases that are not so popular, but are also part of the community. We decided
for this method to limit the effort of the literature search and performed several
pretests, in which we found that the ten snowballed papers provide a good overview
of the problems of sharing software-evolution datasets. Consequently, while this
threat remains, we argue that we mitigated its impact.

6.4 Closing Remarks

Interestingly, the problems we identified in Chapter 5 and discussed in this section
should be well-known in research, but apparently researchers are experiencing them
over and over again. Arguably, the individual goals of sharing software-evolution

54 6. Discussion

datasets cause challenges that are in conflict with each other as well as with ethics
and legal concerns. As a consequence, we argue that we will never be able to create
perfect software-evolution datasets. For instance, data protection and privacy are in
fundamental conflicts with a complete and persistent software-evolution dataset. So,
we as a research community must first define the minimum standard that software-
evolution datasets should fulfill, for example, regarding legal requirements, ethical
concerns, and best sharing practices. Then, we could start to develop and setup
appropriate infrastructures that help mitigate the problems we identified and tackle
the discussed challenges. This way, our research community can advance towards
more reliable and trustworthy software-evolution datasets as well as analyses, which
in turn, contributes to open science, building trust, and accelerating research.

7. Related Work

Even though sharing research artifacts is a long debated issue, software-engineering
researchers have only recently started to investigate this topic systematically and
in more detail. For instance, Timperley et al. [315] have surveyed 153 software-
engineering researchers to understand how artifacts are created, used, and reviewed.
The authors aimed to understand current practices and derive recommendations for
improving the quality of artifacts. Similarly, Hermann et al. [130] have surveyed
257 researchers who participated in artifact-evaluation (i.e., reviewing) processes
to understand their expectations for shared research artifacts and their evaluation.
The authors identified specific quality expectations, but also inconsistencies in ter-
minology as well as expectations that should be resolved. Overall, such insights
are helpful means to further improve artifact sharing and the conduct of artifact-
evaluation tracks, which many major software-engineering conferences and journals
have started to adopt. Sharing research artifacts is not only important for trans-
parency and replicability, but also has a small positive impact on a publication’s
citations, as found by Heumüller et al. [131] who have performed an empirical anal-
ysis of papers published at 11 instances of the International Conference on Software
Engineering. Other researchers have discussed the pros and cons of artifact sharing
in the context of open science [15, 129, 212], proposed or improved guidelines for
sharing and reviewing artifacts [54, 165, 166, 213, 292, 343, 375], or further analyzed
the incentives of artifact sharing and badges [44, 83, 291], in software engineering
and computer science in general. While representing extensive research on artifact
sharing, none of these works is concerned with specific practices and challenges of
sharing software-evolution data.

In the context of software-evolution data, additional concerns like copyright, licens-
ing, and data privacy [16, 276] are of high importance, since researchers are not
sharing their own artifacts, but data contributed by and including information of
others (e.g., open-source developers). For instance, many large-scale datasets, such
as GHTorrent or SoftwareHeritage [19, 63, 99, 101, 261], or analysis frameworks for
such data [316, 317] have been shared in the past. However, when working with
software-evolution data, ethical concerns are highly relevant for researchers to con-
sider, for instance, to not spam developers [17] and avoid wasting developers’ time
or undermining their trust in research.1 While several researchers have been con-
cerned with the pros and cons of mining software-evolution data [30, 146, 147], they
rarely discuss the ethics or good practices of sharing the corresponding datasets. So,
it is not surprising that some of the mentioned attempts to release large software-
evolution datasets have also been criticized for ethical concerns.

The most detailed research in this direction stems from Gold and Krinke [90, 92],
who discuss the ethics of mining software repositories in general. For this purpose,

1https://www.theverge.com/2021/4/30/22410164/linux-kernel-university-of-minnesota-banne
d-open-source

https://www.theverge.com/2021/4/30/22410164/linux-kernel-university-of-minnesota-banned-open-source
https://www.theverge.com/2021/4/30/22410164/linux-kernel-university-of-minnesota-banned-open-source

56 7. Related Work

Gold and Krinke investigated the MSR mining challenges from 2006 until 2021 and
conducted a community survey; using individual cases (including the creation of a
software-evolution dataset) to showcase ethical concerns that exist in such cases.
This research is closely related to ours (e.g., similar methodology and focus on re-
search artifacts), but we are concerned specifically with software-evolution datasets
and more broadly with all concerns related to their sharing (not only ethical ones).
As a consequence, we provide a more detailed overview of the practices and chal-
lenges of sharing software-evolution datasets, complementing such previous works.
Finally, Kotti and Spinellis [163] as well as Kotti et al. [161] are concerned with
the datasets published at MSR, but investigate their scientific impact (e.g., use,
citations). Some parts of their work are similar to ours, for instance, investigating
what papers use the published datasets. However, we have a different focus, since
we are interested only in software-evolution datasets and perform a more qualitative
analysis of the practices and challenges of sharing such datasets.

In summary, we extend the current state-of-the-art on sharing software-evolution
datasets by focusing on this specific case. Particularly, we elicit what researchers
are doing instead of surveying their opinions or what they claim to do by qualitatively
analyzing papers instead of surveying researchers. We also provide an overview of
the shared datasets, their intended use cases, as well as the problems of sharing and
reusing these datasets that researchers have experienced and reported. By discussing
the use cases and corresponding challenges (those mentioned and not mentioned), we
aim to provide a more in-depth understanding of best practices for sharing software-
evolution datasets.

8. Conclusion

In this study, we produced a qualitative literature analysis of 200 papers based on
which we improved our understanding of how software-evolution datasets are shared
and used.

We found

RQ.1: that the practices for sharing software-evolution datasets are inconsistent re-
garding, for instance, data formats, sharing platforms, and the involved data
(cf. Section 5.1);

RQ.2: that the use cases assumed by researchers who share and use datasets align
well, but dedicated datasets for improving research itself seem irrelevant (cf.
Section 5.2); and

RQ.3: six recurring challenges for using shared software-evolution datasets relating
to reliability, feasibility for the research, data redundancy, topicality, faulty
data, and available computing resources (cf. Section 5.3).

Reflecting on these insights as well as what has not been reported in the 200 pa-
pers, we discussed future challenges for improving the sharing of software-evolution
datasets. In particular, we discussed technical steps for improving the management
of the datasets, but also legal and ethical issues, which were not mentioned as major
concerns in the papers. We consider this highly problematic and argue that we need
to first define the general rules/guidelines (e.g., on ethics) before larger and larger
datasets or infrastructures are designed. It may be possible to construct automatic
tools to enforce this rules and guidelines. In this regard, we hope that our contri-
butions are a helpful means for researchers to analyze and discuss how to improve
current practices. As a step into that direction, we aim to analyze the case of sharing
software-evolution datasets with experts on the topics of data privacy and protec-
tion. Furthermore, it is to be seen whether these problems also occur in other data
sets from other conferences than MSR with different focuses.

58 8. Conclusion

A. Appendix

Dataset Cited
GE526 [323]
Qscored [300] [115, 193]
Duets [72] [304, 305, 329]
Wonderless [76] [55, 339, 363]
Andror2 [340] [79, 135, 288]
Quantifying [66] [65, 82, 210, 300, 360]
JTeC [49] [82, 331, 336]
AndroidCompass [226] [188, 227–229]
Denchmark [155] [39, 135, 156, 157]
Andromeda [237] [235, 236, 238]
Mixed Graph-Relational [11] [12, 38, 69, 247]
Linux Kernel [351] [81, 82, 164, 280, 289, 313, 332]
Enterprise-Driven [308] [8, 26, 82, 87, 123, 330, 342]
Shoulders of Giants [365] [132, 154, 324, 367]
LogChunks [35] [34, 73, 160, 231, 283, 312]
20-MAD [48] [69, 81, 82, 170, 211, 336]
ManyTypes4Py [217] [107, 142, 180, 194, 218, 252, 366]
Software evolution [352] [94, 162, 164, 189, 190, 302, 357]
Software Heritage Graph [260] [94, 257, 258, 290, 337, 338, 341]
Dockerfiles [127] [13, 116–118, 128, 182, 264, 318, 364]
AndroZooOpen [187] [124, 171, 172, 267, 268, 319, 322, 354, 358, 368]
Git Repositories [219] [6, 38, 57, 75, 139, 153, 257, 272, 278, 309]
Repository Deduplication [309] [72, 196, 198, 219, 250, 278, 299, 308, 310, 356]
Semantic Changes [372] [162, 164, 176, 177, 256, 296, 311, 346, 348, 373]
50K-C [206] [37, 68, 72, 126, 152, 162, 164, 286, 297, 301]
Sampling Projects [52] [10, 45, 46, 53, 56, 96, 106, 234, 262, 333]
OCL expressions [233] [136, 162, 164, 214–216, 253, 256, 275, 294]
Duplicate Pull-Requests [359] [64, 155, 162, 164, 178, 179, 222, 274, 335, 371]
Identity Resolution [84] [57, 59, 61, 62, 94, 139, 198, 334, 350, 356]
CROP [242] [91, 109, 119, 164, 243–245, 249, 320, 321]
Structured information [293] [41, 108, 137, 164, 168, 192, 307, 347, 355, 370]
Git Archive [204] [27, 52, 74, 94, 95, 162, 164, 205, 281, 282]
C C Code Vulnerability [78] [28, 42, 43, 173, 175, 230, 232, 273, 349, 353]
Software Heritage Graph [259] [33, 69, 82, 94, 97, 198, 281, 282, 334, 361]
UML models [277] [70, 98, 120, 125, 164, 191, 240, 256, 271, 275]
VulinOSS [88] [20, 28, 77, 80, 112, 144, 164, 183, 263, 282]
Android apps [86] [51, 89, 113, 114, 202, 209, 224, 248, 251, 287]
World of code [197] [7, 57, 58, 60–62, 69, 84, 122, 219]
ManySStuBs4J [150] [1, 28, 40, 67, 151, 208, 266, 279, 314, 345]
Bugs.jar [284] [71, 143, 150, 174, 184–186, 195, 200, 285]
TravisTorrent [25] [22–24, 47, 181, 246, 269, 328, 362, 369]
GHTorrent [101] [2, 3, 50, 99, 100, 102, 134, 145, 148, 325]
The GHTorent [99] [18, 21, 100, 105, 111, 133, 145, 221, 326, 327]

Table A.1: Overview of dataset to all snowballed documents of them

60 A. Appendix

Bibliography

[1] Miltiadis Allamanis, Henry Jackson-Flux, and Marc Brockschmidt. 2021. Self-supervised
bug detection and repair. Advances in Neural Information Processing Systems 34 (2021),
27865–27876. (cited on Page 59)

[2] Miltiadis Allamanis, Hao Peng, and Charles Sutton. 2016. A convolutional attention network
for extreme summarization of source code. In International conference on machine learning.
PMLR, 2091–2100. (cited on Page 29 and 59)

[3] Miltiadis Allamanis and Charles Sutton. 2013. Mining source code repositories at massive
scale using language modeling. In MSR. IEEE, 207–216. (cited on Page 59)

[4] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016. Androzoo:
Collecting millions of android apps for the research community. In MSR. (cited on Page 40)

[5] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016. AndroZoo.
In MSR. ACM. (cited on Page 17)

[6] Idan Amit and Dror G Feitelson. 2021. Corrective commit probability: a measure of the
effort invested in bug fixing. Software Quality Journal 29, 4 (2021). (cited on Page 59)

[7] Sadika Amreen, Audris Mockus, Russell Zaretzki, Christopher Bogart, and Yuxia Zhang.
2020. ALFAA: Active Learning Fingerprint based Anti-Aliasing for correcting developer
identity errors in version control systems. Empirical Software Engineering 25, 2 (2020).
(cited on Page 59)

[8] Florian Angermeir, Markus Voggenreiter, Fabiola Moyon, and Daniel Mendez. 2021.
Enterprise-driven open source software: a case study on security automation. In 2021
IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering
in Practice (ICSE-SEIP). IEEE, 278–287. (cited on Page 25 and 59)

[9] Gábor Antal, Márton Keleti, and Péter Hegedŭs. 2020. Exploring the Security Awareness of
the Python and JavaScript Open Source Communities. In MSR. ACM. (cited on Page 26)

[10] Pasquale Ardimento, Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, and Martina
Iammarino. 2022. Just-in-time software defect prediction using deep temporal convolutional
networks. Neural Computing and Applications 34, 5 (2022). (cited on Page 59)

[11] Usman Ashraf, Christoph Mayr-Dorn, Alexander Egyed, and Sebastiano Panichella. 2020.
A Mixed Graph-Relational Dataset of Socio-technical Interactions in Open Source Systems.
In MSR, Sunghun Kim, Georgios Gousios, Sarah Nadi, and Joseph Hejderup (Eds.). ACM.
(cited on Page 17, 22, 25, 30, 37, 47, and 59)

[12] Usman Ashraf, Christoph Mayr-Dorn, Atif Mashkoor, Alexander Egyed, and Sebastiano
Panichella. 2021. Do communities in developer interaction networks align with subsystem
developer teams? An empirical study of open source systems. In 2021 IEEE/ACM Joint 15th
International Conference on Software and System Processes (ICSSP) and 16th ACM/IEEE
International Conference on Global Software Engineering (ICGSE). IEEE, 61–71. (cited
on Page 25 and 59)

62 Bibliography

[13] Hideaki Azuma, Shinsuke Matsumoto, Yasutaka Kamei, and Shinji Kusumoto. 2022. An em-
pirical study on self-admitted technical debt in Dockerfiles. Empirical Software Engineering
27, 2 (2022). (cited on Page 59)

[14] Monya Baker. 2016. 1,500 scientists lift the lid on reproducibility. Nature 533, 7604 (2016).
(cited on Page 1)

[15] Maria Teresa Baldassarre, Neil Ernst, Ben Hermann, Tim Menzies, and Rahul Yedida. 2023.
(Re)Use of Research Results (Is Rampant). Commun. ACM 66, 2 (jan 2023). (cited on
Page 1 and 55)

[16] Miriam Ballhausen. 2019. Free and Open Source Software Licenses Explained. Computer
52, 6 (2019). (cited on Page 51 and 55)

[17] Sebastian Baltes and Stephan Diehl. 2016. Worse Than Spam: Issues In Sampling Software
Developers. In ESEM. ACM. (cited on Page 1 and 55)

[18] Sebastian Baltes and Paul Ralph. 2022. Sampling in software engineering research: A critical
review and guidelines. Empirical Software Engineering 27, 4 (2022). (cited on Page 59)

[19] Sebastian Baltes, Christoph Treude, and Stephan Diehl. 2019. SOTorrent: Studying the
Origin, Evolution, and Usage of Stack Overflow Code Snippets. In MSR. IEEE. (cited on
Page 13 and 55)

[20] Canan Batur Şahin and Laith Abualigah. 2021. A novel deep learning-based feature selection
model for improving the static analysis of vulnerability detection. Neural Computing and
Applications 33, 20 (2021). (cited on Page 59)

[21] Jason Baumgartner, Savvas Zannettou, Brian Keegan, Megan Squire, and Jeremy Blackburn.
2020. The pushshift reddit dataset. In Proceedings of the international AAAI conference on
web and social media, Vol. 14. (cited on Page 59)

[22] Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung, and Darko
Marinov. 2018. DeFlaker: Automatically detecting flaky tests. In 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE). IEEE, 433–444. (cited on
Page 59)

[23] Moritz Beller, Georgios Gousios, Annibale Panichella, Sebastian Proksch, Sven Amann, and
Andy Zaidman. 2017. Developer testing in the ide: Patterns, beliefs, and behavior. IEEE
Transactions on Software Engineering 45, 3 (2017). (cited on Page)

[24] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. Oops, my tests broke the build:
An explorative analysis of travis ci with github. In MSR. IEEE, 356–367. (cited on Page 29
and 59)

[25] Moritz Beller, Georgios Gousios, and Andy Zaidman. 2017. TravisTorrent: synthesizing
Travis CI and GitHub for full-stack research on continuous integration. In MSR, Jesús M.
González-Barahona, Abram Hindle, and Lin Tan (Eds.). IEEE Computer Society. (cited
on Page 20, 24, 28, 32, 37, 38, 42, 47, and 59)

[26] Lodewijk Bergmans, Xander Schrijen, Edwin Ouwehand, and Magiel Bruntink. 2021. Mea-
suring source code conciseness across programming languages using compression. In 2021
IEEE 21st International Working Conference on Source Code Analysis and Manipulation
(SCAM). IEEE, 47–57. (cited on Page 59)

[27] David Berrocal-Maćıas, Zakieh Alizadeh-Sani, Francisco Pinto-Santos, Alfonso González-
Briones, Pablo Chamoso, and Juan M Corchado. 2021. Services Extraction for Integration
in Software Projects via an Agent-Based Negotiation System. In Practical Applications of
Agents and Multi-Agent Systems. Springer, 241–252. (cited on Page 59)

Bibliography 63

[28] Guru Bhandari, Amara Naseer, and Leon Moonen. 2021. CVEfixes: automated collection of
vulnerabilities and their fixes from open-source software. In Proceedings of the 17th Interna-
tional Conference on Predictive Models and Data Analytics in Software Engineering. (cited
on Page 59)

[29] Avijit Bhattacharjee, Sristy Sumana Nath, Shurui Zhou, Debasish Chakroborti, Banani Roy,
Chanchal K. Roy, and Kevin Schneider. 2020. An Exploratory Study to Find Motives Behind
Cross-platform Forks from Software Heritage Dataset. In MSR. ACM. (cited on Page 26)

[30] Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M. German, and
Prem Devanbu. 2009. The Promises and Perils of Mining Git. In MSR. IEEE. (cited on
Page 55)

[31] Ekaba Bisong, Eric Tran, and Olga Baysal. 2017. Built to Last or Built Too Fast? Evaluating
Prediction Models for Build Times. In MSR. IEEE. (cited on Page 28)

[32] John D. Blischak, Emily R. Davenport, and Greg Wilson. 2016. A Quick Introduction to
Version Control with Git and GitHub. PLOS Computational Biology 12, 1 (19 jan 2016),
e1004668. https://doi.org/10.1371/journal.pcbi.1004668 (cited on Page 6)

[33] Paolo Boldi, Antoine Pietri, Sebastiano Vigna, and Stefano Zacchiroli. 2020. Ultra-large-scale
repository analysis via graph compression. In 2020 IEEE 27th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 184–194. (cited on
Page 27 and 59)

[34] Casper Boone, Carolin Brandt, and Andy Zaidman. 2022. Fixing Continuous Integration
Tests From Within the IDE With Contextual Information. (2022). (cited on Page 59)

[35] Carolin E. Brandt, Annibale Panichella, Andy Zaidman, and Moritz Beller. 2020.
LogChunks: A Data Set for Build Log Analysis. In MSR, Sunghun Kim, Georgios Gousios,
Sarah Nadi, and Joseph Hejderup (Eds.). ACM. (cited on Page 17, 22, 25, 31, 37, 38, 47,
and 59)

[36] O. Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner, and Mohamed
Khalil. 2007. Lessons from Applying the Systematic Literature Review Process within the
Software Engineering Domain. Journal of Systems and Software 80, 4 (2007). (cited on
Page 11)

[37] Rebecca Brunner, Robert Dyer, Maria Paquin, and Elena Sherman. 2020. PAClab: a program
analysis collaboratory. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering. (cited
on Page 59)

[38] Javier Luis Cánovas Izquierdo and Jordi Cabot. 2022. On the analysis of non-coding roles in
open source development. Empirical Software Engineering 27, 1 (2022). (cited on Page 59)

[39] Junming Cao, Bihuan Chen, Chao Sun, Longjie Hu, and Xin Peng. 2021. Characterizing Per-
formance Bugs in Deep Learning Systems. arXiv preprint arXiv:2112.01771 (2021). (cited
on Page 59)

[40] Saikat Chakraborty, Yangruibo Ding, Miltiadis Allamanis, and Baishakhi Ray. 2020. Codit:
Code editing with tree-based neural models. IEEE Transactions on Software Engineering
(2020). (cited on Page 59)

[41] Wei Chen, Jia-Hong Zhou, Jia-Xin Zhu, Guo-Quan Wu, and Jun Wei. 2019. Semi-supervised
learning based tag recommendation for docker repositories. Journal of Computer Science and
Technology 34, 5 (2019). (cited on Page 59)

https://doi.org/10.1371/journal.pcbi.1004668

64 Bibliography

[42] Zimin Chen, Steve Kommrusch, and Martin Monperrus. 2021. Neural transfer learning for
repairing security vulnerabilities in c code. arXiv preprint arXiv:2104.08308 (2021). (cited
on Page 27 and 59)

[43] Xiao Cheng, Guanqin Zhang, Haoyu Wang, and Yulei Sui. 2022. Path-sensitive code em-
bedding via contrastive learning for software vulnerability detection. In Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and Analysis. (cited
on Page 27 and 59)

[44] Bruce R. Childers and Panos K. Chrysanthis. 2017. Artifact Evaluation: Is It a Real In-
centive?. In 2017 IEEE 13th International Conference on e-Science (e-Science). (cited on
Page 1 and 55)

[45] Senior Scientist Dipl-Ing Dr Christian. 2022. Fine-grained Change Analysis for TypeScript
based Systems. Ph. D. Dissertation. Institut für Informatik. (cited on Page 27 and 59)

[46] Matteo Ciniselli, Nathan Cooper, Luca Pascarella, Antonio Mastropaolo, Emad Aghajani,
Denys Poshyvanyk, Massimiliano Di Penta, and Gabriele Bavota. 2021. An Empirical Study
on the Usage of Transformer Models for Code Completion. IEEE Transactions on Software
Engineering (2021). (cited on Page 27 and 59)

[47] Jürgen Cito, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali Zumberi, and
Harald C Gall. 2017. An empirical analysis of the docker container ecosystem on github. In
MSR. IEEE, 323–333. (cited on Page 59)

[48] Maëlick Claes and Mika V. Mäntylä. 2020. 20-MAD: 20 Years of Issues and Commits of
Mozilla and Apache Development. In MSR, Sunghun Kim, Georgios Gousios, Sarah Nadi,
and Joseph Hejderup (Eds.). ACM. (cited on Page 17, 23, 26, 31, 37, 47, and 59)

[49] Federico Corò, Roberto Verdecchia, Emilio Cruciani, Breno Miranda, and Antonia Bertolino.
2020. JTeC: A Large Collection of Java Test Classes for Test Code Analysis and Processing.
In MSR, Sunghun Kim, Georgios Gousios, Sarah Nadi, and Joseph Hejderup (Eds.). ACM.
(cited on Page 16, 22, 25, 30, 37, 47, and 59)

[50] Valerio Cosentino, Javier L Cánovas Izquierdo, and Jordi Cabot. 2017. A systematic mapping
study of software development with GitHub. IEEE Access 5 (2017). (cited on Page 59)

[51] Luis Cruz, Rui Abreu, and David Lo. 2019. To the attention of mobile software developers:
guess what, test your app! Empirical Software Engineering 24, 4 (2019). (cited on Page 59)

[52] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. 2021. Sampling Projects in GitHub for
MSR Studies. In MSR. IEEE, IEEE, 560–564. https://doi.org/10.1109/MSR52588.2021.00
074 (cited on Page 18, 23, 27, 31, 37, 38, 45, 47, 49, and 59)

[53] Samip Dahal, Adyasha Maharana, and Mohit Bansal. 2022. Scotch: A Semantic Code Search
Engine for IDEs. In Deep Learning for Code Workshop. (cited on Page 27, 45, and 59)

[54] Carlos Diego Nascimento Damasceno and Daniel Strüber. 2021. Quality Guidelines for Re-
search Artifacts in Model-Driven Engineering. In 2021 ACM/IEEE 24th International Con-
ference on Model Driven Engineering Languages and Systems (MODELS). 285–296. (cited
on Page 55)

[55] Giuseppe De Palma, Saverio Giallorenzo, Jacopo Mauro, Matteo Trentin, and Gianluigi
Zavattaro. 2022. Topology-aware Serverless Function-Execution Scheduling. arXiv preprint
arXiv:2205.10176 (2022). (cited on Page 25 and 59)

[56] Alexandre Decan, Tom Mens, Pooya Rostami Mazrae, and Mehdi Golzadeh. 2022. On the
Use of GitHub Actions in Software Development Repositories. (cited on Page 27 and 59)

https://doi.org/10.1109/MSR52588.2021.00074
https://doi.org/10.1109/MSR52588.2021.00074

Bibliography 65

[57] Tapajit Dey, Andrey Karnauch, and Audris Mockus. 2021. Representation of developer
expertise in open source software. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 995–1007. (cited on Page 28 and 59)

[58] Tapajit Dey, Yuxing Ma, and Audris Mockus. 2019. Patterns of effort contribution and
demand and user classification based on participation patterns in npm ecosystem. In Pro-
ceedings of the fifteenth international conference on predictive models and data analytics in
software engineering. (cited on Page 59)

[59] Tapajit Dey and Audris Mockus. 2020. Effect of technical and social factors on pull request
quality for the npm ecosystem. In Proceedings of the 14th ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM). (cited on Page 59)

[60] Tapajit Dey and Audris Mockus. 2020. Which pull requests get accepted and why? a study
of popular npm packages. arXiv preprint arXiv:2003.01153 (2020). (cited on Page 28
and 59)

[61] Tapajit Dey, Sara Mousavi, Eduardo Ponce, Tanner Fry, Bogdan Vasilescu, Anna Filippova,
and Audris Mockus. 2020. Detecting and characterizing bots that commit code. In MSR.
(cited on Page 28 and 59)

[62] Tapajit Dey, Bogdan Vasilescu, and Audris Mockus. 2020. An exploratory study of bot
commits. In Proceedings of the IEEE/ACM 42nd international conference on software engi-
neering workshops. (cited on Page 28 and 59)

[63] Roberto Di Cosmo. 2018. Software Heritage: Collecting, Preserving, and Sharing All Our
Source Code. In ASE. ACM. (cited on Page 55)

[64] Andrea Di Sorbo, Gerardo Canfora, and Sebastiano Panichella. 2019. ” Won’t We Fix
this Issue?” Qualitative Characterization and Automated Identification of Wontfix Issues
on GitHub. arXiv preprint arXiv:1904.02414 (2019). (cited on Page 59)

[65] Themistoklis Diamantopoulos, Christiana Galegalidou, and Andreas L Symeonidis. 2021.
Software Task Importance Prediction based on Project Management Data.. In ICSOFT.
(cited on Page 59)

[66] Themistoklis Diamantopoulos, Michail D. Papamichail, Thomas Karanikiotis, Kyriakos C.
Chatzidimitriou, and Andreas L. Symeonidis. 2020. Employing Contribution and Quality
Metrics for Quantifying the Software Development Process. In MSR, Sunghun Kim, Georgios
Gousios, Sarah Nadi, and Joseph Hejderup (Eds.). ACM. (cited on Page 16, 22, 25, 30,
37, 47, and 59)

[67] Yangruibo Ding, Baishakhi Ray, Premkumar Devanbu, and Vincent J Hellendoorn. 2020.
Patching as translation: the data and the metaphor. In 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 275–286. (cited on Page 59)

[68] Yiwen Dong, Tianxiao Gu, Yongqiang Tian, and Chengnian Sun. 2022. SnR: constraint-based
type inference for incomplete Java code snippets. In Proceedings of the 44th International
Conference on Software Engineering. (cited on Page 59)

[69] Santiago Dueñas, Valerio Cosentino, Jesus M Gonzalez-Barahona, Alvaro del Castillo San Fe-
lix, Daniel Izquierdo-Cortazar, Luis Cañas-Dı́az, and Alberto Pérez Garćıa-Plaza. 2021. Gri-
moireLab: A toolset for software development analytics. PeerJ Computer Science 7 (2021).
(cited on Page 59)

[70] Santiago Dueñas, Valerio Cosentino, Gregorio Robles, and Jesus M Gonzalez-Barahona.
2018. Perceval: software project data at your will. In Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings. (cited on Page 59)

66 Bibliography

[71] Thomas Durieux, Fernanda Madeiral, Matias Martinez, and Rui Abreu. 2019. Empirical
review of Java program repair tools: A large-scale experiment on 2,141 bugs and 23,551
repair attempts. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering. (cited
on Page 28 and 59)

[72] Thomas Durieux, César Soto-Valero, and Benoit Baudry. 2021. Duets: A Dataset of
Reproducible Pairs of Java Library-Clients. In MSR. IEEE, IEEE, 545–549. https:
//doi.org/10.1109/MSR52588.2021.00071 (cited on Page 16, 22, 25, 30, 37, 47, and 59)

[73] Omar M Elazhary. 2021. Exploring the socio-technical impact of continuous integration:
tools, practices, and humans. Ph. D. Dissertation. (cited on Page 59)

[74] Ahmed Elnaggar, Wei Ding, Llion Jones, Tom Gibbs, Tamas Feher, Christoph Angerer, Silvia
Severini, Florian Matthes, and Burkhard Rost. 2021. CodeTrans: Towards Cracking the
Language of Silicon’s Code Through Self-Supervised Deep Learning and High Performance
Computing. arXiv preprint arXiv:2104.02443 (2021). (cited on Page 27 and 59)

[75] Kalvin Eng and Abram Hindle. 2021. Revisiting Dockerfiles in Open Source Software Over
Time. In MSR. IEEE, 449–459. (cited on Page 59)

[76] Nafise Eskandani and Guido Salvaneschi. 2021. The Wonderless Dataset for Serverless Com-
puting. In MSR. IEEE. (cited on Page 16, 22, 25, 30, 37, 47, 49, and 59)

[77] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. AC/C++ code vulnerability
dataset with code changes and CVE summaries. In MSR. (cited on Page 59)

[78] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. A C/C++ Code Vulnerability
Dataset with Code Changes and CVE Summaries. In MSR, Sunghun Kim, Georgios Gousios,
Sarah Nadi, and Joseph Hejderup (Eds.). ACM. (cited on Page 19, 24, 27, 32, 37, 38, 47,
48, and 59)

[79] Mattia Fazzini, Chase Choi, Juan Manuel Copia, Gabriel Lee, Yoshiki Kakehi, Alessandra
Gorla, and Alessandro Orso. 2022. Use of Test Doubles in Android Testing: An In-Depth
Investigation. (2022). (cited on Page 59)

[80] Rudolf Ferenc, Péter Hegedűs, Péter Gyimesi, Gábor Antal, Dénes Bán, and Tibor Gyimóthy.
2019. Challenging machine learning algorithms in predicting vulnerable javascript functions.
In 2019 IEEE/ACM 7th International Workshop on Realizing Artificial Intelligence Synergies
in Software Engineering (RAISE). IEEE, 8–14. (cited on Page 59)

[81] Samuel W Flint, Jigyasa Chauhan, and Robert Dyer. 2021. Escaping the time pit: Pitfalls
and guidelines for using time-based git data. In MSR. IEEE, 85–96. (cited on Page 59)

[82] Samuel W Flint, Jigyasa Chauhan, and Robert Dyer. 2022. Pitfalls and guidelines for using
time-based Git data. Empirical Software Engineering 27, 7 (2022). (cited on Page 27
and 59)

[83] Eitan Frachtenberg. 2022. Research artifacts and citations in computer systems papers.
PeerJ Computer Science 8 (2022). (cited on Page 1 and 55)

[84] Tanner Fry, Tapajit Dey, Andrey Karnauch, and Audris Mockus. 2020. A Dataset and an
Approach for Identity Resolution of 38 Million Author IDs extracted from 2B Git Commits.
In MSR, Sunghun Kim, Georgios Gousios, Sarah Nadi, and Joseph Hejderup (Eds.). ACM.
(cited on Page 18, 23, 25, 28, 32, 37, 38, 47, and 59)

[85] Aakash Gautam, Saket Vishwasrao, and Francisco Servant. 2017. An Empirical Study of
Activity, Popularity, Size, Testing, and Stability in Continuous Integration. In MSR. IEEE.
(cited on Page 29)

https://doi.org/10.1109/MSR52588.2021.00071
https://doi.org/10.1109/MSR52588.2021.00071

Bibliography 67

[86] Franz-Xaver Geiger, Ivano Malavolta, Luca Pascarella, Fabio Palomba, Dario Di Nucci, and
Alberto Bacchelli. 2018. A graph-based dataset of commit history of real-world Android
apps. In MSR, Andy Zaidman, Yasutaka Kamei, and Emily Hill (Eds.). ACM. (cited on
Page 19, 24, 28, 32, 37, 47, and 59)

[87] Antonios Gkortzis, Daniel Feitosa, and Diomidis Spinellis. 2021. Software reuse cuts both
ways: An empirical analysis of its relationship with security vulnerabilities. Journal of
Systems and Software 172 (2021). (cited on Page 25 and 59)

[88] Antonios Gkortzis, Dimitris Mitropoulos, and Diomidis Spinellis. 2018. VulinOSS: a dataset
of security vulnerabilities in open-source systems. In MSR, Andy Zaidman, Yasutaka Kamei,
and Emily Hill (Eds.). ACM. (cited on Page 19, 24, 25, 32, 37, 47, and 59)

[89] Bruno Góis Mateus and Matias Martinez. 2019. An empirical study on quality of Android
applications written in Kotlin language. Empirical Software Engineering 24, 6 (2019). (cited
on Page 28 and 59)

[90] Nicolas E. Gold and Jens Krinke. 2020. Ethical Mining: A Case Study on MSR Mining
Challenges. In MSR (Seoul, Republic of Korea) (MSR ’20). Association for Computing Ma-
chinery, New York, NY, USA, 265–276. (cited on Page 1, 12, and 55)

[91] Nicolas E Gold and Jens Krinke. 2020. Ethical mining: A case study on MSR mining
challenges. In MSR. (cited on Page 59)

[92] Nicolas E Gold and Jens Krinke. 2022. Ethics in the mining of software repositories. Empirical
Software Engineering 27, 1 (2022). (cited on Page 1, 12, 55, and 56)

[93] Nicolas E. Gold and Jens Krinke. 2022. Ethics in the Mining of Software Repositories.
Empirical Software Engineering 27, 1 (2022). (cited on Page 52)

[94] Nicolas E Gold and Jens Krinke. 2022. Ethics in the mining of software repositories. Empirical
Software Engineering 27, 1 (2022). (cited on Page 59)

[95] Yaroslav Golubev, Maria Eliseeva, Nikita Povarov, and Timofey Bryksin. 2020. A study of
potential code borrowing and license violations in java projects on github. In MSR. (cited
on Page 27 and 59)

[96] Mehdi Golzadeh, Alexandre Decan, and Natarajan Chidambaram. 2022. On the accuracy
of bot detection techniques. In International Workshop on Bots in Software Engineering
(BotSE). IEEE. (cited on Page 27 and 59)

[97] Teresa Gomez-Diaz and Tomas Recio. 2021. Open comments on the Task Force SIRS report:
Scholarly Infrastructures for Research Software (EOSC Executive Board, EOSCArchitec-
ture). arXiv preprint arXiv:2108.06127 (2021). (cited on Page 59)

[98] Bethany Gosala, Sripriya Roy Chowdhuri, Jyoti Singh, Manjari Gupta, and Alok Mishra.
2021. Automatic classification of UML class diagrams using deep learning technique: convo-
lutional neural network. Applied Sciences 11, 9 (2021). (cited on Page 59)

[99] Georgios Gousios. 2013. The GHTorent dataset and tool suite. In MSR, Thomas Zimmer-
mann, Massimiliano Di Penta, and Sunghun Kim (Eds.). IEEE, IEEE Computer Society,
233–236. https://doi.org/10.1109/MSR.2013.6624034 (cited on Page 13, 17, 18, 19, 20,
21, 24, 29, 33, 37, 38, 39, 40, 47, 48, 55, and 59)

[100] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An exploratory study of the
pull-based software development model. In Proceedings of the 36th international conference
on software engineering. (cited on Page 29 and 59)

[101] Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent: Github’s data from a firehose. In
MSR, Michele Lanza, Massimiliano Di Penta, and Tao Xie (Eds.). IEEE Computer Society.
(cited on Page 13, 17, 18, 19, 20, 21, 24, 29, 32, 37, 38, 39, 40, 47, 48, 55, and 59)

https://doi.org/10.1109/MSR.2013.6624034

68 Bibliography

[102] Georgios Gousios, Bogdan Vasilescu, Alexander Serebrenik, and Andy Zaidman. 2014. Lean
GHTorrent: GitHub data on demand. In MSR. (cited on Page 59)

[103] Georgios Gousios and Andy Zaidman. 2014. A dataset for pull-based development research.
In MSR. ACM. (cited on Page 17)

[104] Georgios Gousios and Andy Zaidman. 2014. A dataset for pull-based development research.
In MSR. (cited on Page 40)

[105] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van Deursen. 2015. Work
practices and challenges in pull-based development: The integrator’s perspective. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1. IEEE,
358–368. (cited on Page 29 and 59)

[106] Konstantin Grotov, Sergey Titov, Vladimir Sotnikov, Yaroslav Golubev, and Timofey
Bryksin. 2022. A Large-Scale Comparison of Python Code in Jupyter Notebooks and Scripts.
arXiv preprint arXiv:2203.16718 (2022). (cited on Page 27 and 59)

[107] Bernd Gruner, Tim Sonnekalb, Thomas S Heinze, and Clemens-Alexander Brust. 2022.
Cross-Domain Evaluation of a Deep Learning-Based Type Inference System. arXiv preprint
arXiv:2208.09189 (2022). (cited on Page 26 and 59)

[108] Michele Guerriero, Martin Garriga, Damian A Tamburri, and Fabio Palomba. 2019. Adop-
tion, support, and challenges of infrastructure-as-code: Insights from industry. In 2019 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE, 580–589.
(cited on Page 59)

[109] Chenkai Guo, Dengrong Huang, Naipeng Dong, Quanqi Ye, Jing Xu, Yaqing Fan, Hui Yang,
and Yifan Xu. 2019. Deep review sharing. In 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 61–72. (cited on Page 59)

[110] Yash Gupta, Yusaira Khan, Keheliya Gallaba, and Shane McIntosh. 2017. The Impact of
the Adoption of Continuous Integration on Developer Attraction and Retention. In MSR.
IEEE. (cited on Page 29)

[111] Emitza Guzman, David Azócar, and Yang Li. 2014. Sentiment analysis of commit comments
in GitHub: an empirical study. In MSR. (cited on Page 29 and 59)

[112] Péter Gyimesi, Béla Vancsics, Andrea Stocco, Davood Mazinanian, Arpád Beszédes, Rudolf
Ferenc, and Ali Mesbah. 2019. BugsJS: a benchmark of JavaScript bugs. In 2019 12th IEEE
Conference on Software Testing, Validation and Verification (ICST). IEEE, 90–101. (cited
on Page 59)

[113] Sarra Habchi, Naouel Moha, and Romain Rouvoy. 2019. The rise of android code smells:
Who is to blame?. In MSR. IEEE, 445–456. (cited on Page 59)

[114] Sarra Habchi, Romain Rouvoy, and Naouel Moha. 2019. On the survival of android code
smells in the wild. In 2019 IEEE/ACM 6th International Conference on Mobile Software
Engineering and Systems (MOBILESoft). IEEE, 87–98. (cited on Page 59)

[115] Mouna Hadj-Kacem and Nadia Bouassida. 2021. A multi-label classification approach for
detecting test smells over java projects. Journal of King Saud University-Computer and
Information Sciences (2021). (cited on Page 59)

[116] K Hanayama, S Matsumoto, and S Kusumoto. 2020. Humpback: Code Completion Sys-
tem for Dockerfiles Based on Language Models. In Proc. Workshop on Natural Language
Processing Advancements for Software Engineering. (cited on Page 59)

Bibliography 69

[117] Kaisei Hanayama, Shinsuke Matsumoto, and Shinji Kusumoto. 2021. Development of Code
Completion System for Dockerfiles. 38, 4 (2021), 4 53–4 59. (cited on Page)

[118] Mubin Ul Haque and M Ali Babar. 2022. Well begun is half done: An empirical study of
exploitability & impact of base-image vulnerabilities. In 2022 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, 1066–1077. (cited on
Page 59)

[119] Mark Harman and Peter O’Hearn. 2018. From start-ups to scale-ups: Opportunities and open
problems for static and dynamic program analysis. In 2018 IEEE 18th International Working
Conference on Source Code Analysis and Manipulation (SCAM). IEEE, 1–23. (cited on
Page 59)

[120] Johannes Härtel, Marcel Heinz, and Ralf Lämmel. 2018. EMF patterns of usage on GitHub.
In European conference on modelling foundations and applications. Springer, 216–234. (cited
on Page 59)

[121] Shinpei Hayashi, Daiki Hoshino, Jumpei Matsuda, Motoshi Saeki, Takayuki Omori, and
Katsuhisa Maruyama. 2015. Historef: A tool for edit history refactoring. In SANER. IEEE.
(cited on Page 48)

[122] Hao He. 2019. Understanding source code comments at large-scale. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. (cited on Page 59)

[123] Xincheng He, Lei Xu, Xiangyu Zhang, Rui Hao, Yang Feng, and Baowen Xu. 2021. Pyart:
Python api recommendation in real-time. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 1634–1645. (cited on Page 59)

[124] Geoffrey Hecht and Alexandre Bergel. 2021. Quantifying the adoption of Kotlin on Android
stores: Insight from the bytecode. In 2021 IEEE/ACM 8th International Conference on
Mobile Software Engineering and Systems (MobileSoft). IEEE, 94–98. (cited on Page 59)

[125] Thomas S Heinze, Viktor Stefanko, and Wolfram Amme. 2020. Mining BPMN processes on
Github for tool validation and development. In Enterprise, Business-Process and Information
Systems Modeling. Springer. (cited on Page 59)

[126] Joseph Hejderup, Moritz Beller, Konstantinos Triantafyllou, and Georgios Gousios. 2022.
Präzi: from package-based to call-based dependency networks. Empirical Software Engi-
neering 27, 5 (2022). (cited on Page 59)

[127] Jordan Henkel, Christian Bird, Shuvendu K. Lahiri, and Thomas W. Reps. 2020. A Dataset
of Dockerfiles. In MSR, Sunghun Kim, Georgios Gousios, Sarah Nadi, and Joseph Hejderup
(Eds.). ACM. (cited on Page 17, 23, 26, 31, 37, 47, and 59)

[128] Jordan Henkel, Denini Silva, Leopoldo Teixeira, Marcelo d’Amorim, and Thomas Reps. 2021.
Shipwright: A Human-in-the-Loop System for Dockerfile Repair. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 1148–1160. (cited on
Page 26 and 59)

[129] Ben Hermann. 2022. What Has Artifact Evaluation Ever Done for Us? IEEE Security &
Privacy 20, 5 (2022). (cited on Page 1 and 55)

[130] Ben Hermann, Stefan Winter, and Janet Siegmund. 2020. Community Expectations for
Research Artifacts and Evaluation Processes. In ESEC/FSE. ACM. (cited on Page 55)

[131] Robert Heumüller, Sebastian Nielebock, Jacob Krüger, and Frank Ortmeier. 2020. Publish
or Perish, but do not Forget Your Software Artifacts. Empirical Software Engineering (2020).
(cited on Page 1 and 55)

70 Bibliography

[132] Robert Heumüller, Sebastian Nielebock, and Frank Ortmeier. 2021. Exploit those code
reviews! bigger data for deeper learning. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. (cited on Page 59)

[133] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig. 2016. Us-
age, costs, and benefits of continuous integration in open-source projects. In 2016 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE,
426–437. (cited on Page 29 and 59)

[134] Abram Hindle, Alex Wilson, Kent Rasmussen, E Jed Barlow, Joshua Charles Campbell,
and Stephen Romansky. 2014. Greenminer: A hardware based mining software repositories
software energy consumption framework. In MSR. (cited on Page 59)

[135] Thomas Hirsch and Birgit Hofer. 2022. A systematic literature review on benchmarks for
evaluating debugging approaches. Journal of Systems and Software (2022). (cited on
Page 59)

[136] Truong Ho-Quang, Michel RV Chaudron, Gregorio Robles, and Guntur Budi Herwanto. 2019.
Towards an infrastructure for empirical research into software architecture: challenges and
directions. In 2019 IEEE/ACM 2nd International Workshop on Establishing the Community-
Wide Infrastructure for Architecture-Based Software Engineering (ECASE). IEEE, 34–41.
(cited on Page 59)

[137] Eric Horton and Chris Parnin. 2018. Gistable: Evaluating the executability of python code
snippets on github. In 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 217–227. (cited on Page 59)

[138] Jiayi Hua and Haoyu Wang. 2021. On the Effectiveness of Deep Vulnerability Detectors to
Simple Stupid Bug Detection. In MSR. IEEE. (cited on Page 28)

[139] Ahmed Imam, Tapajit Dey, Alexander Nolte, Audris Mockus, and James D Herbsleb. 2021.
The Secret Life of Hackathon Code Where does it come from and where does it go?. In MSR.
IEEE, 68–79. (cited on Page 59)

[140] Md Rakibul Islam and Minhaz F. Zibran. 2017. Insights into Continuous Integration Build
Failures. In MSR. IEEE. (cited on Page 28)

[141] Samireh Jalali and Claes Wohlin. 2012. Systematic Literature Studies: Database Searches
vs. Backward Snowballing. In ESEM. ACM. (cited on Page 11)

[142] Kevin Jesse and Premkumar T Devanbu. 2022. ManyTypes4TypeScript: A Comprehensive
TypeScript Dataset for Sequence-Based Type Inference. (2022). (cited on Page 59)

[143] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. Cure: Code-aware neural machine trans-
lation for automatic program repair. In 2021 IEEE/ACM 43rd International Conference on
Software Engineering (ICSE). IEEE, 1161–1173. (cited on Page 59)

[144] Matthieu Jimenez. 2018. Evaluating vulnerability prediction models. Ph. D. Dissertation.
University of Luxembourg, Luxembourg. (cited on Page 59)

[145] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M German, and
Daniela Damian. 2014. The promises and perils of mining github. In MSR. (cited on
Page 29 and 59)

[146] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. German, and
Daniela Damian. 2014. The Promises and Perils of Mining GitHub. In MSR. ACM. (cited
on Page 55)

Bibliography 71

[147] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. German, and
Daniela Damian. 2016. An In-Depth Study of the Promises and Perils of Mining GitHub.
Empirical Software Engineering 21, 5 (2016). (cited on Page 55)

[148] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M German, and
Daniela Damian. 2016. An in-depth study of the promises and perils of mining GitHub.
Empirical Software Engineering 21, 5 (2016). (cited on Page 59)

[149] Arthur V. Kamienski, Luisa Palechor, Cor-Paul Bezemer, and Abram Hindle. 2021.
PySStuBs: Characterizing Single-Statement Bugs in Popular Open-Source Python Projects.
In MSR. IEEE. (cited on Page 28)

[150] Rafael-Michael Karampatsis and Charles Sutton. 2020. How Often Do Single-Statement Bugs
Occur?: The ManySStuBs4J Dataset. In MSR, Sunghun Kim, Georgios Gousios, Sarah Nadi,
and Joseph Hejderup (Eds.). ACM. (cited on Page 13, 20, 24, 25, 28, 32, 37, 47, and 59)

[151] Rafael-Michael Karampatsis and Charles Sutton. 2020. Scelmo: Source code embeddings
from language models. arXiv preprint arXiv:2004.13214 (2020). (cited on Page 28 and 59)

[152] Anjan Karmakar and Romain Robbes. 2021. What do pre-trained code models know about
code?. In 2021 36th IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 1332–1336. (cited on Page 26 and 59)

[153] Andrey Karnauch. 2020. Developer Reputation Estimator: Increasing the Transparency of
Developer Contributions in Open Source Software. (2020). (cited on Page 59)

[154] SayedHassan Khatoonabadi, Diego Elias Costa, Rabe Abdalkareem, and Emad Shihab. 2021.
On Wasted Contributions: Understanding the Dynamics of Contributor-Abandoned Pull
Requests. arXiv preprint arXiv:2110.15447 (2021). (cited on Page 59)

[155] Misoo Kim, Youngkyoung Kim, and Eunseok Lee. 2021. Denchmark: A Bug Benchmark of
Deep Learning-related Software. In MSR. IEEE, IEEE, 540–544. https://doi.org/10.1109/
MSR52588.2021.00070 (cited on Page 16, 22, 25, 27, 30, 33, 37, 47, 48, and 59)

[156] Misoo Kim, Youngkyoung Kim, and Eunseok Lee. 2022. An Empirical Study of IR-based
Bug Localization for Deep Learning-based Software. In 2022 IEEE Conference on Software
Testing, Verification and Validation (ICST). IEEE, 128–139. (cited on Page 25 and 59)

[157] Youngkyoung Kim, Misoo Kim, and Eunseok Lee. 2022. Tracking Down Misguiding Terms
for Locating Bugs in Deep Learning-Based Software (Student Abstract). (2022). (cited on
Page 59)

[158] Barbara A. Kitchenham, David Budgen, and O. Pearl Brereton. 2015. Evidence-Based Soft-
ware Engineering and Systematic Reviews. CRC Press. (cited on Page 11)

[159] Barbara A. Kitchenham and Stuart Charters. 2007. Guidelines for Performing Systematic
Literature Reviews in Software Engineering. Technical Report EBSE-2007-01. Keele Univer-
sity. (cited on Page 11)

[160] Lukasz Korzeniowski and Krzysztof Goczy la. 2022. Landscape of Automated Log Analysis: a
Systematic Literature Review and Mapping Study. IEEE Access (2022). (cited on Page 59)

[161] Zoe Kotti, Konstantinos Kravvaritis, Konstantina Dritsa, and Diomidis Spinellis. 2020.
Standing on shoulders or feet? An extended study on the usage of the MSR data papers.
Empirical Software Engineering 25, 5 (2020). (cited on Page 56)

[162] Zoe Kotti, Konstantinos Kravvaritis, Konstantina Dritsa, and Diomidis Spinellis. 2020.
Standing on shoulders or feet? An extended study on the usage of the MSR data papers.
Empirical Software Engineering 25, 5 (2020). (cited on Page 59)

https://doi.org/10.1109/MSR52588.2021.00070
https://doi.org/10.1109/MSR52588.2021.00070

72 Bibliography

[163] Zoe Kotti and Diomidis Spinellis. 2019. Standing on shoulders or feet? The usage of the
MSR data papers. In MSR. IEEE. (cited on Page 56)

[164] Zoe Kotti and Diomidis Spinellis. 2019. Standing on shoulders or feet? the usage of the MSR
data papers. In MSR. IEEE, 565–576. (cited on Page 59)

[165] Shriram Krishnamurthi. 2013. Artifact Evaluation for Software Conferences. SIGSOFT
Softw. Eng. Notes 38, 3 (may 2013). (cited on Page 1 and 55)

[166] Shriram Krishnamurthi and Jan Vitek. 2015. The Real Software Crisis: Repeatability as a
Core Value. Commun. ACM 58, 3 (feb 2015). (cited on Page 55)

[167] Jacob Krüger, Christian Lausberger, Ivonne von Nostitz-Wallwitz, Gunter Saake, and
Thomas Leich. 2020. Search. Review. Repeat? An Empirical Study of Threats to Repli-
cating SLR Searches. Empirical Software Engineering 25, 1 (2020). (cited on Page 11)

[168] Indika Kumara, Mart́ın Garriga, Angel Urbano Romeu, Dario Di Nucci, Fabio Palomba,
Damian Andrew Tamburri, and Willem-Jan van den Heuvel. 2021. The do’s and don’ts of
infrastructure code: A systematic gray literature review. Information and Software Technol-
ogy 137 (2021). (cited on Page 59)

[169] Jasmine Latendresse, Rabe Abdalkareem, Diego Elias Costa, and Emad Shihab. 2021. How
Effective is Continuous Integration in Indicating Single-Statement Bugs?. In MSR. IEEE.
(cited on Page 28)

[170] Jason Lefever, Yuanfang Cai, Humberto Cervantes, Rick Kazman, and Hongzhou Fang.
2021. On the lack of consensus among technical debt detection tools. In 2021 IEEE/ACM
43rd International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 121–130. (cited on Page 26 and 59)

[171] Li Li, Jun Gao, Pingfan Kong, Haoyu Wang, Mengyu Huang, Yuan-Fang Li, and
Tegawendé F Bissyandé. 2020. KnowledgeZooClient: constructing knowledge graph for
Android. In 2020 35th IEEE/ACM International Conference on Automated Software En-
gineering Workshops (ASEW). IEEE, 73–78. (cited on Page 59)

[172] Wen Li, Xiaoqin Fu, and Haipeng Cai. 2021. Androct: ten years of app call traces in android.
In MSR. IEEE, 570–574. (cited on Page 59)

[173] Wen Li, Li Li, and Haipeng Cai. 2022. On the Vulnerability Proneness of Multilingual Code.
In ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE). (cited on Page 59)

[174] Yi Li, Shaohua Wang, and Tien N Nguyen. 2020. Dlfix: Context-based code transformation
learning for automated program repair. In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. (cited on Page 28 and 59)

[175] Yi Li, Shaohua Wang, and Tien N Nguyen. 2021. Vulnerability detection with fine-grained
interpretations. In Proceedings of the 29th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering. (cited on
Page 27 and 59)

[176] Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik. 2017. FHistorian: Locating
features in version histories. In Proceedings of the 21st International Systems and Software
Product Line Conference-Volume A. (cited on Page 26 and 59)

[177] Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik. 2018. CSlicerCloud: a web-based
semantic history slicing framework. In Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings. (cited on Page 26 and 59)

Bibliography 73

[178] Zhixing Li, Yue Yu, Minghui Zhou, Tao Wang, Gang Yin, Long Lan, and Huaimin Wang.
2020. Redundancy, context, and preference: An empirical study of duplicate pull requests
in OSS projects. IEEE Transactions on Software Engineering (2020). (cited on Page 27
and 59)

[179] Zhi-Xing Li, Yue Yu, Tao Wang, Gang Yin, Xin-Jun Mao, and Huai-Min Wang. 2021. Detect-
ing duplicate contributions in pull-based model combining textual and change similarities.
Journal of Computer Science and Technology 36, 1 (2021). (cited on Page 27 and 59)

[180] Lu Liang, Yong Li, Ming Wen, and Ying Liu. 2022. KG4Py: A toolkit for generating Python
knowledge graph and code semantic search. Connection Science 34, 1 (2022). (cited on
Page 26 and 59)

[181] Jackson A Prado Lima and Silvia R Vergilio. 2020. Test Case Prioritization in Continuous In-
tegration environments: A systematic mapping study. Information and Software Technology
121 (2020). (cited on Page 59)

[182] Changyuan Lin, Sarah Nadi, and Hamzeh Khazaei. 2020. A large-scale data set and an em-
pirical study of docker images hosted on docker hub. In 2020 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, 371–381. (cited on Page 59)

[183] Bingchang Liu, Guozhu Meng, Wei Zou, Qi Gong, Feng Li, Min Lin, Dandan Sun, Wei Huo,
and Chao Zhang. 2020. A large-scale empirical study on vulnerability distribution within
projects and the lessons learned. In 2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE). IEEE, 1547–1559. (cited on Page 59)

[184] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. Avatar: Fix-
ing semantic bugs with fix patterns of static analysis violations. In 2019 IEEE 26th Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
1–12. (cited on Page 59)

[185] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. TBar: Revisit-
ing template-based automated program repair. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis. (cited on Page)

[186] Kui Liu, Shangwen Wang, Anil Koyuncu, Kisub Kim, Tegawendé F Bissyandé, Dongsun Kim,
Peng Wu, Jacques Klein, Xiaoguang Mao, and Yves Le Traon. 2020. On the efficiency of
test suite based program repair: A systematic assessment of 16 automated repair systems for
java programs. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering. (cited on Page 59)

[187] Pei Liu, Li Li, Yanjie Zhao, Xiaoyu Sun, and John Grundy. 2020. AndroZooOpen: Collecting
Large-scale Open Source Android Apps for the Research Community. In MSR, Sunghun Kim,
Georgios Gousios, Sarah Nadi, and Joseph Hejderup (Eds.). ACM. (cited on Page 17, 23,
26, 31, 37, 38, 42, 47, and 59)

[188] Pei Liu, Yanjie Zhao, Haipeng Cai, Mattia Fazzini, John Grundy, and Li Li. 2022. Au-
tomatically Detecting API-induced Compatibility Issues in Android Apps: A Comparative
Analysis (Replicability Study). arXiv preprint arXiv:2205.15561 (2022). (cited on Page 25
and 59)

[189] Nick Lodewijks. [n. d.]. Clone-and-Own. ([n. d.]). (cited on Page 59)

[190] Nick Lodewijks. 2017. Analysis of a clone-and-own industrial automation system: An ex-
ploratory study. SATToSE (2017). (cited on Page 59)

[191] José Antonio Hernández López and Jesús Sánchez Cuadrado. 2020. MAR: a structure-based
search engine for models. In Proceedings of the 23rd ACM/IEEE international conference on
model driven engineering languages and systems. (cited on Page 59)

74 Bibliography

[192] Zhigang Lu, Jiwei Xu, Yuewen Wu, Tao Wang, and Tao Huang. 2019. An empirical case
study on the temporary file smell in dockerfiles. IEEE Access 7 (2019). (cited on Page 59)

[193] Nikola Luburić, Simona Prokić, Katarina-Glorija Grujić, Jelena Slivka, Aleksandar Kovače-
vić, Goran Sladić, and Dragan Vidaković. 2022. Towards a systematic approach to manual
annotation of code smells. (2022). (cited on Page 59)

[194] Stephan Lukasczyk, Florian Kroiß, and Gordon Fraser. 2021. An Empirical Study of Auto-
mated Unit Test Generation for Python. arXiv preprint arXiv:2111.05003 (2021). (cited
on Page 26 and 59)

[195] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and Lin Tan.
2020. Coconut: combining context-aware neural translation models using ensemble for pro-
gram repair. In Proceedings of the 29th ACM SIGSOFT international symposium on software
testing and analysis. (cited on Page 59)

[196] Yuxing Ma. 2020. Software Supply Chain Development and Application. (2020). (cited on
Page 26 and 59)

[197] Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris Mockus. 2019.
World of code: an infrastructure for mining the universe of open source VCS data. In MSR,
Margaret-Anne D. Storey, Bram Adams, and Sonia Haiduc (Eds.). IEEE / ACM. (cited
on Page 18, 19, 24, 28, 32, 37, 38, 40, 47, 48, and 59)

[198] Yuxing Ma, Tapajit Dey, Chris Bogart, Sadika Amreen, Marat Valiev, Adam Tutko, David
Kennard, Russell Zaretzki, and Audris Mockus. 2021. World of code: Enabling a research
workflow for mining and analyzing the universe of open source vcs data. Empirical Software
Engineering 26, 2 (2021). (cited on Page 59)

[199] Fernanda Madeiral and Thomas Durieux. 2021. A large-scale study on human-cloned changes
for automated program repair. In MSR. IEEE. (cited on Page 28)

[200] Fernanda Madeiral, Simon Urli, Marcelo Maia, and Martin Monperrus. 2019. Bears: An
extensible java bug benchmark for automatic program repair studies. In 2019 IEEE 26th In-
ternational Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
468–478. (cited on Page 28 and 59)

[201] Lech Madeyski and Marcin Kawalerowicz. 2017. Continuous Defect Prediction: The Idea
and a Related Dataset. In MSR. IEEE. (cited on Page 29)

[202] Ivano Malavolta, Roberto Verdecchia, Bojan Filipovic, Magiel Bruntink, and Patricia Lago.
2018. How maintainability issues of android apps evolve. In 2018 IEEE international confer-
ence on software maintenance and evolution (ICSME). IEEE, 334–344. (cited on Page 59)

[203] Marco Manglaviti, Eduardo Coronado-Montoya, Keheliya Gallaba, and Shane McIntosh.
2017. An Empirical Study of the Personnel Overhead of Continuous Integration. In MSR.
IEEE. (cited on Page 28)

[204] Vadim Markovtsev and Waren Long. 2018. Public git archive: a big code dataset for all. In
MSR, Andy Zaidman, Yasutaka Kamei, and Emily Hill (Eds.). ACM. (cited on Page 19,
24, 27, 32, 37, 47, 49, and 59)

[205] Vadim Markovtsev, Waren Long, Egor Bulychev, Romain Keramitas, Konstantin Slavnov,
and Gabor Markowski. 2018. Splitting source code identifiers using bidirectional lstm recur-
rent neural network. arXiv preprint arXiv:1805.11651 (2018). (cited on Page 27 and 59)

Bibliography 75

[206] Pedro Martins, Rohan Achar, and Cristina V. Lopes. 2018. 50K-C: a dataset of compilable,
and compiled, Java projects. In MSR, Andy Zaidman, Yasutaka Kamei, and Emily Hill
(Eds.). ACM. (cited on Page 18, 23, 26, 31, 37, 47, and 59)

[207] Ehsan Mashhadi and Hadi Hemmati. 2021. Applying CodeBERT for Automated Program
Repair of Java Simple Bugs. In MSR. IEEE. (cited on Page 28)

[208] Ehsan Mashhadi and Hadi Hemmati. 2021. Applying codebert for automated program repair
of java simple bugs. In MSR. IEEE, 505–509. (cited on Page 28 and 59)

[209] Bruno Gois Mateus and Matias Martinez. 2020. On the adoption, usage and evolution of
Kotlin features in Android development. In Proceedings of the 14th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). (cited on
Page 59)

[210] Vasileios Matsoukas, Themistoklis Diamantopoulos, Michail D Papamichail, and Andreas L
Symeonidis. 2020. Towards Analyzing Contributions from Software Repositories to Opti-
mize Issue Assignment. In 2020 IEEE 20th International Conference on Software Quality,
Reliability and Security (QRS). IEEE, 243–253. (cited on Page 59)

[211] Pooya Rostami Mazrae, Maliheh Izadi, and Abbas Heydarnoori. 2021. Automated Recovery
of Issue-Commit Links Leveraging Both Textual and Non-textual Data. In 2021 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME). IEEE, 263–273.
(cited on Page 26 and 59)

[212] Daniel Mendez, Daniel Graziotin, Stefan Wagner, and Heidi Seibold. 2020. Open science in
software engineering. In Contemporary empirical methods in software engineering. Springer.
(cited on Page 1 and 55)

[213] Daniel Méndez Fernández, Martin Monperrus, Robert Feldt, and Thomas Zimmermann.
2019. The open science initiative of the Empirical Software Engineering journal. Empirical
Software Engineering 24 (2019). (cited on Page 1 and 55)

[214] Josh GM Mengerink, Jeroen Noten, Ramon RH Schiffelers, Mark GJ van den Brand, and
Alexander Serebrenik. 2017. A Case of Industrial vs. Open-source OCL: Not So Different
After All.. In MoDELS (Satellite Events). (cited on Page 27 and 59)

[215] Josh GM Mengerink, Jeroen Noten, and Alexander Serebrenik. 2019. Empowering OCL
research: a large-scale corpus of open-source data from GitHub. Empirical Software Engi-
neering 24, 3 (2019). (cited on Page)

[216] Josh GM Mengerink, Alexander Serebrenik, Ramon RH Schiffelers, and Mark GJ van den
Brand. 2017. Automated analyses of model-driven artifacts: obtaining insights into industrial
application of MDE. In Proceedings of the 27th International Workshop on Software Mea-
surement and 12th International Conference on Software Process and Product Measurement.
(cited on Page 59)

[217] Amir M. Mir, Evaldas Latoskinas, and Georgios Gousios. 2021. ManyTypes4Py: A Bench-
mark Python Dataset for Machine Learning-based Type Inference. In MSR. IEEE. (cited
on Page 17, 23, 26, 31, 37, 47, and 59)

[218] Amir M Mir, Evaldas Latoškinas, Sebastian Proksch, and Georgios Gousios. 2022. Type4Py:
practical deep similarity learning-based type inference for python. In Proceedings of the 44th
International Conference on Software Engineering. (cited on Page 59)

[219] Audris Mockus, Diomidis Spinellis, Zoe Kotti, and Gabriel John Dusing. 2020. A Com-
plete Set of Related Git Repositories Identified via Community Detection Approaches Based
on Shared Commits. In MSR, Sunghun Kim, Georgios Gousios, Sarah Nadi, and Joseph
Hejderup (Eds.). ACM. (cited on Page 18, 23, 26, 28, 31, 37, 47, and 59)

76 Bibliography

[220] Balazs Mosolygo, Norbert Vandor, Gabor Antal, and Peter Hegedus. 2021. On the Rise and
Fall of Simple Stupid Bugs: a Life-Cycle Analysis of SStuBs. In MSR. IEEE. (cited on
Page 28)

[221] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017. Curating
github for engineered software projects. Empirical Software Engineering 22, 6 (2017). (cited
on Page 29 and 59)

[222] Sandeep Muvva, A Eashaan Rao, and Sridhar Chimalakonda. 2020. BuGL–A Cross-
Language Dataset for Bug Localization. arXiv preprint arXiv:2004.08846 (2020). (cited
on Page 59)

[223] Ward Muylaert and Coen De Roover. 2017. Prevalence of Botched Code Integrations. In
MSR. IEEE. (cited on Page 29)

[224] Phuong T Nguyen, Juri Di Rocco, Claudio Di Sipio, Davide Di Ruscio, and Massimiliano
Di Penta. 2021. Recommending api function calls and code snippets to support software
development. IEEE Transactions on Software Engineering (2021). (cited on Page 28
and 59)

[225] Ansong Ni and Ming Li. 2017. Cost-Effective Build Outcome Prediction Using Cascaded
Classifiers. In MSR. IEEE. (cited on Page 28)

[226] Sebastian Nielebock, Paul Blockhaus, Jacob Krüger, and Frank Ortmeier. 2021. Android-
Compass: A Dataset of Android Compatibility Checks in Code Repositories. In MSR. IEEE.
(cited on Page 16, 22, 25, 30, 37, 38, 47, and 59)

[227] Sebastian Nielebock, Paul Blockhaus, Jacob Krüger, and Frank Ortmeier. 2021. An Exper-
imental Analysis of Graph-Distance Algorithms for Comparing API Usages. arXiv preprint
arXiv:2108.12511 (2021). (cited on Page 59)

[228] Sebastian Nielebock, Paul Blockhaus, Jacob Krüger, and Frank Ortmeier. 2022. Auto-
mated Change Rule Inference for Distance-Based API Misuse Detection. arXiv preprint
arXiv:2207.06665 (2022). (cited on Page 25)

[229] Sebastian Nielebock, Robert Heumüller, Kevin Michael Schott, and Frank Ortmeier. 2021.
Guided pattern mining for API misuse detection by change-based code analysis. Automated
Software Engineering 28, 2 (2021). (cited on Page 59)

[230] Georgios Nikitopoulos, Konstantina Dritsa, Panos Louridas, and Dimitris Mitropoulos. 2021.
CrossVul: a cross-language vulnerability dataset with commit data. In Proceedings of the 29th
ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. (cited on Page 59)

[231] Ana Filipa Nogueira and Mário Zenha-Rela. 2021. Monitoring a ci/cd workflow using process
mining. SN Computer Science 2, 6 (2021). (cited on Page 59)

[232] Yu Nong, Yuzhe Ou, Michael Pradel, Feng Chen, and Haipeng Cai. 2022. Generating Realis-
tic Vulnerabilities via Neural Code Editing: An Empirical Study. In ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). (cited on Page 27 and 59)

[233] Jeroen Noten, Josh Mengerink, and Alexander Serebrenik. 2017. A data set of OCL expres-
sions on GitHub. In MSR, Jesús M. González-Barahona, Abram Hindle, and Lin Tan (Eds.).
IEEE Computer Society. (cited on Page 18, 23, 27, 31, 37, 47, and 59)

[234] Martin Odermatt, Diego Marcilio, and Carlo A Furia. 2022. Static Analysis Warnings and
Automatic Fixing: A Replication for C# Projects. In 2022 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, 805–816. (cited on
Page 27 and 59)

Bibliography 77

[235] Ruben Opdebeeck and Coen De Roover. 2021. Using Program Dependence Graphs to Detect
Misunderstandings of Ansible’s Variable Precedence and Expression Evaluation Semantics.
In 20th Belgium-Netherlands Software Evolution Workshop (BENEVOL 2021). (cited on
Page 25 and 59)

[236] Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. 2022. Smelly Variables in Ansible
Infrastructure Code: Detection, Prevalence, and Lifetime. In MSR. ACM. (cited on Page 25
and 59)

[237] Ruben Opdebeeck, Ahmed Zerouali, and Coen De Roover. 2021. Andromeda: A Dataset of
Ansible Galaxy Roles and Their Evolution. In MSR. IEEE. (cited on Page 16, 22, 25, 30,
37, 47, and 59)

[238] Ruben Opdebeeck, Ahmed Zerouali, Camilo Velázquez-Rodŕıguez, and Coen De Roover.
2021. On the practice of semantic versioning for Ansible galaxy roles: An empirical study
and a change classification model. Journal of Systems and Software 182 (2021). (cited on
Page 25 and 59)

[239] Gerardo Orellana, Gulsher Laghari, Alessandro Murgia, and Serge Demeyer. 2017. On the
Differences between Unit and Integration Testing in the TravisTorrent Dataset. In MSR.
IEEE. (cited on Page 28)

[240] Jordan Ott, Abigail Atchison, and Erik J Linstead. 2019. Exploring the applicability of
low-shot learning in mining software repositories. Journal of Big Data 6, 1 (2019). (cited
on Page 59)

[241] Klerisson V. R. Paixao, Cricia Z. Felicio, Fernanda M. Delfim, and Marcelo De A. Maia.
2017. On the Interplay between Non-Functional Requirements and Builds on Continuous
Integration. In MSR. IEEE. (cited on Page 28)

[242] Matheus Paixão, Jens Krinke, DongGyun Han, and Mark Harman. 2018. CROP: linking
code reviews to source code changes. In MSR, Andy Zaidman, Yasutaka Kamei, and Emily
Hill (Eds.). ACM. (cited on Page 18, 23, 27, 32, 37, 38, 47, and 59)

[243] Matheus Paixao, Jens Krinke, DongGyun Han, Chaiyong Ragkhitwetsagul, and Mark Har-
man. 2019. The impact of code review on architectural changes. IEEE Transactions on
Software Engineering 47, 5 (2019). (cited on Page 27 and 59)

[244] Matheus Paixao and Paulo Henrique Maia. 2019. Rebasing in code review considered harmful:
A large-scale empirical investigation. In 2019 19th international working conference on source
code analysis and manipulation (SCAM). IEEE, 45–55. (cited on Page 27)

[245] Matheus Paixão, Anderson Uchôa, Ana Carla Bibiano, Daniel Oliveira, Alessandro Garcia,
Jens Krinke, and Emilio Arvonio. 2020. Behind the intents: An in-depth empirical study on
software refactoring in modern code review. In MSR. (cited on Page 27 and 59)

[246] Rongqi Pan, Mojtaba Bagherzadeh, Taher A Ghaleb, and Lionel Briand. 2022. Test case
selection and prioritization using machine learning: a systematic literature review. Empirical
Software Engineering 27, 2 (2022). (cited on Page 59)

[247] Sebastiano Panichella, Gerardo Canfora, and Andrea Di Sorbo. 2021. “Won’t We Fix this Is-
sue?” Qualitative characterization and automated identification of wontfix issues on GitHub.
Information and Software Technology 139 (2021). (cited on Page 59)

[248] Luca Pascarella, Franz-Xaver Geiger, Fabio Palomba, Dario Di Nucci, Ivano Malavolta, and
Alberto Bacchelli. 2018. Self-reported activities of android developers. In 2018 IEEE/ACM
5th International Conference on Mobile Software Engineering and Systems (MOBILESoft).
IEEE, 144–155. (cited on Page 59)

78 Bibliography

[249] Luca Pascarella, Davide Spadini, Fabio Palomba, and Alberto Bacchelli. 2019. On the effect
of code review on code smells. arXiv preprint arXiv:1912.10098 (2019). (cited on Page 27
and 59)

[250] Biagio Peccerillo, Mirco Mannino, Andrea Mondelli, and Sandro Bartolini. 2022. A survey on
hardware accelerators: Taxonomy, trends, challenges, and perspectives. Journal of Systems
Architecture (2022). (cited on Page 59)

[251] Fabiano Pecorelli, Gemma Catolino, Filomena Ferrucci, Andrea De Lucia, and Fabio
Palomba. 2020. Testing of mobile applications in the wild: A large-scale empirical study
on android apps. In Proceedings of the 28th international conference on program comprehen-
sion. (cited on Page 59)

[252] Yun Peng, Cuiyun Gao, Zongjie Li, Bowei Gao, David Lo, Qirun Zhang, and Michael Lyu.
2022. Static inference meets deep learning: a hybrid type inference approach for python.
In Proceedings of the 44th International Conference on Software Engineering. (cited on
Page 26 and 59)

[253] Jorge Perianez-Pascual, Roberto Rodriguez-Echeverria, Loli Burgueño, and Jordi Cabot.
2020. Towards the optical character recognition of DSLs. In Proceedings of the 13th ACM
SIGPLAN International Conference on Software Language Engineering. (cited on Page 27
and 59)

[254] Anthony Peruma and Christian D. Newman. 2021. On the Distribution of ”Simple Stupid
Bugs” in Unit Test Files: An Exploratory Study. In MSR. IEEE. (cited on Page 28)

[255] Seth Petre. [n. d.]. 12 Reasons Why Data Is Important. https://www.c-q-l.org/wp-content
/uploads/2019/12/12-Reasons-Why-Data-Is-Important.pdf (cited on Page 5)

[256] Peter Pickerill, Heiko Joshua Jungen, Miros law Ochodek, Micha l Maćkowiak, and Miroslaw
Staron. 2020. PHANTOM: Curating GitHub for engineered software projects using time-
series clustering. Empirical Software Engineering 25, 4 (2020). (cited on Page 59)

[257] Antoine Pietri. 2021. Organizing the graph of public software development for large-scale
mining. Ph. D. Dissertation. Inria. (cited on Page 26 and 59)

[258] Antoine Pietri, Guillaume Rousseau, and Stefano Zacchiroli. [n. d.]. Quantifying Exogenous
Software Forks. ([n. d.]). (cited on Page 59)

[259] Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. 2019. The software heritage graph
dataset: public software development under one roof. In MSR, Margaret-Anne D. Storey,
Bram Adams, and Sonia Haiduc (Eds.). IEEE / ACM. (cited on Page 17, 19, 24, 27, 32,
37, 38, 47, and 59)

[260] Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. 2020. The Software Heritage
Graph Dataset: Large-scale Analysis of Public Software Development History. In MSR,
Sunghun Kim, Georgios Gousios, Sarah Nadi, and Joseph Hejderup (Eds.). ACM. (cited
on Page 17, 23, 26, 31, 37, 38, 47, and 59)

[261] Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. 2020. The Software Heritage
Graph Dataset: Large-Scale Analysis of Public Software Development History. In MSR.
ACM. (cited on Page 55)

[262] Dmitry Pogrebnoy, Ivan Kuznetsov, Yaroslav Golubev, Vladislav Tankov, and Timofey
Bryksint. 2021. Sorrel: an IDE plugin for managing licenses and detecting license incom-
patibilities. In 2021 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 574–578. (cited on Page 27 and 59)

https://www.c-q-l.org/wp-content/uploads/2019/12/12-Reasons-Why-Data-Is-Important.pdf
https://www.c-q-l.org/wp-content/uploads/2019/12/12-Reasons-Why-Data-Is-Important.pdf

Bibliography 79

[263] Serena Elisa Ponta, Henrik Plate, Antonino Sabetta, Michele Bezzi, and Cédric Dangremont.
2019. A manually-curated dataset of fixes to vulnerabilities of open-source software. In MSR.
IEEE, 383–387. (cited on Page 59)

[264] Paolo Ernesto Prinetto, Dott Riccardo Bortolameotti, Giuseppe Massaro, and Lorenzo Anto-
nio De Giorgi. [n. d.]. Security Misconfigurations Detection and Repair in Dockerfile. ([n. d.]).
(cited on Page 26 and 59)

[265] Sebastian Proksch, Sven Amann, and Sarah Nadi. 2018. Enriched Event Streams: A General
Dataset for Empirical Studies on In-IDE Activities of Software Developers. In MSR. (cited
on Page 13)

[266] Md Rafiqul Islam Rabin, Vincent J Hellendoorn, and Mohammad Amin Alipour. 2021. Un-
derstanding neural code intelligence through program simplification. In Proceedings of the
29th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. (cited on Page 59)

[267] Abir Rahali and Moulay A Akhloufi. 2021. MalBERT: Malware Detection using Bidirectional
Encoder Representations from Transformers. In 2021 IEEE International Conference on
Systems, Man, and Cybernetics (SMC). IEEE, 3226–3231. (cited on Page 26 and 59)

[268] Abir Rahali and Moulay A Akhloufi. 2021. Malbert: Using transformers for cybersecurity
and malicious software detection. arXiv preprint arXiv:2103.03806 (2021). (cited on
Page 26 and 59)

[269] Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. 2017. An empirical
analysis of build failures in the continuous integration workflows of java-based open-source
software. In MSR. IEEE, 345–355. (cited on Page 59)

[270] Marcel Reboucas, Renato O. Santos, Gustavo Pinto, and Fernando Castor. 2017. How Does
Contributors' Involvement Influence the Build Status of an Open-Source Software Project?.
In MSR. IEEE. (cited on Page 28)

[271] Jan Christof Recker, Roman Lukyanenko, Mohammad Jabbari Sabegh, Binny Samuel, and
Arturo Castellanos. 2021. From representation to mediation: a new agenda for conceptual
modeling research in a digital world. MIS Quarterly: Management Information Systems 45,
1 (2021). (cited on Page 59)

[272] David Reid, Mahmoud Jahanshahi, and Audris Mockus. 2022. The Extent of Orphan Vul-
nerabilities from Code Reuse in Open Source Software. (2022). (cited on Page 59)

[273] Sofia Reis and Rui Abreu. 2021. A ground-truth dataset of real security patches. arXiv
preprint arXiv:2110.09635 (2021). (cited on Page 27 and 59)

[274] Luyao Ren, Shurui Zhou, Christian Kästner, and Andrzej W ↪asowski. 2019. Identifying redun-
dancies in fork-based development. In 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 230–241. (cited on Page 27 and 59)

[275] Sayed Mohsin Reza, Omar Badreddin, and Khandoker Rahad. 2020. Modelmine: a tool to
facilitate mining models from open source repositories. In Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings. (cited on Page 59)

[276] Dirk Riehle and Nikolay Harutyunyan. 2019. Open-Source License Compliance in Software
Supply Chains. In Towards Engineering Free/Libre Open Source Software (FLOSS) Ecosys-
tems for Impact and Sustainability. Springer. (cited on Page 51 and 55)

80 Bibliography

[277] Gregorio Robles, Truong Ho-Quang, Regina Hebig, Michel R. V. Chaudron, and Miguel An-
gel Fernández. 2017. An extensive dataset of UML models in GitHub. In MSR, Jesús M.
González-Barahona, Abram Hindle, and Lin Tan (Eds.). IEEE Computer Society. (cited
on Page 19, 24, 25, 32, 37, 42, 47, and 59)

[278] Md Omar Faruk Rokon, Pei Yan, Risul Islam, and Michalis Faloutsos. 2021. Repo2vec:
A comprehensive embedding approach for determining repository similarity. In 2021 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE, 355–365.
(cited on Page 59)

[279] Giovanni Rosa, Luca Pascarella, Simone Scalabrino, Rosalia Tufano, Gabriele Bavota,
Michele Lanza, and Rocco Oliveto. 2021. Evaluating szz implementations through a
developer-informed oracle. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, 436–447. (cited on Page 59)

[280] ARMIN ROTH. 2020. Faculty of Engineering, Department of Computer Science. Ph. D.
Dissertation. Friedrich-Alexander-Universität Erlangen-Nürnberg. (cited on Page 59)

[281] Guillaume Rousseau, Roberto Di Cosmo, and Stefano Zacchiroli. 2019. Growth and du-
plication of public source code over time: Provenance tracking at scale. arXiv preprint
arXiv:1906.08076 (2019). (cited on Page 27 and 59)

[282] Guillaume Rousseau, Roberto Di Cosmo, and Stefano Zacchiroli. 2020. Software provenance
tracking at the scale of public source code. Empirical Software Engineering 25, 4 (2020).
(cited on Page 27 and 59)

[283] Mohammad Amin Sadeghi, Shameem Parambath, Ji Lucas, Youssef Meguebli, Maguette
Toure, Fawaz Al Qahtani, Ting Yu, and Sanjay Chawla. 2020. Log representation as an
interface for log processing applications. (2020). (cited on Page 59)

[284] Ripon K. Saha, Yingjun Lyu, Wing Lam, Hiroaki Yoshida, and Mukul R. Prasad. 2018.
Bugs.jar: a large-scale, diverse dataset of real-world Java bugs. In MSR, Andy Zaidman,
Yasutaka Kamei, and Emily Hill (Eds.). ACM. (cited on Page 20, 24, 28, 32, 37, 38, 42,
47, and 59)

[285] Seemanta Saha et al. 2019. Harnessing evolution for multi-hunk program repair. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 13–24.
(cited on Page 28 and 59)

[286] CM Khaled Saifullah, Muhammad Asaduzzaman, and Chanchal K Roy. 2019. Learning
from examples to find fully qualified names of api elements in code snippets. In 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE,
243–254. (cited on Page 26 and 59)

[287] Pasquale Salza, Fabio Palomba, Dario Di Nucci, Andrea De Lucia, and Filomena Ferrucci.
2020. Third-party libraries in mobile apps. Empirical Software Engineering 25, 3 (2020).
(cited on Page 28 and 59)

[288] Jordan Samhi, Tegawendé F Bissyandé, and Jacques Klein. 2022. TriggerZoo: A
Dataset of Android Applications Automatically Infected with Logic Bombs. arXiv preprint
arXiv:2203.04448 (2022). (cited on Page 59)

[289] Huascar Sanchez and Briland Hitaj. 2022. Trust in Motion: Capturing Trust Ascendancy in
Open-Source Projects using Hybrid AI. arXiv preprint arXiv:2210.02656 (2022). (cited
on Page 59)

[290] Vemuganti Sesha Satvik and Ravikant Gautam. 2022. Summer Internship Report 2022.
(2022). (cited on Page 59)

Bibliography 81

[291] Damien Saucez and Luigi Iannone. 2018. Thoughts and Recommendations from the ACM
SIGCOMM 2017 Reproducibility Workshop. SIGCOMM Comput. Commun. Rev. 48, 1 (apr
2018). (cited on Page 55)

[292] Damien Saucez, Luigi Iannone, and Olivier Bonaventure. 2019. Evaluating the Artifacts of
SIGCOMM Papers. SIGCOMM Comput. Commun. Rev. 49, 2 (may 2019). (cited on
Page 55)

[293] Gerald Schermann, Sali Zumberi, and Jürgen Cito. 2018. Structured information on state
and evolution of dockerfiles on github. In MSR, Andy Zaidman, Yasutaka Kamei, and Emily
Hill (Eds.). ACM. (cited on Page 19, 23, 25, 32, 37, 47, and 59)

[294] Ramon RH Schiffelers, Yaping Luo, Josh Mengerink, and Mark van den Brand. 2018. Towards
Automated Analysis of Model-Driven Artifacts in Industry.. In MODELSWARD. (cited
on Page 27 and 59)

[295] Marc Schiltz. 2018. Science Without Publication Paywalls: cOAlition S for the Realisation
of Full and Immediate Open Access. PLOS Medicine 15, 9 (09 2018). (cited on Page 1)

[296] Alexander Schultheiß, Paul Maximilian Bittner, Sascha El-Sharkawy, Thomas Thüm, and
Timo Kehrer. 2022. Simulating the evolution of clone-and-own projects with VEVOS. In
Proceedings of the International Conference on Evaluation and Assessment in Software En-
gineering 2022. (cited on Page 59)

[297] Abdulkadir Seker, Banu Diri, Halil Arslan, and Mehmet Fatih Amasyalı. 2022. Open Source
Software Development Challenges: A Systematic Literature Review on GitHub. Research
Anthology on Agile Software, Software Development, and Testing (2022). (cited on Page 59)

[298] Yusra Shakeel, Jacob Krüger, Ivonne von Nostitz-Wallwitz, Christian Lausberger, Gabriel C.
Durand, Gunter Saake, and Thomas Leich. 2018. (Automated) Literature Analysis - Threats
and Experiences. In SE4Science. ACM. (cited on Page 11)

[299] Tushar Sharma, Vasiliki Efstathiou, Panos Louridas, and Diomidis Spinellis. 2021. Code smell
detection by deep direct-learning and transfer-learning. Journal of Systems and Software 176
(2021). (cited on Page 59)

[300] Tushar Sharma and Marouane Kessentini. 2021. QScored: A Large Dataset of Code Smells
and Quality Metrics. In MSR. IEEE. (cited on Page 15, 22, 25, 30, 37, 38, 47, and 59)

[301] Elena Sherman and Robert Dyer. 2018. Software engineering collaboratories (SEClabs) and
collaboratories as a service (CaaS). In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. (cited on Page 59)

[302] Jari Soini, Markku Kuusisto, Petri Rantanen, Mika Saari, and Pekka Sillberg. 2020. A study
on an evolution of a data collection system for knowledge representation. In Information
Modelling and Knowledge Bases XXXI. IOS Press. (cited on Page 59)

[303] Mauricio Soto, Zack Coker, and Claire Le Goues. 2017. Analyzing the Impact of Social
Attributes on Commit Integration Success. In MSR. IEEE. (cited on Page 28)

[304] César Soto-Valero, Thomas Durieux, and Benoit Baudry. 2021. A longitudinal analysis of
bloated java dependencies. In Proceedings of the 29th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software Engineering.
(cited on Page 59)

[305] César Soto-Valero, Thomas Durieux, Nicolas Harrand, and Benoit Baudry. 2022. Coverage-
Based Debloating for Java Bytecode. ACM Computing Surveys (CSUR) (2022). (cited on
Page 59)

82 Bibliography

[306] Rodrigo Souza and Bruno Silva. 2017. Sentiment Analysis of Travis CI Builds. In MSR.
IEEE. (cited on Page 28)

[307] Josef Spillner. 2019. Quantitative analysis of cloud function evolution in the AWS serverless
application repository. arXiv preprint arXiv:1905.04800 (2019). (cited on Page 59)

[308] Diomidis Spinellis, Zoe Kotti, Konstantinos Kravvaritis, Georgios Theodorou, and Panos
Louridas. 2020. A Dataset of Enterprise-Driven Open Source Software. In MSR, Sunghun
Kim, Georgios Gousios, Sarah Nadi, and Joseph Hejderup (Eds.). ACM. (cited on Page 17,
22, 25, 26, 30, 37, 38, 47, and 59)

[309] Diomidis Spinellis, Zoe Kotti, and Audris Mockus. 2020. A Dataset for GitHub Repository
Deduplication. In MSR, Sunghun Kim, Georgios Gousios, Sarah Nadi, and Joseph Hejderup
(Eds.). ACM. (cited on Page 18, 23, 26, 31, 37, 47, and 59)

[310] Diomidis Spinellis, Panos Louridas, and Maria Kechagia. 2021. Software evolution: the
lifetime of fine-grained elements. PeerJ Computer Science 7 (2021). (cited on Page 26
and 59)

[311] Daniel Strüber, Mukelabai Mukelabai, Jacob Krüger, Stefan Fischer, Lukas Linsbauer, Jabier
Martinez, and Thorsten Berger. 2019. Facing the truth: benchmarking the techniques for
the evolution of variant-rich systems. In Proceedings of the 23rd International Systems and
Software Product Line Conference-Volume A. (cited on Page 59)

[312] Matúš Suĺır, Michaela Bač́ıková, Matej Madeja, Sergej Chodarev, and Ján Juhár. 2020.
Large-scale dataset of local java software build results. Data 5, 3 (2020). (cited on Page 59)

[313] Xin Tan and Minghui Zhou. 2019. How to communicate when submitting patches: An
empirical study of the Linux kernel. Proceedings of the ACM on Human-Computer Interaction
3, CSCW (2019). (cited on Page 25 and 59)

[314] Haoye Tian, Kui Liu, Abdoul Kader Kaboré, Anil Koyuncu, Li Li, Jacques Klein, and
Tegawendé F Bissyandé. 2020. Evaluating representation learning of code changes for pre-
dicting patch correctness in program repair. In 2020 35th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE). IEEE, 981–992. (cited on Page 28 and 59)

[315] Christopher S. Timperley, Lauren Herckis, Claire Le Goues, and Michael Hilton. 2021. Un-
derstanding and Improving Artifact Sharing in Software Engineering Research. Empirical
Software Engineering 26, 67 (2021). (cited on Page 55)

[316] Nitin M. Tiwari, Ganesha Upadhyaya, Hoan A. Nguyen, and Hridesh Rajan. 2017. Candoia:
A Platform for Building and Sharing Mining Software Repositories Tools as Apps. In MSR.
IEEE. (cited on Page 55)

[317] Alexander Trautsch, Fabian Trautsch, Steffen Herbold, Benjamin Ledel, and Jens Grabowski.
2020. The smartshark ecosystem for software repository mining. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering: Companion Proceed-
ings. (cited on Page 55)

[318] Tomoaki Tsuru, Tasuku Nakagawa, Shinsuke Matsumoto, Yoshiki Higo, and Shinji
Kusumoto. 2021. Type-2 Code Clone Detection for Dockerfiles. In 2021 IEEE 15th In-
ternational Workshop on Software Clones (IWSC). IEEE, 1–7. (cited on Page 59)

[319] Leigh Turnbull, Zhiyuan Tan, and Kehinde O Babaagba. 2022. A Generative Neural Network
for Enhancing Android Metamorphic Malware Detection based on Behaviour Profiling. In
2022 IEEE Conference on Dependable and Secure Computing (DSC). IEEE, 1–9. (cited on
Page 26 and 59)

Bibliography 83

[320] Anderson Uchôa, Caio Barbosa, Daniel Coutinho, Willian Oizumi, Wesley KG Assunçao,
Silvia Regina Vergilio, Juliana Alves Pereira, Anderson Oliveira, and Alessandro Garcia.
2021. Predicting design impactful changes in modern code review: A large-scale empirical
study. In MSR. IEEE, 471–482. (cited on Page 27 and 59)

[321] Anderson Uchôa, Caio Barbosa, Willian Oizumi, Publio Bleńılio, Rafael Lima, Alessandro
Garcia, and Carla Bezerra. 2020. How does modern code review impact software design
degradation? an in-depth empirical study. In 2020 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME). IEEE, 511–522. (cited on Page 27 and 59)

[322] Farhan Ullah, Amjad Alsirhani, Mohammed Mujib Alshahrani, Abdullah Alomari, Hamad
Naeem, and Syed Aziz Shah. 2022. Explainable Malware Detection System Using
Transformers-Based Transfer Learning and Multi-Model Visual Representation. Sensors 22,
18 (2022). (cited on Page 59)

[323] Dheeraj Vagavolu, Vartika Agrahari, Sridhar Chimalakonda, and Akhila Sri Manasa Veni-
galla. 2021. GE526: A Dataset of Open-Source Game Engines. In MSR. IEEE. (cited on
Page 15, 22, 25, 30, 37, 47, and 59)

[324] Frenk CJ van Mil, Ayushi Rastogi, and Andy Zaidman. 2021. Promises and Perils of Inferring
Personality on GitHub. In Proceedings of the 15th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM). (cited on Page 59)

[325] Bogdan Vasilescu, Vladimir Filkov, and Alexander Serebrenik. 2013. Stackoverflow and
github: Associations between software development and crowdsourced knowledge. In 2013
International Conference on Social Computing. IEEE, 188–195. (cited on Page 29 and 59)

[326] Bogdan Vasilescu, Daryl Posnett, Baishakhi Ray, Mark GJ van den Brand, Alexander Sere-
brenik, Premkumar Devanbu, and Vladimir Filkov. 2015. Gender and tenure diversity in
GitHub teams. In Proceedings of the 33rd annual ACM conference on human factors in
computing systems. (cited on Page 29 and 59)

[327] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir Filkov.
2015. Quality and productivity outcomes relating to continuous integration in GitHub. In
Proceedings of the 2015 10th joint meeting on foundations of software engineering. (cited
on Page 29 and 59)

[328] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian Proksch, Andy Zaidman,
and Harald C Gall. 2018. Context is king: The developer perspective on the usage of static
analysis tools. In 2018 IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 38–49. (cited on Page 29 and 59)

[329] Sruthi Venkatanarayanan, Jens Dietrich, Craig Anslow, and Patrick Lam. [n. d.]. VizAPI:
Visualizing Interactions between Java Libraries and Clients. ([n. d.]). (cited on Page 25
and 59)

[330] Elaine Venson, Ting Fung Lam, Bradford Clark, and Barry Boehm. 2021. Analyzing Software
Security-related Size and its Relationship with Vulnerabilities in OSS. In 2021 IEEE 21st
International Conference on Software Quality, Reliability and Security (QRS). IEEE, 956–
965. (cited on Page 26 and 59)

[331] Roberto Verdecchia, Patricia Lago, and Carol de Vries. 2021. VU Research Portal. (2021).
(cited on Page 59)

[332] Renan Vieira, Antônio da Silva, Lincoln Rocha, and João Paulo Gomes. 2019. From Re-
ports to Bug-Fix Commits: A 10 Years Dataset of Bug-Fixing Activity from 55 Apache’s
Open Source Projects. In Proceedings of the Fifteenth International Conference on Predictive
Models and Data Analytics in Software Engineering. (cited on Page 59)

84 Bibliography

[333] Anna Vlasova, Maria Tigina, Ilya Vlasov, Anastasiia Birillo, Yaroslav Golubev, and Timofey
Bryksin. 2022. Lupa: a framework for large scale analysis of the programming language usage.
In MSR. (cited on Page 27 and 59)

[334] Johannes Wachs, Mariusz Nitecki, William Schueller, and Axel Polleres. 2022. The geography
of open source software: Evidence from github. Technological Forecasting and Social Change
176 (2022). (cited on Page 59)

[335] Qingye Wang, Bowen Xu, Xin Xia, Ting Wang, and Shanping Li. 2019. Duplicate pull
request detection: When time matters. In Proceedings of the 11th Asia-Pacific Symposium
on Internetware. (cited on Page 27 and 59)

[336] Yuqing Wang, Mika V Mäntylä, Zihao Liu, and Jouni Markkula. 2022. Test automation
maturity improves product quality—Quantitative study of open source projects using con-
tinuous integration. Journal of Systems and Software 188 (2022). (cited on Page 25, 26,
and 59)

[337] Kevin Wellenzohn. 2022. Robust and scalable content-and-structure indexing of semi-
structured hierarchical data. Ph. D. Dissertation. University of Zurich. (cited on Page 26
and 59)

[338] Kevin Wellenzohn, Michael H Böhlen, Sven Helmer, Antoine Pietri, and Stefano Zacchiroli.
2022. Robust and scalable content-and-structure indexing. The VLDB Journal (2022).
(cited on Page 26 and 59)

[339] Jinfeng Wen, Zhenpeng Chen, and Xuanzhe Liu. 2022. A literature review on serverless
computing. arXiv preprint arXiv:2206.12275 (2022). (cited on Page 59)

[340] Tyler Wendland, Jingyang Sun, Junayed Mahmud, S. M. Hasan Mansur, Steven Huang,
Kevin Moran, Julia Rubin, and Mattia Fazzini. 2021. Andror2: A Dataset of Manually-
Reproduced Bug Reports for Android apps. In MSR. IEEE. (cited on Page 16, 22, 25, 30,
37, 38, 47, and 59)

[341] Dominik Wermke, Noah Wöhler, Jan H Klemmer, Marcel Fourné, Yasemin Acar, and Sascha
Fahl. 2022. Committed to Trust: A Qualitative Study on Security & Trust in Open Source
Software Projects. In Proceedings of the 43rd IEEE Symposium on Security and Privacy.
IEEE Computer Society. (cited on Page 59)

[342] Anna-Katharina Wickert, Lars Baumgärtner, Krishna Narasimhan, Michael Schlichtig, and
Mira Mezini. 2022. To Fix or Not to Fix: A Critical Study of Crypto-misuses in the Wild.
arXiv preprint arXiv:2209.11103 (2022). (cited on Page 25 and 59)

[343] Stefan Winter, Christopher S. Timperley, Ben Hermann, Jürgen Cito, Jonathan Bell, Michael
Hilton, and Dirk Beyer. 2022. A Retrospective Study of One Decade of Artifact Evalu-
ations. In ESEC/FSE (Singapore, Singapore) (ESEC/FSE 2022). ACM, New York, NY,
USA. (cited on Page 55)

[344] Claes Wohlin. 2014. Guidelines for Snowballing in Systematic Literature Studies and a
Replication in Software Engineering. In EASE. ACM. (cited on Page 11)

[345] Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao, and Le Song. 2022. Graph neural networks.
In Graph Neural Networks: Foundations, Frontiers, and Applications. Springer. (cited on
Page 28 and 59)

[346] Xiuheng Wu, Chenguang Zhu, and Yi Li. 2021. Diffbase: A differential factbase for ef-
fective software evolution management. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering. (cited on Page 26 and 59)

Bibliography 85

[347] Yiwen Wu, Yang Zhang, Tao Wang, and Huaimin Wang. 2020. Characterizing the occurrence
of dockerfile smells in open-source software: An empirical study. IEEE Access 8 (2020).
(cited on Page 59)

[348] Yi Xie, Wen Li, Yuqing Sun, Elisa Bertino, and Bin Gong. 2022. Subspace Embedding
Based New Paper Recommendation. In 2022 IEEE 38th International Conference on Data
Engineering (ICDE). IEEE, 1767–1780. (cited on Page 59)

[349] Hui Xu, Zhuangbin Chen, Mingshen Sun, Yangfan Zhou, and Michael R Lyu. 2021. Memory-
Safety Challenge Considered Solved? An In-Depth Study with All Rust CVEs. ACM Trans-
actions on Software Engineering and Methodology (TOSEM) 31, 1 (2021). (cited on
Page 59)

[350] Yisen Xu, Fan Wu, Xiangyang Jia, Lingbo Li, and Jifeng Xuan. 2020. Mining the use of
higher-order functions. Empirical Software Engineering 25, 6 (2020). (cited on Page 59)

[351] Yulin Xu and Minghui Zhou. 2018. A multi-level dataset of linux kernel patchwork. In MSR,
Andy Zaidman, Yasutaka Kamei, and Emily Hill (Eds.). ACM. (cited on Page 17, 22, 25,
30, 37, 38, 40, 47, and 59)

[352] Aiko Yamashita, S. Amirhossein Abtahizadeh, Foutse Khomh, and Yann-Gaël Guéhéneuc.
2017. Software evolution and quality data from controlled, multiple, industrial case studies.
In MSR, Jesús M. González-Barahona, Abram Hindle, and Lin Tan (Eds.). IEEE Computer
Society. (cited on Page 17, 23, 25, 31, 37, 38, 47, and 59)

[353] Guanqun Yang, Shay Dineen, Zhipeng Lin, and Xueqing Liu. 2021. Few-Sample Named
Entity Recognition for Security Vulnerability Reports by Fine-Tuning Pre-trained Language
Models. In International Workshop on Deployable Machine Learning for Security Defense.
Springer, 55–78. (cited on Page 59)

[354] Yanming Yang, Xin Xia, David Lo, Tingting Bi, John Grundy, and Xiaohu Yang. 2022.
Predictive models in software engineering: Challenges and opportunities. ACM Transactions
on Software Engineering and Methodology (TOSEM) 31, 3 (2022). (cited on Page 59)

[355] Kang Yin, Wei Chen, Jiahong Zhou, Guoquan Wu, and Jun Wei. 2018. STAR: a specialized
tagging approach for Docker repositories. In 2018 25th Asia-Pacific Software Engineering
Conference (APSEC). IEEE, 426–435. (cited on Page 59)

[356] Jean-Gabriel Young, Amanda Casari, Katie McLaughlin, Milo Z Trujillo, Laurent Hébert-
Dufresne, and James P Bagrow. 2021. Which contributions count? Analysis of attribution
in open source. In MSR. IEEE, 242–253. (cited on Page 26 and 59)

[357] Ahmmad Youssef. 2019. Mining software repositories to determine the impact of team fac-
tors on the structural attributes of software. Ph. D. Dissertation. Brunel University London.
(cited on Page 59)

[358] Shengcheng Yu, Chunrong Fang, Tongyu Li, Mingzhe Du, Xuan Li, Jing Zhang, Yexiao Yun,
Xu Wang, and Zhenyu Chen. 2021. Automated Mobile App Test Script Intent Generation
via Image and Code Understanding. arXiv preprint arXiv:2107.05165 (2021). (cited on
Page 26 and 59)

[359] Yue Yu, Zhixing Li, Gang Yin, Tao Wang, and Huaimin Wang. 2018. A dataset of duplicate
pull-requests in github. In MSR, Andy Zaidman, Yasutaka Kamei, and Emily Hill (Eds.).
ACM. (cited on Page 18, 23, 27, 31, 37, 47, and 59)

[360] Ehsan Zabardast, Javier Gonzalez-Huerta, and Binish Tanveer. 2022. Ownership vs Contri-
bution: Investigating the Alignment Between Ownership and Contribution. In 2022 IEEE
19th International Conference on Software Architecture Companion (ICSA-C). IEEE, 30–34.
(cited on Page 59)

86 Bibliography

[361] Stefano Zacchiroli. 2020. Gender differences in public code contributions: a 50-year perspec-
tive. IEEE Software 38, 2 (2020). (cited on Page 27 and 59)

[362] Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and Massimiliano
Di Penta. 2017. How open source projects use static code analysis tools in continuous inte-
gration pipelines. In MSR. IEEE, 334–344. (cited on Page 29 and 59)

[363] Gianluigi Zavattaro, Jacopo Mauro, Dott Saverio Giallorenzo, Dott Giuseppe De Palma,
and Matteo Trentin. [n. d.]. Topology-based Scheduling in Serverless Computing Platforms.
([n. d.]). (cited on Page 25 and 59)

[364] Long Zhang, Deepika Tiwari, Brice Morin, Benoit Baudry, and Martin Monperrus. 2019.
Automatic Observability for Dockerized Java Applications. arXiv preprint arXiv:1912.06914
(2019). (cited on Page 59)

[365] Xunhui Zhang, Ayushi Rastogi, and Yue Yu. 2020. On the Shoulders of Giants: A New
Dataset for Pull-based Development Research. In MSR, Sunghun Kim, Georgios Gousios,
Sarah Nadi, and Joseph Hejderup (Eds.). ACM. (cited on Page 17, 22, 25, 30, 37, 47,
and 59)

[366] Xin Zhang, Rongjie Yan, Jiwei Yan, Baoquan Cui, Jun Yan, and Jian Zhang. 2022. ExcePy:
A Python Benchmark for Bugs with Python Built-in Types. In 2022 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 856–866.
(cited on Page 59)

[367] Xunhui Zhang, Yue Yu, Tao Wang, Ayushi Rastogi, and Huaimin Wang. 2022. Pull request
latency explained: An empirical overview. Empirical Software Engineering 27, 6 (2022).
(cited on Page 59)

[368] Yanjie Zhao, Li Li, Haoyu Wang, Qiang He, and John Grundy. 2022. APIMatchmaker:
Matching the Right APIs for Supporting the Development of Android Apps. IEEE Trans-
actions on Software Engineering (2022). (cited on Page 59)

[369] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bogdan
Vasilescu. 2017. The impact of continuous integration on other software development prac-
tices: a large-scale empirical study. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 60–71. (cited on Page 59)

[370] Jiahong Zhou, Wei Chen, Guoquan Wu, and Jun Wei. 2019. SemiTagRec: a semi-supervised
learning based tag recommendation approach for Docker repositories. In International Con-
ference on Software and Systems Reuse. Springer, 132–148. (cited on Page 59)

[371] Shurui Zhou, Bogdan Vasilescu, and Christian Kästner. 2019. What the fork: a study of
inefficient and efficient forking practices in social coding. In Proceedings of the 2019 27th ACM
joint meeting on european software engineering conference and symposium on the foundations
of software engineering. (cited on Page 59)

[372] Chenguang Zhu, Yi Li, Julia Rubin, and Marsha Chechik. 2017. A dataset for dynamic
discovery of semantic changes in version controlled software histories. In MSR, Jesús M.
González-Barahona, Abram Hindle, and Lin Tan (Eds.). IEEE Computer Society. (cited
on Page 18, 23, 26, 31, 34, 37, 47, 49, and 59)

[373] Chenguang Zhu, Yi Li, Julia Rubin, and Marsha Chechik. 2020. GenSlice: Generalized
semantic history slicing. In 2020 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 81–91. (cited on Page 26 and 59)

[374] Wenhan Zhu and Michael W. Godfrey. 2021. Mea culpa: How developers fix their own simple
bugs differently from other developers. In MSR. IEEE. (cited on Page 25 and 28)

Bibliography 87

[375] Noa Zilberman and Andrew W. Moore. 2020. Thoughts about Artifact Badging. SIGCOMM
Comput. Commun. Rev. 50, 2 (may 2020). (cited on Page 55)

[376] Thomas Zimmermann. 2016. Card-Sorting: From Text to Themes. In Perspectives on Data
Science for Software Engineering. Elsevier. (cited on Page 14)

88 Bibliography

Thesis: Analyzing Software Evolution Datasets and Their Use Cases

Name: Kittan

Surname: Sebastian

Date of birth: 23.12.1995

Matriculation no.: 207250

I herewith assure that I wrote the present thesis independently, that the thesis has
not been partially or fully submitted as graded academic work and that I have used
no other means than the ones indicated. I have indicated all parts of the work in
which sources are used according to their wording or to their meaning.

I am aware of the fact that violations of copyright can lead to injunctive relief and
claims for damages of the author as well as a penalty by the law enforcement agency

Magdeburg, 27. February 2023

	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Background
	2.1 Datasets
	2.2 Software-Evolution
	2.3 Version Control Systems
	2.4 Artifact Sharing

	3 Methodology
	3.1 Research Questions
	3.2 Literature Search
	3.2.1 Selection Criteria
	3.2.2 Manual Literature Search
	3.2.3 Snowballing

	3.3 Data Extraction and Analysis

	4 Data
	4.1 Dataset Characteristics
	4.2 Dataset Use Cases
	4.3 Problems

	5 Result
	5.1 RQ.1: Dataset Sharing
	5.1.1 Identified Software-Evolution Datasets
	5.1.2 Trend of published datasets
	5.1.3 Datasets Source
	5.1.4 Sharing Platforms
	5.1.5 Data Storing
	5.1.6 Quantity
	5.1.7 Summary RQ.1: Dataset Sharing

	5.2 RQ.2: Analysis Use Cases
	5.2.1 Well-Established Use Cases
	5.2.2 Unaware and Novel Use Cases
	5.2.3 Summary RQ.2: Analysis Use Cases

	5.3 RQ.3: Challenges of Sharing
	5.3.1 Challenges/Problems/Limitations of Sharing
	5.3.2 SummaryRQ.3: Challenges of Sharing

	6 Discussion
	6.1 Privacy, Licensing, and Ethical Concerns
	6.1.1 Privacy
	6.1.2 Licensing
	6.1.3 Ethics

	6.2 Technical Concerns
	6.3 Validity
	6.3.1 Internal Validity
	6.3.2 External Validity

	6.4 Closing Remarks

	7 Related Work
	8 Conclusion
	A Appendix
	Bibliography

