

DISSERTAT ION

zur Erlangung des akademischen Grades

angenommen durch die Fakultät für Informatik

der Otto-von-Guericke-Universität Magdeburg

von

geb. am in

Gutachterinnen/Gutachter

Magdeburg, den

Architecting a Pluggable Query Executor for Emerging

Co-Processors

Doktoringenieur (Dr.-Ing.)

M.Sc. Balasubramaninan Gurumurthy

03.10.1992 Neyveli

Prof. Dr. rer. nat. habil. Gunter Saake

Prof. Dr.-Ing. Thilo Pionteck

Prof. i. R. Dr. Klaus Meyer-Wegener

25.01.2024

Gurumurthy, Balasubramanian:
Architecting A Pluggable Query Executor for Emerging Co-Processors
Dissertation, Otto-von-Guericke University Magdeburg, 2023.

Abstract

CPUs are reaching their scaling limitations while data keeps growing rapidly. De-
velopers of CPU-based applications are searching for an alternative processor to
further improve their efficiency. DBMS being one such application, is always in need
of high-performing processors to support the ever-growing data. Therefore, many
database researchers investigate various co-processors available in the market to
speed up query processing. As a result, many such co-processor accelerated DBMS
engines are available both as commercial as well as research projects. Such a DBMS
running on a co-processor is normally developed by tightly integrating the hardware-
relevant code within the query execution engine. Or, the query engine is written
with a common device-agnostic framework (like OpenCL) to support execution on
different co-processor architectures. Out of these approaches, the former takes a
lot of effort to develop, and the latter is not performance-portable. Additionally,
with every new co-processor available in the market, an effort has to be made to
develop a query engine on top of this device. Hence, to overcome these challenges,
in this thesis, we explore a query executor that lies in the middle ground between
the two approaches. Our query engine splits DBMS operators into primitives which
are present in a task layer. This layer in addition to the device layer enables the
pluggability of co-processors. Further, to reduce implementation effort, we also
come up with a unified runtime, that handles query execution across any abstract
co-processor. Overall, in this work, we explore a query engine that is capable of
plugging in any new co-processor that comes up in the future, without losing the
capability to have an optimal implementation over the device.

Zusammenfassung

Unter rapide steigenden Datenmengen stoßen CPUs an ihre Skalierungsgrenzen.
Anwendungen, die auf herkömmlichen CPUs laufen, sind auf der Suche nach einem al-
ternativen, spezialisierten Prozessoren, um ihre Effizienz weiter zu verbessern. Daten-
bankmanagementsysteme sind eine solche Anwendung, die immer leistungsstärkere
Prozessoren benötigen, um die ständig wachsenden Datenmengen zu verarbeiten.
Daher untersuchen viele Datenbankforscher verschiedene auf dem Markt erhältliche
Co-Prozessoren, um die Abfrageverarbeitung zu beschleunigen. Infolgedessen sind
viele solcher Co-Prozessor-beschleunigten Datenbank-Engines sowohl als kommerzielle
als auch als Forschungsprojekte verfügbar. Ein solches Datenbankmanagementsystem,
das auf einem Co-Prozessor läuft, wird normalerweise mit einer engen Integration des
Hardware-Codes in die Anfrageausführungs-Engine entwickelt. Alternativ wird die
Anfrage-Engine mit einem gemeinsamen geräteunabhängigen Wrapper (wie OpenCL)
geschrieben, um die Ausführung auf verschiedenen Co-Prozessor-Architekturen zu
unterstützen. Von diesen Ansätzen ist der erste sehr aufwändig in der Entwick-
lung und der zweite ist nicht leistungsfähig genug. Außerdem muss mit jedem
neuen Co-Prozessor, der auf dem Markt verfügbar ist, eine Abfrage-Engine für
dieses Gerät entwickelt werden. Um diese Herausforderungen zu überwinden, er-
forschen wir in dieser Arbeit eine Datenbank-Engine, die in der Mitte zwischen
diesen beiden Ansätzen liegt. Unsere Abfrage-Engine teilt Datenbank-Operatoren in
Primitive auf, die in einer Aufgabenschicht vorhanden sind. Diese Schicht ermöglicht
zusammen mit der Geräteschicht das Plug’n’Play von Co-Prozessoren. Um den Im-
plementierungsaufwand zu verringern, haben wir außerdem eine einheitliche Laufzeit
entwickelt, die die Ausführung von Abfragen auf jedem abstrakten Co-Prozessor
ermöglicht. Insgesamt entwickeln wir in dieser Arbeit eine Abfrage-Engine, die in
der Lage ist, jeden neuen Co-Prozessor, der in der Zukunft auftaucht, einzubinden,
ohne die Fähigkeit zu verlieren, eine optimale Implementierung für den Prozessor zu
bieten.

Acknowledgments

As I look back on my years of research, it has been quite a challenge, both personally
and professionally. Fortunately, I had the support of numerous people who helped
make this journey smoother.

First, I want to express my sincere gratitude to Prof. Gunter Saake for providing
me with the incredible opportunity to work on my Ph.D. After my AtDB viva, you
mentioned the possibility of working on my master’s thesis in your group. Despite
my extended stay, you have been remarkably supportive. Next, I extend my thanks
to Prof. Thilo Pionteck. You consistently prompted me to double-check my facts
and were always ready to correct me when I made mistakes. Your guidance ensured
the thoroughness of my ideas and research. Finally, I would also like to thank Prof.
Klaus Meyer-Wegener. You consistently showed interest in my topics, and I always
had enthusiastic discussions with you whenever we met for SPP meetings. The
feedback from all of you has been instrumental in the successful completion of this
dissertation.

Moving forward, I want to convey my deepest appreciation to my mentor, Dr. David
Broneske. Over the past eight years, you have been a constant pillar of support in
my research journey. I tried to emulate your approach, from the inception of an idea
to refining the final manuscript. You have undoubtedly shaped me into a better
researcher, and without your assistance, this thesis would not have been complete
(and certainly would have had worser grammatical errors).

Following David is Gabriel Campero Durand (my fellow kidnapper), and Madhura
Thosar, who have guided me through tough times in my work. Gabriel has been
instrumental in guiding me in managing students, and Madhura - You are my
yardstick for how to stand one’s ground, even in the face of overwhelming odds. I
would also like to thank Usha miss, Sagaya Vivian, Cibi Mathews, and KCP sir.
Without these individuals, I would have never believed I could do something in
academia.

I would also like to express my gratitude to DBSE members and my office mates
Andreas Meister, Sabine Wehnert, and Sadeq Darrab (my good luck charm). Addi-
tionally, a shout-out to Rand Alchokr, Yang Li, Xiao Chen, Paul Blockhaus, Sajad
Karim, and others.

I owe a debt of gratitude to my friends in Magdeburg: Deeban, Priya, Archana,
Priyadarshini, Naveed, Santhosh, Bhuvanesh, Deepika, Krishna, Mahendran, Pridivi,
and many more. Special mentions to Veyanka and Iylan. Furthermore I want to
thank my parents – Sujatha and Gurumurthy – for respecting my decision to move

viii

to Germany and pursue my career wholeheartedly. A special mention goes to my
brother, Balachander Gurumurthy, for his unwavering support. ”Thambi udayan
padaiku anjaan.” Also mentioning my maternal Uncle - Sriram Krishnamurthy. Last
but not least, I’d like to mention my aunt, Girija Mathialagan. It was her computer
that I first used.

My deepest gratitude goes to my grandparents, Krishnamurthy and Sethulakshmi.
Even if I try to jump from a 2nd-floor window, they would probably say, ”try doing
a double flip.” That’s how supportive they are of my choices. It is their upbringing
that has had a profound impact on me.

I must also acknowledge the contributions of students across various team projects,
HiWis (student assistants), and master’s theses. They have kept me on my toes and
pushed me to deepen my understanding of my research topics.

I want to express my appreciation for the countless individuals who have developed
the tools I used (looking at Grammarly), maintained the scholarly websites I referred
to, and managed the various Git repositories I accessed. I also want to recognize the
significance of Stadtpark, Elbebrücke, and various peaceful spots in Magdeburg. It
has been quite a journey.

Dedicated to my grandparents – Krishnamurthy and Sethulakshmi.

Contents

1 Introduction 1
1.1 The Need for Hardware-Awareness in DBMS 2
1.2 Challenges in Hardware & SDK Trends 3
1.3 DBMS over Heterogeneous Co-Processors 4
1.4 Goal of this Thesis . 4
1.5 Contributions: Three Tiers of a Pluggable Query Executor 5
1.6 Corresponding Publications . 7
1.7 Outline of this Thesis . 8

2 Tier 0: Current Co-Processor Ecosystem 9
2.1 Current Generation Co-Processors . 10
2.2 Programming Co-Processors . 17

2.2.1 Programming Paradigms . 17
2.2.2 Programming APIs . 18

2.3 Abstraction Models . 22
2.3.1 Skeleton-Based Systems . 25
2.3.2 Task-Based Systems . 27

2.4 Challenges in DBMS with Co-Processors 28
2.4.1 Device Features . 29
2.4.2 Abstraction Hierarchy . 29
2.4.3 Parallelism Complexity . 29
2.4.4 Optimization Strategies . 30

2.5 Opportunities for Query Execution . 30
2.5.1 Granularity of Operation . 32
2.5.2 Code Fusion . 32
2.5.3 In-Device Cache . 32
2.5.4 Execution Variants . 33
2.5.5 Device-Related Parameter Tuning 33

2.6 Summary . 33

3 Existing Unified Runtime 35
3.1 DBMS On Co-Processors . 36
3.2 Existing Abstract Runtime . 37

3.2.1 Skeleton-Based . 37
3.2.2 Component-Based . 40

3.3 Summary . 42

4 Tier 0/1: Crafting a Co-Processor Aware DBMS Operator 43

xii Contents

4.1 Need for HW-Awareness in Group-By . 43
4.2 Related Work . 46
4.3 GPU and Atomic Functions . 46

4.3.1 Architectural Components Involved 47
4.3.2 Profiling Atomic Operations . 47

4.4 Atomics within Sort-Based Aggregation 49
4.4.1 Sort-Based Aggregation on a GPU: A Primer 49
4.4.2 Minimizing Atomics Using Private Space 50

4.5 Experiments . 51
4.5.1 Micro Benchmark . 52
4.5.2 Comparative Experiments . 54

4.6 Summary . 59

5 Tier 1: Primitive Definitions for Interfacing Operators 61
5.1 Defining Primitives . 62
5.2 Atomic Primitives . 63

5.2.1 Map . 63
5.2.2 Scan . 64
5.2.3 Reduce / Aggregate . 65
5.2.4 Scatter & Gather . 66

5.3 Composed Primitives . 66
5.3.1 Filter . 66
5.3.2 Materialize . 67
5.3.3 Hash Build . 68
5.3.4 Hash Probe . 69
5.3.5 Split . 69
5.3.6 Sort . 70

5.4 Other Impact Factors . 70
5.4.1 Access Pattern . 70
5.4.2 Parallelism Mode . 71
5.4.3 Data Structure . 71

5.5 Primitive-Based Execution in aQuery Engine 71
5.5.1 Pipeline Patterns . 72

5.6 Summary . 73

6 Tier 1: Task Layer - Realizing Standard Primitives 75
6.1 GPU Libraries within DBMS . 76
6.2 Levels of Programming Abstractions . 77
6.3 Implementing DBMS Operators With Libraries 78

6.3.1 Review of GPU Libraries . 78
6.3.2 Operator Realization . 80
6.3.3 Summary of Library Usefulness 80

6.4 A Connecting Framework for Library Operators 81
6.4.1 Task Model . 81
6.4.2 Adapter Pattern . 81

6.5 Performance Comparison . 82
6.5.1 Transfer Time . 83
6.5.2 Micro-Benchmark: Individual Operators 84

Contents xiii

6.5.2.1 Selection . 84
6.5.2.2 Group By . 85
6.5.2.3 Joins . 85
6.5.2.4 Scatter & Gather . 86
6.5.2.5 Summary . 86

6.5.3 TPC-H Performance . 87
6.5.3.1 Single Library Performance 87
6.5.3.2 Cross Library Performance 90

6.6 Summary . 90

7 Tier 2: Runtime Layer - Developing an Execution Model 93
7.1 Introduction . 93
7.2 Related Work . 95
7.3 Preliminaries on In-Memory Execution Models 96

7.3.1 Vectorized Execution . 96
7.3.2 Compiled Execution . 96

7.4 Tether: A HybridQuery Execution Engine 96
7.4.1 Hiding Compilation Overhead With Vectorization 97
7.4.2 Switching via Direct Aggregation 99
7.4.3 Switching via Hash Join . 100
7.4.4 Switching via Hash Aggregation 102

7.5 Experiments . 102
7.5.1 Experimental Setup . 102
7.5.2 Hybrid Compilation Overhead 103
7.5.3 Single-PipelineQueries . 105
7.5.4 Informed Switching Points . 106

7.6 Discussion . 108
7.7 Summary . 109

8 Tier 2: ADAMANT – A PluggableQuery Executor 111
8.1 Query Executor On Co-Processors - A Primer 111
8.2 Related Work . 113
8.3 Diversity in Programming Abstractions 114
8.4 AQuery Executor to Plug-in Co-Processors 115

8.4.1 Device Layer . 116
8.4.1.1 Case Study - Integrating a GPU 117
8.4.1.2 Integration of Other Co-Processors 119

8.4.2 Task Layer . 119
8.4.2.1 Task Model . 119
8.4.2.2 Primitive Definitions 120
8.4.2.3 I/O Definitions . 121

8.4.3 Runtime Layer . 122
8.5 Execution Model Alternatives for Co-Processors 123

8.5.1 Limitations in Operator-At-A-Time Execution in Co-Processors . 123
8.5.2 Chunked Execution for Arbitrary Co-Processors 123
8.5.3 Case Study: Pipelined Execution in GPUs for Concurrent Execu-

tion with Data Transfer . 125
8.6 Experiments . 127

xiv Contents

8.6.1 Profiling Primitives . 127
8.6.2 Impact of Abstraction Layers . 129
8.6.3 Performance of Execution Models 130

8.7 Summary . 133

9 Conclusion 135

A Appendix 141
A.1 BenchmarkQueries . 141
A.2 Code Snippets for Sort-Based Aggregation 143
A.3 Tether - Linking Vectorwise with Hyper 145

Bibliography 147

List of Figures

1.1 Various realization of SIMD vectorization of hashing techniques show-
ing impact over performance . 3

2.1 Basic components in a GPU . 11

2.2 Basic components in a TPU . 13

2.3 Basic components in a MIC . 14

2.4 Basic components in an APU . 14

2.5 Basic architecture of an FPGA . 15

2.6 Common paradigms for programming on a heterogeneous processors
environment as given by Heimel et al. 18

2.7 Example of abstraction model paradigms. Modules in yellow are
offered out-of-the-box and green are provided by developers 24

2.8 Example of code generated using skeletons offered by HAWK 26

2.9 Example of variant handling offered by elastic functions 28

2.10 Possible cross-device optimization strategies using query execution
plan of TPC-H Q6 . 31

2.11 Example of code fusion using multi-column predicates 32

4.1 Throughput of different group-by approaches on a RTX2080Ti GPU
and Intel Xeon CPU on 227 integers with uniform random distribution.
Note, the different scales of the y-axis. 44

4.2 Components involved in global memory atomics 47

4.3 Throughput for naive atomics and arithmetics 48

4.4 Three-phases for parallel aggregation 50

4.5 Using private address space in GPU for storing partial aggregates . . 51

4.6 Throughput profile varying with changes to group and thread size
across different NVIDIA GPU generations 53

4.7 Impact of varying chunk and threads sizes over throughput 54

xvi List of Figures

4.8 Performance comparison of atomic variants 55

4.9 Overall comparison against state-of-the-art competitors. The perfor-
mance of atomic variants now includes sorting. 56

4.10 Throughput comparison of grouped aggregation in CPU (Intel Xeon)
and GPU (A100) . 57

4.11 Performance of aggregation techniques across various data distributions 58

5.1 Hierarchy in realizing primitives . 62

5.2 Example of prefix-sum phases . 64

5.3 Composing filter . 66

5.4 Composing materialize . 68

5.5 Composing hash build . 68

5.6 Composing hash probe . 69

5.7 Composing split . 69

5.8 Composing sort . 70

5.9 Composing DBMS operators from primitives 71

5.10 Different pipeline patterns . 72

6.1 Hierarchy of abstraction levels characterizing languages, wrappers,
and libraries for heterogeneous computing 77

6.2 Proportion of GPU libraries. Left: proportion of libraries across
various application domains. Right: Proportion of GPU libraries and
their underlying implementation language. 80

6.3 Adapter design pattern used for plugging libraries 82

6.4 Transfer times for different libraries 83

6.5 Performance for selection with varying selectivity 84

6.6 Performance for Group-by with varying group sizes 85

6.7 Performance for join with varying R-table size 86

6.8 Performance for scatter & gather . 87

6.9 Performance of TPC-H Queries . 88

6.10 Performance of TPC-H queries using inter-library execution 89

7.1 Single threaded performance for TPC-H Q6 using vectorized and
compiled-code execution . 94

7.2 A sample hybrid query execution plan in Tether using TPCH Q3 . . 97

List of Figures xvii

7.3 Direct aggregation with execution models 99

7.4 Hybrid aggregation. 100

7.5 Stand-alone vs. hybrid compilation time. 104

7.6 Execution profile for single-pipeline queries 105

7.7 Illustrating the impact of switching points using TPCH-Q3. 106

7.8 Illustrating wait time while switching using TPCH-Q18 107

8.1 A common pluggable executor for any type of SDK. 112

8.2 Architecture with a unified runtime and interfaces (purple blocks) to
interact with plugged components. 115

8.3 Data types across SDKs. Data type (Solid) used by a developer & in
SDKs (dotted) . 116

8.4 Data transfer bandwidths using CUDA and OpenCL across GPUs.
H2D: Host to device, D2H: Device to host 116

8.5 Performance of map and reduce depends on the underlying imple-
mentation, as well as the device. (The results are measured on top:
NVIDIA RTX 2080Ti and Intel core i7-8700 & bottom: NVIDIA A100
and Intel Xeon Gold 5220R). 121

8.6 Memory capacity in GPU devices vs memory required for processing
TPCH data . 123

8.7 Memory footprint of individual primitives in TPCH-Query 6 124

8.8 Process flow in chunked execution model 124

8.9 Process flow in pipelined execution model 125

8.10 Process flow in 4-phase pipelined execution model 126

8.11 Dual memory spaces for concurrent transfer-execution 127

8.12 Profile of primitives in OpenCL, OpenMP and CUDA 128

8.13 Overhead of abstraction layers . 130

8.14 Performance of the execution models versus HeavyDB across various
scale factors . 131

9.1 An updated query engine for plugging in an arbitrary co-processor . . 137

List of Tables

3.1 Common characteristics of skeleton-based systems 38

3.2 Common characteristics of component-based systems 41

5.1 Properties of atomic primitives . 63

6.1 Libraries and their properties based on our survey 79

6.2 Mapping of library functions to database operators 81

8.1 Primitive definitions for encapsulating multiple database operator
implementations . 120

8.2 Device setup used in evaluating ADAMANT engine 127

Listings

2.1 Simple parallel arithmetic using OpenMP 19

2.2 Creating memory space using OpenCL 20

2.3 Simple parallel arithmetic kernel using OpenCL 21

2.4 Spawning threads for kernel execution 21

2.5 Allocating memory space using CUDA 22

2.6 Simple parallel arithmetic kernel using CUDA 22

2.7 Spawning threads using CUDA . 22

7.1 Compiled hash probe . 101

7.2 Hybrid hash probe . 101

8.1 OpenCL code for transferring data to a GPU 117

8.2 OpenCL code to allocate space in unified memory 118

8.3 OpenCL code to delete space . 118

8.4 OpenCL code to compile a kernel . 118

8.5 OpenCL code for kernel execution . 118

1. Introduction

Today’s co-processor landscape is broad and diverse, with numerous processors
differing in their architectures, programming approaches, and processing capabilities,
just to name a few. Such diversity in co-processors is necessary to fulfill the needs of
many performance-hungry applications. Nowadays, these applications – Database
Management Systems (DBMS) being one among them – running on a co-processor
are often rewritten to utilize the processor’s capabilities to match the performance
needs. Such reworks are costly and require expert knowledge of both the hardware
and the application. Hence, many researchers work on exploring ways to optimize an
application to better fit a target co-processor.

Co-Processor Accelerated DBMS

The early 2000s saw increased use of GPUs (Graphical Processing Units) for query
processing1: Ranging from offloading a few database operators [80] to a fully-fledged
query processor [87, 91, 15]. A similar trend is seen currently with FPGAs (Field
Programmable Gate Arrays), leading to research outcomes such as offloading op-
erators [3], up to supporting fully-fledged queries [147]. Similarly, works are also
undertaken to utilize other co-processors like APUs (Accelerated Processing Units),
MICs (Many Integrated Cores), etc. Hence, many such works have already explored
ways to use different co-processors for query execution [37, 154, 67]. Commonly, most
of these works re-implement an existing query engine to run on its target co-processor.
With new and diverse co-processors ready to hit the market on the horizon, we expect
more query engines to be developed for these new ones as well. Such a trajectory
will lead to varying implementation alternatives for a database operator across each
of these co-processors. Hence, it is necessary to have a system that can manage these
co-processor–implementation combinations to support any arbitrary co-processor.

Moreover, while exploring a new implementation for a database operator, one must
invest time in developing and optimizing other co-processor driver code as well (like
data management between host and co-processor). Such drivers, even though they

1DBMS with GPU support: https://dbdb.io/browse?hardware-acceleration=gpu

2 1. Introduction

have no performance impact, are still necessary for execution. For example, to test
kernel execution on a GPU, we must also implement the function to compile the
kernel on the device. Thus, a query engine over a co-processor must also have these
driver components integrated into it.

To sum up, a query engine over any co-processor is a tightly coupled mix of query
execution components and co-processor components. Hence, we see diverse query
engines tuned for each of the co-processors as they are developed, interspersing query
engine code with co-processor code. However, such diversity meant that we had
to rework a query processor from scratch for any new co-processor, which takes a
considerable effort. Thus, even though many such co-processor-accelerated query
engines exist, there is still a gap for a holistic query execution engine that can support
any arbitrary co-processor.

In this work, we investigate a query engine that enables developers to plug in a
co-processor without rebuilding a complete one. To avoid rework, we envision a
layered architecture that separates device drivers from operator implementations
so that we can reuse and modify the code without affecting other functionalities.
Developing a co-processor-pluggable query engine comes with various challenges. To
understand these, we must first study the implications of hardware awareness over
DBMS and the current trends in co-processor acceleration.

1.1 The Need for Hardware-Awareness in DBMS
Owing to the growing data sizes, DBMS are made to be hardware-aware to ensure a
reasonable query execution time. This includes placing the complete table in the main
memory (popular example being MonetDB [29]), cache conscious data access [31],
hardware sensitive database operators [41], etc. Specifically, with a hardware-aware
DBMS operator, many researchers study the underlying processor architecture to
come up with a more ’architecture-friendly’ operator to gain additional benefits. For
example, utilizing SIMD registers in modern CPUs has been shown to increase the
performance of DBMS operators. To understand the benefit of hardware-awareness,
let us consider the example of hashing: Linear probing is a simple hashing technique
as the algorithm in Figure 1.1-a and its execution is visualized in Figure 1.1-b. As
we can see, the scalar execution—begins by reading the search key (blue block), and
hashing it to identify the target location. Based on the existing values in the target,
we have three outcomes: 1) the key is already present—which leads to incrementing
the key’s count, 2) the slot is empty—insert the search key and 3) a different key is
present—increment the slot and insert again. Such workflow in SIMD becomes fairly
complicated. As Figure 1.1-c shows, the search key must be replicated to fit the
SIMD vector lane. Next, the keys in the target location are fetched and compared
with the target key. Based on resultant comparison masks (M1 until M4), we follow
three possible outcomes as listed above. We can see from comparing Figure 1.1-b &
c, that a complex execution flow is needed for a comparatively simpler function. Still,
the outcome of such re-implementation shows additional performance benefits, such
as in the case of Figure 1.1-c, where vectorized is nearly twice as fast as the scalar
implementation. This is one of the alternative solutions for group-by-aggregation
over SIMD. Similar solutions are also available for other operators over SIMD and
other processor components, and even further—over other co-processors.

1.2. Challenges in Hardware & SDK Trends 3

Algorithm 1: Linear probing
1 if HashTable full then
2 return false

3 key ← hash(input);
4 if bucket[key] is free then
5 bucket[key] ← input;
6 else
7 while current slot not empty do
8 goto next slot;

(a) Algorithm for simple linear prob-
ing

Search key K PayloadKey

Hashing
Function

Compare Slot++

Insert

Stop Key not
found

Empty location
found

Key found

(b) Scalar workflow for linear probing

Search key K

SIMD
COPY

Key Key Key Key

Hashing
Function

V1 V2 V3 V4 P1 P2 P3 P4

R1 R2 R3 R4

SIMD COMPARE

Compare

Slot++

Values are
not equal

SIMD ADD

Insert

Empty
location
found

Stop

Value equal

(c) SIMD workflow for linear probing

3000 4000 5000 6000 7000

0

10

20

No. of keys

ex
ec

ti
m
e
(m

s)

Scalar linear probing

Vectorized linear probing

(d) Performance of vectorized linear probing
with random distribution

Figure 1.1: Various realization of SIMD vectorization of hashing techniques showing
impact over performance

However, developing such co-processor-aware solutions is not trivial. One needs to be
an expert in the processor architecture to develop an operator implementation that
utilizes the underlying device to its maximum extent. Even though developers are
aware of the processor architecture, they must also know the instructions within the
various SDKs available for the co-processor. This poses a challenge to developers as
there are diverse co-processors, with each co-processor having diverse SDK support.

1.2 Challenges in Hardware & SDK Trends

Until recently, not many co-processors were present in the market to aid a host CPU.
Similar is the SDK support for these co-processors to develop different applications.
Only at the turn of the decade - 2010s - did we see a rise in different SDKs for each
device. For example, previously, GPUs were mainly used for graphical applications.
However, with the advent of GPGPUs (General-Purpose computing on Graphics
Processing Units), other applications are also being supported over the device.
Similarly, FPGA with its VHDL support is now one of the suitable devices to
accelerate other applications, including DBMS.

4 1. Introduction

However, developing such a cross-device application needs considerable effort. Efforts
in terms of understanding a co-processor architecture, as well as knowing the SDKs
(Software Development Kits) operate on a particular component in the underlying
architecture. For example, recent GPU architectures support parallel aggregation
functions - commonly called atomics - directly through a hardware component
(more in Chapter 4)2. One has to study these SDKs and their relation to the
target architecture to utilize the device effectively. Moreover, SDKs provide a
varying level of specialized access to hardware components. The access ranges
from completely abstracting hardware-related components to specialized access to
individual components (more in Chapter 5). One can develop a database operator
from any of these levels of abstraction, resulting in various implementation alternatives
for even a single database operator.

1.3 DBMS over Heterogeneous Co-Processors

To sum up, on the one hand, we see a strong argument favoring the need for hardware-
aware query processing. On the other hand, we have growing diversity in hardware
and SDKs, resulting in various query processor realizations. Therefore, there is a
potential to develop a query processor over each co-processor and SDK combination.
However, such an approach is time-consuming. Furthermore, these solutions must be
combined to support an overall best-performing query processor.

Hence, it is imperative to develop a query processor that reduces the implementation
effort, providing DBMS support out-of-the-box for any abstract co-processor. To
achieve such a holistic query processor, we need a system that supports plugging in
a co-processor driver as well as its SDK implementation of DBMS operators. To this
end, we explore in this thesis, the abstractions necessary to have such a pluggable
architecture with a runtime supporting query execution out-of-the-box on the plugged
device.

1.4 Goal of this Thesis

The ultimate goal of the thesis is to explore a query execution engine that supports
plugging any arbitrary co-processor. Such a co-processor accelerated DBMS benefits
from optimizations on co-processor drivers as well as database operator implemen-
tations. Therefore, an abstract pluggable query executor must also have interfaces
that can be extended to add the above-mentioned two optimizations. In addition to
the optimized code routines for the underlying co-processor, a query executor must
also handle the query execution itself. Hence, it is imperative to explore a runtime
that can handle query execution over any abstract co-processor. Thus, to achieve
the goal of an abstract query executor, we must investigate three dimensions of the
executor. Subsequently, we envision a three-tier architecture, with each addressing a
particular challenge regarding pluggability.

2These are available in NVIDIA CUDA SDK as atomic add()

1.5. Contributions: Three Tiers of a Pluggable Query Executor 5

Tier-0/1: Device layer - We explore the right level of abstraction for interfacing
different co-processors.

Tier 1: Task layer - We explore the right level of abstraction for the database
operators and realize them using the existing SDK.

Tier 2: Runtime layer - We explore ways to integrate pluggable interfaces into a
common runtime. The runtime supports alternative execution models.

The first two layers explore ways to interface co-processor driver code and its
corresponding DBMS operator implementations. Specifically, in the device layer,
we focus on developing interfaces for data management that are integral for query
execution. The task layer extends interfaces to include an operator implementation
over the plugged-in co-processor. The runtime layer acts as the mediator between the
query executor and our interfaces. We build our runtime layer using the interfaces
designed above, therefore allowing us to have dynamic execution calls across various
co-processors. The runtime takes in a query plan and handles execution of it across
various co-processors.

1.5 Contributions: Three Tiers of a Pluggable Query
Executor

Our pluggable architecture allows one to integrate co-processors without making any
changes to the runtime. The architecture also enables one to encapsulate various
alternative implementations of a single database operator using its task layer. A
similar encapsulation of various SDKs is also possible via the device layer.

The detailed challenges and our proposed solutions for each of these layers are detailed
below.

Tier 0/1: The Case for Hardware Sensitivity

At the start of this thesis, we make the case for the need for hardware sensitivity.
Here, we explore the performance impact of hardware-aware implementation, as well
as the effort invested in developing such an implementation. To this end, we conduct
a case study on developing a GPU-aware group by aggregation. Specifically, we
study sorting-based group by aggregation and modify it for the underlying GPU.

As GPUs are data parallel executors, they need synchronization for aggregation. In
the case study, we synchronize aggregates using atomics in GPUs. Atomics are
specialized serialization instructions executed using a dedicated hardware component
in GPUs. Therefore, these functions make our implementation hardware-sensitive.
Additionally, the function also exhibits varying performance with multiple tuning
parameters. We evaluate these parameters and study the impact of hardware
awareness on overall execution. Our evaluation shows these parameters have a
significant impact in improving the execution - in some cases, with speed-up execution
of up to 2x the naive approaches. Overall, our case study establishes the need for
hardware-aware operators and shows their sensitivity to performance.

6 1. Introduction

Tier 1: Pluggable Tasks

Though our case study shows clear performance implications of hardware awareness,
we also see that considerable effort and expertise are needed to implement such a
hardware-aware operator. Furthermore, even though many researchers have come up
with efficient implementations, most of them are ad-hoc solutions [45, 101, 127, 128].
Integrating these ad-hoc solutions needs additional effort. Thus, a single holistic
query executor merging these solutions needs to tackle two key challenges:

• Managing implementations across various levels of granularity. For example,
sorting can be an ad-hoc implementation, like merge-sort for GPU, or is composed
of various smaller functions. For example, Bingshen He and others compose
their sort operator using split, map, prefix-sum [87]. Such variations lead to
implementations across different levels of granularity present under a single roof
(more in Chapter 5).

• An implementation can be realized in various levels of SDK abstractions, such
as device-SDK, common wrapper, or expert-written library (more in Chapter 6).

Apart from these main challenges, we also need to consider the varying data rep-
resentations in each of these implementations. Further, we can also see that some
of the operators reuse common operator implementations. Hence, to capture these
implementation alternatives, we need a common definition for the operator that
spreads across different levels of realizations. Therefore, we survey the existing models
and come up with definitions for primitives. To the challenge of varying dimensions
of realizations, we place these primitives in different hierarchy levels. Using these
definitions and signatures, we can include different operator implementations under
a single implementation umbrella. Finally, to test the versatility of our primitive
definitions, we realize them using different GPU libraries. By doing so, we study the
usability of our task layer as well as the libraries.

Overall, within this tier, we study database operators to come up with granular
primitives that encapsulate alternative realizations and test them with existing GPU
libraries.

Tier 2: Query Execution Runtime

Once we have a holistic representation of primitives, we need a system that bundles
these implementations across different devices. This also includes handling the
device-related functionalities like data management, kernel execution, etc. as well
as some DBMS-related components: like a proper execution model for the given
query plan. For the former, we propose a device layer, which allows for plugging
in any abstract co-processor. For the latter, we propose a runtime with alternative
execution models. Since the execution model is one of the key components of a query
executor, an efficient execution model improves the overall performance. Hence, we
study the existing execution models for traditional CPUs, i.e. the vectorized and
compiled execution models, and extend them to support co-processors.

Before we go ahead with establishing an execution model for co-processors, we first
study the existing ones and their implications for the CPU. Since vectorized and

1.6. Corresponding Publications 7

compiled executions are the prominent execution models, we explore their advantages
and disadvantages. Based on our study, we find that compilation suffers from compile
time, which contributes to a significant startup delay. To improve on this, we propose
a hybrid execution model that follows an interpreted execution while the remaining
query is being compiled. Our evaluations show that using such an execution model
improves the overall performance by around 2-3x the traditional ones.

Since not all co-processors support reasonable compilation time, we stick with
interpretation-based execution. Furthermore, one of the major concerns for databases
over co-processors is the limited memory space. Due to this, scaling data sizes might
not fit the device completely, and they suffer from executing such big data sizes. To
support such execution, we propose a chunked execution model with 3 alternatives:
1) chunked, 2) pipelined, and 3) 4-phased. All these execution models are run on the
host CPU, handling execution on the target co-processor.

Putting All Together

Thus, stacking these three layers together, we can have a co-processor pluggable
query executor - ADAMANT. Since the query processor layers are loosely coupled,
the functionalities within the layers can be freely substituted without any changes or
awareness of other layers. Furthermore, we also evaluate the performance of using our
execution models with GPU as a co-processor. Their performance against HeavyDB
shows that we can support any arbitrary query, as they will not run out of memory
space in the device. Overall, our ADAMANT query engine has a performance range
from dropping up to 3x until gaining speed-up of up to 3x the HeavyDB.

To summarize, the contributions of this thesis are:

• Exploring the hardware-sensitive implementation of non-standard primitives

• A survey of existing database primitives that can be combined to execute complete
database operators - developing a standard for our primitives

• Exploring GPU library implementation for standard primitives

• A hybrid execution model for traditional CPU-based query execution

• A scalable execution model for abstract co-processor execution

• A query executor with pluggable interfaces for easy co-processor integration

1.6 Corresponding Publications
The content of this dissertation is an extension of several peer-reviewed publications
across workshops, conferences and journals. The following publications are listed in
the order they appear in this dissertation.

• B. Gurumurthy, D. Broneske, M. Schäler, T. Pionteck and G. Saake, ”An
Investigation of Atomic Synchronization for Sort-Based Group-By Aggregation
on GPUs,” IEEE 37th International Conference on Data Engineering Workshops
(ICDEW), Chania, Greece, 48-53(2021).

8 1. Introduction

• B. Gurumurthy, D. Broneske, M. Schäler, T. Pionteck and G. Saake, ”Novel in-
sights on atomic synchronization for sort-based group-by on GPUs”. Distributed
Parallel Databases 41, 387–409(2023).

• B. Gurumurthy, D. Broneske, T. Drewes, T. Pionteck, G. Saake, ”Cooking DBMS
Operations using Granular Primitives”. Datenbank-Spektrum: Vol. 18, No. 3.
pp. 183-193(2018).

• H. K. H. Subramanian, B. Gurumurthy, G. C. Durand, D. Broneske and G. Saake,
”Analysis of GPU-Libraries for Rapid Prototyping Database Operations: A look
into library support for database operations,”IEEE 37th International Conference
on Data Engineering Workshops (ICDEW), Chania, Greece, 36-41(2021).

• H. K. H. Subramanian, B. Gurumurthy, G. C. Durand, D. Broneske and G. Saake,
”Out-of-the-box library support for DBMS operations on GPUs”. Distributed
Parallel Databases 41, 489–509 (2023).

• B. Gurumurthy, I. Hajjar, D. Broneske, T. Pionteck, G. Saake, ”When Vectorwise
Meets Hyper, Pipeline Breakers Become the Moderator”. In International
Workshop on Accelerating Analytics and Data Management Systems Using
Modern Processor and Storage Architectures (ADMS@VLDB),1-10 (2020).

• B. Gurumurthy, D. Broneske, G. C. Durand, T. Pionteck and G. Saake, ”ADAMANT:
A Query Executor with Plug-In Interfaces for Easy Co-processor Integration,”
IEEE 39th International Conference on Data Engineering (ICDE), Anaheim,
CA, USA, 1153-1166(2023)

1.7 Outline of this Thesis
The thesis is structured as follows: The next chapter - Chapter 2 - gives an overview
of the current state-of-the-art in hardware-accelerated DBMS. The chapter covers the
different co-processors currently available, their SDK support, and the challenges in
integrating DBMS over these co-processors. We follow these with the existing runtime
systems that support heterogeneous co-processor execution in Chapter 3. Next, in
Chapter 4 we elaborate on our case study on hardware-aware database operation.
Here, we study the GPU-aware group-by-aggregation function to investigate its
performance implications. Using the outcome of the case study, we survey the
existing database operators and their granular functions in Chapter 5 and realize
their implementations over GPU using libraries in Chapter 6. The remaining chapters
explore the runtime for our query engine. Similar to our database primitives, we
start with understanding the existing execution models from query engines. Based
on our study, we developed a hybrid execution model for modern CPUs, which is
detailed in Chapter 7. Finally, we put our concepts together into a co-processor
pluggable query engine. The engine is detailed in Chapter 8. Finally, we conclude
the thesis and postulate on the possible future work in Chapter 9.

2. Tier 0: Current Co-Processor
Ecosystem

The consensus nowadays is that the CPU has reached its scaling limitations [160].
Yet, the performance demands from a CPU continue to increase, mainly due to
the exploding data growth. [180] This is particularly challenging for a Database
Management System (DBMS) as an end-user expects query results in a reasonable
time. Hence, many DBMS researchers work on optimizing the query engine for the
underlying hardware system (such as aligning memory layout, maximizing cache
utilization, using in-memory databases, etc.) to have improved query execution.
One of these explored solutions to speed up query processing is to use additional
co-processors.

A co-processor is a specialized processor adjunct to a general-purpose CPU, mainly
developed to accelerate a particular task or application. Even though a co-processor
architecture is tailor-made for a target application, it can be used for other general-
purpose computing as well. One can use these processors to execute a custom
function – built using co-processor APIs. Currently, various APIs are available for
an individual co-processor, each having its performance implications over execution.
Hence, achieving optimal performance from a co-processor requires us to be aware of
both the hardware architecture and the corresponding API that allows access to it.

Due to the variety of co-processors and their corresponding APIs, we can develop
multiple implementation variants for a single database operator. Hence, to ease the
development effort, we have varying support for programming co-processors ranging
from programming paradigms to different systems to generate custom code for a
co-processor. Though these systems ease the development effort, additional efforts
are needed to handle multiple implementations. Such a handler is typically included
within the runtime of the target application, which in our case is a query executor.

10 2. Tier 0: Current Co-Processor Ecosystem

In a gist, a DBMS over a co-processor requires changes to its query execution runtime.
Such integration opens up various challenges and opportunities for improvement in
the query execution runtime. In this chapter, we start with an overview of different
co-processor architectures and their ecosystem, which we use to later explore the
challenges when integrating them into a DBMS. We use these fundamentals to build
our abstract query executor in the subsequent chapters of this thesis.

Downfall of CPU Performance

Before the emergence of co-processors, the CPU has been the sole processor sup-
porting any performance-hungry applications. As the performance requirements
from applications increased, CPU capability scaled proportionally to support their
needs. The CPU kept pace by cramming more components onto ICs (integrated
circuits), whose count Gordan E. Moore has estimated to be doubling every 18
months [160]. However, as is the case with all exponential trends, after a certain
limit, doubling components gives only a marginal performance benefit. There are
several technological barriers to this behavior, with the most prominent being the
power wall. Since simply doubling ICs would make them power-hungry, their power
density has to be kept constant. Dennard observed that voltage and current should
be proportional to the dimension of a transistor, which is termed Dennard scaling.
Exploiting this behavior, shrinking transistors proportionally required less voltage
and current, making the overall power density constant. This trend continued until
recently when modern chips can no longer shrink the transistor sizes without current
leaks3. Thus, with the end of Dennard scaling, ICs cannot pack more components
without increasing the power density. Hereafter, CPUs were unable to utilize 100% of
the transistors without compromising on power. To maintain a fixed power budget,
CPUs started to intermittently cool down and run only on a partial transistor count.
Thus, to keep up with the performance, multicore CPUs have been introduced.

Such a multicore solution came with the cost of managing parallelism across the
cores. Furthermore, doubling CPU cores might not scale beyond a few hundred
cores, as managing the cores and powering them will also become an overhead. Thus,
scaling performance in a CPU has become more and more challenging.

One other alternative solution to flattening CPU performance is to develop a task-
specific co-processor. The co-processor contains only the necessary hardware compo-
nents for processing a specific application. These co-processors work in tandem with
CPUs, where the CPU simply offloads the supported task to a co-processor.

2.1 Current Generation Co-Processors

A co-processor is loosely coupled with a host CPU, typically using a pluggable
interface (most commonly via PCI-E). Any input to the co-processor is offloaded into
a device’s memory before its execution. Though such an execution routine is common
across co-processors, they differ in their internal architecture. In this section, we give
a brief overview of the commonly available co-processors and their internals.

3The leak is dissipated as heat

2.1. Current Generation Co-Processors 11

GPU—Graphics Processing Unit
Video rendering is challenging for traditional CPUs, as thousands of pixels must be
constantly updated in real time. Though updating a single pixel might be trivial,
it gets fairly complex to update the millions of pixels present in modern displays
within a reasonable time. To support such a growing pixel count, CPUs must be
fast enough to avoid any significant delays. However, modern CPUs are ill-equipped
for such a task. Hence, GPUs are deployed to update the pixel values concurrently.
Accordingly, a GPU architecture is equipped with thousands of light-weight cores,
each executing in a Single-Instruction Multiple-Threads (SIMT) fashion. These cores
execute potentially thousands of threads among them, hence supporting massive
data-parallel execution. Unlike CPUs designed to have fast response time, GPUs are
designed to have high throughput. Hence, the architecture of a GPU also reflects
this goal. The SIMT cores deliver high computation throughput while assisted by
the faster interconnect that provides high memory bandwidth complete with various
levels of caching.

Interconnect

Memory
Patition

Memory
Patition

Memory
Patition

SIMT
Core

 SIMT Core Cluster SIMT Core Cluster

Off-chip
DRAM

Off-chip
DRAM

Off-chip
DRAM

Off-chip
DRAM

Dispatch Port

Operand Collector

FP Unit INT Unit

Result Queue

core
LD/ST

Texture Cache

Register File

Instruction Cache

SFU

Shared Memory/L1 Cache

 SIMT Core Cluster

Figure 2.1: Basic components in a GPU

As Figure 2.1 shows, in an overview GPU has three main components: 1) off-chip
memory—also known as global memory, which is the memory space for storing data
from a host CPU, 2) crossbar—a data access component, that resolves the data
access requests while execution, and 3) GPC or Graphics Processing Cluster—the
processing core array. The GPC packs thousands of lightweight cores that work
together in the data-parallel execution of an instruction. A set of GPU cores are
clustered into SIMT clusters. The blocks on the top contain the cores. These are
named streaming multiprocessors by NVIDIA and compute units by AMD. These
cores share a common instruction cache as well as a data cache. This allows the
device to reduce the overall latency within the system. Since numerous threads
are working at any given instant, there will be lots of data access calls. These are
resolved by an interconnect network (we explain this in detail in chapter 8). The
interconnect links the cores with a dedicated off-chip memory in the device.

The single core of a GPC has a lower clock frequency as well as limited capability
compared to a CPU core. For example, unlike a CPU, a GPU core is not equipped
with branch predictors. It simply runs the else instructions following if instructions,

12 2. Tier 0: Current Co-Processor Ecosystem

masking the non-qualifying threads in the corresponding branch. However, such
small cores are packed together to support massive parallelism to provide extended
performance. Further, memory accesses have high latency that needs to be hidden
by processing. To this end, they spawn multiple threads for a given function and
use context switching to hide the latency. This massive parallelism in GPUs well
suits DBMS workloads. Hence, multiple works have investigated the use of GPUs
for accelerating query execution (listed in Chapter 3). We extensively use a GPU
to explore co-processor pluggability in this thesis. Hence, we give an in-depth
understanding of a GPU and its architecture in this section.

GPUs execute their tasks using threads. The execution here is quite different from
CPU threads. In a CPU, the threads are grouped by the core and are normally
executed together. In the case of a GPU, a group of threads (defined as warps in
CUDA) execute together, and there can be multiple warps in the system. Each
warp executes a single instruction in a lockstep. Due to this, in case there is a
divergence, threads in a single path are executed together and later the threads
follow the alternative path. Hence, it is advised to avoid branching statements in
the execution. One more feature of the warp is that threads within the warp have
access to a shared local memory in the system.

The GPU supports coalesced access rather than sequential access when reading from
global memory. This is again beneficial for the memory controller as the memory
access triggered from a warp will be in bulk for all the threads as they are executing
in a lock step.

Due to their architecture, GPUs have become the most popular co-processor to a
CPU, such that almost all commercial PCs come with a GPU. These commodity-
range GPUs, even as of 2023 – nearly a decade after it was first released, are aimed at
supporting gaming systems4. This is closely followed by use cases in data centers and
professional visualizations. There are several niche cases like automotive, healthcare,
and logistics, where GPUs are also employed. Such versatility of the GPU is due
to its architecture supporting massive data-parallel execution. Such a data-parallel
execution is also suitable for the above-mentioned applications as well as many others,
like HPC, machine learning, and even query execution in our case. Still, efficiently
deploying query execution on GPUs is an ongoing topic and consequently, various
GPU-based query executors are currently present and many are still in development.
Some commonly known GPU-accelerated DBMS include CoGaDB [38], GPUDB [87],
MapD [54] etc.

Though a GPU is also used for accelerating AI applications, its internal components
are still not tuned for the application. Current generation GPUs try to support both
graphics acceleration and AI using dedicated cores like Tensor cores from Nvidia [96].
However, there are still trade-offs necessary to support both domains. Hence, as a
dedicated support for AI, TPU (Tensor Processing Unit) is developed.

TPU—Tensor Processing Unit
Tensor Processing Units are flagship devices from Google for supporting neural
network applications. One of the main reasons for exploring TPUs is that Google

4NVIDIA investor report from 2023: https://s201.q4cdn.com/141608511/files/doc presentations
/2023/02/nvda-f4q23-investor-presentation-final.pdf

https://s201.q4cdn.com/141608511/files/doc_presentations/2023/02/nvda-f4q23-investor-presentation-final.pdf
https://s201.q4cdn.com/141608511/files/doc_presentations/2023/02/nvda-f4q23-investor-presentation-final.pdf

2.1. Current Generation Co-Processors 13

needed to double its data centers to work on machine learning workloads [185].
TPUs accelerate AI techniques (like deep neural network inferences), making them
nearly 10x faster than their CPU and GPU counterparts. Similar to a GPU, the
TPU contains the hardware components that are necessary for DNN (Deep Neural
Network). Moreover, similar to a GPU, the TPU’s instruction set also operates over
a bulk of data [99].

DRAM

Control Activation Pipeline

Accumulator

Unified Buffer for Local Activitions Matrix Multiply Unit

Host
interface

PCI-E

Figure 2.2: Basic components in a TPU

A simplified block diagram for a
TPU based on Jouppi et al. [100]
is given in Figure 2.2. The bulk
of the TPU space is allocated for
the Matrix Multiply Unit. The
unit contains 256×256 Multiple-
Accumulators (MACs) capable of 8-
bit multiplication followed by 16-bit
accumulation, i.e., a MAC can pro-
cess a 256-element sum per cycle.
The next biggest space is reserved for a Unified Buffer for Local Activations. It stores
the intermediate results in a 24 MiB unified buffer. Finally, the unified buffer has a
dedicated DMA to control data access from host memory.

At present, TPUs are exclusively used to speed up machine learning workloads.
Specifically, the TPU is well-equipped to run CNNs (convolutional Neural Networks).
Though a TPU better fits such AI workload, there is ongoing research to use them
for accelerating query processing [93, 96].

Though a TPU fits the AI workload, it also suffers from missing out on many CPU
features. Hence, different devices are developed to bridge this gap. Below are two of
the most commonly available devices that contain all CPU features while supporting
massive data parallelism in a GPU.

MIC—Many Integrated Cores

MICs are the first of many core generations. Here, 10s of CPU cores are packed
together to support massive parallel processing. MICs are mainly used in supercom-
puters and workstations. The first commercial MIC was Intel’s Xeon Phi (code-named
Knights Corner). it is capable of executing x86-compatible code out-of-the-box. In
a nutshell, these are general-purpose CPUs put together to support high levels of
parallelism. Unlike standard standalone CPUs, these are connected to a host CPU
using PCI-E so that the host can offload some of its operations into the device.

In Figure 2.3, we depict the architecture of one of the MIC systems – Intel’s Xeon
Phi [170]. The architecture has: processing cores, caches, memory controllers, and
a bidirectional ring interconnect. The cores are heavyweight, capable of processing
complex operations, and even have a private L2 cache. They support in-order
pipelines and up to 4 hardware threads, as well as SIMD vectorization. The whole
MIC chip is cache coherent with MESIF5 protocol [171].

5derived from 5 protocol states: M odified, Exclusive, Shared, Invalid, and Forward

14 2. Tier 0: Current Co-Processor Ecosystem

PCI-E

DDR DDR

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

Core

L2

TD

Figure 2.3: Basic components in a MIC

Due to the versatility of the cores in
MICs, they are used for accelerating
operations in a multitude of applica-
tions [125]. MICs are readily used in
HPC [98], AI [151] and, naturally, in
data processing [141, 161].

The main disadvantage of the MIC is
again the managing of the complexity of
parallelism. Specifically, communication
becomes complex when more cores inter-
act with each other, and complex data
transfers take more time than processing
using a single core. Hence, to partially
solve this, APUs are introduced. These
have both CPU and GPU in a single die.

APU—Accelerated Processing Unit

DDR

L2

CPU CPU

CPU CPU

Graphics SIMD Array

L2

L2

L2

Display multimedia

I/O

PCI-E Display

Figure 2.4: Basic components in an APU

An APU, also known as an iGPU
(short for integrated GPU) has both
CPU and GPU in a single die, both
accessing the same memory space
(i.e., main memory). The main
goal of such a fusion architecture
(AMD names its APU platform as
fusion architecture) is to have shared
memory along with faster intercon-
nects. Depending on the workload,
the right device is selected. Usu-
ally, the CPU is suitable for serial
workloads like web browsing, and
cryptography, while the GPU han-
dles data-intensive (vector processing favorable) workloads like real-time graphics
rendering, data processing, etc. This avoids unnecessary data transfers and dupli-
cation (and subsequently no need for explicit coherency management, less energy
consumption, and decreased latency). This also means we get fine-grained data
sharing and a good spread of parallelism across both devices. In the next paragraphs,
we give an overview of an APU architecture (focusing w.l.o.g on the AMD fusion
architecture).

Figure 2.4 shows the recreation of AMD Fusion APU: Llano architecture [34]. As we
can see in the figure, there are multiple CPU cores with their set of shared caches
as well as the graphics accelerator on the same die. Since these two lie on the same
die, they are connected to the memory (DDR3) using a high-speed bus. Some of
the previous generation of APUs supported discrete address spaces for these two
processors. Here, any data from the CPU has to be moved to the GPU addressable
space for processing. Yet, this is supported by faster block transfers to copy data
from one space to the other.

2.1. Current Generation Co-Processors 15

Since both the CPU and the GPU share a single memory space, data transfer is
fairly easy compared to standalone GPUs. This leads to a fine-grained execution
of an application across the processors. Hence, APUs are frequently researched for
accelerating mathematical routines, video processing, and among others, database
systems [90, 184] as well. Though the APU supports both CPU and GPU workloads
because of its limited chip size, the performance of these devices in isolation is sub-par
compared to the individual devices.

FPGA—Field Programming Gate Arrays

Unlike the above devices, a Field Programming Gate Array (FPGA) supports
synthesizing a custom digital circuit. Due to such a level of specialized implementation,
FPGAs have gained popularity int he recent years as a suitable data processing
device.

The architecture of an FPGA has two parts: Processor System (PS) and Pro-
grammable Logic (PL)6. The overview of the various components in an FPGA is
given in Figure 2.5. The PS contains dual-core or single-core chips and its internal
caches and other IO peripherals & interfaces. The PL part contains the Configurable
Logic Blocks (CLB termed by Xilinx), routing resources, and IO for off-chip connec-
tions (commonly PCI-E to any possible interface). Additionally, the PL also contains
DSP blocks and a small block RAM as well (of size 32 kB). Out of these, the key
component in an FPGA is the CLB block, which can be configured to support any
simple logic and storage functionality. These CLBs contain lookup tables (LUTs),
through which one can ultimately design their custom circuit.

The next important feature of an FPGA is its routing architecture. Routing is
responsible for feeding and fetching data bits across CLBs. They use wires and
programming switches to route data bits across various CLBs. Putting these together,
one can create any custom digital circuit leading to having a custom-built circuit
for any software function, in our case any database operator. Overall, thousands of
CLBs are present in a modern FPGA with a complex routing structure.

Processing System

APU system

ARM
core

DRAM

Central
Interconnect

Programmable Logic

I/O I/O I/O I/O I/O

I/O I/O I/O I/O I/O

CLB

CLB

CLB

CLB

CLB

CLB CLB CLB

CLBCLB

DSP BRAM

Figure 2.5: Basic architecture of an FPGA

Due to such a large amount of config-
urable blocks available, we need a soft-
ware stack to configure the device. A
custom circuit in an FPGA can be built
using a high-level Hardware Descrip-
tion Language (HDL) like VHDL (VH-
SIC—Very High-Speed Integrated Cir-
cuits program—Hardware Description
Language). A synthesis tool (like Vi-
vado) can use these VHDL descriptions
to create a netlist of FPGA’s config-
urable elements and their interconnec-
tions. Next, this netlist is mapped to
the physical resources in the hardware.

6As per the architecture of Xilinx Zynq-7000: https://docs.xilinx.com/v/u/en-US/ds190-Zynq-7
000-Overview

https://docs.xilinx.com/v/u/en-US/ds190-Zynq-7000-Overview
https://docs.xilinx.com/v/u/en-US/ds190-Zynq-7000-Overview

16 2. Tier 0: Current Co-Processor Ecosystem

In between, various sophisticated functions like placement, routing, and bitstream
generation are also carried out depending on the support of various synthesizers.
Hence, to ease development, FPGAs are programmed either using RTL (Register
Transfer Level) languages like VHDL, and Verilog or via HLS (High-Level Synthe-
sis)—where the circuits are extracted, for example from C or OpenCL code. This
provides a platform that can be tuned to perfection for any given domain-specific
operation, providing higher throughput. Thus, FPGAs support a flexible and fully
customizable architecture that can be adapted to suit any program. The device can
be used to build custom data paths, bit-width, and memory hierarchies, making it a
completely free environment.

One of the primary benefits of employing FPGAs lies in their ability to support
high line rates while processing, making them well-suited for data processing. As
a result, FPGAs are synthesized with queries featuring deeper pipelines to harness
performance advantages [53]. Furthermore, this pipeline can be replicated to have
data parallelism during execution. Finally, depending on the placement of the FPGA
in the system architecture, one can use FPGA as [67]: 1) a dedicated co-processor:
query or partial query pipeline is pushed to an FPGA for execution, 2) a bandwidth
amplifier: FPGA sits between the data source (HDD) and the main processor (CPU).
It does data compression/de-compression or filtering to ease data transfer bottleneck,
and 3) a near data store: FPGA stores partial data values and performs in-situ query
processing before initiating transfer the the main processor. Among these, with the
latter two cases, FPGAs are mostly used to process data in-stream while processing
and a query is spread across the CPU and co-processor. In this thesis, we focus on
the former approach, where the FPGA is tagged as a co-processor via interconnects.

FPGAs are used in data processing to accelerate the execution of individual operators,
to running complete queries. Additionally, FPGAs also act as a near-data processor
that aids in pruning initial results within the data source, so that only a fraction of
data is transferred to the main processor.

Nonetheless, a drawback of employing an FPGA is the intricate process of circuit
synthesis, which can be exceedingly time-consuming and lead to a complex circuit
design. Additionally, despite FPGAs supporting line-rate processing, they often
operate at a lower clock rate compared to CPUs or GPUs and are typically enhanced
with multiple execution pipelines.

Other Devices

In addition to those previously mentioned, there exist other accelerators, including
smart NICs (Network Interface Controller) and digital signal processors that have
heterogeneous architecture and support a particular workload. Further, there is an
emerging trend of accelerating AI tasks using hardware accelerators like a Vision
Processing Unit (VPU). Nonetheless, these devices currently offer support for specific
use cases and have yet to undergo significant enhancements to function effectively as
dedicated co-processors.

Interconnects

While discussing co-processors, it is also worthwhile to understand the various
interconnects used for data movement between the co-processor and the host CPU.

2.2. Programming Co-Processors 17

Out of the various interconnects available, the most well-known one is the PCI
Express (short for Peripheral Component Interconnect Express7). It is one of the
most widely used interconnects that has a robust but considerable transfer rate
difference across their versions (for example, PCI-E 3.0 has a transfer rate of 8.0
GT/s and PCI-E 4.0 has 16.0 GT/s). Other than the PCI-E, many device-specific
connectors are also present. For example, nvlink from NVIDIA supports faster
communication compared to the PCI-E (Their performance comparison is discussed
in Chapter 8). Furthermore, there are other interconnects like HyperTransport [105],
Infinity Fabric [118], Intel QuickPath Interconnect [193] etc. providing competing
transfer rates.

Overall, in this section, we emphasized the diversity in co-processor architectures
and their performance implications. We showed the various components that make
up each of the co-processors, which are relevant for improving performance. However,
we must use an appropriate API to program a co-processor to develop an efficient
application.

2.2 Programming Co-Processors
As we saw in the previous section, various internal components of a co-processor
make up for its performance. A program puts to use these components efficiently
to achieve maximal performance from a co-processor. This is enabled via various
programming APIs and instruction sets (in virtual machines). In this section, we
briefly present the API support for co-processors.

Since co-processor architectures are diverse, we cannot simply port a code from one
device to another without changes in performance. Hence, diversity in co-processors
also affects its programming support. At present, we see various programming APIs
available across co-processors, each with varying levels of access to the co-processor
components. In this section, we discuss the two paradigms and detail some currently
available APIs for programming different co-processors.

2.2.1 Programming Paradigms

In a general sense, we can program for a co-processor in a hardware-oblivious way
or hardware-sensitive way [91]. In the former approach, the developer needs only
the portability of code, and performance comes secondary. The approach favors
“write once; run anywhere” development, where the same code can be run in any
co-processor. However, the performance may or may not be optimal depending on the
underlying co-processor as well as the API used. Alternatively, a hardware-sensitive
approach achieves good performance in terms of execution. However, the caveat here
is the time for implementation, a co-processor needs a custom implementation to
achieve the best performance.

7https://pcisig.com/

https://pcisig.com/

18 2. Tier 0: Current Co-Processor Ecosystem

(a) Hardware oblivious (b) Hardware sensitive

Figure 2.6: Common paradigms for programming on a heterogeneous processors
environment as given by Heimel et al.

Hardware Oblivious Approach

Hardware-oblivious programming APIs come with a layer in between the programmer
and a target co-processor. This abstraction layer provides the necessary constructs
for programming—which are compiled to the underlying device during the runtime.
Hence, whenever the compiler supports a new co-processor, we can run our code
onto this device without much rework. Some common APIs for hardware oblivious
programming are OpenCL and OneAPI. They both have C++-like syntax that can
be compiled into various co-processors like CPU, GPU, FPGA, etc.

Hardware Sensitive Approach

As an alternative to hardware-oblivious programming, one can also write code that
is both aware and exploits the underlying hardware features. Such implementations
require a developer to know these features of a target co-processor as well as the right
instruction set to exploit them. However, the approach is highly time-consuming and
requires considerable effort, depending on the skills of the developer. There are many
examples of hardware-aware programming APIs: modern Intel CPUs support SIMD
through SSE instructions for handling vectorized processing, OpenMP—a wrapper
that enables threading, CUDA for developing programs on top of an NVIDIA GPU,
tensorflow for programming TPUs, etc.

2.2.2 Programming APIs
Within the two paradigms mentioned above, we have a variety of API options to pick
from for an underlying co-processor. These APIs grant varying levels of specialized
access to the target device and its internals. Hence, we must pick the appropriate
API based on the use case. Since our goal is to have an efficient query execution, we
pick the ones that allow fine granular access to the underlying device components.
Below is a detailed overview of the different APIs we use throughout this thesis.

2.2. Programming Co-Processors 19

APIs for Multithreading
Threading has become the most common model for enforcing parallelism in an
execution. Here, the basic unit of execution is a thread8 [17]. Nowadays, more or less
all the popular programming languages support some levels of threading; ranging
from fine-grained (such as spawning individual threads to managing their interactions)
to more coarse-grained (such as dictating the parallelism). Many libraries support
threading like Pthreads, Qt threads, WinThreads, etc. Here are some of the threading
libraries.

Pthreads: Pthreads or POSIX threads have API implementations mainly for UNIX-
like systems. It is designed to enable thread-level parallelism within a single node. It
provides thread management constructs 9 that a user can use to define parallelism in
their applications. Hence, it supports flexible implementation, which in turn leads
to better performance. However, developing a highly efficient thread manager is a
complex task.

OpenMP: OpenMP supports easy parallelization of loops. It is capable of parallelizing
the execution of these loops because the instructions inside the loop can be executed
in a highly parallel manner (embarrassingly parallel). This allows the developer to
sprinkle predefined annotations within the loop and the wrapper takes care of thread
creation, handling them and finally executing them in parallel.

#pragma omp p a r a l l e l f o r num threads (4) schedu le (s t a t i c , 2 56)
f o r (i n t i = 0 ; i < s i z e ; ++i) {

c [i] = a [i] + b [i] ;
}

Listing 2.1: Simple parallel arithmetic using OpenMP

A simple loop parallelization using OpenMP is depicted in Listing 2.1. As shown,
adding annotations allows any user to manipulate thread-level parallelism. Specifically,
in this case, we have defined the number of threads to be 4. Furthermore, we can
also schedule the data access across threads. In this case, we have defined it to be
static, where each thread accesses 256 values.

Since OpenMP favors tight loops, it is suitable for extending data parallelism in
database operations. Similar support for GPU is provided via OpenACC [70].
However, this is not expressive enough to optimize for different devices. Alternatively,
popularly GPUs are implemented with OpenCL or CUDA.

OpenCL

OpenCL, released in 2008, soon became the industry standard to have a common
model for programming across various co-processors [130]. OpenCL supports varying
co-processors like multicore CPUs, GPUs, FPGAs, etc. via a host-worker execution
model. A program written in OpenCL can be executed on any of the supported
devices, thus enabling software portability. Even though OpenCL makes its code
portable, it still exposes the underlying device features for the end user to define

8It is defined as a lightweight process that enables asynchronous execution
9Management functions have a prefix posix . A complete list of pthread functions is given in

https://man7.org/linux/man-pages/man7/pthreads.7.html

https://man7.org/linux/man-pages/man7/pthreads.7.html

20 2. Tier 0: Current Co-Processor Ecosystem

execution routines over a particular device. Hence, even though OpenCL is hardware-
oblivious, one can develop varying hardware-aware code based on the underlying
device. OpenCL offers four models: platform, memory, execution, and programming.
Each model exhibits functions to interact with an underlying heterogeneous system:

• Platform: describes features of the underlying devices

• Execution: offers configurations to execute target functions

• Memory: offers memory manipulation functions

• Programming: high-level stubs that can be orchestrated to define algorithms
that will be executed in the device

Platform Model: Platform model is the lowest level of abstraction for a co-processor.
OpenCL follows the host-worker model (which is followed throughout this thesis).
It exposes characteristics of any OpenCL-supported co-processor, which is referred
to as a compute device. Within a compute device, there are multiple Processing
Elements (PEs) on which the target instructions are executed.

Execution Model: As the execution spans over both the host and worker, the
execution model supports these two groups: host program and co-processor kernel.
The host program is dedicated to defining interactions between the host and the
co-processor. Whereas, kernels are used to define the instructions to be executed in
the co-processor.

To make the execution flexible, the kernels are defined on the host. The host explicitly
submits these kernels to a target co-processor, where they are ready for execution.
Multiple instances of this compiled kernel – known as work items – are executed
in parallel in the given co-processor. We can further group these work items into a
work group, that gives shared access to the internal work items, they can share data
among each other.

OpenCL supports writing once; run anywhere. One of the main goals of OpenCL
is to enable portability along with exposing the hardware. OpenCL enables such
an execution in the sequence below10. First, the end user must identify the various
OpenCL-supported devices. These devices exhibit various characteristics based on
their internal components. For example, GPUs exhibit execution with a massive
number of threads, whereas CPUs have comparatively lower thread count. Next, the
application kernel code is compiled for the target system, and their appropriate data
blocks are prepared. Once all the necessary kernels and data blocks are ready—they
can be executed and finally, results are collected back into the host memory space.
Let us consider the simple addition from above. It will be implemented in OpenCL
in the following steps. We start with preparing the input data as well as the space
for the results. Such an example code is written as the one shown in Listing 2.2.

cl mem m data buf f e r = c lCrea t eBu f f e r (m context ,
↪→ CL MEM USE HOST PTR, (s i z e) ∗ m ∗ s i z e o f (T) , data ,&
↪→ m err) ;

c l F i n i s h (m device queue) ;

Listing 2.2: Creating memory space using OpenCL

10For more information, the OpenCL programming guide by Aaftab Munshi is recommended

2.2. Programming Co-Processors 21

Once the data is ready, we can write the kernel code that performs the arithmetic
operations. An example of such a kernel code is given in 2.3.

k e r n e l void arithAdd (g l o b a l i n t ∗ a , g l o b a l i n t ∗ b ,
↪→ g l o b a l i n t ∗ c ,) {

s i z e t i = g e t g l o b a l i d () ;
c [i] = a [i] + b [i] ;

}

Listing 2.3: Simple parallel arithmetic kernel using OpenCL

From the listing, we can see iterators are missing in the code. Instead of looping
through the data, we can assign individual threads per data to be processed. The
function get_global_id() allows the developer to get the thread ID. Capturing this
ID allows one to access the corresponding data. Finally, to get this thread ID, we
have to define the number of threads to spawn, which is done as shown in 2.4.

. . .
m err = clEnqueueNDRangeKernel (m device queue , ke rne l b in , 1 ,

↪→ NULL, & g l oba l S i z e , & l o c a l S i z e , 0 , NULL, NULL) ;
. . .

Listing 2.4: Spawning threads for kernel execution

Here, the variables _globalSize and _localSize define the overall threads to spawn,
and the threads packed together within a single workgroup respectively. Setting the
globalSize variable to the size of the input, we can spawn the necessary threads to
process all the input data.

Thus, using these different functions, OpenCL abstracts a developer from underlying
device details but still exposes the necessary features of the device. Next, we review
CUDA, a similar framework that provides dedicated access to NVIDIA GPUs.

CUDA

Similar to OpenCL, CUDA (Compute Unified Device Architecture) is also one of the
widely used frameworks for programming a GPU. CUDA is developed by NVIDIA
to have dedicated support for their GPU devices. CUDA is structured similarly to
OpenCL, with various functions each exposing various aspects of the underlying
device. The functional groups in CUDA are:

• Driver: initialize the device and enable host access to the co-processor

• Runtime: manages execution and synchronization with the host

• Device runtime: handles kernel execution and related functions

Similar to the above, let’s take the running example of executing arithmetic using
CUDA to explain these different function groups.

First, similar to OpenCL, we have to create memory space in the underlying device
for the input and output data. The basic constructs of creating a memory space and
copying data from the host are given in Listing 2.5.

22 2. Tier 0: Current Co-Processor Ecosystem

. . .
i n t ∗ da ta c r e a t e ;
cudaError t e r r = cudaMalloc(& data c r ea t e , dataS i ze ∗ s i z e o f (

↪→ i n t)) ;
. . .

Listing 2.5: Allocating memory space using CUDA

The syntax of CUDA is similar to C++ and fairly straightforward. Similar constructs
are also available for other data management functions like deletion, memory de-
allocation, etc. In the next listing, we show the code for the arithmetic kernel.

g l o b a l void ar ith sum (i n t ∗a , i n t ∗b , i n t ∗c) {

i n t t i d = blockIdx . x ∗ blockDim . x + threadIdx . x ;
c [t i d] = a [t i d] + b [t i d] ;

}

Listing 2.6: Simple parallel arithmetic kernel using CUDA

As we have seen already in OpenCL, we don’t have iterators to process the data in
here as well. Once again, the iteration is replaced with spawning threads to process
the bulk of data. We can spawn the threads as given in Listing 2.7.

g l o b a l void ar ith sum (i n t ∗a , i n t ∗b , i n t ∗c) {
. . .
e r r = cudaLaunchKernel (arith sum , gr id , block , (i n t ∗) a , (

↪→ i n t ∗)b , (i n t ∗) c) ;
. . .

}

Listing 2.7: Spawning threads using CUDA

Here, the variables grid, block are used to represent the number of threads. These are
similar to the global and local variables set in OpenCL. Block represents the number
of threads spawned together, and grid defines the number of blocks to spawn.

So far, we have seen the various frameworks used to implement hardware-aware op-
erations across different devices. These frameworks allow specialized implementation
over their respective processors, as well as give options for tuning them on the fly
to improve performance (more discussed in Chapter 4). As we can see, even with
a simple CPU-GPU system, we will have two different frameworks for developing
database operators. Hence, we would need a system to manage different frameworks.
In the next section, we discuss the existing ways to abstract implementations across
heterogeneous co-processors.

2.3 Abstraction Models
An implication of diverse processing architectures is the rise of multiple SDKs:
ranging from low-level programming frameworks – like CUDA – to a plethora of

2.3. Abstraction Models 23

expert-written libraries – like Thrust (more about these are presented in Chapter 6).
The availability of multiple SDKs results in numerous implementation alternatives
for an operation, each offering competing performance benefits on their respective
target devices. As a consequence, organizing this assortment of hardware-based
implementations is a key challenge. Furthermore, it is also crucial to organize and
manage these SDK alternatives without losing performance [25].

We have already discussed the low-level programming models in the previous section.
Since many developers use low-level SDKs, resulting in a complex implementation, it
is hard to maintain and update many SDK implementations together. To put it in
another way – increasing performance usually tends to lower programmability [68].
Hence, we need a framework that simplifies programmability as well as offers optimal
performance from co-processors. Such a solution is offered by abstract models.

As aptly named, abstract models hide architecture-specific details, exposing only the
necessary components to develop an optimal code. These abstract models are defined
based on the underlying system architecture and their interactions. In this work,
we consider the system where co-processors act as workers to a host CPU, i.e., the
CPU orchestrates the execution on the co-processor, while the co-processor executes
a target function. For example, let us consider a simple vector addition using a GPU.
Before executing the addition kernel, the host CPU must issue a data transfer to
move input data from the main memory to the device memory. Once successful,
the CPU issues kernel execution, the GPU executes the kernel, and signals back to
the host on completion. Afterward, the CPU issues commands to read the results
back into the main memory. In such a way, the CPU orchestrates execution while
target functions are executed in a co-processor. Thus, we have two distinct modules
working in tandem to support co-processor acceleration: 1) a CPU-based runtime
and 2) co-processor kernels. To easily distinguish them, we call the modules in the
host as runtime and the kernels as tasks.

Runtime: A runtime handles administrative functions like memory management,
data transfer, scheduling operations, etc. These are functions necessary for the overall
system but do not directly run on a co-processor (though some cases like [122] use
co-processors to accelerate runtime components. However, these are still considered a
part of the runtime). We discuss more about the runtime functionalities in Chapter 8.
Overall, the runtime ensures the proper execution of a task in a co-processor.

Task: Tasks are popularized with OpenMP and CILK at the advent of multicore
systems [46, 28]. A task is defined as “. . . a sequence of instructions that can be
processed concurrently with other tasks in the same program, constrained by data
and control-flow dependencies. . . ” [178]. Current task-based systems support a wide
array of features based on the underlying environment and use-case considered [178].

Therefore, a co-processor acceleration relies on the optimal implementation of both
the runtime and kernels. Since developing a custom runtime as well as kernels for
an application is highly complex, abstract models are proposed. An abstract model
hides the underlying device features and encapsulates them as a high-level SDK. A
developer uses such an SDK to architect their desired function, while the abstract
model handles execution. Thereby, a developer is alleviated from the burden of
mastering the underlying device-specific information. Thus, abstract models offer

24 2. Tier 0: Current Co-Processor Ecosystem

better programmability in a co-processor ecosystem. Depending on their level of
abstraction, the models are split into two paradigms: skeleton-based and task-based
systems.

Skeletons
map reduce scanzip

zip<int(int,int)> add("int func(int a, int b){return a+b;}")

Functional signature

Variant 1

void add(int* a, int* b, int* c){

 for (int i = 0; i<n; i++){
 c[i] = a[i]+b[i];
 }

Variant 2

void add(int* a, int* b, int* c){

size_t i = get_global_id(0);
 c[i] = a[i]+b[i];
 }

void add(int* a, int* b, int* c)

Skeleton-based Task-based

Runtime

Data management Kernel management

Figure 2.7: Example of abstraction model paradigms. Modules in yellow are offered
out-of-the-box and green are provided by developers

Skeleton-based systems are an extension of algorithmic-skeletons proposed by M
Cole [52] to ”structure and simplify parallel programs”. These skeletons offer high-
level abstractions to model a parallel algorithm. A well-known algorithmic skeleton is
divide & conquer—that is used to parallelize various functions like sort, aggregate,
matrix multiplication and even discrete Fourier transforms. As we know, the skeleton
divides a complex problem into sub-problems, solves them individually, and finally
combines these results. Though the nature of the skeleton remains the same, the
skeleton implementation varies across heterogeneous devices. For example, thread
spawn and synchronization of merge-sort in a CPU would be entirely different from
a GPU. Thus, skeletons offer a high-level abstraction to express parallelism, while
hiding underlying parallel implementation complexities to the end-user. A well-
defined set of skeletons is developed to ease development efforts that offer optimal
performance across devices. A detailed description of these skeletons is given in the
upcoming sections.

Task-based runtime supports parallel execution across heterogeneous cores using tasks
itself as an abstraction. These systems define characteristics for programs or tasks
running on a co-processor, abstracting them from host runtime. These task definitions
are exposed to a developer, through which any custom implementation of the task can
be added to the runtime. Since the tasks are predefined, any dependencies across tasks
are resolved by the runtime itself. Thus, a task-based runtime allows one to plug in
implementations that are internally executed over a target co-processor. For example,
a user can add two vectors using a straight-forward serial loop or can use parallel
execution using OpenCL code similar to the ones given in Figure 2.7 (right). Both
these implementations support optimal performance over their appropriate processor,

2.3. Abstraction Models 25

which means we have to manage both these implementations. In addition, the
developer has to also write a custom runtime, that executes the right implementation
on the underlying device. This requires one to implement additional components,
which in turn becomes highly complex to manage as well as time-consuming to
develop. To avoid these, task-based runtime supports these additional functions
out-of-the-box, along with allowing a user to add their custom implementations into
the overall system. Thus, a developer is tasked with only developing the custom
implementation of a target function optimized for an underlying device, while the
runtime handles the execution of the function itself. More about these task-based
systems is also detailed in the upcoming sections.

Both paradigms have their advantages and disadvantages. For example, a skeleton-
based model offers high expressibility of a program, but the limited set of skeletons
might restrict the realization of any custom algorithm. Similarly, task-based runtime
supports integrating custom implementations, but with restricted data dependencies
due to the predefined task definitions. Hence, we must select the appropriate model
based on the use case and expertise level of the developer. In the upcoming sections,
we briefly detail these two paradigms and argue their relevance in query execution.

2.3.1 Skeleton-Based Systems

As introduced prior, skeletons represent a higher-order function [173]: A function
that takes one or more functions as arguments and returns another function. These
skeletons hide hardware-specific implementation while exposing parallel characteris-
tics of an implementation. These characteristics represent a collective operation, i.e.,
a function that operates over a vector of data, like map, reduce, broadcast, scatter,
etc. These skeletons capture an execution pattern as well as communication behavior
most commonly present in a parallel system. As the skeleton behaviors are already
defined, they can be code-optimized for better execution on a target device. For
example, let’s say we use loop unrolling11 to code-optimize a simple vector addition
loop. This optimized execution depends on the unroll depth, which in turn depends
on the underlying hardware device [43]. Thus, we have to change the unroll depth
for the loop with every new device, which is highly time-consuming. To avoid such
implementation work, skeletons handle these code optimizations while a user has to
only provide the target operator specification. In the case of our running example, a
zip primitive captures the execution of a binary operation over two operand vectors,
producing a single resultant vector. When a user wants to perform vector addition,
they can simply use this zip skeleton. The skeleton in turn can optimize the code for
better execution, thereby reducing load to the user.

Earlier, these skeletons were employed to support parallelism (typically support-
ing data-parallel, task-parallel, or resolution-parallel execution) in a multicore sys-
tem [173]. Hence, these skeletons are commonly classified depending on the parallelism
exhibited as data-parallel, task-parallel, and resolution skeletons. of these, data-
parallel skeletons have got traction as they are more suitable for various co-processors
(a well-known example is the map and reduce skeletons) [68]. Due to the data

11expanding a tight for-loop to reduce the costly loop control checks, thereby improving perfor-
mance.

26 2. Tier 0: Current Co-Processor Ecosystem

parallel nature of these skeletons, they work over predefined data formats (usually
a vector). As an implication, only a handful of skeletons support such parallelism
(more discussed in Chapter 3) like map, reduce, overlap, zip, etc. Each of these
skeletons is expanded into a hardware-aware code that provides optimal performance
from the underlying device.

Case for Skeleton-Based System

As an example skeleton-based system, we explain the working of Hawk compiler [39].
Hawk supports a minimal set of database-aware skeletons that are combined to
form a complete query. Figure 2.8 illustrates the transformed code of a skeleton
function created using HAWK [39]. In the example, we have a query pipeline to
filter values from a table building a hash table to be used in a hash join. These are
represented using the skeletons Loop, Filter, Hash Put, and Project. These are then
transformed into a target code (on the right), which can also support additional code
optimizations if needed.

number_of_threads=#CPU cores
LOOP(T1, sequential_memory_access)
FILTER(x=5, no_predication)
HASH_PUT(a, linear_probing)
PROJECT(a, x, single_pass_parallelization)

Pipeline int thread_id = get_thread_id();
 start=start_idx(thread_id, num_rows);
 end=end_idx(thread_id, num_rows);
 for(tid=start;tid<end;tid+=1){
 if(T1_x[id] == 5){
 INSERT_LP_HT(T1_a[tid], T1_x[tid]);
 }
 }

Figure 2.8: Example of code generated using skeletons offered by HAWK

Skeleton-based systems support automated code optimizations like loop fusion,
loop unrolling, predication [39] etc., given the developer writes their target function
using the offered skeletons. Thus, the user aware of skeletons can still develop fairly
optimal code for the underlying device target. Thus, skeleton-based systems reduce
the level of detail in programming as well as the number of instructions to use for
developing an optimal code.

Drawbacks

Even though skeleton-based systems offer the above-mentioned benefits, their major
disadvantage is that not all functions can be realized using them. Some functions
need additional skeletons other than the existing ones in skeleton-based systems.
For example, recursive functions are not possible with the mentioned ones above.
Additionally, a given skeleton function can be transformed for optimal execution only
on a single target at a time. This meant we had multiple code-optimized variants
present for a single function across the different back-ends. This ultimately leads us
to the problem of handling execution across co-processors. In such cases, we have to
manually write our code and optimize it by hand.

To sum up, a skeleton-based system offers a limited set of skeletons to a developer
who transforms into an optimal code for a target hardware. Additionally, some newer
systems compile their skeleton functions on-the-fly, so that more co-processor-aware
optimizations can be applied (more about these are explained in Chapter 3). Though

2.3. Abstraction Models 27

these systems reduce overhead for developers while supporting optimal execution,
they still lack support for cross-device execution. For such cases, task-based systems
are used.

2.3.2 Task-Based Systems

Since a plethora of SDKs are present, one can write multiple variants of a function
across these SDKs. Availability of multiple variants12 for a function that increases the
difficulty of developing and maintaining software. Designing variants-rich software
is highly complex, resulting in a dense software package[181]. To alleviate these
difficulties, task-based runtime encapsulates variants of a function using high-level
abstractions called tasks.

Since a task has predefined characteristics, it allows a user to incorporate their custom
code into an existing task-based runtime. The runtime executes such custom functions
implicitly, managing the data and functional dependencies. In addition to functional
abstraction and dependency resolution, these task-based runtimes optionally also
support task scheduling (or work stealing), task partitioning, synchronization, etc.
Hence, in addition to concurrent execution, task definitions encapsulate multiple
variants of a function across different co-processors—which is of interest in this
work. Furthermore, the functionality of these runtimes (like scheduling, and data
management) is closely tied to the underlying environment and use case under
consideration. For example, task partitioning is useful with HPC workloads as
they are compute-intensive[135]; whereas such execution leads to an additional
synchronization phase with database workloads [49].

Moreover, a task manages only implementation variants and is not aware of its target
devices explicitly. Thus, a developer typically provides the following to run a code in
a target device: execution device/platform definitions, execution prerequisites, and
then the kernel(s) itself. Though these are necessary for executing the target function,
the same definitions and prerequisites can be shared across multiple functions, leading
to a lot of code redundancy.

Case for Task-Based System

Elastic function is a task-based system that supports plugin implementation variants
for a function via elastic function [186]. In the example Figure 2.9, we illustrate how
the elastic computing framework allows a user to include multiple sort implementa-
tions through specialized adapters (their notion of a task). These adapters (bottom
left) define the signature for a function, through which multiple variants are added
into the runtime. In our case, the sort adapter() allows a user to integrate multiple
sort implementations (like sort random, sort sorted, and sort reverse) using the IO
description. Once these implementations are added, the elastic functions runtime
picks the right variant for optimal execution depending on the current context. In
this case, the runtime picks a variant based on the underlying data distribution.

12or flavor. Both keywords are used interchangeably. We use variants throughout this work.

28 2. Tier 0: Current Co-Processor Ecosystem

void __________(int a[], int length) sort_random(int a[], int length)
sort_sorted(int a[], int length)

sort_reverse(int a[], int length)

sort_adapter(int metric) void sort_impl(int a[], int length)

Input/Output Description Interfaces

Adapters Implementations

Figure 2.9: Example of variant handling offered by elastic functions

Drawbacks

On the one hand, task-based runtime offers abstractions—in the form of task defini-
tions—for managing cross-device implementations, thereby easing implementation
effort. On the other hand, it also needs additional rework to be aware of the execution
environment. Specifically, a user is given the flexibility to implement a custom variant
for a task pre-defined within the runtime. However, the functions within the runtime
and the supported tasks are defined by the task-based system itself and cannot be
easily updated. Specifically, these task-based systems only support a pre-defined
set of hardware out-of-the-box and only variants can be developed for these by an
end-user. Thus, one of the main drawbacks is that task-based runtime is not aware
of both the workload and the underlying hardware.

Overall, both these paradigms support code management through abstractions, yet
they have their inherent limitations. To support a query execution over various co-
processors, we need an abstract runtime that has holistic support for query execution,
which is not currently supported through these existing paradigms. Hence, we explore
such a system that allows for plugging-in functions that are written for different
co-processors. We focus on a holistic system that supports query execution, either for
a single device or the system that facilitates runtime handling of executing operations
across different devices using multiple data chunks.

To develop such a system, we must be aware of the current pitfalls present in query
execution concerning cross-device systems. In the next section, we briefly discuss the
various challenges of DBMS in a heterogeneous hardware system.

2.4 Challenges in DBMS with Co-Processors

The heterogeneity in a DBMS requires a highly adaptable system. This system must
have all the necessary interfaces for adding new functionalities with fewer changes
to the overall system. Though an adaptive DBMS provides various benefits, it also
comes with additional complexities. To have a DBMS adaptable to both changing
hardware and software, the following challenges have to be addressed.

2.4. Challenges in DBMS with Co-Processors 29

2.4.1 Device Features

Adding DBMS operation to a new processing device requires novel ways to exploit
the device without compromising the overall system design. Hence, one of the major
challenges is to reorganize the processing functions based on the hardware features
available and adapt to the underlying functions for efficient execution in the device.

We have already established that multiple devices have been developed for increasing
the execution speed of specific functions. They require the DBMS operations to
be modified for usage. This requires novel ways to exploit the device without
compromising the overall system design.

2.4.2 Abstraction Hierarchy

We have already mentioned that database operations can be sped-up using device-
specific parameter tuning [41]. However, adding this extra layer of optimization
leads to an optimal operator for only the underlying device and cannot be ported
to others. Also, these parameters must be tuned over every new device in-order
to get better result. We see more on device-based parameter tuning in Chapter 4.
Though parameter tuning leads to optimal execution, it also hinders performance
portability. Due to this polarity in abstraction versus specialization between functions
and devices, it is required that we find a good abstraction level for the operations
that provides both an interface to write new functions and also exploits the hardware
for optimal efficiency.

2.4.3 Parallelism Complexity

The growth of DBMS at both functional and hardware levels provides various
parallelization opportunities. The presence of multiple devices creates an additional
paradigm: cross-device parallelization. Using this type of parallelism, the given
query is divided into granular parts based on the level of abstraction selected, and
these functional primitives are distributed among the different processing devices for
parallel processing. We detail the different types of parallelization in the subsequent
sections.

Functional Parallelism

In multiple instances, the incoming queries have various sub-operations that run
independently of each other. One common example is the availability of multiple
selection predicates combined using logical operations. These predicates can be
executed in parallel among the different devices, and the results are combined in
the next steps. Thus, identifying and dissecting these parallel operations provides
additional capabilities for simultaneous execution in the form of functional parallelism.
The major challenge in this parallelism is the intermediate step of materialization
of the results to be processed in the next operator in the pipeline. There is also a
synchronization overhead present in this parallelism due to the differences in the
execution time for different processing devices.

30 2. Tier 0: Current Co-Processor Ecosystem

Data Parallelism

In contrast to functional parallelism, data parallelism does not split an operation
into different functions, but executes the same operation on different partitions of
the data concurrently. This method also has a similar synchronization overhead
of waiting for all the devices to finish processing. The major disadvantage of this
parallelism is the additional step to merge results from different devices.

Cross-Device Parallelism

The above-mentioned functional and data-level parallelism are decided after the
selection of processing devices. As we mentioned earlier, each device has its perks
and must be utilized to the maximum extent. Hence, it is necessary to decide
on the implementation details for the given device that exploits the hardware for
efficient execution. Moreover, the above-mentioned parallelization strategies can also
be realized at the device level. In terms of device-level functional parallelism, it
could be multiple operators running in parallel in different devices or a pipeline with
communication within the devices. Similarly, data parallelism could also be realized
via suitable cost functions for operations on devices.

2.4.4 Optimization Strategies
The different levels of parallelism for the execution of a query provide additional
opportunities for fine-tuning the operations, but have the complexity of selecting
the optimal execution path. As the decision of top-level parallelism influences the
subsequent levels, the selection of the right execution path for a given query is critical.
However, the important drawback of this multi-level parallelism model is the search
space explosion. There are various options available for any given level, thereby
having multiple combinations in total for selection. This search space of parallelism
has to be traversed for finding the optimal execution path. Deciding the optimal
path of a single operation in a query can be complex (e.g., join order optimization)
which in addition to new dimensions of multiple devices increases the complexity
further. Hence, newer methods for exploring the various optimization opportunities
are to be determined.

2.5 Opportunities forQuery Execution
The previously mentioned challenges can be solved using a new DBMS architecture
that effectively handles diversity in terms of both functionality and underlying
hardware features. Hence, based on the challenges, we have identified the key areas
for designing an adaptive DBMS.

Example 1 (TPC-H Query 6).
SELECT SUM(l_extendedprice * l_discount) AS revenue

FROM lineitem

WHERE l_shipdate >= ’1994-01-01’

AND l_shipdate < ’1995-01-01’

AND l_discount BETWEEN 0.05 AND 0.07

AND l_quantity < 24

2.5. Opportunities for Query Execution 31

Figure 2.10: Possible cross-device optimization strategies using query execution plan
of TPC-H Q6

To better explain these design options, we use the execution plan of TPC-H Query-6
as our motivating example (see the example above). The query reads data across
multiple columns, filters them, multiplies the results, and outputs them after aggre-
gation. These three operations are in turn executed using multiple granular primitive
functions. The different primitives used for processing the given query are:

• Selection primitive selects the values from the given column. Bitmaps are used as
output formats to reduce the data transfer size, as each bit carries the selection
information of a single value.

• Logical Operation primitives perform logical functions on the bitmaps produced
by the different selections.

• Materialize extracts the selected column values using the given bitmap input.

• Arithmetic performs arithmetic operations over column values.

• Reduce performs aggregation of values.

The execution of the query using the above presented primitives is given in Figure 2.10.
The figure also illustrates different optimizations that can be done for a simple query
like in the figure. We discuss the various optimization strategies in the subsequent
sections.

32 2. Tier 0: Current Co-Processor Ecosystem

2.5.1 Granularity of Operation
One of the main challenges in the proposed adaptable system is the level of granularity
required for optimized processing. Based on the capabilities of the devices, we could
either run a few complex operations or split them into more granular sub-operations,
thereby executing them in parallel across different heterogeneous co-processors.

At the top level, each database operation acts as a set of primitives connected to
provide a final result. The more granular a function is split, the more hardware
sensitivity comes into play. For example, the access patterns in CPU and GPU
are different for an optimal execution (i.e. sequential or coalesced access). Further,
database operations are data-centric where every operation is applied to a massive
amount of data. To aid parallel data processing, we propose the use of explicitly
data parallel primitives to be combined into complete DBMS operations. There
are many works on primitive-based DBMS query processing. He et al., propose
multiple primitives such as Split, Filter, etc., for GPUs [87]. Other primitives such
as prefix-sum and its variants, scatter, and gather are also proposed for efficient
data-parallel execution [58]. This approach provides a fail-safe: when a newer
device is added, the primitives could still run on them with minor changes to the
functionality. This availability of different granular levels provides additional benefit,
enabling a developer to replace the inefficient fine-granular primitives with custom
coarse-granular ones.

2.5.2 Code Fusion
Implementing primitives in multiple granular levels becomes time-consuming. Hence,
code could be generated at runtime for the given granularity level of the operation.
This code for execution in an individual device is generated by combing the primitives
for the corresponding device into a single execution process. This reduces the overhead
of materializing data from intermediate steps. An extreme case for such code fusion
is query compilation [131].

Figure 2.11: Example of code fusion using multi-column predicates

For example, three selection predicates as shown in Figure 2.11 can be either run on
different devices (left) and the results are combined using the logical operations, or
the predicates are all combined into a single execution (right).

2.5.3 In-Device Cache
The current data-transfer bottleneck is between the main memory and the processing
devices themselves. The CPU has faster access than other devices as it is directly

2.6. Summary 33

linked to the main memory, whereas in the case of the co-processors, data must be
transported via connections with higher latency and possibly more limited band-
width, such as PCI-Express. Thus, even highly efficient GPUs can have suboptimal
performance than CPUs due to limited access capabilities to main memory. Hence,
using device memory as a data cache is crucial for high compute throughput. In
contrast to this, these external devices have limited memory. Hence, it is not always
possible to store all the necessary data on the device itself. Thus, the host system
must determine the hot set of data to be stored in the device memory using the
execution plan for the given query and monitoring the data transfer to the device.

2.5.4 Execution Variants

Each primitive selected for executing a given query can have different characteristics
to choose from based on the executing device. For example, complex branching
statements are handled efficiently by CPUs, whereas GPUs are capable of massive
thread-level parallelism with less control flow. In addition, the data access pattern
must be selected from the memory architecture of the given device. For example,
coalesced data access provides efficient memory access in GPU. Finally, hardware-
specific vectorization of DBMS operations (SIMD) is also an important parameter in
database processing to exploit the hardware capabilities.

Also, on an abstract level, characteristics of the primitive itself can affect system
throughput. The choice of output format and the number of intermediate steps are
some of the characteristics that influence the overall system. For example, using
bitmap results from selection in external devices will be generally more efficient than
transferring complete columns.

2.5.5 Device-Related Parameter Tuning

Finally, once we have decided on the device and its corresponding function to execute,
certain device-related parameters like global and local work group sizes have to
be tuned for further improvement of the overall efficiency. These device-related
parameters are tuned for efficiency by monitoring the performance of execution.
There is a feedback loop from the devices, providing execution specific information
used for tuning the primitive for higher efficiency.

On top of these above-mentioned challenges, one of the major challenges is to
formulate an order for using the strategies to extract an efficient execution plan. Since
all the strategies mentioned above are inter-dependent, the selection of one influences
the other. To have a standardized execution flow, we propose an architecture that
has all the necessary components for using the above strategies.

2.6 Summary
The field of co-processor acceleration gets wider with new processing architectures,
each trying to accelerate a particular application. However, the co-processors also
have SDKs on top to custom-write a target function to be executed on these new
architectures. In such a growing ecosystem, we have the major challenge of testing
whether a new device will fit our use case in hand—accelerating query execution.

34 2. Tier 0: Current Co-Processor Ecosystem

The consensus is to either develop a hardware-oblivious executor that internally
translates a user-written program into a target device or to write a hardware-aware
executor that is written for a particular device. Though these two models are shown
to be beneficial, they are not extendable with every new device and SDK present
in the market. Therefore, the alternative is to have a system that handles multiple
implementations and devices through a common abstract interface. To this end,
many systems have been proposed under either skeleton-based or composition-based
paradigms, out of which the latter fits our use case.

Now, to develop an abstract co-processor pluggable query executor, we must be aware
of the various pitfalls when developing a cross-device query executor. To this end,
we described the different challenges in terms of query execution such as operator
granularity, runtime code fusion, code variants, etc. To overcome these challenges, in
this thesis, we explore a query executor that is abstract enough to plugin various
implementations yet allows a user to write optimal code.

In summary, we have presented the ecosystem for co-processor acceleration. Starting
from different co-processor architectures, we have also seen the different support for
programming and execution across such a heterogeneous environment. There are
also various options to get better performance out of a device. Such a big options
landscape makes it hard for a programmer to identify the optimal setup. Hence,
it is being widely studied by various researchers to understand the best use of the
ecosystem for optimal query execution. We review these state-of-the-art techniques in
the next chapter, followed by our contributions to developing the abstract architecture
in the later chapters.

3. Existing Unified Runtime

The previous chapter showed the different components developed to ease development
over a heterogeneous hardware environment. Specifically, we have various APIs to
have optimal implementation for a co-processor. However, as an implication, we
now have the challenge of manually testing our implementation over these APIs,
which is time-consuming. Alternatively, various runtimes are proposed to ease the
implementation effort. We briefly discuss these existing systems in this chapter and
show the need for a dedicated unified runtime for the query engine.

Using external accelerators for improved performance is becoming a common practice,
but a plethora of programming and optimization strategies make their integration
challenging. Specifically, integrating accelerators into an existing DBMS requires the
developer to take care of a multitude of issues – like explicit data partitioning, data
placement, optimal data transfer, synchronized execution, etc. Thus, even writing a
simple operation for a target co-processor requires complex re-working of the existing
query engine, which does not directly contribute to the performance of the operator.
Therefore, it is necessary to study these challenges in developing a query engine that
better exploits the underlying co-processor with less re-work.

Other than databases, High-Performance Computing (HPC) also uses co-processors
for speeding up execution. HPC workloads are mostly computation-bound, unlike
DBMS operations, which are data-bound. Hence, there are various runtimes proposed
in HPC that support compute-bound workloads. We discuss these runtimes in detail
w.r.t. query execution and show the need for an informed pluggable query engine.

We split this chapter into two main sections. First, we review the existing database
systems tailor-made for various co-processors. Next, we detail the different unified
runtimes that support easy co-processor integration. We split these runtimes into
two based on the paradigms they support: component-based and skeleton-based
systems (from Section 2.3). The component-based system requires a developer to
provide the handwritten program for each of the devices in their supported platforms,
and the runtime decides on the placement of these operations. On the other hand,
skeleton-based systems require the user to provide their required execution in a

36 3. Existing Unified Runtime

pseudocode-like construct given in a domain-specific language. The runtime then
takes care of generating the optimal execution code for the underlying device. Both
paradigms have different optimization opportunities, but both expect the user to
provide information about the data manipulation operation and hide the information
about the runtime. Let us now see the database engines developed over different
co-processors.

3.1 DBMS On Co-Processors
One of the principal goals of a database engine is to have a fast response time. This
is partially achieved for CPUs, with the query engine being aware of the underlying
hardware characteristics [31]. As an extension, query engines are also developed
that exploit the characteristics of various co-processors. These solutions range from
a tailor-made operator implementation to a complete query engine developed for
a particular co-processor. Here, we cover the systems that provide an extensible
query processor that can be added with new co-processors. A more comprehensive
overview of the query engines over appropriate hardware is presented in various
co-processor-specific surveys, like [37] for GPUs or [67] for FPGAs.

The use of GPUs as DBMS accelerators is still under active research. Early imple-
mentations of GPU-based DBMSes supported partial query execution with dedicated
operators implemented for the hardware. Solutions like GPUTeraSort [78] have
dedicated implementations for individual database operators. However, with advance-
ments in GPU programming, many alternative implementations have been developed
to support various other operators. Furthermore, with similar advancements in
programming options, we have systems that allow runtime code generation that
compiles a query into the target device like Hawk (detailed later in Section 3.2.1)
and Perseus [155]. These are the popular solutions currently available for query pro-
cessing over a co-processor. More related work is discussed in each chapter in detail.
Complete query engines are proposed for GPU like, GPUDB [87], OmniDB [192] etc.
to have full-fledged query execution over the device. Early solutions like the ones
from Govindaraju et al. [78] develop single table query processors successfully over
GPUs. Similarly, GPUDB utilized the primitives to develop a CUDA-based solution
for GPU. Here, they support both CPU and GPU-based query execution using these
primitives. Various other solutions like [15], and CoGaDB [37] also support query
execution over GPUs.

Other specialized devices like tensor cores are also equipped for query execution.
Solutions like the systems by [93], TQP [11], TCUDB [96], and solution by [89] are
some earlier exploration of the performance of tensor cores for query processing.
Again, these systems explore the specialized capabilities of the device to increase
query execution performance. The operator implementation and device calls within
these systems can be extracted and integrated within our pluggable query engine.

Finally, FPGA-based solutions like Drewes et al. [60] and ReProVide [19] develop a
complex infrastructure to support query execution within the device. These solutions
develop a framework where other FPGA-based operator implementations can be
included to support partial pluggability. These are a subset of the plethora of other
works to support query processing over existing co-processors [37, 154, 67]. However,

3.2. Existing Abstract Runtime 37

these are all dedicated solutions that fit a particular co-processor, and they explore
query execution using these architectures. When it comes to integrating these devices
into query execution, they develop a dedicated hardware-aware solution (except
Ocelot, which is hardware-oblivious supported via OpenCL [91]). Alternatively, there
are also runtimes proposed that support plugging co-processors using minimal code
rewrite. Some of these runtimes are reviewed in the upcoming section.

3.2 Existing Abstract Runtime
Above, we saw query engines tailor-made for individual co-processors. However, the
current processor landscape is rapidly changing as well as there is a quick line-up of
co-processor generations [25]. This makes it hard to manually develop a query engine
on top of individual processors. Hence, in this work, we explore an abstract runtime
that supports a unified runtime for easy co-processor integration. To develop such a
system, we first review the various existing work and their features.

Many research projects tackle the challenge of co-processor integration to enhance pro-
ductivity. Projects like PEPPHER [25], SARC [146], HyVM [163], Apple-Core [145],
Sequoia [71], RapidMind [48] have developed solutions for various aspects of co-
processor integration like scheduling, library integration, auto-compilers, memory
hierarchies, etc. However, among these challenges, a common runtime has been
ubiquitous across all these solutions. Hence, it is beneficial to review these ex-
isting solutions and contrast them with our work. We divide these systems into
component-based and skeleton-based solutions (as mentioned in the previous chapter
- cf. Section 2.3).

3.2.1 Skeleton-Based

These are a class of solutions, that speed up implementation time using an alternative
programming model, simplifying the low-level processor APIs into DSLs (Domain-
Specific Languages). These DSLs comprise skeletons commonly representing the
algorithmic patterns present across commonly written functions (like loops, map, re-
duce, etc.). A user can write their custom function using the DSL, which is translated
into hardware-aware implementations (possibly with necessary code optimizations).
Thus, such DSL-based or skeleton-based solutions support portability as well as
abstraction while enabling hardware-aware implementation.

Solutions like SkePU and its versions [63, 66, 65], Muesli [113, 64], SkelCL [173],
FastFlow [56], SkeTO [62], Skandium [119], OSL [117] are the most popular general-
purpose solutions present. They support generic constructs to realize any functional
implementation. On the contrary, these systems lack the domain-specific information
to tune for better performance. Thus, as an extension to these, several application-
specific skeletons are proposed that leverage the application characteristics to improve
performance. In our case, DBMS-based solutions like kernel-weaver [189], Hawk [39],
flounder-IR [74] and its extension ReSQL [75], HorseQC [73], voodoo [140] are some
of the solutions with skeletons that are aware of and exploiting query characteristics
for better performance. Though many such runtimes are present, only a few directly
relate to our use case. These related runtimes and their features are listed in Table 3.1.

38 3. Existing Unified Runtime

Name Supported skeletons Written in Supported devices Data struc-
ture

Domain

SkePU [63] map, reduce, mapreduce,
mapoverlap,maparray

C++ CPU, GPU Vector Oblivious

Muesli [113] map, zip, fold, mapIn-
dexInPlace, per-
mutePartition, farm,
pipeline, divide&conquer,
branch&bound

C++ CPU, GPU vector,
matrices,
distributed
array, dis-
tributed
matrix

Oblivious

SkelCL [173] map, zip, reduce, scan,
mapoverlap, allpairs

OpenCL multi-GPU single, copy,
block, Over-
lap

Oblivious

Kernel weaver [189] project, product, select, set
and join

CUDA GPU vector DBMS

Hawk [39] loop, filter, hash put,
hash probe, cross join,
arithmetic, aggregate,
hash aggregate, project

CUDA GPU vector DBMS

HorseQC [73] select, project, aggregate,
group-by, prefix sum, aligned
write

CUDA GPU vector DBMS

Voodoo [140] load, persist, bitshift, log-
ical, zip, project, upsert,
scatter, gather, material-
ize, break, foldselect fold-
max/min/sum/scan, range,
cross

C++ & OpenCL CPU, GPU Structured
vector

DBMS

Table 3.1: Common characteristics of skeleton-based systems

As the table summarizes, skeleton-based systems support only dedicated devices.
These runtimes extend their own DSLs to later extend them with device-specific
details for optimal performance. Below is a detailed explanation of individual systems.

SkePU: Modelled based on BlockLib [5], SkePU is a template library written in
C++ that supports CPU (via C++ and OpenMP) and GPU (via CUDA and
OpenCL) architectures. It abstracts memory management and handles it internally
to avoid unnecessary data transfers. It exhibits different skeleton functions, as well
as a container - vector for data, and supports user-defined functions via macros.
The skeletons present in SkePU are: map, reduce, mapreduce, mapoverlap, and

mapArray.

Furthermore, switching between target devices must be stated explicitly (The default
target being a single-threaded CPU). Such targets are defined using SKEPU ***
within the existing code. The decision of the best execution platform is based on
computation type, data characteristics, and system architectures. The runtime is
written in C++, modeled after BlockLib for the IBM cell. It provides skeleton
definitions supporting a single container implementation modeled after a vector
(similar to an STL vector) container. This container is used to hide GPU memory
management and uses lazy memory management. The processed result is copied
back only when the host side needs to access this data. Additionally, the framework
also provides an additional member function flush, which updates the vector from
the device and de-allocates it from device memory.

Muesli: Muesli is short for the Muenster skeleton library. It is also written in C++. It
supports multi-core CPUs via OpenMP and GPU via CUDA. In addition to algorith-
mic skeletons, it also supports data parallel and task parallel skeletons. Similarly, in

3.2. Existing Abstract Runtime 39

addition to vectors, they also support matrices as well and distributed data structures:
distributed array and distributed matrix. The library offers data parallel skeletons
like map, zip, fold, mapindexinplace, permutepartition. While task parallel
skeletons include farm, pipeline, divide and conquer and branch and bound.
Using these semantic definitions for skeletons, the system can effectively schedule
execution.

SkelCL: SkelCL is written as an extension to OpenCL. Similar to the ones above,
SkelCL also supports distributed data structures with four distribution types: single,
copy, block, and overlap. Data within these distributions are copied according to the
target device. They support six skeletons: map, zip, reduce, scan, mapoverlap,

and allpairs.

Similar to the ones above, many other skeleton-based runtimes exist over different
co-processor environments. However, as mentioned before, these are general-purpose
systems that are not aware of the characteristics of execution. Unlike these skeletons,
our ADAMANT system proposes query-aware primitives that represent a specific
database operator. Hence to have better awareness during runtime, skeletons are
developed based on particular use cases. Some of the skeletons that are developed
specifically for DBMS are discussed below.

Kernel-weaver: Kernel-weaver is a DSL developed for Datalog queries13. The system
is specifically developed to generate kernels that exploit the threading hierarchy of a
GPU. However, unlike their system, our ADAMANT system can freely support any
co-processor, trading off the implementation to the end-user. Hence, we can include
kernel weaver for GPUs into our ADAMANT system.

Hawk: The major goal of HAWK is to auto-generate efficient code for the underlying
hardware. To this end, it uses a minimal set of intermediate skeletons coupled to form
a data processing pipeline - known as pipeline operations. These pipeline functions
are translated into an efficient pipeline program that is then executed on the target
device. Furthermore, the HAWK system also has a set of rules for defining the
pipelines, where the first operation is a loop and the end is a project or hash build
or aggregate - or in short, a pipeline breaker. Our ADAMANT complements Hawk
with similar primitive characteristics. We can directly integrate Hawk into our
ADAMANT system to execute a query pipeline within a single co-processor.

Voodoo: Voodoo’s IR represents the execution of an SQL in DAG format. The
DAG clearly shows the different intermediate data being reused in different places
of execution. For controlling parallelism, voodoo has come up with the notion of
controlled folding and intent, an extent relationship where the number of inputs
processed in a single thread can be controlled. Once the IR is devised, either by
an end-user or by a parser, the runtime goes over the graph and creates bundles of
operations that belong together in a single kernel. This is identified using the values
of controlled folding and intent, the extent given to the operations. These isolated
kernels are then generated together and executed. There are multiple data parallel
patterns used by the voodoo framework for execution. Similar to the case of Hawk,
we can also integrate Voodoo primitives within our ADAMANT to execute queries
within a single co-processor.

13A declarative language that allows one to express database queries as first-order logic

40 3. Existing Unified Runtime

Modular Extensible Compilers

These are a subset of skeleton-based systems that exposes a limited set of API
that can also support plugging user-defined implementations. These frameworks
support a modular API that can be combined to form custom skeletons, which are
subsequently compiled into target code for a co-processor. These systems can be
coupled with our ADAMANT framework to support runtime compiled execution on
a target co-processor. Here are some of the popular systems in detail:

Delite [175]: Delite is an extended form of Lightweight Modular Staging (LMS) [152],
that allows for multi-stage program generation. It allows an end user to use library
calls as generative skeletons. Instead of a DSL for a particular domain, Delite comes
with a general infrastructure for developing custom DSLs. This is supported by
splitting the underlying compiler into multiple components. Delite supports multiple
domains transparently using the internal components of the compiler. However, the
DSLs developed as part of the Delite framework support GPUs and CPUs only.

PetaBricks [6]: PetaBricks is a compiler that supports plugging multiple implemen-
tations of an algorithm. The runtime auto-tunes implementations based on data
distributions, and algorithm parameters. The system bridges the gap between skele-
tons for algorithm representation and pluggable task-like functions with alternative
implementations. Thus, the system supports both auto-compilation to get the best
implementation along with the portability of implementations with less re-work.

Qilin [120]: Qilin automatically maps computation to the right processing element in
a processor. It also updates this mapping based on runtime characteristics. Qilin has
various API options - such as stream and thread APIs - for users to program their
functions. It also has two data types: QArray and QArryList to ship data. Once
the user-defined function is ready, the runtime parallelizes it and compiles the code
into either thread TBB or CUDA code - two of the currently supported low-level
programs.

Limitations

However, with all these systems, the support for alternative co-processors is limited.
Most of these systems support CPU, GPU, or a hybrid CPU-GPU system. To
support a new system, its instruction sets must be adapted to fit the skeleton
characteristic. Furthermore, we see very limited support for cross-device execution.
Specifically, these skeleton-based systems focus on improving performance on a
single device. Hence, we still need these skeletons to be integrated across multiple
devices to have performance from a heterogeneous processing system. For such a
case, component-based runtime is used. Plugging alternative implementations is one
aspect of this component-based runtime. They also contain other aspects related to
optimal execution like data management, task scheduling, etc. We review some of
these runtimes and their attributes in the next section.

3.2.2 Component-Based

Component-based systems, or commonly, task-based systems map high-level language
constructs to user-written low-level implementations [23]. These systems expose

3.2. Existing Abstract Runtime 41

rigid task definitions that are realized by a developer. These systems handle the
execution of these tasks, thereby striking a balance of express-ability as well as
productivity through abstraction [23]. Similar to skeleton-based systems, depending
on the level of support, various systems are proposed with their characteristics. Based
on these characteristics (architectural - memory hierarchy, processor type, process
management - work handler, resilience, etc.), Thoman et al. [178] have come up
with a brief taxonomy of these task-based runtimes. The work lists some of the
common general-purpose task-based runtime systems like PaRSEC [32], starPU [14],
pipeflow [47], CPP-Taskflow [97]. These systems support the inclusion of any arbitrary
task and execute them across hardware devices. However, as with general-purpose
skeletons, these systems are also oblivious to the domain-specific characteristics and
cannot exploit execution. We will first review some of these systems in detail and
show the need for a query execution-aware unified runtime.

Name Functional interface Written in Supports
StarPU [14] codelets C++ data management, scheduling
PaRSEC [32] task C data-flow based scheduling

CPP-TaskFlow [97] taskflow C++ scheduling
Elastic computing [186] elastic functions C++ portability

Table 3.2: Common characteristics of component-based systems

StarPU: StarPU is one of the most popular runtimes specifically designed for
data management. The runtime is introduced with a user-defined function via
a codelet [13], which contains IO definitions of the function. The runtime uses
this information to handle the subsequent memory management and data transfer
functions internally. Additionally, the runtime also supports various scheduling
mechanisms out-of-the-box like work stealing, eager (centralized queue), random,
priority queue, HEFT 14. Any special user-written schedulers can also be included in
the StarPU runtime. Though the system supports handling multiple co-processors,
it is application-agnostic and schedules tasks generically. Moreover, the system is
designed to support compute-heavy tasks, which is not suitable for DBMS workloads.

PaRSEC: PaRSEC also handles data management tasks internally, while a user
supplies the functional implementations. However, PaRSEC uses a custom data-flow
model in the form of a directed acyclic graph (DAG) for scheduling tasks across
heterogeneous hardware. Here, the relation between different tasks is mapped by a
user to determine the overall runtime characteristics. Additionally, a user can also
add execution hints (like data distribution) for informed task scheduling. Scheduling
in PaRSEC is event-driven i.e. the runtime schedules after certain events (like task
completion, data transfer), thus supporting lazy evaluation of task placement. This
enables a more fine granular approach towards scheduling and placement. Again,
the system is application agnostic, and execution characteristics are not exploited
for better co-processor integration.

CPP-TaskFlow: It is also an abstract runtime that enables users to write parallel pro-
grams using task dependencies. The approach supports various levels of parallelism:

14More details given in:https://files.inria.fr/starpu/doc/html web basics/Scheduling.html

https://files.inria.fr/starpu/doc/html_web_basics/Scheduling.html

42 3. Existing Unified Runtime

loop-level, functional level (graph placement), pipelined parallelism (incremental
flows), as well as supports dynamic data structures. A user can introduce their exe-
cutable functions via Taskflow object. The object internally hands over the tasks for
execution to a unified runtime. It also gives users the ability to do static scheduling.
Based on the schedule, the runtime executes them using work-stealing. However, this
is limited to a CPU itself and cannot abstract various task implementations across
different hardware.

Elastic Computing: The framework supports generic functions named as elastic
functions. These functions have a single generic signature with alternative im-
plementations across various processors. Using this information, the runtime does
inform the scheduling of a target function. Though the work closely follows ours, it
also has multiple shortcomings. Any co-processor-related implementations must be
explicitly written by the user, without any reusable components. Also, similar to all
of the above cases, the system is oblivious to the application characteristics, which
requires the end-user to implement redundant functions.

Limitations

Though we have several runtimes that handle cross-device execution, they cannot fully
support query execution due to their application-agnostic execution. Moreover, these
systems mostly favor a compute-heavy workload, as the workload can benefit directly
from heterogeneous hardware resources. Finally, the systems focus on plugging in an
implementation, which means tightly coupling device drivers to the target function
itself. Hence, to avoid these challenges and support a holistic query execution across
any arbitrary co-processor, we need a query engine runtime that is both pluggable
and aware of query execution features.

3.3 Summary
Overall, there are various DBMS implementations available across co-processors,
each tuned towards improved execution. However, these are tailor-made solutions
that fit only a particular device and cannot be extended with new ones in the
future. To overcome this challenge, we propose an abstract runtime is proposed
to support pluggability. This runtime increases productivity by abstracting either
device-specific or runtime details. We saw some of the commonly available runtimes
that either abstract underlying device features or runtime features. Though these
systems improve productivity, they are too generic and do not extend query execution
functionalities. Hence, there is still a gap in terms of a runtime that supports the
pluggability of new hardware as well as is aware of query execution to better exploit
it for efficient performance. In this work, we go about developing such a pluggable
query engine. The query engine supports plugging devices without additional re-work
and still executes the query without performance degradation.

As a first step towards developing such a system, we must study the need for hardware-
aware programming in terms of performance. Specifically, we must understand the
impact of hardware awareness in DBMS operators as it directly reflects on the overall
query execution performance. To this end, we perform a case study experimenting
with various hardware-aware options/implementations to understand their implication
on group-by execution. Our case study is presented in the next chapter.

4. Tier 0/1: Crafting a Co-Processor
Aware DBMS Operator

Database operators written based on the underlying hardware architecture have
been shown to improve performance many-folds by numerous researchers [142, 41,
22, 80, 182]. Such benefits come from meticulously programming the operator with
instructions that act over various hardware components of the underlying device [103].
A programmer must consider the order of execution to ensure that the instructions
are executed seamlessly without encountering any hiccups in the execution chain
of the underlying device. Hence, it is hard to code-optimize an operator for an
underlying hardware. Therefore, we must understand the complexities of developing
a hardware-aware database operator before we go about architecting an abstract
query executor. To this end, in this chapter, we perform a case study developing
sort-based aggregation to be GPU-aware.

Parts of this chapter have been based on the following publications:

• B. Gurumurthy, D. Broneske, M. Schäler, T. Pionteck and G. Saake, ”An
Investigation of Atomic Synchronization for Sort-Based Group-By Aggregation
on GPUs,” IEEE 37th International Conference on Data Engineering Workshops
(ICDEW), Chania, Greece, 48-53(2021).

• B. Gurumurthy, D. Broneske, M. Schäler, T. Pionteck and G. Saake, ”Novel in-
sights on atomic synchronization for sort-based group-by on GPUs”. Distributed
Parallel Databases 41, 387–409(2023).

4.1 Need for HW-Awareness in Group-By
A simple group-by aggregation as shown in Example 2 is normally implemented
either using hash-based or sort-based techniques [16]. We focus on the latter and
implement a hardware-aware sort-based aggregation for current-generation GPUs.
The rationale for studying this problem is twofold. First, compared to other database

44 4. Tier 0/1: Crafting a Co-Processor Aware DBMS Operator

operations (like joins) group-by operations are less affected by the data movement
problem. The data movement problem occurs whenever data is shipped to or
retrieved from a heterogeneous processing device. This may incur a major cost
factor [9, 18, 36]. Secondly, computing the grouping and aggregate is highly compute
intensive [30, 84, 22], and thus a perfect use case for parallelization.

Example 2 (SQL query with a simple grouped aggregation clause).
SELECT COUNT(*), l_returnflag FROM lineitem

GROUP BY l_returnflag

ORDER BY l_returnflag;

Massively parallel grouping and subsequent aggregate is challenging – independent
of the processing device. The complexity arises when data of one group is arbitrarily
distributed within the input and aggregating them together requires some kind of
synchronization. Such execution over a GPU increases the difficulties, the device
is not designed for efficient inter-thread communication. To resolve this, a GPU
supports a specialized hardware component for thread serialization - enabled via
atomic operations.

1 101 102 103 104 105 106 107 108

2

4

6

Groups

T
h
ro
u
gh

p
u
t
(G

iB
/
S
ec
)

a) GPU-based approaches (RTX 2080Ti)

1 101 102 103 104 105 106 107 108

0.1

0.2

0.3

0.4

Groups

T
h
ro
u
gh

p
u
t
(G

iB
/S

ec
)

b) CPU-based approaches (Intel Xeon)

Boost.Compute Hashing Naive global atomics

Figure 4.1: Throughput of different group-by approaches on a RTX2080Ti GPU
and Intel Xeon CPU on 227 integers with uniform random distribution. Note, the
different scales of the y-axis.

Generally, group-by relies on sorting or hashing [87], with empirical results suggesting
that hash-based approaches are generally superior [104, 22]. In Figure 4.1(a), we
depict the throughput of a recent hash-based vs sort-based grouped aggregation
(i.e., boost.compute). The results clearly show group cardinality impacts their
performance. For reasonable group numbers between 102 and 106, hashing is best.
For smaller numbers, boost.compute has the highest throughput. Adding a third
approach, a naive sort-based aggregation using atomic operations (i.e., hardware-
based), we observe that its throughput increases monotonically until each value
is assigned uniquely to a group. From 106 distinct groups, it offers even the best
performance. By contrast in Figure 4.1b, we depict the throughput when applying
the same techniques to the CPU. We observe firstly that the performance pattern is
entirely different, with the atomic-based approach being superior for a wide range of

4.1. Need for HW-Awareness in Group-By 45

group numbers. Secondly, the CPU versions are a magnitude slower, i.e., there is a
substantial throughput benefit one can invest to move data to the GPU, in case it
does not already reside there. Despite this remarkable result, our hypothesis is still
that in current sort-based solutions, all threads aggregate data simultaneously and
block each other. This is supposed to hold especially in the case of small group sizes.
Hence, one does not fully exploit the massively parallel power that modern GPUs
offer.

To this end, we first investigate if the synchronization overhead is a decisive bottleneck.
Then, we aim to propose a solution that mitigates the issue, aiming at a throughput
that is at least equal to – or even superior – to a hash-based solution or boost.compute
depending on the number of groups. Our investigation has the following results and
contributions:

1. An investigation of how the latest advances in GPU’s architecture change the
significance of our contributions w.r.t. state-of-the-art hash-based approaches.
The key result is that the superiority of our atomic-based solution improves due
to the larger number of available HW-based atomics processing components in
the latest GPU generation.

2. We propose sort-based aggregation approaches that mitigate the synchronization
overhead by reducing the amount of issued atomics. For instance, one approach
requires 2 atomics per GPU thread independent of the data distribution. After-
ward, we examine how the number of concurrent threads and chunk sizes affect
the throughput of our approaches.

3. Our results suggest that atomics-based approaches are, in general, 3x faster than
boost.compute and up to 2x faster than hash-based approaches for a reasonable
number of groups, e.g., found in the TPC-H benchmark.

4. An examination of how different data distributions affect the performance of
our contributions. The results suggest that the distribution has only a marginal
effect, and thus our conclusions hold independent of the data distribution.

5. We put the GPU results into the context of results one can expect on present-day
CPUs. The key insight is that our GPU-based solutions are on average by one
order of magnitude faster.

The remainder of the chapter is structured as follows. We start with reviewing the
related work in Section 4.2 Next, we explain the execution of atomics in a GPU in
Section 4.3. Here, we present preliminaries on the execution of atomics particularly
their performance. Afterward, we introduce several alternative approaches for using
atomics for a sort-based group-by (Section 4.4). We first explain the three-step
aggregation method, followed by our atomic-based approaches. In Section 4.5, we
detail our extensive evaluation using microbenchmarks and a comparison of the full-
fledged group-by-operator with state-of-the-art approaches. Finally, we summarize
in Section 4.6.

46 4. Tier 0/1: Crafting a Co-Processor Aware DBMS Operator

4.2 Related Work
Since the usage of GPUs as general-purpose accelerators, many researchers use GPUs
to accelerate DBMS operations. In the following, we list work that closely relates to
our work.

Modeling performance of atomics: Hauck et al. propose to buffer atomic updates to
reduce contention in a reduction [86]. However, their approach doesn’t consider the
different parameters affecting performance within the device. Similarly, Hoseini et
al. explore the impact of atomics on CPUs [95] which is similar to our CPU-based
system. We complement their work with a similar measure of atomics over GPU.

Sort-based aggregation on GPUs: Sort-based aggregation on a GPU was first devised
by He et al. [87]. A similar method is followed by Bakkum et al. [15] using CUDA in
SQLite. These are suitable for earlier GPU generations, where atomic operations
are resolved via software-based serialization. These approaches follow a multi-step
lock-free aggregation, which is costly compared to your direct atomic aggregation in
modern GPUs.

Hash-based aggregation on GPUs: Alternatively to sort-based aggregation, hashing
can be used for computing aggregates. Hence, there are several related approaches
that tune hash-based aggregation for GPUs [22, 179].

Non-grouped aggregation on GPUs: Simple aggregation has the same execution
pattern as grouped aggregation, where a single output location is accessed by all
threads. To mitigate contention, there are various approaches [104, 115].

4.3 GPU and Atomic Functions
Although we have previously discussed the fundamental basic GPU architecture
in Section 2.1, we will now go deeper into the architecture of the Nvidia 1050 Ti.
This specific device is used in this section to examine hardware awareness and gain
a better understanding of the hardware components that directly impact atomics.
Specifically into the memory controller to study the flow of execution to resolve
atomic operations. Specifically, we examine the components related to our hypothesis
that sort-based group-by approaches suffer from the issue that all threads request
synchronization simultaneously leading to lock congestion. To this end, we first
investigate the various hardware components responsible for atomic functions. Note
that, the newer generation GPUs have an updated version of this hardware-based
atomics and would behave differently than the current implementation.

it is established already in Chapter 2 that GPUs favor better throughput instead of
latency [133]. This is achieved using multiple Graphical Processing Clusters (GPCs),
Memory Partition Units (MPUs), and an off-chip DRAM also known as the global
memory. The cores access global memory and execute atomics over them using
MPUs. In this section, we provide an overview of these components involved in
atomic execution. Note, since the architecture of a GPU keeps varying, we explicitly
refer to the work of Aamodt et al. and Glasco et al. [1, 77] for our work. We highly
recommend these articles for more insights.

4.3. GPU and Atomic Functions 47

4.3.1 Architectural Components Involved

GPUs contain multiple Memory Partition Units (MPU) to handle upcoming data
access requests. These MPUs favor coalesced memory accesses to hide memory
latency for parallel threads to improve efficiency. Furthermore, within this component
atomic operations are handled. Specifically, the MPU has three main parts (see
Figure 4.2(a)): Frame buffer, L2 cache, and Raster Operation Unit (ROP). Here,
ROP resolves atomics.

Whenever a thread encounters an atomic instruction, it sends an atomic command to
the MPU. The command contains the target operation (add, sub, or exchange) and a
payload value. This command is stored in a command buffer until the targeted shared
data is fetched. Once fetched, the command buffer forwards the data and the atomic
command to the raster operation unit (ROP) for execution (see Figure 4.2(b)).

L2 Cache

Frame
Buffer

Partition Unit

Crossbar Unit

Global memory

Raster
Operations

Unit

(a)MPU components

Read Command
Generator

Payload

Command Queue

ROP Cache

Result
Data

Sequencer

Atomic
Command
Buffer

L2 Cache

(b) Atomics in ROP

Figure 4.2: Components involved in global memory atomics

ROP Resolving Atomics

The forwarded atomic command is stored in an atomic command buffer - a FIFO
queue to ensure serialized atomics. Using this queue, the ROP updates the shared
result atomically. Afterward, as shown in Figure 4.2 (b), the atomic operator within
the atomic command is sent to the command queue and its corresponding payload to
the payload buffer. Finally, the atomic command buffer fetches the shared data using a
read command generator module. This data is sent to the ALU to execute the atomic
operation. Finally depending on the type of atomics, the result is either returned
to the target thread (in case of increments, decrements, or addition commands) or
simply stored in the global memory (min, max, or exchange commands).

4.3.2 Profiling Atomic Operations

Next, we study the negative impact of atomics on group-by aggregations, determining
an upper bound or the worst case. This shall indicate the general potential we can
expect when mitigating the synchronization overhead.

48 4. Tier 0/1: Crafting a Co-Processor Aware DBMS Operator

Upper Bound of Atomics Throughput

Normally, increasing the concurrency in a GPU improves the throughput. In contrast,
increasing concurrency with atomics creates a backlog of threads waiting to access
a memory location, adversely affecting throughput. Naturally, the severity of this
backlog increases with increasing concurrency. Specifically, the severity is high
when only one shared memory target is accessed, such as when the input contains
a single group or reduction operation. The throughput of such an execution
represents a worst case allowing us to measure the maximum negative impact of
atomics on a GPU’s throughput. Here we run a reduce operation with increasing
concurrent threads. In the case of atomics, we observe a major bottleneck due to
which throughput declines for high numbers of concurrent threads.

(a) Commodity GPUs

0 200 400 600 800 1,000

0

20

40

60

80

Threads/workgroup

T
h
ro
u
gh

p
u
t
(G

iB
/s
ec
) i) GTX 1050 Ti

0 200 400 600 800 1,000
0

200

400

Threads/workgroup

T
h
ro
u
gh

p
u
t
(G

iB
/s
ec
) ii) RTX 2080 Ti

(b) Server-grade GPUs

0 200 400 600 800 1,000

0

200

400

600

Threads/workgroup

T
h
ro
u
gh

p
u
t
(G

iB
/s
ec
) iii) V100

0 200 400 600 800 1,000

0

500

1,000

Threads/workgroup

T
h
ro
u
gh

p
u
t
(G

iB
/s
ec
) iv) A100

Global atomics Global simple arithmetic Local atomics
Local simple arithmetic

Figure 4.3: Throughput for naive atomics and arithmetics

Simple Arithmetic Operation as Optimal Throughput

To quantify the impact of atomic execution, we also execute a naive arithmetic
operation on the same thread which incurs no synchronization. Since atomics has the
same execution property as an arithmetic operation, this is a good way of quantifying

4.4. Atomics within Sort-Based Aggregation 49

the impact of atomics. We consider both the global and local memory of the GPU
for our experiment. The resultant throughput ranges across different GPU devices
are plotted in Figure 4.3, using 227 integers values as input. The results suggest three
insights:

1) Comparing Figure 4.3 (i-iv), the throughput of the memory atomics of local in
newer generations has significantly improved (instead of being 60% slower on GTX
1050 Ti, local atomics are only half as slow as local arithmetic on RTX 2080 Ti). A
similar trend can also be seen in server-grade devices, with A100 having better local
memory atomics. Overall, we see an increasing throughput with atomics over each
newer generation.

2) The throughput difference for arithmetics and atomics is large with local atomics
having a penalty of 2.0x to 2.6x on commodity GPUs and global atomics with up
to 1.75x on GTX 1050 Ti and up to 77x on RTX 2080 Ti compared to their simple
arithmetic counterparts. In the case of server-grade devices, V100 has a performance
difference of 3x whereas, A100 has improved local memory atomics, even nearly the
same as arithmetics. Hence, we need to mitigate this atomics penalty to unleash the
full parallel power of present-day GPUs.

3) When using atomics, the best performance is reached with a small number of
concurrent threads. In the case of commodity GPUs (GTX 1050Ti and RTX 2080Ti),
we see the atomics throughput flat-line after the thread count reaches 16. With V100
and A100, the maximum atomic performance is reached at 128 and 256 thread counts
respectively. Therefore, increasing the thread count after this critical threshold may
reduce performance. This is the expected undesired behavior further indicating that
one cannot exploit the massively parallel power GPUs offer.

These results, may at first sight suggest using local atomics. However, it is faster
only with a limited thread count. Additionally, it relies on an extra synchronization
step to get the final result.

4.4 Atomics within Sort-Based Aggregation
Based on our study of the architectural components, we identify that multiple
components are involved with resolving atomics and these incur considerable overhead.
The straightforward solution for reducing this overhead is to minimize the number of
atomics issued. However as atomics are the key for aggregation, we cannot simply
reduce them without developing a workaround for computing aggregates. In this
section, we explain the ways to resolve atomics as well as ensure the correctness of
aggregates. To this end, we first present the naive atomic aggregation and, afterward,
introduce optimizations that we apply, which aim at reducing the amount of issued
atomic operations in the subsequent sections.

4.4.1 Sort-Based Aggregation on a GPU: A Primer

A traditional (sequential) sort-based aggregation sorts the grouping attribute to
identify the groups inside. This mechanism has two phases: The first phase sorts the
input into clusters according to the group keys, which form a sequence of groups.

50 4. Tier 0/1: Crafting a Co-Processor Aware DBMS Operator

The second pass sequentially aggregates the groups present in the sorted input. To
parallelize this processing for GPUs, additional phases are needed, as explained in
the example of a COUNT aggregation below.

a a b b c d

0 1 0 1 1 1

0 0 1 1 2 3

2 2 1 1
0 1 2 3

Map

Exclusive
Prefix-sum

Aggregation

Figure 4.4: Three-phases for par-
allel aggregation

The sort-based aggregation on GPUs has three
phases [87]: map, prefix-sum, and aggregate (ex-
cluding sort). First, the map phase compares
two consecutive sorted-input values and returns
0 in case they match; 1 otherwise. As shown in
the example in Figure 4.4, this phase marks the
group boundaries of a given sorted input (with a
1). Next, the exclusive prefix-sum computes the
target aggregate location for each group. As these
two phases are commonly used in GPU, we use
standard operators for them. The final aggrega-
tion phase aggregates the input values according
to the target positions from the prefix-sum. Here,
our atomic-based aggregation computes group-by
results.

4.4.2 Minimizing Atomics Using Private Space

The naive sort-based aggregation issues one atomic per input value. Considering
the load of executing atomics, it is reasonable to reduce the contention of threads
by a more complex operator design. To this end, we exploit the fact that a sorted
array has similar groups next to each other in sequence. Now, imagine the following
hypothetical scenario, where we chunk the sorted data s.t. all values of a single
group are assigned to a single thread. Hence, no synchronization issues can occur,
removing the need for atomic operations and exploiting the full parallelism of GPUs.
Of course, determining such perfect chunking creates a large overhead and leads to
load imbalances. Nevertheless, as we will see, our solutions get fairly close to this
ideal scenario.

The distinction of when and how to synchronize the partial result of a thread allows
for proposing two algorithms: (1) using a private aggregate variable and (2) using a
private aggregate array. Both versions are shown in Figure 4.5, where two threads
aggregate their own chunk of three values.

The execution flow of both variants is roughly the same. In both, a thread sequentially
reads its chunk of the prefix-sum and aggregates the corresponding input values
within its private space until it encounters a group boundary. However, the variants
differ in handling their partial aggregates and thus in the number of required atomics.

Single Private Variable Result Buffer

A thread using a private variable as a result buffer conducts an atomic operation
whenever it encounters a group boundary because it only buffers the aggregate of
a single group. Therefore, this variant issues as many atomics as there are groups
in its input chunk. As a result, the best number of required atomics is 1, in case

4.5. Experiments 51

(a) Private aggregate variable

0 0 1 1 2

2 2 1 1

3

1 1

Result

Thread-private
Variable

Prefix
Sum

(b) Private aggregate array

0 0 1 1 2

2 2 1 1

3

2 1 0 1 1 1

Result

Thread -private
Array

Prefix
Sum

Figure 4.5: Using private address space in GPU for storing partial aggregates

there only is a single group per thread. The exact number of atomics and the time
when they are issued depends on the data distribution. This is important, as this
leads to the desired effect that, assuming group boundaries are evenly distributed,
the number of concurrent atomics declines.

Private Array Result Buffer Variant

Instead of using a single variable as a buffer, this variant uses a private array to
buffer the aggregates of all groups it processes. In the private array variant, a thread
sequentially traverses its input and aggregates into the current result buffer position
until a group border is found. Then, the next position is used for the next group
aggregate. Since the arrays in a GPU are initialized statically, the result buffer must
have the same size as the input data to cover the case that all input values belong to
a distinct group. This limits the chunk size when the array is stored in local memory.

Once aggregated, the threads propagate their private result into the shared memory
containing the overall result. To further mitigate the negative effects of excessive
atomics usage, we use another optimization to reduce the number of required atomics
per thread is exactly 2. This makes the number of required atomics independent of
the data distribution depending only on the number of concurrent threads.

It works as follows: As the input data is sorted, synchronization issues may only arise
for the first and the last group processed by a thread. The first group may have already
begun in the prior thread’s data input. The final group may continue in the next
thread’s data input. All other groups are only processed within the current thread.
Thus, the approach pushes these results to global memory without synchronization
having the optimal performance shown in Figure 4.3 (global arithmetic).

4.5 Experiments
In this section, we evaluate our approaches using micro benchmarks and comparison
to state-of-the-art competitors. For both parts, we use the same setup: Since the GPU
hardware has a direct influence on atomics, we profile our atomic-based aggregation
on three GPU versions with varying degrees of usage - NVIDIA GTX 1050Ti, NVIDIA
RTX 2080Ti, NVIDIA V100 and NVIDIA A100. All our experiments are executed on
a Linux machine with GCC 6.5 and OpenCL 2.1. The input dataset contains 227 (due

52 4. Tier 0/1: Crafting a Co-Processor Aware DBMS Operator

to Boost.Compute’s data size limitation) randomly generated integers representing
our group-by keys. While for the microbenchmark and the first comparison, data is
presorted (i.e., sorting time is disregarded), the unordered data is used for fairness
for the final competitor comparison. Each measurement is repeated 100 times and
we present the average throughput for all variants. For brevity, we present results
for count aggregation, but the result also holds for different aggregate functions and
data sizes.

4.5.1 Micro Benchmark

The parameters affecting performance are (1) thread size per work group and (2)
chunk size of input data per thread. To this end, we conduct experiments to examine
their influence and find an optimal configuration used in the remainder.

Examining Optimal Thread Size for Naive Atomics

In this experiment, we identify the optimal thread size per workgroup for naive atom-
ics serving as the baseline. Notably, the implementation of the naive atomics variant
on global memory is straightforward (i.e., the aggregation step in Figure 4.4 uses an
atomic operation on the global memory). However, the atomic variant on local mem-
ory needs an additional merging step. This step is to merge the partial aggregates
inside the workgroup’s local memory into the final result in the global memory. In this
naive local variant, we perform merging similar to the approach used for our private
array variant, where only the first and last positions are merged atomically. The
throughput ranges for this experiment across GPU devices are depicted in Figure 4.6.

Our results are uniform across the devices and record best throughput ranges with
large groups in input when spawned maximum number of threads. Such a behavior
is because multiple threads efficiently hide memory latency. Furthermore, a higher
number of groups (i.e., a larger spread of target locations in memory) creates less
concurrency on atomic writes. The results also clearly show an improvement from
using local memory as a cache for partial aggregates. Still, the penalties of an extra
merging step are significant and thereby reduce the overall throughput. As an overall
result, the best thread sizes are 256 for GTX 1050 Ti & V100 and 1024 for RTX
2080 Ti & A100, which we then use to compare naive atomics with our approaches
and the competitors.

Best Thread and Chunk Size for Atomic Variants

In addition to the thread sizes, our variants using a private array/variable (either in
local or global memory) are also influenced by the number of input values per thread
(chunk size). Hence, we average the variants’ throughput over all tested number of
groups and plot the results in Figure 4.715. Taking into account the influence of
the size of the chunks on performance, we observe that the smaller to medium-sized
chunks (22 − 27) are beneficial compared to the larger ones. In the latter case, the
memory controller becomes the bottleneck, due to too many requests from threads
that fetch input data from global memory and the execution of atomic operations.

15Note that not all combinations of chunks and threads are possible as they cross the physical
limit of local memory that can be allocated.

4.5. Experiments 53

20 21 22 23 24 25 26 27 28 29 210
100
101
102
103
104
105
106
107
108

Threads per workgroup

N
u
m
b
er

of
gr
ou

p
s

a) GTX 1050 Ti - Global atomics

20

40

60

80

T
h
ro
u
gh

p
u
t
(G

iB
/S

ec
)

20 21 22 23 24 25 26 27 28 29 210
100
101
102
103
104
105
106
107
108

Threads per workgroup

N
u
m
b
er

of
gr
ou

p
s

b) GTX 1050 Ti - Local atomics

20

40

60

80

T
h
ro
u
gh

p
u
t
(G

iB
/S

ec
)

20 21 22 23 24 25 26 27 28 29 210
100
101
102
103
104
105
106
107
108

Threads per workgroup

N
u
m
b
er

of
gr
ou

p
s

c) RTX 2080 Ti - Global atomics

20

40

60

80

T
h
ro
u
gh

p
u
t
(G

iB
/S

ec
)

20 21 22 23 24 25 26 27 28 29 210
100
101
102
103
104
105
106
107
108

Threads per workgroup

N
u
m
b
er

of
gr
ou

p
s

d) RTX 2080 Ti - Local atomics

100

200

300

400

T
h
ro
u
gh

p
u
t
(G

iB
/S

ec
)

20 21 22 23 24 25 26 27 28 29 210
100
101
102
103
104
105
106
107
108

Threads per workgroup

N
u
m
b
er

of
gr
ou

p
s

e) V100 - Global atomics

100

200

T
h
ro
u
gh

p
u
t
(G

iB
/S

ec
)

20 21 22 23 24 25 26 27 28 29 210
100
101
102
103
104
105
106
107
108

Threads per workgroup

N
u
m
b
er

of
gr
ou

p
s

f) V100 - Local atomics

200

400

600

T
h
ro
u
gh

p
u
t
(G

iB
/S

ec
)

20 21 22 23 24 25 26 27 28 29 210
100
101
102
103
104
105
106
107
108

Threads per workgroup

N
u
m
b
er

of
gr
ou

p
s

g) A100 - Global atomics

200

400

T
h
ro
u
gh

p
u
t
(G

iB
/S

ec
)

20 21 22 23 24 25 26 27 28 29 210
100
101
102
103
104
105
106
107
108

Threads per workgroup

N
u
m
b
er

of
gr
ou

p
s

h) A100 - Local atomics

200

400

600

T
h
ro
u
gh

p
u
t
(G

iB
/S

ec
)

Figure 4.6: Throughput profile varying with changes to group and thread size across
different NVIDIA GPU generations

54 4. Tier 0/1: Crafting a Co-Processor Aware DBMS Operator

Since the MPU incurs coalesced accesses, fetching bigger chunks of data for multiple
threads requires multiple cycles, which degrades performance. In contrast, the local
memory variants prefer very small chunk sizes (21 − 23), whereas global memory
benefits from slightly larger ones (22 − 27). Unlike the naive atomics where larger
numbers are beneficial, chunking improves the performance of even smaller thread
sizes. Interestingly, there is only a small difference between using a private variable
and a private array to store intermediate results. On the contrary, the throughput
behavior changes w.r.t. the devices, since there is a wide spectrum of well-performing
variants on GTX 1050 Ti, which shrinks for the RTX 2080 Ti. This indicates that
variants are sensitive to the underlying hardware and need a smart variant tuning
procedure [155].

20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
h
u
n
k
si
ze

p
er

th
re
ad

(n
u
m
b
er

of
ke
y
s)

Private variable in global memory

20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
h
u
n
k
si
ze

p
er

th
re
ad

(n
u
m
b
er

of
ke
y
s)

Private variable in local memory

10

20

30

40
T
h
ro
u
gh

p
u
t
(G

iB
/S

ec
)

20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
h
u
n
k
si
ze

p
er

th
re
ad

(n
u
m
b
er

of
ke
y
s)

Private array in global memory

20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
h
u
n
k
si
ze

p
er

th
re
ad

(n
u
m
b
er

of
ke
y
s)

Private array in local memory

(a) GTX 1050Ti

20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
h
u
n
k
si
ze

p
er

th
re
ad

(n
u
m
b
er

of
ke
y
s)

Private variable in global memory

20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
h
u
n
k
si
ze

p
er

th
re
ad

(n
u
m
b
er

of
ke
y
s)

Private variable in local memory

100

200

300

T
h
ro
u
gh

p
u
t
(G

iB
/S

ec
)

20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
h
u
n
k
si
ze

p
er

th
re
ad

(n
u
m
b
er

of
ke
y
s)

Private array in global memory

20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
h
u
n
k
si
ze

p
er

th
re
ad

(n
u
m
b
er

of
ke
y
s)

Private array in local memory

(b) RTX 2080 Ti

20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
h
u
n
k
si
ze

p
er

th
re
ad

(n
u
m
b
er

of
ke
y
s)

Private variable in global memory

20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
h
u
n
k
si
ze

p
er

th
re
ad

(n
u
m
b
er

of
ke
y
s)

Private variable in local memory

200

400

600

T
h
ro
u
gh

p
u
t
(G

iB
/S

ec
)

20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
h
u
n
k
si
ze

p
er

th
re
ad

(n
u
m
b
er

of
ke
y
s)

Private array in global memory

20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
h
u
n
k
si
ze

p
er

th
re
ad

(n
u
m
b
er

of
ke
y
s)

Private array in local memory

(c) V100

20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
h
u
n
k
si
ze

p
er

th
re
ad

(n
u
m
b
er

of
ke
y
s)

Private variable in global memory

20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
h
u
n
k
si
ze

p
er

th
re
ad

(n
u
m
b
er

of
ke
y
s)

Private variable in local memory

500

1,000

T
h
ro
u
gh

p
u
t
(G

iB
/S

ec
)

20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
h
u
n
k
si
ze

p
er

th
re
ad

(n
u
m
b
er

of
ke
y
s)

Private array in global memory

20 21 22 23 24 25 26 27 28 29 210
21
22
23
24
25
26
27
28
29

Threads per workgroup

C
h
u
n
k
si
ze

p
er

th
re
ad

(n
u
m
b
er

of
ke
y
s)

Private array in local memory

(d) A100

Figure 4.7: Impact of varying chunk and threads sizes over throughput

4.5.2 Comparative Experiments
Based on the inferences above, we can now tune the parameters of our variants for their
optimal value. Now using these parameters, we can compare our variants to study
their impact with varying group sizes. Such a comparison is studied in the next section.
Later, we use these optimal executable variants for our subsequent experiments
against the state-of-the-art group-by-aggregation mechanisms and other workload

4.5. Experiments 55

alternatives. Specifically, we compare our variants against 1) hash-based aggregation
for GPUs, 2) using alternate device - CPU, and 3) various data distributions, which
are detailed later in this section.

Comparison of Atomic Variants
First, we identify the best variant of our approaches per device used for the final
experiment. To this end, we compare the performance of the best-performing chunk-
and thread-size combination of the two private aggregate variants with the naive
atomic variants with an optimal thread size. The results are shown in Figure 4.8.

(a) Commodity GPUs

1 101 102 103 104 105 106 107 108
0

20

40

60

Groups

T
h
ro
u
gh

p
u
t
(G

iB
/S

ec
) a) GTX 1050Ti

1 101 102 103 104 105 106 107 108

0

200

400

Groups

T
h
ro
u
gh

p
u
t
(G

iB
/s
ec
) b) RTX 2080Ti

(b) Server-grade GPUs

1 101 102 103 104 105 106 107 108

0

200

400

600

Groups

T
h
ro
u
gh

p
u
t
(G

iB
/s
ec
) c) V100

1 101 102 103 104 105 106 107 108

0

200

400

600

800

Groups

T
h
ro
u
gh

p
u
t
(G

iB
/s
ec
) d) A100

Naive global atomics Global variable Local variable
Global array Local array Naive local atomics

Figure 4.8: Performance comparison of atomic variants

The variants in Figure 4.8 are named as Naive representing the simple atomic
aggregation without the variants, Global/local (target memory) Variable/array
(variant from section 4.4.2). Our results show that the global array and local variable
have higher throughput than the naive atomic variants for almost all numbers of
groups (i.e., except a larger number of groups). This limitation of our variants is
expected as a larger number of groups leads to multiple groups within a chunk. In this

56 4. Tier 0/1: Crafting a Co-Processor Aware DBMS Operator

case, a thread has to repeatedly insert the final result into global memory degrading
its performance. We also see only a small improvement in using local memory for
our variants on the GTX 1050 Ti, which in contrast is a huge improvement on the
RTX 2080 Ti. This is consistent with Section 4.3.2. Finally, for very high amounts
of groups, the overhead of internal synchronization for the private aggregate variants
does not pay off. Hence, naive local atomics performs best in this case.

Summary: Our variants reach a speed up of 6x-12x to the naive atomics and 1.5
- 2.6x to the naive local memory atomics. For GTX 1050 Ti, the variant using a
private array in global memory is optimal with a speed-up of 6x the naive atomics
and 1.6x the naive local memory atomics. For RTX 2080 Ti, the variant using a
local variable is clearly superior with a speed-up of about 12x the naive atomics and
up to 2x the local memory atomics.

(a) Commodity GPUs

1 101 102 103 104 105 106 107 108

0.2

0.4

0.6

0.8

Groups

T
h
ro
u
gh

p
u
t
(G

iB
/S

ec
) a) GTX 1050Ti

1 101 102 103 104 105 106 107 108

2

4

6

Groups

T
h
ro
u
gh

p
u
t
(G

iB
/S

ec
) b) RTX 2080Ti

(b) Server-grade GPUs

1 101 102 103 104 105 106 107 108

5

10

Groups

T
h
ro
u
gh

p
u
t
(G

iB
/S

ec
) c) V100

1 101 102 103 104 105 106 107 108

5

10

15

Groups

T
h
ro
u
gh

p
u
t
(G

iB
/S

ec
) d) A100

Naive global atomics Global array Local variable Naive local atomics
Boost.Compute Hashing

Figure 4.9: Overall comparison against state-of-the-art competitors. The performance
of atomic variants now includes sorting.

Comparison With Hashing
As a final evaluation, we compare the performance of our atomics-enabled sort-based
aggregation with another state-of-the-art mechanism i.e. hash-based aggregation.
Since, hash-based aggregation processes unsorted input, we also include the sorting

4.5. Experiments 57

step along with the best-performing atomic variants. The hashing technique is
realized based on the mechanism proposed by Karnagel et al. [104]. Additionally, we
also compare against a baseline sort-based aggregation: Boost.Compute library to
visualize the improvement from using atomics. Our results in Figure 4.9 show that our
variants have performance benefits across different devices and group cardinalities.
In a gist, our local atomics variant has the best performance overall. On the
GTX 1050 Ti, we reach on average 20% speed-up over naive global atomics and
Boost.Compute, while it reaches nearly 2x the speed of hash-based aggregation. We
see a similar speed-up on the RTX 2080 Ti except for the local variable variant that
reaches up to 1.25x the performance of Boost.Compute. Interestingly, hash-based
aggregation is the best for groups between 1,000 and 100,000. Here, smaller group
sizes lead to a synchronization when accessing the shared global hash table, a larger
group sizes need a hash table beyond a manageable memory size.

Comparison With CPU

To compare against the CPU, we run the same atomic-based aggregation and hash-
based techniques in the Intel Xeon CPU and compare its throughput against the A100
GPU. Due to a high degree of parallelism, GPU in general has higher throughput
than CPU. As we see in Figure 4.10, the throughput ranges of GPU is in order 10x
faster than that of a CPU. Additionally, the throughput of aggregation in GPU has
a clear difference in throughput across atomics and other techniques, whereas the
hashing and boost. compute-based aggregation in CPU are competitive with each
other. In general, aggregation runs orders of magnitude faster, even with atomics,
due to the efficient serialization of aggregation from parallel threads.

1 101 102 103 104 105 106 107 108
10−1

100

101

Groups

T
h
ro
u
gh

p
u
t
(G

iB
/S

ec
)

Boost.Compute (CPU) Hashing (CPU) Global array (CPU)

Boost.Compute (GPU) Hashing (GPU) Global array (GPU)

Figure 4.10: Throughput comparison of grouped aggregation in CPU (Intel Xeon)
and GPU (A100)

Comparison Across Data Distributions

As our final evaluation, we experiment with various data distributions. Once again,
we consider input to be 227 integer values. The distributions considered are heavy

58 4. Tier 0/1: Crafting a Co-Processor Aware DBMS Operator

(a) Commodity GPUs

H
ea
vy
H
itt
er

R
an
do
m

Ex
po
ne
nt
ia
l

W
eib
ul
l

N
or
m
al

0.2

0.4

0.6

0.8

Data distribution

T
h
ro
u
gh

p
u
t
(G

iB
/s
ec
)

a) 1050Ti

H
ea
vy
H
itt
er

R
an
do
m

Ex
po
ne
nt
ia
l

W
eib
ul
l

N
or
m
al

1

2

3

4

5

6

Data distribution

T
h
ro
u
gh

p
u
t
(G

iB
/s
ec
)

b) 2080Ti

(b) Server-grade GPUs

H
ea
vy
H
itt
er

R
an
do
m

Ex
po
ne
nt
ia
l

W
eib
ul
l

N
or
m
al

0

2

4

6

8

10

12

Data distribution

T
h
ro
u
gh

p
u
t
(G

iB
/s
ec
)

c) V100

H
ea
vy
H
itt
er

R
an
do
m

Ex
po
ne
nt
ia
l

W
eib
ul
l

N
or
m
al

0

10

20

30

Data distribution

T
h
ro
u
gh

p
u
t
(G

iB
/s
ec
)

d) A100

Naive global atomics Global variable Local variable Global array
Local array Naive local atomics Boost.compute Hashing

Figure 4.11: Performance of aggregation techniques across various data distributions

hitter (90% of input is a single group), random, exponential(lambda = 0.05), Weibull
(a=2.0 & b=4.0), and normal. The corresponding throughput ranges across the
different GPU devices are given in Figure 4.11.

From the results, we see that naive local atomics is consistently performing better
than other techniques for all distributions as well as across all devices. Similarly, naive
global memory atomics is consistently the poor-performing variant of all atomic-based
aggregation techniques. remaining techniques vary in performance depending on the
distribution and device.

In addition, results for server-grade GPUs are consistent with each other in terms of
their relative performance. The throughput ranges are higher for A100 compared
to V100 due to its higher CUDA core count. However, in the case of commodity
GPUs, the hashing is comparatively faster for RTX 2080Ti than for GTX 1050Ti
when subjected to random distribution.

Discussion

In summary, we can see that for the common use case of up to some hundred groups16,
a sort-based aggregation using atomics is the superior variant to be used. This is

16For instance in the TPC-H, 11 out of 16 queries do a group-by on less than 500 groups. Seven
of them operate on less than 10 groups.

4.6. Summary 59

remarkable, as usually hashing is the best variant [104, 22]. We argue for a change
of this general assumption for the following three reasons:

• There are a lot of circumstances where presorted data is grouped (due to sort-
merge join or a clustered index) or data has to be sorted after executing the
grouping (due to an order-by statement). In these cases, it would be the natural
option to also employ a sort-based grouping.

• Although the sorting time dominates the throughput of our variant in Figure 4.9
(making up 80% of the execution time), it is still the most stable strategy on the
GPU across the group sizes. The reason is a more cache-friendly access pattern
and a better fit for the SIMT processing model of the GPU [108].

• Due to the increased local memory performance of modern GPUs, the overhead
of atomic operations can be effectively mitigated.

4.6 Summary
GPUs with their massively parallel processing have been used for more than a decade
now to accelerate compute-intensive database operators. One such compute-intensive
database operator is a grouped aggregation. Although, up to now, hashing is the
predominant technique for grouped aggregations even on the GPU, a sort-based
grouped aggregation is an important alternative to be considered – especially with
an improved performance of atomics.

In this chapter, we investigate how far we can tune a sort-based grouped aggregation
using atomics in the aggregation step. To this end, we design two alternative variants
using a private variable or array and investigate their performance improvement when
using local or global memory followed by an atomic-based propagation of private
aggregates.

Our results show that our variants speed up grouped aggregation compared to a naive
usage of atomics by a factor of 1.5 to 2, when well configured. Furthermore, a sort-
based grouped aggregation using atomics can outperform a hash-based aggregation
by 1.2x to 2x for most used group sizes.

Overall, we see in this chapter the importance of using a hardware-sensitive operator.
Though the benefits are lucrative, it also takes a considerable implementation effort.
Extending such with multiple co-processors present in the market, many implemen-
tations of a single operator will be available with considerable human hours spent
perfecting them. Handling such alternative implementations across different hardware
further increases the complexity of development. To reduce this effort, we can enforce
a standard signature for these implementations so that we can encapsulate them into
a single functional entity. To this end, we survey the existing database operations to
come up with reusable functions that can be combined to run a complete query. Our
survey covers the standard data processing operators, that are examined to develop
granular functions. The next chapter covers the survey with the various identified
functions. We also explain in the Chapter the combinations of these functions to run
a different database operator and by extension a complete query.

5. Tier 1: Primitive Definitions for
Interfacing Operators

Executing queries over a heterogeneous processor needs re-implementation of database
operators for the processor. Such re-implementations end up with multiple variants
of a single operator available across each of the processing architectures. Usually,
these implementations are ported to a new co-processor using a hardware-oblivious
implementation translating the code according to the underlying device. However,
we already explained that direct translations might not be necessarily performance-
efficient (refer to Section 2.2.2). Hence the alternative is to write optimal imple-
mentations using device-specified language constructs for a given co-processor. This
approach is time-consuming and requires complex testing. To overcome these disad-
vantages, in this chapter, we propose the use of granular building blocks for database
operators called primitives. The name primitive is quite influential and, hence, a
primitive in literature can range from describing a database operator to the finest
granular function (e.g., a parallel loop with a single instruction).

In this chapter, we aim to shed some light on the current state of the art in primitive for
database operations. We explore the available primitives with a comprehensive survey.
Using the survey, we define a minimal set of primitives necessary for implementing a
given database operator and present different tuning opportunities for these primitives
to the underlying hardware. Finally, our proposed classification of primitives spans
multiple levels of granularity, which requires changes in the query execution engine.
We discuss different implementation strategies that can be used for primitive-based
evaluation by the query engine and its components. We also provide an overview of
the other factors impacting the efficiency of the primitives.

Parts of this chapter has been based on the following publication:

B. Gurumurthy, D. Broneske, T. Drewes, T. Pionteck, G. Saake, ”Cooking DBMS
Operations using Granular Primitives”. Datenbank-Spektrum: Vol. 18, No. 3.
pp. 183-193(2018).

62 5. Tier 1: Primitive Definitions for Interfacing Operators

We split this chapter into four main parts discussing the primitives. We start with
defining a hierarchical model for the primitives based on their level of granularity in
Section 5.1. Next, we list the different primitives from our survey and place them in
the given hierarchy. Each level of the hierarchy is detailed in its section: Section 5.2,
Section 5.3. These sections elaborate on the individual primitives and possible
implementation alternatives to realize these primitives. Further in Section 5.4, we
briefly discuss the different factors affecting primitive performance. We discuss
integrating these primitive definitions into a query engine in Section 5.5. Finally, we
summarize the chapter in Section 5.6

5.1 Defining Primitives

Modern CPU architectures provide multiple code optimization opportunities to
fine-tune a given database operation. Based on the efficiency criteria (e.g., cache
utilization, response time), we have different variants for a single operation. In
addition to these criteria, the code optimization strategies also vary according to the
used processor. Thus, we have a plethora of different variants available for evaluating
a single operation. Implementation of all these variants is time-consuming and not
manageable. As an alternative, these operations are evaluated by coupling database
primitives.

A database primitive is a basic building block that can be re-arranged to execute a
part of a given DBMS operation. Primitives aim to minimize the implementation
time and also improve the re-usability of code. Furthermore, they usually are easily
parallelizable. Exploiting this level of parallelism improves the throughput of overall
computation. Based on the level of granularity multiple primitives have been proposed
for DBMS operations [87, 140, 29]. On a conceptual level, the DBMS operations
itself serve as primitives that are combined to form the user-defined query. We detail
this hierarchy in Figure 5.1.

Operator

Algorithm

Composed Primitives

Atomic Primitives

Figure 5.1: Hierarchy in realizing primitives

As shown in Figure 5.1, primi-
tives are present across various hi-
erarchical levels. At the lowest
granular level, the primitives are
just stand-alone functions with mul-
tiple variants for efficient execu-
tion. These primitives are com-
bined with operation-specific com-
ponents forming coarse-granular or
composed primitives. These provide
additional functionality by adding
a tailor-made component with the
atomic primitives. Finally, the desired algorithm for executing an operation is built
using these primitives. In the next sections, we provide an overview of the different
primitives available and discuss how they are used to form a DBMS operator.

5.2. Atomic Primitives 63

5.2 Atomic Primitives
Atomic primitives are fine-granular functions that can be combined to form a larger
operation. These primitives are data parallel in nature and can be tuned for efficiency
based on the underlying processor. Furthermore, an atomic primitive consists of a
single loop with a body that cannot be split further (i.e., it contains a single operation
executed on a vector of data). In this section, we present the atomic primitives map,
scan, reduce and scatter & gather, as well as code optimization strategies available
for each of them. An overview of their properties can be found in Table 1.

Table 5.1: Properties of atomic primitives

Primitive Input Size Working Space Output Size Access pattern Multi-step

MAP N - N Sequential N
REDUCE N ≤ N 1 Random Y
SCAN N W +N N Random Y
SHUFFLE N - N Random N

N - Vector Size; W - Work group size;

5.2.1 Map

The map primitive applies a function f (e.g., a user-defined function (UDF)) to all
values in the given input vector. This is a non-blocking primitive that applies f to
each input independent of the other.

Naive Implementation

In a basic implementation, a map is simply a loop applying f to all input values.
Depending on the definition of the function f , a map either takes two columns, or
one column plus an additional constant as input. Frequently used functions include:

• Arithmetic operations: Arithmetic operations perform an arithmetic function
(e.g., addition, multiplication) on either vector-vector or vector-scalar arithmetic
operation.

• Logical operation: Logical operations combine vectors on a logical/bitwise
operation on the vector values.

• Comparison: A comparison tests whether an input value in the vector passes a
given condition. It returns boolean vectors of true or false as a result, which
can also be bit-packed.

• Bit-shift: A bit-shift takes two inputs – value and shift count – and shifts bits
inside the given value by the shift count value.

• Zip: A zip pairs values from two vectors into a single vector.

• Project: A project forwards the required set of values from the given vector to
the next function in the process.

64 5. Tier 1: Primitive Definitions for Interfacing Operators

Possible Code Optimizations

Since a map is implemented in a loop, loop-based code optimization can be applied.
Loop unrolling is used to reduce pipeline stalls. Stalls are reduced by unrolling a tight
loop to the desired depth. This depth is decided based on the underlying hardware
used [92]. Another optimization commonly used is loop fission or fusion. Depending
on the execution environment, a single map function can be divided into multiple
smaller loops or multiple maps can be combined into a single loop [136]. Other than
these strategies, various other factors also influence the efficiency of a map such as
access patterns, data structures and so on which we discuss later in this Chapter.

5.2.2 Scan
A scan is proposed as a fundamental primitive for vector processing by Guy Blel-
loch [27]. This primitive is mainly used for determining the index for storing values
in a parallel processing environment. Additionally, this primitive is further extended
into a segmented scan. A segmented scan performs the scan operation on arbitrary
segments and can be used to sort a vector.

Naive Implementation
The scan takes a single vector as input and performs a given binary operation ⊕ over
all the values between the initial and current index (c.f. Equation 5.1). Some of the
common binary functions applied with scan are sum, min, max, and multiply.

[v0, v1, ..., vn] = [v0, v0 ⊕ v1, v0 ⊕ v1 ⊕ v2, ...] (5.1)

The parallel implementation presented by Blelloch has the input and output data
found in the leaf nodes of a balanced binary tree and computes results in two phases.
The phases are up-sweep and down-sweep.

Up-sweep

4 10 8

10 18

2810

6 10

6

0

Down-sweep

6 10 20

0 10

010

6 10

0

0

Figure 5.2: Example of prefix-sum phases

Up-sweep: During up-sweep, the binary operation is carried out on the child node,
and the resultant values are stored in their corresponding parent nodes. Along with
the result, the value of the left node is also stored in the parent.

Down-sweep: In the down-sweep phase, the binary operation is applied to the left
node stored in memory and the corresponding parent node value and the result is
stored in the right child. The value of the parent node is stored in the left child of
the current node. Note, that the initial value for the root node is given as zero for
further propagation.

5.2. Atomic Primitives 65

In Figure 5.2, we show an example of the prefix-sum calculation using the two phases.
The result from the root to the leaf is carried down and the binary operation is
performed again. The result is stored in the right child thereby computing the result
or output vector. Overall, this algorithm has the complexity of O(n log(n)) with the
final results present in the leaf nodes.

Segmented Scan

As mentioned previously, the simple scan operation is extended to perform a seg-
mented scan. These segments are marked using flags. The common functions used
with segmented scans are arithmetic and comparison. These two variants of scan
are used as the primitive function for many composed operations such as enumerate,
distribute, etc. Their implementations are detailed by Blelloch et al. [27]. The
prefix-scan composed database operations are discussed in Section 5.3.

Possible Code Optimizations

Since prefix sum is a multi-fold operation (where the result is calculated in multiple
stages), data parallelism and task parallelism provide additional benefits by reducing
latency. In CPU implementations, this is realized using threading and pipelining of
instructions. Whereas, a GPU with its massively parallel processing capabilities is
used as an ideal candidate for computing prefix-scan results. One of the common
implementations of prefix scan in GPU is given by Horn et al. [94]. Whereas,
Senguptha et al., provide a GPU implementation of segmented scan [165].

5.2.3 Reduce / Aggregate
Reduce computes the aggregate of values in a given vector. A reduce evaluates multi-
ple input values and returns a single output. Hence, the result is not forwarded until
all the corresponding input values are evaluated. This operation is a pipeline-breaker
as the result is not forwarded until all the corresponding values are processed [131].

Naive Implementation

The implementation of a reduce is similar to that of a map. However, unlike the
map, the intermediate result from a single value is reused by the given function f for
computing the next result.

Apart from using a UDF, all aggregate operations carried out by SQL are implemented
using reduce (e.g., min, max, sum).

Possible Code Optimizations

Similar to other primitives, parallel execution of a reduce improves its throughput.
Horn et al., provide a two-phase algorithm for computing reduce [94]. Since the
final result depends on the intermediate results of applying the function f , a parallel
reduce needs at least two passes to compute the final result. In the first pass, a local
aggregate is calculated within each of the thread groups with an intermediate output
size equal to the available work-group size. In the second pass, the intermediate results
are aggregated to compute the final result. Since reduce is similar to map, all the
optimization criteria of the map can be applied to reduce such as SIMD acceleration
(data parallelism) and instruction pipelining for faster processing. Rosenfeld et al.
have given an extensive analysis report on the impact of these optimizations for
reduce computation [155].

66 5. Tier 1: Primitive Definitions for Interfacing Operators

5.2.4 Scatter & Gather

Scatter and gather are data movement primitives that perform an indexed read/write
on given data. These primitives are used to rearrange the given dataset. These two
different primitives are discussed below.

• Scatter: Writes data into a vector from the input on the index given.

• Gather: Read data from the input vector at the given index.

These are the atomic primitives required to compose the coarse granular primitives or
a complete DBMS operation. In the next section, we detail the composed primitives
developed by combining atomic primitives.

5.3 Composed Primitives

The next layer of DBMS primitives from Figure 5.1 are composed primitives. Although
composed primitives can be implemented by pipelining atomic primitives, they can
also be implemented from scratch by fusing the code of atomic primitives.

5.3.1 Filter

A filter is used for selecting values from a given input vector that satisfies a certain
condition. This primitive is used for selection and returns a subset of the given input
vector.

Composing Filter

A primitive-based filter implementation is given by He et al. [88]. The pipeline is
depicted in Figure 5.3.

Map Prefix Sum ScatterInput Output

Filter value

Figure 5.3: Composing filter

Since the result size is not known in advance, memory space may not be allocated
for it or else have multiple empty spaces unused. Hence, the filter pipeline requires a
map to determine the results followed by a prefix scan to allocate the required space
and finally scatter to store the results.

5.3. Composed Primitives 67

Possible Code Optimizations

A filter can also be implemented from scratch using code optimization strategies for
efficient execution. There are three major improvements available for a selection [43]:

• Branched logical: The execution breaks as soon as a condition fails. It has
the disadvantage of costly multiple branches (if the data distribution is highly
selectivity).

• Branched bitwise: It evaluates all the conditions in a bit-wise manner and a
final branching statement will check the result.

• Predicated: The predicated version converts control dependencies into data
dependencies thereby omitting branches.

Along with different implementations, the conjunction order of selections also provides
additional throughput. Ross et al. provide a comprehensive analysis of filtering using
conjunctive selections [157], while Broneske et al. [41] and Zeuch et al. [190] show
the impact of hardware sensitivity on selections. A GPU implementation of select
conditions is given by Sitaridi et al. [169]. Finally, selection over compressed vectors
provides additional advantages and many works also investigate the impact of the
compression in filtering [187, 188, 144]. Selections over compressed columns require
an additional step of generating the column values from the intermediate result. This
additional step is called materialization, which we detail in the next section.

5.3.2 Materialize

Materialize is mainly used in synthesizing column values from encoded results. Abadi
et al. have done an extensive analysis in materialization [2]. Materialization is
commonly used in heterogeneous computing environments since data transfer is the
bottleneck. The selected results are encoded into bitmap or position list values and
transferred, thereby reducing the transfer bottleneck. A materialize is then used to
retrieve the column values from the generated intermediate results.

Composing Materialize

Materialize is executed using a map and a gather primitive based on the encoded
data.

Bitmap: For filter-materialize pipelines with a bitmap, a map compares the input
and generates a series of 1s or 0s as a result (either bit-packed or byte-packed). In
this case, materialize uses a method similar to filtering, where a prefix scan is used
to identify the location and a map to store the results (refer to Figure 5.3).

Position list based: In the case of performing materialize with a position list, a map
function compares the input vectors followed by a gather primitive to collect the
values. The composing primitives are constrained only on the order of execution
and there can be other primitives executed between their execution. We detail the
execution of filter-materialize with position list in Figure 5.4.

68 5. Tier 1: Primitive Definitions for Interfacing Operators

Map Gather Output

Filter value

Input
Position List Position List

Other Primitives

Figure 5.4: Composing materialize

Possible Code Optimizations

Since materialize is a special functionality of map and gather, their optimizations
can be applied to it. Abadi et al. provide a cost model for placement of the gather
primitive early or late in the pipeline [2], calling it early materialization and late
materialization, respectively.

5.3.3 Hash Build

The hash build takes a value and based on the underlying hash function and technique
stores the value in its respective bucket. A hash table is built using a map along
with a tailor-made hash put component for the underlying hashing technique. Note:
we represent these tailor-made components using double circles.

Composing Hash Build

To implement a hash build, a map is used with a hash function (e.g., multiplicative
hashing [109]) to provide the index of a bucket to store the value in. Since the
underlying techniques are prone to collision, the hashing technique defines a collision-
resolution mechanism as hash put. The primitive composition of the hash build is
shown in Figure 5.5

Map Hash PutInput Hash Table

Figure 5.5: Composing hash build

There are various hashing techniques available and based on the technique, a different
collision resolution mechanism is used. An extensive list of the hash functions and
available hashing techniques are given by Richter et al. [150].

Possible Code Optimizations

Hashing from scratch combines hash build with a probe phase. The code optimization
on the hash build is applied to the hash probe as well. Hardware sensitive optimization
such as SIMD optimized cuckoo hashing is given by Ross et al. [156]. Polychroniou
et al. has given an abstract overview of using SIMD on hashing techniques [142].

5.3. Composed Primitives 69

5.3.4 Hash Probe
Hash probing is used to retrieve values from a given hash table. This along with hash
build is used to evaluate join and aggregation queries. Probing performs a search of
a value from a computed index in the hash table. Since hashing has collisions, the
given search value may have to be filtered from possible candidates.

Composing Hash Probe

Probing is highly dependent on the hashing technique used to insert a value into
the hash table. Hence, the hash put component is modified to provide the possible
indexes to probe. We name this as hash get. Values in the indexes given by hash get
are fetched using a gather and finally, a map is used to compare the value at the
determined indexes. The flow of the hash probe is given in Figure 5.6.

Gatherhash get MapInput values Boolean
Output vector

Figure 5.6: Composing hash probe

5.3.5 Split
A split or partition divides the given array of values into multiple arrays. Split gets
in an input vector along with a flag vector and based on the flag, the given input is
split into multiple chunks.

Composing Split

He et al. have devised a way to compile split using their data parallel primitives [88].
Based on their interpretation, the split is compiled using a map, prefix-sum, gather,
and scatter primitives. Their interpretation is lock-free and uses a histogram to
compute the required space. This is given in Figure 5.7.

Map Scatter Prefix sum Gather ScatterInput, flag Vector chunks

Figure 5.7: Composing split

Split is one of the complex operations and requires five steps. At first, a map is used
to prepare the histogram of values per bucket in each thread. Then these histogram
values are scattered into an array and a prefix sum is performed. The results from
the prefix sum are scattered back to the threads marking the write locations for the
threads. Finally, the values are scattered based on the indexes.

Possible Code Optimizations

The impact of code optimizations in radix partitioning is extensively researched in
various works. Polychroniou et al. give a complete overview of different partitioning
variants based on cache efficiency and provide details on the impact of hardware on
these algorithms [143]. Schuhknecht et al. provide a guided approach for optimizing
partitioning [162].

70 5. Tier 1: Primitive Definitions for Interfacing Operators

5.3.6 Sort

Finally, similar to split a sort is also implemented using the atomic primitives.
Specifically, He et al, have presented a way to perform quick sort using atomic
primitives [88].

Composing Sort

To perform a quick sort, He et al. divide the given input by arbitrarily chosen pivots
until a partition fits local memory. Here, the split primitive is used to divide the
vector into chunks. Sorting a local memory chunk is done using bitonic sort networks.

Split Bitonic sortUnsorted
input

Sorted
output

Figure 5.8: Composing sort

Possible Code Optimizations

Similar to split, the sort can also be implemented from scratch with code optimiza-
tion strategies. As sorting requires a high availability of data in memory, cache
efficiency improves the processing speed. To this end, Govindaraju et al. provide
an implementation of a cache-efficient sorting algorithm for GPUs [79]. To further
improve the availability of data, Albutiu et al. proposed a NUMA-aware algorithm
for sorting [4].

A DBMS operation is executed by combining the above atomic and composed
primitives. Other than code optimization strategies mentioned for each of the
primitives, considering certain external factors also improves the performance of the
primitives. We discuss some of these factors in the next section.

5.4 Other Impact Factors

Other than the primitive-specific code-optimization strategies, there are several factors
influencing the processing efficiency of the overall query. Some of these influencing
factors are the selected access pattern, parallelism, as well as data structure for
underlying data. We briefly discuss these in this section.

5.4.1 Access Pattern

In a heterogeneous system, a device-specific access pattern (e.g., sequential or
coalesced memory access) is used for additional efficiency. Rosenfeld et al. analyzed
the impact of the access patterns on various devices and show that the right access
pattern improves efficiency on the underlying hardware [155].

5.5. Primitive-Based Execution in aQuery Engine 71

5.4.2 Parallelism Mode

One major advantage of splitting DBMS operations into granular primitives is to
enable concurrent execution. Based on the parallelism type – data or instruction
parallelism – two different functionalities are required. For instruction parallel
execution, the result of concurrent primitives must be materialized before being used
in the next primitive. This is processed using a custom materialize function based
on the used primitives. In the data parallel approach, the given data is divided into
multiple chunks and is executed in parallel. As a final step, these locally processed
results are combined by performing the same operation over the final results. We
call this secondary combine as defer. Similar to the materialize primitive, defer is
also based on the underlying function. Thus, based on the parallelism method an
additional hidden function is used. This also influences evaluating a complete query.

5.4.3 Data Structure

Though sequential access provides additional advantages of prefetching and data
locality, different data structures are used for efficient processing of selective oper-
ations [149]. Powerful indexes such as CSB-tree [148], FAST [107], k-ary search
trees [191], or Elf [42] can be used for efficient selection.

5.5 Primitive-Based Execution in aQuery Engine
Since the DBMS operations are divided into primitives, the query engine is also
modified to execute them efficiently. The first step is to split the given relational
operation into granular primitives. Since multiple levels of primitives are available,
a DBMS operation is either a set of atomic primitives or a combination of the
predefined composed primitives and the atomic primitives. We depict the necessary
primitives for composing a complete operation in Figure 5.9.

Selection

Projection

Aggregation

Sort-based

Hash-based
Grouped

Aggregation

Sort-based

Hash-based
Join

Sort Filter Map Hash buildReduce Hash probe

Figure 5.9: Composing DBMS operators from primitives

For example, as we know now, a grouped-aggregation operation can be executed
using two techniques: sort-based or hash-based. To perform a hash-based grouped
aggregation, first, the given input is grouped using a hash build followed by a reduce
primitive to perform the aggregation. Similarly, based on the selected operation, a
different sequence of primitives can be selected for execution.

72 5. Tier 1: Primitive Definitions for Interfacing Operators

These primitives are executed either as stand-alone functions or as a pipeline of
primitives. Once a query plan with different granularities of primitives is determined,
fusing the primitives improves the performance. There are common patterns available
in fusing these primitives available and we discuss them in the subsequent section.

5.5.1 Pipeline Patterns

The flow of execution among the primitives is one of the factors affecting overall
processing efficiency. The traditional iterator model suffers from the overhead of
multiple function calls [81]. One of the alternative models is the compiled-query
execution model where the given query is compiled from granular functions [131].
This model reduces the working size as the processing data resides in the device
register rather than in memory. Using this execution model, multiple primitives are
combined into a single coarse-granular function. There are various pipeline patterns
proposed for compiling the primitives [57, 189, 149]. They include project, product,
select, set relation, and join. In Figure 5.10, we show the different pipeline patterns
available.

Table 1 Table 2 Table 3 Table 4

1

23

4

5

Figure 5.10: Different pipeline patterns

Project The project pattern is the simplest of all patterns, as shown in Figure 5.10(1),
it is used for pipelines that only project an input on a set of attributes. Since there is
no blocking operation, all primitive functions can be combined in a single tight loop.

Product: In this model, the result is the product of the number of entries in the
input relations. This is also a non-blocking pipeline and hence, no intermediate
storage of data is required (c.f. Figure 5.10(2)).

Select: The selection pipeline consists of two passes. The passes are similar to the
filter passes with the first pass computing the local results and their histograms.
Then, prefix-sum is computed over the histogram to determine the total size and
index positions. In the second pass, the data are stored in their respective indexes.
The selection pipeline is depicted in Figure 5.10(3).

5.6. Summary 73

Set Relation: This pipeline is specifically designed for set operations. We show the
this pipeline in Figure 5.10(4). It is comprised of three major stages. First, the data
is partitioned into smaller chunks. Second, these chunks are processed with the given
set operation. Finally, the local resultant values are merged providing the complete
result. Additionally for efficient processing, Wu et al. argue the use of combining set
operations into a single operation for additional throughput. They call this fusing of
operations as kernel fusion stage [189].

Join: As the name suggests, this involves a join operation in the pipeline (c.f.
Figure 5.10(5)). Join pipelines are evaluated using custom join operations [57].

Pipeline Operators

Apart from using the pipeline skeletons to assemble an operator chain, Breß et
al. list a set of operators used for developing a compiled execution pipeline [39].
These additional operators can be combined with the required pipelines discussed
above. Further, Rauhe et al. have given a two-phase model based on thread-level
execution [149]. In this model, the first phase is called compute phase, splits the
input horizontally into logical partitions. After the compute phase, the threads are
synchronized in the so-called accumulate phase by merging them to produce final
results.

5.6 Summary

A DBMS using primitives to implement operations has multiple advantages. Granular
functions are combined to form a complete operation and tuning one of the available
primitives for a device provides efficiency in multiple operators. We show in this
work the different levels of granularity available among these primitives and discuss
hardware-based tuning for the finest granular level of primitives. Finally, we discuss
the impact of these primitives in the design of a query engine.

We have shown three levels of primitives available for compiling a DBMS operation.
The atomic-level primitives are present at the lowest granular level. These are
stand-alone functions that are coupled into all the primitives in the upper layers.
The atomic-level primitives also have multiple implementation variants based on
the underlying hardware used. In the next layer, an abstract level of primitives is
presented known as composed primitives. Composed primitives are coarse-grained
and need other components for executing a given DBMS operation. Finally, the
implementation of a database operator itself is present at the top level.

Though various code optimization strategies are present for implementing these
primitives, we also show the various external factors impacting the performance of
primitives. We also show the various possible ways to combine the primitives into
efficient pipelines for better execution. We give a brief overview of these pipeline
patterns available for executing the primitives and the underlying operators needed
for forming the overall pipeline. Overall in this chapter, we discuss the following.

74 5. Tier 1: Primitive Definitions for Interfacing Operators

1. The primitives in different granularity combined to realize complete database
operators

2. Multiple code optimizations available for these primitives

3. Ways to compose primitives into a complete database operation

4. Other influencing factors affecting performance

5. Ways to combine these primitives to realize a complete pipeline.

Though the comprehensive list of primitives can be used to realize the common
database operations, it is still not complete. We can extend the list with primitives
for other data structures (like graph structures) as currently, we have restricted this
survey to relational DBMSs.

Even though these primitives are minimal and even reusable in multiple operations,
there also comes the problem of handling multiple implementations. Also, these
implementations are necessary as each variant is implemented to suit well with the
underlying hardware. In the next few chapters, we will have a deeper look into the
performance implication of a hardware-sensitive primitive. Specifically, we study the
performance of primitive implementations over the co-processor GPUs. As a start,
the next chapter studies the performance of using expert-written GPU libraries for
database operations.

6. Tier 1: Task Layer - Realizing
Standard Primitives

Though co-processors are ideal candidates to offload particular tasks, we see from
previous chapters that it is not a trivial task. Co-processors have their programming
models, tunable parameters, and other impact factors that can affect performance.
Hence to have optimal performance, we need to either manually tune (as we did
with sort-based aggregation in Chapter 4) or use expert-written functions packed as
libraries. We explore such libraries written for co-processors in this chapter, studying
their performance benefits for query execution. Similar to the previous chapters, we
focus our study on GPU.

Numerous researchers have conducted extensive studies to achieve an optimal im-
plementation of a database operator on a GPU. Implementations like group-by
[104],[22], selections [155, 15], joins [168, 101], or whole engines [35, 91, 87] have been
already discussed in earlier chapters.

As explained, developing such tailor-made implementations requires a developer
to be an expert of the underlying device [8]. This makes the approach highly
time-consuming but leads to the best performance [41]. As an alternative, many
expert-written libraries are available that can be included in a system needing only
minimal knowledge about the underlying device.

Parts of this chapter have been based on the following publications:

• H. K. H. Subramanian, B. Gurumurthy, G. C. Durand, D. Broneske and G. Saake,
”Analysis of GPU-Libraries for Rapid Prototyping Database Operations: A look
into library support for database operations,”IEEE 37th International Conference
on Data Engineering Workshops (ICDEW), Chania, Greece, 36-41(2021).

• H. K. H. Subramanian, B. Gurumurthy, G. C. Durand, D. Broneske and G. Saake,
”Out-of-the-box library support for DBMS operations on GPUs”. Distributed
Parallel Databases 41, 489–509 (2023).

76 6. Tier 1: Task Layer - Realizing Standard Primitives

6.1 GPU Libraries within DBMS

Libraries for GPUs are either written by hardware experts [85] or are available out-of-
the-box from device vendors [24]. In this chapter, we survey the existing libraries and
identify more than 40 libraries for GPUs each packing a set of operators commonly
used in one or more domains. The common benefits of these libraries are that they
are constantly being updated to perform the best, repeatedly tested to support
newer GPU versions, and their predefined interfaces offer high portability and faster
development time compared to handwritten operators. This makes the libraries a
suitable match for many commercial database systems to offer GPU support easily.
Some examples of systems using libraries for GPU support are SQreamDB using
Thrust [172], BlazingDB using cuDF [26], Brytlyt using the Torch library [44].

Since these libraries are an integral part of GPU-accelerated query processing, it
is imperative to study them in detail. To this end, we investigate existing GPU-
based libraries w.r.t. their out-of-the-box support of usual column-oriented database
operators and analyze their performance in query execution. Hence, we survey
available GPU libraries and focus on the three most commonly used GPU libraries:
Thrust, boost.compute, and ArrayFire to study their support for database operators.
Specifically, we explore available operators to determine the library’s level of support
for database operators, and we present which library operators can be used to
produce the usual database operators. Using these implementations, we benchmark
the libraries based on individual operator performance as well as their execution of
a complete query. Overall within this chapter, we explore the usefulness of GPU
libraries in two directions to assess their overall impact.

• Usefulness: We look for libraries with tailor-made implementations for database
operators. As a result, we can assess the ad-hoc fit of the libraries for database
system implementation (cf. Table 6.2).

• Usability: We analyze the performance of the different library-based database
operators in isolation as well as for queries from the TPC-H benchmark. This
is a key criterion for deciding which library to use for a developer’s database
system (cf. Section 6.5).

• Portability: We experiment across two different grades of GPU to see the impact
of libraries from the underlying hardware.

The chapter is structured as follows: In Section 6.2, we classify existing languages
and libraries for heterogeneous programming. We review existing GPU libraries
and identify how to use them to implement database operators in Section 6.3.
Next, we detail the way to plug-in various library implementations in Section 6.4.
In Section 6.5, we compare the performance of library-based database operators.
Finally, we summarize the chapter in Section 6.6.

6.2. Levels of Programming Abstractions 77

6.2 Levels of Programming Abstractions
For more than a decade now, the database community has been investigating how to
use GPUs for database processing [69]. The interest in GPU acceleration is mainly
due to the advancements in its processing capabilities as well as the maturity of
programming interfaces and libraries. However, for most practitioners, it is hard to
assess the impact of choosing a specific interface or library. To shed some light on the
matter, we compare and review current programming interfaces and libraries. As we
have seen already in Chapter 2, we broadly categorize them w.r.t. their abstraction
level: languages, wrappers, and libraries. We place them as a hierarchy since each
entity in a level is developed using the lower-level constructs. Our Figure 6.1 shows
examples of these identified levels, which we characterize in the following.

Low-level languages

Specialized wrappers

Libraries

Low

High

Level of expertise

Development time

Optimization capability

Flexibility

Figure 6.1: Hierarchy of abstraction levels characterizing languages, wrappers, and
libraries for heterogeneous computing

We have already discussed the low-level languages and specialized wrappers in
Chapter 2 (in Section 2.2.2). In a gist, using such low-level languages (like CUDA)
might improve efficiency but comes with the drawback of the high development cost
(including usually large size of program code) and requires expertise on the device
features. The specialized wrappers (like OpenCL) in the next level offer abstractions
to significantly reduce the implementation effort compared to low-level languages,
but are susceptible to device changes.

Libraries

At last, there is a plethora of pre-written libraries developed by domain and hardware
experts for different devices [126]. Using a library, all internal details of different
operator implementations are hidden behind a set of predefined interfaces. Hence, the
developer must simply make the right function call based on the underlying scenario.
This requires only minimal knowledge of the underlying hardware and implementation.
Some examples of libraries include the boost libraries in C++ and the Thrust library
for GPUs. Even though these libraries are developed by experts, they are not tailor-
made for one underlying use case. Hence, although a generic implementation of
operators suits multiple use cases, they can be suboptimal compared to handwritten
use-case-specific implementations. Furthermore, due to the predefined interfaces

78 6. Tier 1: Task Layer - Realizing Standard Primitives

for operators, one cannot freely combine them for a custom scenario. Instead,
we have to chain multiple library calls, leading to unwanted intermediate data
movements. Thus, libraries provide high productivity in development with only
small necessary knowledge about the underlying device (plus, minimal lines of code)
but they come with the drawback of potentially sub-optimal performance from the
operator implementations.

Used Abstraction Levels in Database Systems

Various GPU-accelerated database systems are developed using the concepts of
different levels. Considering low-level languages, GPUQP [69], CoGaDB [35], and the
system of Bakkum et al. [15] use CUDA. For wrappers, Ocelot [91], HAWK [39] are
implemented in OpenCL. Finally, many commercial database systems use libraries to
implement operators, such as SQreamDB [172] or BlazingDB [26], mainly for their
robustness and strong vendor support.

Disregarding their low flexibility, libraries give considerable advantages to the ad-hoc
development of a GPU-accelerated database system, reducing its development cost
to an acceptable limit. However, with multiple GPU libraries being available, the
question remains what library has the best support for the rapid prototyping of
database operators, and which library implementation achieves the best performance.

6.3 Implementing DBMS Operators With Libraries
Here is a review of different GPU libraries and their ad-hoc usability for implementing
database operators. To this end, from the selected libraries, we discuss the level of
support and the offered functions to implement database operators using these GPU
libraries.

6.3.1 Review of GPU Libraries
To collect available GPU libraries, we conducted an extensive survey using Google
Scholar, and the CUDA website17. Generally, there are four different framework-
s/languages used by libraries over a GPU namely: CUDA, OpenCL, ROCm, and
oneAPI. However, ROCm has been not widely adopted and its performance is similar
to that of OpenCL [176]. Next, oneAPI is still in its early stages of development and
not all GPUs are currently supported [12]. This shortens our search over OpenCL
and CUDA. Between these two frameworks, we found 43 libraries that provide
GPU-accelerated operators for various domains. The library details are listed in
Table 6.1.

As GPUs are fundamentally graphics machines, their parallel processing is perfect
for number crunching. Hence, as shown in Figure 6.2 many libraries focus on image
processing (7) and math operations (13). Since GPUs were recently adopted for
machine learning workloads18, only a few libraries are currently present. With
databases, libraries that support database operators explicitly are relatively few (5)
compared to those supporting general vector operations (such as tensor operations

17https://developer.NVIDIA.com/CUDA-zone
18https://developer.NVIDIA.com/tensor-cores

6.3. Implementing DBMS Operators With Libraries 79

Library Wrapper/Language Use case Reference

AmgX CUDA Math https://developer.NVIDIA.com/amgx

ArrayFire CUDA & OpenCL Database operators https://developer.NVIDIA.com/arrayfire

boost.compute OpenCL Database operators [177]

CHOLMOD CUDA Math https://developer.NVIDIA.com/CHOLMOD

cuBLAS CUDA Math https://developer.NVIDIA.com/cublas

CUDA math lib CUDA Math https://developer.NVIDIA.com/cuda-math-library

cuDNN CUDA Deep learning https://developer.NVIDIA.com/cudnn

cuFFT CUDA Math https://developer.NVIDIA.com/cuFFT

cuRAND CUDA Math https://developer.NVIDIA.com/cuRAND

cuSOLVER CUDA Math https://developer.NVIDIA.com/cuSOLVER

cUSPARSE CUDA Math https://developer.NVIDIA.com/cuSPARSE

cuTENSOR CUDA Math https://developer.NVIDIA.com/cuTENSOR

DALI CUDA Deep learning https://developer.NVIDIA.com/DALI

DeepStream SDK CUDA Deep learning https://developer.NVIDIA.com/deepstream-sdk

EPGPU OpenCL Parallel algorithms [116]

FFmpeg CUDA Image and video https://developer.NVIDIA.com/ffmpeg

Goopax OpenCL Parallel algorithms https://www.goopax.com/

Gunrock CUDA Others - Graph processing https://github.com/gunrock/gunrock

HPL OpenCL Parallel algorithms & Math https://github.com/fraguela/hpl

IMSL Fortran Numerical Library CUDA Math https://developer.NVIDIA.com/imsl-fortran-numerical-library

Jarvis CUDA Deep learning https://developer.NVIDIA.com/NVIDIA-jarvis

MAGMA CUDA Math https://developer.NVIDIA.com/MAGMA

NCCL CUDA Communication libraries https://developer.NVIDIA.com/nccl

nvGRAPH CUDA Parallel algorithms https://developer.NVIDIA.com/nvgraph

NVIDIA Codec SDK CUDA Image and video https://developer.NVIDIA.com/NVIDIA-video-codec-sdk

NVIDIA Optical Flow SDK CUDA Image and video https://developer.NVIDIA.com/opticalflow-sdk

NVIDIA Performance Primitives CUDA Image and video https://developer.NVIDIA.com/npp

nvJPEG CUDA Image and video https://developer.NVIDIA.com/nvjpeg

NVSHMEM CUDA Communication libraries https://developer.NVIDIA.com/nvshmem

OCL-Library OpenCL Database operators https://github.com/lochotzke/OCL-Library

OpenCLHelper OpenCL Others - wrapper https://github.com/matze/oclkit

OpenCV CUDA Image and video https://developer.NVIDIA.com/opencv

SkelCL OpenCL Database operators & Parallel algorithms [173]

TensorRT CUDA Deep learning https://developer.NVIDIA.com/tensorrt

Thrust CUDA Database operators [24]

Triton Ocean SDK CUDA Image and video https://developer.NVIDIA.com/triton-ocean-sdk

VexCL OpenCL Others - vector processing https://github.com/ddemidov/vexcl

ViennaCL OpenCL Math http://viennacl.sourceforge.net/

Table 6.1: Libraries and their properties based on our survey

offered by VexCL or Eigen tensor). Even from the available libraries, skelCL and
OCL-Library are boilerplates to OpenCL without any pre-written functions [173].
These have no direct functions available for implementing database operations.
Therefore, we select the remaining ones: boost.compute, Thrust, and ArrayFire for
further analysis built over OpenCL, CUDA, and both, respectively. Among these,
ArrayFire uses lazy evaluation while boost.compute transforms high-level functions
into OpenCL kernel programs, and Thrust operators are transformed into CUDA C
functions.

https://developer.NVIDIA.com/amgx
https://developer.NVIDIA.com/arrayfire
https://developer.NVIDIA.com/CHOLMOD
https://developer.NVIDIA.com/cublas
https://developer.NVIDIA.com/cuda-math-library
https://developer.NVIDIA.com/cudnn
https://developer.NVIDIA.com/cuFFT
https://developer.NVIDIA.com/cuRAND
https://developer.NVIDIA.com/cuSOLVER
https://developer.NVIDIA.com/cuSPARSE
https://developer.NVIDIA.com/cuTENSOR
https://developer.NVIDIA.com/DALI
https://developer.NVIDIA.com/deepstream-sdk
https://developer.NVIDIA.com/ffmpeg
https://www.goopax.com/
https://github.com/gunrock/gunrock
https://github.com/fraguela/hpl
https://developer.NVIDIA.com/imsl-fortran-numerical-library
https://developer.NVIDIA.com/NVIDIA-jarvis
https://developer.NVIDIA.com/MAGMA
https://developer.NVIDIA.com/nccl
https://developer.NVIDIA.com/nvgraph
https://developer.NVIDIA.com/NVIDIA-video-codec-sdk
https://developer.NVIDIA.com/opticalflow-sdk
https://developer.NVIDIA.com/npp
https://developer.NVIDIA.com/nvjpeg
https://developer.NVIDIA.com/nvshmem
https://github.com/lochotzke/OCL-Library
https://github.com/matze/oclkit
https://developer.NVIDIA.com/opencv
https://developer.NVIDIA.com/tensorrt
https://developer.NVIDIA.com/triton-ocean-sdk
https://github.com/ddemidov/vexcl
http://viennacl.sourceforge.net/

80 6. Tier 1: Task Layer - Realizing Standard Primitives

Math

11

Database operators

6

Image and video 8

Deep learning

5

Parallel algorithm

5 others

5
Communication

2

CUDA

19

OpenCL

9 ROCm
1 OneAPI
1

Figure 6.2: Proportion of GPU libraries. Left: proportion of libraries across various
application domains. Right: Proportion of GPU libraries and their underlying
implementation language.

6.3.2 Operator Realization

Since GPUs are predominantly used for column-oriented analytical queries [7, 139],
we consider the operators: projection, (conjunctive) selection, join, aggregation,
grouping, and sorting (sort-by-key) for our study. Besides these, we also study the
parallel primitives: prefix-sum, scatter, and gather, commonly used for materializing
final values. The level of support (i.e., usefulness) and the possible library call for a
database operator in the three libraries are listed in Table 6.2. The level of support
is determined by the simplicity of the usage of library operators for implementing
a database operator. The full support operators have the least interoperability
costs and programming effort because they have a direct functional implementation
available in the library. In the case of partial support (~), several function calls
are needed to implement an operator. Hence, additional effort is required to pass
the intermediate results from one function to another before retrieving the final
result. Detailed information on the functional support from these libraries is given
in the Function-column of Table 6.2, where we map library functions to the database
operators.

6.3.3 Summary of Library Usefulness

Overall, when compared to ArrayFire, the other two libraries- boost.compute, and
Thrust have multiple alternative implementations for selection. Specifically, ArrayFire
does not directly support prefix-sum, nested-loop join, scatter, and gather operations.
Regarding functional implementations, it is notable that ArrayFire returns a position
list for selections, whereas Thrust and Boost.compute return bitmaps.

Join implementation: A major limitation is that all the libraries lack a custom
implementation for specialized joins. They lack direct support for hash tables or
merge join of sorted results. Hence, these important implementations must be
developed from scratch, or support needs to be added to the libraries. However, the
database community has shown great performance for hash-based joins [121] and,
hence, these libraries should be extended by custom operators for hashing in future
versions.

6.4. A Connecting Framework for Library Operators 81

Database operators
ArrayFire boost.compute Thrust

Support Function Support Function Support Function

Selection + where(operator()) ~
transform() &

exclusive scan() &
gather()

~
transform() &

exclusive scan() &
gather()

Nested-Loops
Join

– – + for each n() + for each n()

Merge Join – – – – – –

Hash Join – – – – – –

Grouped Aggregation +
sumByKey(),
countByKey(),

+ reduce by key() + reduce by key()

Conjunction &
Disjunction

+
setIntersect(),
setUnion()

+
bit and<T>(),
bit or<T>()

+ bit and<T>(),
bit or<T>()

Reduction + sum<T>() + reduce() + reduce()

Sort by Key + sort() + sort by key() + sort by key()

Sort + sort() + sort() + sort()

Prefix Sum – – + exclusive scan() + exclusive scan()

Scatter &
Gather

– – +
scatter(),
gather()

+
scatter(),
gather()

Product + operator*() +
transform() &

multiplies<T>()
+

transform() &
multiplies<T>()

+ full support; ~ partial support; – no support;

Table 6.2: Mapping of library functions to database operators

6.4 A Connecting Framework for Library Operators
As a next step towards rapid prototyping, it is necessary to execute library operators
in a common environment. This is an important step since we want to assess their
runtime without any side effects and also allow for interoperability between operators
of different libraries if the performance difference is significant. In the following, we
describe our generalized task model and adapter pattern that we use for interfacing
the libraries.

6.4.1 Task Model

Our task model manages the implementation of an operator within a unified interface
for all libraries. In our case, we support ArrayFire and Thrust through CUDA, while
Boost.Compute is implemented in C++. We employ these libraries to demonstrate
that our task model can achieve cross-platform execution of GPU libraries (both
CUDA and C++) within a single codebase. Furthermore, our framework can
include a new library or hand-written code with a simple additional wrapper. To
support extensibility, we make use of the adapter design pattern. The detail of the
programming structure is explained in the next section.

6.4.2 Adapter Pattern

Since the libraries differ in container and operator arguments, our framework needs
an easy way to interface with these library operators. A promising feature is
that they support the same data type - a vector. In Figure 6.3, we depict the

82 6. Tier 1: Task Layer - Realizing Standard Primitives

adapter design pattern that we use for interfacing the library operators. The idea
is that the end-user interacts with the target: an interface without implementation.
Each library implementation consists of an adapter and an adaptee. As a result,
the adapter bridges the incompatibility between the target and the adaptee. For
example, the target of the container is a C++ STL vector, which can be converted
into a thrust::device vector<T>, a boost::compute::vector<T>, and an af::array
in corresponding adapters. As a result, we can easily switch between operator
implementations of different libraries. To this end, the adapter performs library-
specific data conversions and includes library-specific additional arguments.

Client

Target

operation()

Adapter

operation()

Adaptee

specific operation()

Extends

Figure 6.3: Adapter design pattern used for plugging libraries

6.5 Performance Comparison

An essential requirement for using library operators for a database system is that
they deliver acceptable performance (i.e., usability). Hence, in this section, we study
the libraries’ performance for different database workloads. We split our evaluation
into two main sections: first, we benchmark the performance of individual operators
in micro-benchmarks using a synthetic dataset. Afterward, we measure the overall
performance of the libraries with complete TPC-H queries.

Experimental setup: All our experiments are conducted on a commodity - NVIDIA
GeForce RTX 2080 Ti with 10 GB memory and server-grade - NVIDIA V100 with 32
GB memory GPU respectively. We use the following library versions: boost.compute-
v1.71, ArrayFire-v3.7.2, Thrust-v11.0. All these libraries run on top of OpenCL 1.2
and CUDA 10.1. Our evaluation framework is written in C++ and compiled with
GCC 9.3.0 running on Ubuntu 18.0419.

Dataset: We synthesize datasets for our micro-benchmark. Our synthetic dataset
consists of 228 randomly generated integer values unless specified otherwise and the
TPC-H dataset is generated with a scale factor of 10. Note: This is the maximum
scale factor up to which the execution across libraries is supported. Any larger scale
factors are not executed due to space limitations from boost.compute.

19The source code is available here: https://github.com/harish-de/cross library execution

https://github.com/harish-de/cross_library_execution

6.5. Performance Comparison 83

6.5.1 Transfer Time

Since each library has a custom wrapper for accessing the data present in the GPU,
they incur different overhead when transferring data to the GPU. Hence, we analyze
the data transfer rate of the individual libraries before analyzing the actual operator
performance. We test the transfer time with input sizes ranging from 220 integer
values (5MB) up to 230 integer values (5GB) and plot it in Figure 6.4.

(a) Nvidia RTX 2080 Ti

5
M

B

1
0
M

B

1
8
M

B

3
4
M

B

7
0
M

B
0
.1
2
5
G
B

0
.2
5
G
B

0
.5
G
B

2
G
B

3
G
B

5
G
B

0

1,000

2,000

Data size

E
x
ec
u
ti
on

T
im

e
(m

s)

CPU to GPU

5
M

B

1
0
M

B

1
8
M

B

3
4
M

B

7
0
M

B
0
.1
2
5
G
B

0
.2
5
G
B

0
.5
G
B

2
G
B

3
G
B

5
G
B

0

1,000

2,000

3,000

Data size

E
x
ec
u
ti
on

T
im

e
(m

s)

GPU to CPU

(b) Nvidia V100

5
M

B

1
0
M

B

1
8
M

B

3
4
M

B

7
0
M

B
0
.1
2
5
G
B

0
.2
5
G
B

0
.5
G
B

2
G
B

3
G
B

5
G
B

0

1,000

2,000

3,000

Data size

E
x
ec
u
ti
on

T
im

e
(m

s)

CPU to GPU

5
M

B

1
0
M

B

1
8
M

B

3
4
M

B

7
0
M

B
0
.1
2
5
G
B

0
.2
5
G
B

0
.5
G
B

2
G
B

3
G
B

5
G
B

0

500

1,000

Data size

E
x
ec
u
ti
on

T
im

e
(m

s)

GPU to CPU

Thrust boost.compute ArrayFire

Figure 6.4: Transfer times for different libraries

Foremost, the results show a considerable overhead when transferring data to the
GPU using Thrust when compared to boost.compute or ArrayFire on both devices.
However, while transferring back, ArrayFire shows poor transfer rates. We believe
that the additional steps taken by these libraries in allocating / de-allocating the data
lead to such poor performance. Even though transfer rates are significant, buffering
input columns can easily avoid this overhead. Furthermore, intermediate or final
query results that need to be retrieved from the GPU are usually significantly smaller
than the input and, hence, this overhead is mostly negligible. Finally, we see that
the transfer rates for V100 are considerably faster than RTX 2080 Ti, even though
these two systems use the same PCI-e 3.0 standards for data transfer. However, we
see an identical profile for CPU to GPU transfer in both devices - Thrust takes more
time to transfer data. We believe this is mainly due to the implementation of the
copy operator in this library. Whenever a host-to-device copy is made (which can be

84 6. Tier 1: Task Layer - Realizing Standard Primitives

achieved using a simple assignment operator, =), it calls CUB’s uninitialized copy()
function that allocates data space followed by data transfer, which leads to poor
performance. However, when copying results back, it simply does a data copy on the
pre-allocated memory in the CPU space.

6.5.2 Micro-Benchmark: Individual Operators

In this section, we measure the performance impact of operator-specific parameters
on the different library implementations. Due to space limitations, we focus on the
most common and complex database operators. We exclude sorting, prefix-sum
and map as there are already several papers that analyze the performance of these
operators [165, 167].

6.5.2.1 Selection

As the selection operator is sensitive to the selectivity of the incoming predicate, we
evaluate the libraries by varying the selectivity from 1% to 100%. The final result
of our selection is the materialized column of matching values. Since Thrust and
Boost.compute create a bitmap and need an additional prefix-sum for materialization,
we also show their single performance for creating the bitmap.

1 102030405060708090100
0

20

40

Selectivity in %

E
x
ec
u
ti
on

T
im

e
(m

s)

NVIDIA RTX 2080 Ti

Thrust Thrust - bitmap creation only ArrayFire
boost.compute boost.compute - bitmap creation only

1 10 20 30 40 50 60 70 80 90 100

0

2

4

Selectivity in %

E
x
ec
u
ti
on

T
im

e
(m

s)

NVIDIA V100

Figure 6.5: Performance for selection with varying selectivity

The results in Figure 6.5 show that the performance of ArrayFire is far better than
the performance of Thrust and boost.compute for a materialized filtered column
(solid line) across both devices. The main benefit of ArrayFire is that it can directly
generate filtered results without additional prefix-sum and gather steps to arrive at
the final results. Instead, ArrayFire generates position lists from which we can directly
materialize the result. Interestingly, boost.compute has the best performance when
creating a bitmap, but is the worst when materializing the result. This is due to
the bad performing gather implementation, which is consistent with our following
results.

6.5. Performance Comparison 85

As a result, Thrust and boost.compute are the best choice for multiple predicates
on the same table, because combining bitmaps is faster than intersecting position
lists. For single predicates and if subsequent operators work with position lists or
materialized columns, ArrayFire should be chosen.

6.5.2.2 Group By

In this experiment, we focus on group-by-aggregation, where the performance varies
according to the spread of groups. We use a uniform distribution of input values and
vary the group size from 1% to 100% where 1% has nearly all values belonging to
the same group and 100% contains one group per input value.

1 10 20 30 40 50 60 70 80 90100

200

400

Groups in %

E
x
ec
u
ti
on

T
im

e
(m

s)

NVIDIA RTX 2080 Ti

Thrust boost.compute ArrayFire

1 10 20 30 40 50 60 70 80 90100
0

1

2

3

Groups in %

E
x
ec
u
ti
on

T
im

e
(m

s)

NVIDIA V100

Figure 6.6: Performance for Group-by with varying group sizes

The performance in Figure 6.6 shows that ArrayFire and Thrust have the best
performance. Nevertheless, the superior method changes according to the number
of groups with ArrayFire performing best for a small number of groups and Thrust
performing best for many groups. Further, the performance of V100 shows a drop
after a group size of 30%. This shows that V100 can manage multiple data writes
efficiently when repeatedly accessing a single location.

6.5.2.3 Joins

Joins being complex operator, generally requires a considerable time for execution.
In the case of libraries, we can only support nested loop joins (cf. Table 6.2). Our
nested loop join uses for each() - a function to parallelize an operation based on the
given input size.

We measure the performance of join implementations varying the cardinality of the
left table (|R|) in a range of 21 to 219 using a uniform distribution20. We vary the
input size, as it directly impacts the degree of parallelism during the execution of
a join. Additionally, the execution also depends on the size of the right-side table.
Therefore, we keep the size of the right table (|S|) as 228. Finally, only Thrust and
Boost.compute support join operations in the form of a nested loop join. Since
ArrayFire does not offer a custom for each() function, it is not part of the evaluation.

20Note that 219 is the maximum data size until which we get a reasonable execution time.

86 6. Tier 1: Task Layer - Realizing Standard Primitives

21 23 25 27 29 211 213 215 217 219
10−2

100

102

|R| cardinalityE
x
ec
u
ti
on

T
im

e
(m

s)
-
lo
gs
ca
le NVIDIA RTX 2080 Ti

Thrust boost.compute

21 23 25 27 29 211 213 215 217 219

10−3

10−2

10−1

100

|R| cardinalityE
x
ec
u
ti
on

T
im

e
(m

s)
-
lo
gs
ca
le NVIDIA V100

Figure 6.7: Performance for join with varying R-table size

We plot the execution time for joins over the two devices in logscale in Figure 6.7.
From the results, we see that boost.compute is comparatively better in terms of
parallelization, as its results are linear for a range of inputs for RTX 2080 Ti.
However, even with its linear increasing execution time, Thrust is considerably better
for smaller input sizes. In contrast, in case of bigger data sizes, boost.compute is
superior. Considering the results on the V100, Thrust is clearly the winner as we
can see a huge difference in the runtime of the two libraries in Figure 6.7.

Furthermore, results pertaining to boost.compute shows a near-constant growth
in performance. This is mainly due to the way the execution spawns threads for
executing the custom function. Until a data size of 29, the framework uses a different
number of threads to spawn, while for any data size greater they process the data
using multiple iterations.

6.5.2.4 Scatter & Gather

Our final micro-benchmark is to measure the performance of scatter and gather
operations, as they are useful in realizing a hashing operation. Hence, we evaluate
the performance of scatter and gather giving as positions the results of multiplicative
hashing of the input items. We chose multiplicative hashing as it is a function that
is commonly used for scattering/gathering keys into hash tables.

The performance comparison in Figure 6.8 shows clearly that Thrust has a better
scatter and gather time compared to boost.compute for RTX 2080 Ti. Here, the
poor performance in boost.compute is due to the additional kernel compilation time,
whereas Thrust does not have this additional time. Considering the V100 results,
we see that scatter operations take longer than gather operations for both libraries.
Such poor behavior for scatter shows the overhead of executing random memory
accesses on global memory. This behavior indirectly represents the bottleneck in the
memory controller of V100 in resolving memory accesses to the global memory.

6.5.2.5 Summary

Overall, we see that there is no one good library that gives consistent performance
benefits for all database operations. For selection, ArrayFire is the clear winner

6.5. Performance Comparison 87

Thrust boost.compute
0

0.02

0.04

E
x
ec
u
ti
on

T
im

e
(m

s)
NVIDIA RTX 2080 Ti

Scatter Gather

Thrust boost.compute
0

0.1

0.2

0.3

0.4

E
x
ec
u
ti
on

T
im

e
(m

s)

NVIDIA V100

Figure 6.8: Performance for scatter & gather

being nearly 2x faster than the other libraries. In the case of group-by, both Thrust
and ArrayFire perform similarly. In case of joins, boost.compute gives constant
performance across various table sizes; however, Thrust gives a better performance
compared to boost.compute in commodity GPUs. Finally, with scatter and gather
operations, Thrust’s performance is better in commodity GPU and both Thrust
and Boost.compute behave the same in server-grade GPUs. Based on these results,
we can now devise the execution of TPCH queries with a single library as well as
cross-library calls.

6.5.3 TPC-H Performance

Extending the previous experiments with individual operators, in this section we use
the operator implementations to execute complete queries. We use the TPCH dataset
with scale factor 10 (SF 10) for executing two query types: group-by (Q1, Q6) and
join (Q3, Q4) queries. In the case of the join queries, we substitute ArrayFire with
Thrust implementation as the former does not support joins. Finally, we experiment
with two different scenarios: single-library and cross-library executions. The results
from the execution are explained in the sections below.

6.5.3.1 Single Library Performance

In this experiment, we execute TPCH queries using single homogeneous library calls.
The resultant execution time across the considered devices is depicted in Figure 6.9.
The results depict only the time taken to execute the operator (as in Table 6.2) and
exclude the data transfer time into the device memory.

Group-By: Depending on the cardinality and complexity of the operator clauses (like
multiple group-by or multiple conjunctive predicates), the execution characteristics
vary. This is evident from the results of Q1 with more time invested in computing
group-by aggregates whereas Q6 has most of its time spent in the selections. Though
the rank of the fast-performing libraries remains the same across RTX 2080 Ti and
V100, there is a significant difference in their performance profile. Specifically, we see
that ArrayFire performs significantly better in V100. This is in accordance with its
performance difference from group-by experiments (cf. Figure 6.6). Since the V100

88 6. Tier 1: Task Layer - Realizing Standard Primitives

(a) Nvidia RTX 2080 Ti

Q1 Q6
0

10

20

E
x
ec
u
ti
on

T
im

e
(m

s)

Group-by

Q3 Q4
0

1,000

2,000

E
x
ec
u
ti
on

T
im

e
(m

s)

Join

(b) Nvidia V100

Q1 Q6
0

1

2

3

4

E
x
ec
u
ti
on

T
im

e
(m

s)

Group-by

Q3 Q4
0

100

200

E
x
ec
u
ti
on

T
im

e
(m

s)

Join bar shift

Selection Join Group-by Arithmetic
Thrust boost.compute ArrayFire

Figure 6.9: Performance of TPC-H Queries

is equipped with much more cuda cores, a larger data size fits the execution in the
device, and more aggregates are resolved at a given timespan. Overall, we see that
boost.compute performs well with selection operations whereas ArrayFire works well
with group-by aggregation.

We see that with Q1 in Figure 6.9 (c), ArrayFire shows an improved performance
for group-by aggregation compared to other approaches. However, the throughput
profile for Q6 remains the same for the libraries. Still, we see an increase in execution
time for group-by aggregation on Thrust and boost.compute for the device. We
believe such behavior is due to hardware sensitivity during execution. Specifically,
the longer group-by duration is again from the random access to the global memory
while grouping the input. As we have seen in Figure 6.8 for V100, random access to
global memory is a bottleneck, which is also the case with group-by queries here.

6.5. Performance Comparison 89

Join: As we have seen earlier, joins are considerably more expensive than other
database operations when executed using libraries. This is also reflected in the query
results. Almost 90% of the overall time is invested in executing join operations.
Unlike with group-by queries, changing devices reflects in the performance profile
across the libraries. This is again mainly due to the increase in CUDA cores in V100.
Overall, we see that V100 increases the performance by about 10x compared to RTX
2080 Ti. Clearly, we see that libraries are not a suitable solution for executing join
operations. The current solutions in research [158][138] are faster than the naive
library counterparts. However, we also believe this is mainly due to the lack of
support for more sophisticated join algorithms like hash joins and sort-merge joins.

(a) Nvidia RTX 2080 Ti

Q1 Q6
0

5

10

E
x
ec
u
ti
on

T
im

e
(m

s)

Group-by

Q3 Q4
0

1,000

2,000

E
x
ec
u
ti
on

T
im

e
(m

s)

Join

(b) Nvidia V100

Q1 Q6
0

1

2

3

4

E
x
ec
u
ti
on

T
im

e
(m

s)

Group-by

Q3 Q4
0

100

200

E
x
ec
u
ti
on

T
im

e
(m

s)

Join

Selection Join Group-by Arithmetic
Thrust boost.compute ArrayFire

Figure 6.10: Performance of TPC-H queries using inter-library execution

The execution over V100 also has the same performance characteristics as above,
except, Q4 shows differences in execution time compared to RTX 2080 Ti. Here,

90 6. Tier 1: Task Layer - Realizing Standard Primitives

ArrayFire performs poorly compared to other libraries. Again, we believe the
difference in performance arises due to the penalty of random access in V100.

Summary: For group-by queries over RTX 2080 Ti (cf. Figure 6.9 (a), we see a similar
performance across libraries. However, with conjunctive predicates, boost.compute
is the fastest, followed by Thrust and finally ArrayFire. Since conjunctive predicates
in boost.compute and Thrust use bitmaps as intermediate values, the conjunction of
these predicates is considerably faster. However, boost.compute’s better selection
performance for Q1 is compensated by its bad aggregation performance, as we have
already seen in Figure 6.6. However, this is not the case with the V100 device.
Overall, boost.compute is better for queries with conjunctive selections, whereas
for single predicates Thrust or ArrayFire should be used. ArrayFire is better for
group-by operations and, finally, the nested-loops join operation is quite expensive
on all the libraries. Finally, the libraries are also sensitive to the underlying device
(even to the generations).

6.5.3.2 Cross Library Performance

As our final experiment, we evaluate the combined performance of executing TPCH
queries across various libraries. To this end, we evaluate the two TPCH queries Q1
and Q3 as samples for group-by and join queries respectively. The execution plan
considers the best-performing library for the different operators in the query.

From our previous experiments, we identify that selection is best executed with
boost.compute and join & group-by with Thrust. Hence, a reasonable goal is to
enable cross-library execution by using our adapter pattern, which we described
in Section 6.4.2. Additionally, using mixed libraries for execution also introduces
the overhead of translating data from one library format to another. However, this
overhead is negligible, as we switch the logical data format instead of physically
moving the data. The result of TPCH execution with this mixed library execution
is given in Figure 6.10. The overall performance, when compared with the ones in
Figure 6.9, shows a considerable decrease in execution time. A decrease of around
25% for Q1 and Q6 can be observed while for join queries, the improvement is not
that significant due to the overhead of executing joins.

6.6 Summary
GPUs are more often integrated into database processing both academically and
commercially. However, building a system from scratch to support database operators
is highly time-consuming and requires expert knowledge. Therefore, we review differ-
ent expert-written libraries to be used for faster prototyping of a GPU-accelerated
database system. Based on our review, we identify 43 GPU libraries out of which 6
support database operators. From these, we study in-depth the support for DBMS
considering the following three libraries built over CUDA and OpenCL: Thrust,
boost.compute, and ArrayFire. Based on our study, we show that not all database
operators are supported out-of-the-box by these libraries and one requires additional
re-work for operator realization. Our evaluation shows there is no single library that
provides the best performance for all supported database operators. Each of the
libraries has its advantages & disadvantages and their functions must be combined

6.6. Summary 91

in query execution. we see a lack of support for joins from these libraries making
the operator the most time-consuming one. As a final observation, we see a change
in the performance of the libraries across different GPU generations. Based on our
observations, we conclude the following:

• Usefulness: The usefulness of libraries for DBMS is fairly restrictive. Not all
database operations are supported out-of-the-box through these libraries. During
our study, we especially identified hash-based or sort-based joins to be a pain
point, which calls for future work in library implementations.

• Usability: Based on our evaluations, not all library functions are performance
efficient. Apart from the obvious deficiency of joins, the performance of other
operators across libraries varies heavily. Hence, to reach the best performance,
users would need to test all libraries and combine their operators based on the
query. Since interfacing between libraries is still manual work, future work needs
to create a solution for inter-library execution and automatic library/operator
selection.

• Portability: Libraries can be executed across various devices out-of-the-box with
fewer rework. However, our evaluation shows that new devices have a different
performance profile for the same operator. Hence, this poses another challenge
to the library/operator selection problem.

Overall in this chapter, we use our task layer to realize the various primitives. Still,
we cannot directly use these realizations to execute a complete query. For that,
we need a query execution model that dictates the flow of execution to gather the
final results. To define such an execution model, we must first review the existing
ones and understand their internals. Based on this knowledge, we later define our
execution model(s) that are suitable for query execution over an abstract co-processor.
Therefore in the next chapter, we elaborate on the commonly available execution
models for CPU and use their properties to improve their efficiency by developing a
hybrid execution model.

7. Tier 2: Runtime Layer - Developing
an Execution Model

A key for better execution in a query executor is selecting the right execution model.
Hence, we have to define an appropriate execution model for efficient query processing
over any co-processor. However, before we define such an execution model, we must
study the common models currently being used. To this end, we study the execution
models for CPUs, especially the ones used within in-memory systems - compiled and
vector-at-a-time execution.

Since these execution model have unique ways of processing queries, they have their
advantages and disadvantages. In this chapter, we explore these systems and build
the case for a hybrid execution model that merges these two. To achieve this, we
would need a special mechanism to cross over partial results from one execution
model to another. We solve this problem with the use of our primitives defined in the
early chapter. Specifically, we use the pipeline breaker primitives (i.e. hash-probe,
aggregate, and hash-aggregate) to facilitate the switch from vectorized to compiled
execution. These are illustrated in this chapter as well as the overall performance
gain from using our hybrid model.

Parts of this chapter has been based on the following publication:

B. Gurumurthy, I. Hajjar, D. Broneske, T. Pionteck, G. Saake, ”When Vectorwise
Meets Hyper, Pipeline Breakers Become the Moderator”. In International
Workshop on Accelerating Analytics and Data Management Systems Using
Modern Processor and Storage Architectures (ADMS@VLDB),1-10 (2020).

7.1 Introduction
Compiled execution engines (e.g., Hyper) have an execution time close to hand-written
code [132]. However, its faster execution time comes with the overhead of compiling
the given query. Even though the compilation cost is negligible compared to the
query processing time on large datasets, it could be an overhead for small datasets, as

94 7. Tier 2: Runtime Layer - Developing an Execution Model

1 50 100 150 200
0

2,000

4,000

33
7

45
0

2,
07
9

2,
84
1

3,
58
6

E
x
ec
u
ti
on

ti
m
e
(m

s)

5 75

2,
02
7

2,
82
9

3,
69
6

Scale factor

Compile time Compiled execution Vectorized execution

Figure 7.1: Single threaded performance for TPC-H Q6 using vectorized and compiled-
code execution

shown in Figure 7.1. Therefore, it is imperative to address the compilation overhead
to improve query processing performance.

Even with efficient compilation techniques, there is still an idle window between
the time when a query is issued and the start of its execution. Depending on
the complexity of a query, this window can be as high as 100ms [132]. Therefore
to overcome the cost of compilation completely, it is advisable to use interpreted
execution that hides compilation of the query [110]. We follow up on this idea
and hide compilation using an interpretation-based execution engine. A vectorized
engine with its execution processing on cache-resident vectors is a natural candidate
for efficient interpreted execution. Therefore, we focus on hiding the compilation
overhead using vectorized execution.

Hiding compilation cost using a vectorized engine (or rather its operators) requires
partial results of vectorized execution to be forwarded to the compiled execution.
Since compiled execution does not read/write partial results of intermediate operators
in a pipeline, we propose to use their natural materialization points i.e., pipeline
breakers as exchange points from vectorized to compiled execution.

Alternatively, we use the pipeline breakers: aggregation, hash join, and hash aggre-
gation (i.e., group by) for forwarding results from vectorized to compiled execution.
Based on the framework by Kersten et al. [106], we present how to adapt the two
query engines to inter-operate in query execution. Specifically, we show how compiled
execution uses the intermediate results of the vectorized execution engine.

Our approach shows a performance improvement of up to a factor of three by hiding
compilation times and several further interesting details in the result.

In summary, we show that with a pipeline breaker as a connector, we can hide the
compilation cost using vectorized execution. Overall, this chapter elaborates on:

• Tether - a hybrid execution engine that allows for vectorized data processing
while query code is compiled.

7.2. Related Work 95

• Investigation of different pipeline breakers to forward partial results from vector-
ized to compiled execution after the query has been compiled.

• Evaluation analysis of different TPC-H queries and shows significant benefits of
hybrid execution that go far beyond the performance gains of purely compiled
or interpreted (vectorized) execution.

The remainder is structured as follows. First, we review related work in Section 7.2.
Next, we detail the two state-of-the-art execution models in Section 7.3. The features
of our Tether execution model are explained in Section 7.4. We also present in this
section, details of using pipeline breakers as switching points between the execution
models. We conduct several experiments comparing our Tether framework to stand-
alone compiled and vectorized engines using the standard TPC-H benchmark in
Section 7.5. Based on the experimental results, we discuss the key performance factors
and the next steps for our work in Section 7.6. Finally, we draw our conclusions in
Section 7.7.

7.2 Related Work
To improve on LLVM compilation overhead, Kohn et al. [110] interpret the LLVM
IR of a query directly using a custom interpreter. Though similar to us, the work
also blends interpreted and compiled execution but still has to generate the LLVM
IR to execute a query (which takes about 0.7 ms from their measurements). In our
work, we use the query plan and directly execute a query using the pre-compiled
operators. Furthermore, the LLVM IR interpreter is fine-grained containing hundreds
of custom-written operators for efficient processing. Though this is efficient to switch
between the execution modes, they show that the bytecode interpreter is three times
slower than the unoptimized machine code. Our work mitigates this overhead by
using coarse-grained operator implementation.

Another work on improving performance using materialization and vectorization in
compiled execution is explored by Menon et al. [124]. Their relaxed operator fusion
model improves performance by introducing staging points to materialize the results
of intermediate operators in a compiled code engine. Our work can benefit from these
staging points to decide on a more granular level to switch between the execution
paradigms.

Due to execution time being comparable with hand-written code, compiled execution
is widely adapted, our hybrid system can complement these works by improving their
response time [131, 137, 112].

Kersten et al. [106] have built the vectorized and compiled query processing engines
using compatible implementations for a fair comparison of these two processing
models. Their implementation serves as the base for our work.

There are different models present that combine push and pull-based approaches [55,
183]. However, these systems can also benefit from our hybrid technique to avoid
compilation latency.

Other than traditional DBMSs, Spark SQL contains the catalyst optimizer which
supports code generation during runtime [10]. Our work can provide improved
execution time for this system.

96 7. Tier 2: Runtime Layer - Developing an Execution Model

7.3 Preliminaries on In-Memory Execution Models
Query engines are the chassis of a DBMS. All other components revolve around how a
query is being processed. The current DBMS engines can be split into either pull-based
or push-based engines. The more traditional pull-based engine or the volcano model
provides high portability of operations for the cost of materializing all intermediate
data [82]. This penalty of materialization was later improved by the vectorized
processing engine that uses cache resident data to improve performance [196]. A
push-based or code-generation engine avoids such unnecessary materialization of
values by keeping the data within registers as long as possible. However, this
advantage comes at the cost of compilation time [131]. In this section, we detail
these two execution models.

7.3.1 Vectorized Execution

Vectorized processing follows batched execution for query processing. It is an inter-
preted execution engine where each operator consumes a vector of input values for
processing. The size of the vector thereby depends on the cache size of the CPU.
Though the operators work on cache resident data, when it comes to operations like
group-by, aggregation, or hash-join, intermediate data are materialized into the mem-
ory before executing the next operation in the pipeline. This forceful materialization
of partial results leads to poor performance. Apart from its materialization overhead,
vectorized processing also suffers from the overhead of function calls. For example,
a conjunctive selection repeatedly executes selections on each of the columns and
combines the results either using a relaxed selection or a conjunction operation [106].

7.3.2 Compiled Execution

To improve data as well as code locality, a compiled query engine generates code
directly for a given SQL query [131]. In the generated code, database operators are
fused into one pipeline, improving execution time [59]. To facilitate code generation
in this model, producer, and consumer functions are included in these operators.
Since we are compiling operators together before the start of the execution, we can
have arbitrary combinations of input (e.g., a conjunctive selection can be custom-built
for the selection criteria based on the input query).

Though the compiled query execution model provides improved data and code locality
along with faster execution time, it suffers from the overhead of compiling an SQL
query before execution [132]. This compilation time can vary depending on the
underlying compiler. Therefore, a poor compiler might lead to a compilation time
that is higher than the pure execution time of certain queries.

7.4 Tether: A HybridQuery Execution Engine
From the introduction to query compilation, we know that compilation time has an
important impact on performance. To hide the compilation overhead, we propose
to start query execution concurrently with query compilation using an interpreted
query engine. Vectorized execution suits this scenario well with its memory-friendly

7.4. Tether: A HybridQuery Execution Engine 97

interpreted processing engine. Furthermore, vectorized engines have been robust,
well-maintained, and well-established engines for several years now [195]. Hence,
we propose a hybrid engine with both execution models. In the following, we first
present the overall workflow of our hybrid query engine –Tether– and afterward, we
introduce how to switch query execution given the pipeline breakers aggregation,
hash join, and hash aggregation.

7.4.1 Hiding Compilation Overhead With Vectorization

R1

R2

y=3

z;count(*)

z=c

x=7

z=c

P2

P1

P3

P4

next()

next()

count(*), sum(a), max(b)P5

R3

Figure 7.2: A sample hybrid query ex-
ecution plan in Tether using TPCH
Q3

The main task for Tether as the connect-
ing engine between compiled and interpreted
(i.e., vectorized) processing is to take an input
query and transform it into a hybrid query
that is started on the vectorized engine and
finalized on the compiled engine. For a more
detailed description, we use an exemplary
query shown in Figure 7.2. The example
query has: 2 selections, 1 simple aggrega-
tion, 1 group-by aggregation, and 2 equi-
joins, which leads to five possible pipelines
labeled P1 to P5. Given this query, a question
arises: how to do a minimal-invasive switch-
ing between both execution models as they
execute queries differently (cf. Section 7.3).
This makes switching hard since a common
way of handshaking is needed. There are two
important considerations:

we have to decide how and when to share intermediate results between both execution
models. In the following, we answer the how by using pipeline breakers and the when
after finalizing the currently processed vector.

Pipeline Breakers as Switching Points

A vectorized engine materializes intermediate results after each operator. However,
these intermediate results cannot be simply shared with a compiled query at an
arbitrary point in the query pipeline. This is because compiled execution, as a
push-based model, does not consume/materialize intermediate data explicitly from
every single operator.

One exception to the no-materialization rule of compiled execution is a pipeline
breaker [132]. Pipeline breakers force compiled execution to materialize their in-
termediate values into memory (marking the end of the pipelines P1 to P4) before
executing the next operator of the pipeline. Hence, the key idea of our hybrid pro-
cessing model is to use these natural materialization points of a query for switching
between vectorized and compiled query execution. From the TPC-H benchmark,
we have identified three pipeline breakers commonly present in a query that are
useful in connecting vectorized execution with compiled execution: aggregation, hash
aggregation (i.e., group-by), and hash join. Hence, by implementing a common data
structure for these operations, we can easily switch execution from vectorized to
compiled execution.

98 7. Tier 2: Runtime Layer - Developing an Execution Model

Inter-Pipeline Switching

With pipeline breakers at both ends of a pipeline, our hybrid processing engine
processes at least one pipeline of a query partially using vectorized execution. In our
example query from Figure 7.2, this is P1, which materializes results in a hash table
for each vector. However, depending on the compilation overhead and the input size,
more than one pipeline might be processed by vectorized execution. Hence, we have
to compile the pipelines such that their processing can start at any pipeline breaker.

When vectorized execution hits a pipeline breaker and the compilation is done, a
switch can happen. The intermediate results processed by the vectorized execution
are then materialized and forwarded to the compilation execution. This provides
minimal waiting time for compiled execution after the compilation is finished.

Tether’s Workflow

The general workflow of our hybrid execution system Tether consists of three phases
as given in Algorithm 2. First, we start by compiling the pipelines for compiled
execution (CmplPipeline) using a compiler thread. The thread adds the instructions
for merging the partial results of vectorized execution to the corresponding pipeline
before compiling them. Once compiled, the thread sets the CompilationDone flag
as TRUE.

Second, while compiling, we execute the vectorized operations in the pipeline P1, which
processes values until the following pipeline breaker. In the running example, we ma-
terialize the hash table built for the join operation (z = c). Additionally, the current
index of the input scanned from relation R1 is also remembered (ProcessedData) so
that the compiled execution can continue building the partial hash table of vectorized
execution.

Finally, once the CompilationDone flag is set, we interrupt the vectorized execution,
forward the pointers of the hash table and relation R1 plus the index of already-
processed tuples to compiled execution. Afterward, the compiled execution finishes
the materialization of the pipeline breaker values based on the current shared index
and continues with the next pipelines (P2 to P5) producing the final result.

Algorithm 2: Tether execution flow.

Data: CmplPipeline,VecPipeline
Result: result

1 bool CmplDone = FALSE;
2 func* CmplFunc = CmplThread.spawn(CmplPipeline);
3 VecPipeline→PipelineBreaker.open();
4 ProcessedData = 0;
5 do
6 ProcessedData += VecPipeline.start.read();
7 VecPipeline→PipelineBreaker.materialize();

8 while (!EndOfStream & !CmplDone);
9 CmplFunc(VecPipeline→PipelineBreaker.data, ProcessedData);

7.4. Tether: A HybridQuery Execution Engine 99

In the following sections, we detail how each pipeline breaker is realized in the two
paradigms and how they are executed in our hybrid execution engine Tether. We
base the operator implementations of the three pipeline breakers on those from the
framework of Kersten et al. [106], as they have proven to be a sophisticated baseline
for both models.

7.4.2 Switching via Direct Aggregation

Direct aggregation is the least challenging of all the pipeline breakers we have
considered. The aggregate results are computed after a single pass over the input
columns. Hence, while switching, only partial results might have been processed
by vectorized execution. Hence, we have to forward these partial aggregates from
vectorized execution along with the last processed index to compiled execution for
continuing aggregation. Notably, a query can have more than one independent
aggregation to be computed, resulting in multiple partial results being forwarded
from vectorized to compiled execution. Such a query with multiple independent
aggregates (e.g., TPC-H Q1 without group by clauses) is computed differently by
vectorized and compiled execution.

Compiled Aggregation

Compiled execution generates a custom aggregation function to aggregate all column
inputs simultaneously. Therefore at any given instant, as depicted in Figure 7.3(a), all
tuple values of the respective columns (a & b in the figure) are read and aggregated
one after another. At any point in time, we obtain the partial results of all the
independent aggregates (count(*), sum(a), max(b)). For example, the aggregates
in the pipeline - P5 of Figure 7.2 will be computed together.

a

A
gg

re
ga

te
 (

1
-

3)

b

count(*)

sum(a)

max(b)

time

(a) Compiled execution

a Agg_count()

Agg_sum()

Agg_max()

time

a

b

count(*)

sum(a)

max(b)

(b) Vectorized execution

Figure 7.3: Direct aggregation with execution models

Vectorized Aggregation

In contrast to compiled execution, vectorized execution aggregates one vector at a
time. Therefore, for our running example, partial aggregates will be produced for
each processed vector creating the currently aggregated count(*), the aggregated
sum(a) as well as the aggregated max(b) as shown in Figure 7.3(b).

100 7. Tier 2: Runtime Layer - Developing an Execution Model

Hybrid Aggregation

Connecting the execution paradigms using aggregation requires that the partial
results from vectorized execution can be forwarded to compiled execution. Since
compilation can be ready at any point during vectorized execution, predicting the
exact number of independent aggregates computed by vectorized execution is a
complex task. Instead, our idea is to simply update these partial results in compiled
execution. To this end, we add the information about the current column and its
last visited index along with the partial aggregates. Figure 7.4 shows the partial
aggregates (p_count, p_sum, p_max) of vectors (in green) computed. These partial
aggregates are the input for the compiled execution engine, which updates them with
the aggregates of the remaining input in a tuple-at-a-time fashion.

time

A
gg

re
ga

te
 1

 -
 3

p_count

p_sumAgg_sum()

p_maxAgg_max()

count(*)

sum(a)

max(b)

Agg_count()

a

b

a

a

b

Compilation finished

Figure 7.4: Hybrid aggregation.

7.4.3 Switching via Hash Join
A hash join breaks a pipeline by materializing input values into a hash table. Once
the hash table is built, it is probed by the next pipeline for join pairs. In our
hybrid engine, the hash join becomes the connector between the execution engines.
To make the hash join compatible across these paradigms, we keep the same hash
table implementation as well as the same hash function. This is mainly to have a
common set of methods to insert and probe a key within the hash table. Since the
execution switches from vectorized to compiled execution, the hash function that
favors efficient processing in compiled execution is chosen. Such a suitable hash table
and hash function combination are shown to be chained hashing with the CRC32
hash function [106]. Even though we have common techniques across the execution
engines, we still have variations in the way the runtime populates the hash tables to
have the best performance.

In the following, we explain the two possible states that exist when switching from
one engine to the other. In the first possible state – i.e., a hybrid hash build, the
build phase is only partially done by vectorized execution when compilation finishes.
Compiled execution follows up by building a separate hash table for the remaining
tuples. The separation of hash built between the engines is to avoid any unnecessary
penalties of populating a vectorized hash table in compiled execution. The main issue
here is that the engines populate the hash tables differently. On the one hand, threads
in hyper cooperatively populate a single hash table. On the other hand, threads in
the vectorized engine populate their private hash table first followed by a global merge
step. In the second possible state – i.e., a hybrid hash probe, vectorized execution
has already finished building the hash table, and now the compiled execution probes
the hash table.

7.4. Tether: A HybridQuery Execution Engine 101

Hybrid Hash Build

During switching, the vectorized execution might have only built a partial hash table.
Inserting into vectorized hash tables from compiled execution is not efficient. In
this case, compiled execution first reads the remaining tuples aggregating them in a
separate hash table.

From our example query in Figure 7.2, considering the switching point is at the join
R1.z = R3.c, R1.z column values are present in two different hash tables. Once built,
both hash tables (the vectorized and compiled hash table) will be probed (on R3.c
from our example) for each tuple. Therefore, compiled execution must include code
to probe the hash table of vectorized execution to find join pairs.

Hybrid Hash Probe

if (ht . conta in s (o orderkey [i]) && (
↪→ name = ht1 . findOne (o custkey [
↪→ i]))) {

e n t r i e s . emplace back (. . .) ;
}

Listing 7.1: Compiled hash probe

Vectorized execution, due to its working
granularity of a whole vector, requires a
sequence of steps for hash probing. First,
the hash values are computed for input
vectors. Next using the hash values, the
target match locations for vectors are
identified. Finally, the values in the tar-
get locations are compared to identify join pairs. We circumvent these steps in
compiled execution by directly computing the hash value of a given key and probing
through the table using the traversal functions of chained hashing.

/* hybrid Code */

if (ht . conta in s (o orderkey [i]) {

// Vectorized probe

runtime : : CRC32Hash h1 ;
u in t64 t output = h1 (o custkey [i]) ;
for (auto entry = vwHT. f i nd cha i n (output) ; entry !=runtime : : Hashmap : :

↪→ end () ; entry = entry−>next) {
if (entry−>o custkey == o custkey [i]) {

e n t r i e s . emplace back (. . .) ;
}

}

// Compiled probe

if (ht0 . conta in s (o custkey [i])) {
e n t r i e s . emplace back (. . .) ;

}
}

Listing 7.2: Hybrid hash probe
The inclusion of the additional probe steps of the vectorized hash table increases
the lines of code compared to the naive code given in Listing 7.1. In Listing 7.2, we
depict all hybrid probing steps. For every input key, we first look into the partial
hash table of the vectorized engine followed by probing the remaining values in the
hash table of the compiled engine.

102 7. Tier 2: Runtime Layer - Developing an Execution Model

7.4.4 Switching via Hash Aggregation
The final pipeline breaker that we consider in our work is a hash aggregation (z;
count(*) in running the example). Like the hash join, a hash aggregation does two
passes over the input data for computing the results.

In the first pass, the input is hashed and values are grouped in the hash table. In the
second pass, the aggregates for each of the groups are calculated. Furthermore, with
multi-threaded execution, each thread has to do these two passes plus an additional
merge stage, which is necessary to aggregate the partial results from all threads.

Hybrid Hash Aggregation

To connect vectorized with compiled execution, we have to forward the partitioned
group values from vectorized to compiled execution to aggregate them. Since hash
aggregation follows a similar execution of hash join, the compiled execution also starts
with building its hash table for the remaining input values along with aggregating
them. Finally, once the results for compiled execution are ready, we update them
with the partial results from vectorized execution. Additionally, in the case of multi-
threaded execution, compiled execution also takes care of merging the partial results
from all the individual threads of vectorized execution.

7.5 Experiments
In this section, we compare the performance of our hybrid system Tether with a
stand-alone compiled and vectorized execution for different data sizes and present
our observations. To this end, after a short introduction of the experimental setup,
we first discuss the incurred compilation overhead due to our added switching points
(e.g., from Listing 7.2). Afterward, we investigate the benefits and drawbacks of
Tether on simple and complex queries with several pipeline breakers.

7.5.1 Experimental Setup
We conduct our experiments on an Intel® Xeon® Gold 6130 CPU. The machine
runs an Ubuntu 18.04. with CLANG version 6.0. For our execution, we parallelized
the queries using 16 threads.

Comparable Implementations

As mentioned earlier, the compatibility of data structures and operator implemen-
tations between compiled and vectorized execution is a key factor for our system.
To this end, we use the operator implementations of Tectorwise and Typer with
their common data structures21. Our Tether as a hybrid engine uses the vectorized
operator implementations of Tectorwise and the compiled pipeline implementations
of Typer and adds custom code for the switching points. The stand-alone engine
of Typer does not contain direct code generation or compilation. Hence, we also
directly compile the LLVM code of a target query and link it with our execution in
runtime, and record the time as compilation time. To this end, we use clang 6.0 for
compilation (with the -O3 flag) and for building the machine code. Similar to Hyper,
we consider only the time taken to compile the code for our experiments.

21https://github.com/TimoKersten/db-engine-paradigms

7.5. Experiments 103

Workload Description

We use the TPC-H benchmark with scale factors ranging between 100-200 and its
queries Q1, Q3, Q6, and Q18 for our experiments. These queries specifically contain
the different pipeline breakers that we discussed earlier in the exemplary query plan.
we use the query plan of compiled execution for our execution 22. For the comparison,
we measure the execution time for our system and compare it to the runtimes of
vectorized and compiled executions. Please note, we always include compilation
times into the reported execution times of compiled execution and our hybrid system.

Experiments

From the selected TPC-H queries, we derive three important experiments that show
the benefits and drawbacks of our hybrid engine Tether. In the first experiment, we
are interested in the additional compilation overhead due to our compiled switching
points that add extra code to the compiled engine. In the second experiment, we
investigate simple queries like Q1 and Q6 that contain a single pipeline and compare
Tether’s performance to the performance of the other two standard execution engines.
Since these two queries have rather small and short pipelines, switching between both
models should add considerable overhead, and we are interested in whether we can
still benefit from hybrid execution. In the third experiment, we look at queries with
several pipeline breakers, i.e., Q3 and Q18, and investigate good switching points for
Tether in order to outperform single-engine performance.

7.5.2 Hybrid Compilation Overhead

Since Tether includes additional compiled code to merge the partial results of its
vectorized engine into its compiled engine, we first investigate the resulting overhead
for compiling the queries at the first pipeline breaker. Subsequently, we investigate
how the compilation time changes when compiling the query more cleverly at later
pipeline breakers.

Assessing Compilation Time

The TPC-H queries we presented above have different pipeline breakers in their initial
pipelines: Q1 contains hash aggregate, Q6 has a direct aggregation and Q3 & Q18
use hash joins. The comparison of compilation times for naive (i.e., Typer), hybrid
(i.e., Tether’s compilation time when the vectorized engine runs concurrently), and
hybrid without any concurrent execution for these queries are depicted in Figure 7.5.
We use a single thread for compilation and use clang for compiling the C++ pipeline
code23. We see that concurrent processing has a minor impact on the compilation
time, and this is mainly due to the overhead of handling the compilation thread. We
can also see that the overhead of compiling code with additional merge instructions
is between 14ms to 42ms. The worst compilation time is recorded for Q1 or in
other terms for merging results of the hash aggregation. This is mainly due to the

22Plans provided by hyper-DB interface: https://hyper-db.de/interface.html
23Our experiments have shown that, of course, different compilers will lead to different compilation

times. However, the ratio of compilation times between the stand-alone and hybrid engines is
always the same.

104 7. Tier 2: Runtime Layer - Developing an Execution Model

additional aggregation step required to merge the partial aggregates of vectorized
execution with the aggregates of compiled execution. Furthermore, due to parallel
execution, we have multiple partial results from vectorized threads which have to be
merged with the results of compiled threads.

On the other hand, Q6 (i.e., direct aggregation) leads to the smallest compilation
overhead. In this case, we simply perform one additional aggregation step to merge
the results of compiled execution with vectorized execution. The merge of the
remaining queries (Q3 and Q18) simply includes the probe instructions of vectorized
execution along with the probing of compiled execution, which incurs only a small
overhead for compilation.

Although we have additional costs for compilation, we will in the following hide the
compilation totally with vectorized execution. Furthermore, depending on the data
size and pipelines in a given query, vectorized execution might process more than one
pipeline before we finalize compilation. Therefore with such workloads, we refrain
from compiling the pipelines that are completely processed by vectorized execution.
This reduces the overall execution time from the naive compilation of a complete
query.

Q1 Q3 Q6 Q18
0

500

1,000

1,500

C
om

p
il
at
io
n
ti
m
e
(i
n
m
s)

a) Overall compilation time

Stand-alone Hybrid Hybrid (NC)

Standalone HJ1 HJ2 HA
0

500

1,000

C
om

p
il
at
io
n
ti
m
e
(i
n
m
s)

b) Impact with merge points

Stand-alone Hybrid

Figure 7.5: Stand-alone vs. hybrid compilation time.

Compilation Time Comparison of Pipelines With Partial Merge Instructions

To understand the impact of compiling only partial pipelines of a query, let us
consider the pipelines of Q3. In total there are three pipelines and pipeline breakers
in the query: two hash joins (HJ1, HJ2) followed by a hash aggregation (HA) before
producing the results. By using these different pipeline breakers as the switching
points, we incur different compilation times. The compilation time w.r.t. the different
pipelines for Q3 is given in Figure 7.5. By compiling partial pipelines, we outperform
the naive compilation significantly leading to better exploitation of compiled query
performance. However, this in turn means that we have to delegate a complete
pipeline to vectorized execution. Hence, the question that we want to answer
in Experiment 3 is: which of these pipelines provide the best trade-off between
compilation time and vectorized execution.

7.5. Experiments 105

7.5.3 Single-PipelineQueries

(a) TPCH-Q1

100 110 120 130 140 150 160 170 180 190 200
500

1,000

1,500

HC SC

Scale factor

E
x
ec
u
ti
on

ti
m
e
(i
n
m
s)

Performance of execution models

100 110 120 130 140 150 160 170 180 190 200
0

50

100

Scale factor%
of

in
p
u
t
d
at
a
p
ro
ce
ss
ed Processing split across models

(b) TPCH-Q6

100 110 120 130 140 150 160 170 180 190 200
0

200

400

600

800

1,000

HC
SC

Scale factor

E
x
ec
u
ti
on

ti
m
e
(i
n
m
s)

Performance of execution models

Hybrid execution Compiled execution Vectorized execution

Hybrid compile time (HC) Stand-alone compile time (SC)
Vectorized Compiled

100 110 120 130 140 150 160 170 180 190 200
0

50

100

Scale factor%
of

in
p
u
t
d
at
a
p
ro
ce
ss
ed Processing split across models

Figure 7.6: Execution profile for single-pipeline queries

In this experiment, we compare the execution times of our hybrid system with the
stand-alone compiled and vectorized execution engine for single-pipeline queries.
We chose queries Q1 and Q6 because they have only a single pipeline to process.
Therefore, we have only one possible merging point, i.e., we merge the partial results
of vectorized execution into the partial ones from compiled execution for the complete
query. For these queries, a high compilation time would lead to the circumstance that
vectorized execution processes the input data completely before we could switch the
processing engines. Such characteristics are visible in the results for the queries in
Figure 7.6. In Figure 7.6(left), we compare the runtime of the three different engines
for different scale factors of the TPC-H benchmark. Furthermore, we depict the
compilation time for all queries, which is rather stable across different scale factors.
In Figure 7.6(right), we break the execution time of Tether down to show the ratio
of processed tuples in the vectorized engine compared to the remaining tuples that
are processed with the compiled engine of Tether.

106 7. Tier 2: Runtime Layer - Developing an Execution Model

Due to the compilation time, we see that the switching points for the queries in
Figure 7.6(a) & (c) are around scale factor 140 and 160, respectively. As expected,
our system follows the performance of vectorized execution until the switching point.
After the switching point, it is clearly visible that our hybrid system deviates from
vectorized execution due to an increased fraction of tuples that are processed in the
better-performing compiled engine. For Q1, the change in performance is slightly
affected by the additional merge step. However, this additional impact is negligible
considering the data shared among the two systems. We see from Figure 7.6(b)
that even with processing only 30% of data in the compiled engine, we already
outperform both engines. A similar case can be also seen for Q6 (cf., Figure 7.6(c)).
Since, it is a comparatively simple query, compiled execution processes only up
to 20% for the chosen scale factors of input data at the moment. However, with
increasing the scale factor, the amount of data processed by compiled execution will
also increase and, hence, improve Tether’s performance. Since only a fraction of the
total input is processed by compiled execution after the cut-off point, our execution
time improves accordingly. Overall, our Tether approach is 2.3 times faster than
stand-alone compiled execution and 1.2 times faster than vectorized execution after
the cut-off point. Now that we have seen the performance of single pipelines, we
experiment on the impact of several switching points in a query in the next section.

7.5.4 Informed Switching Points
Queries with multiple pipelines require a closer look for selecting the right switching
point. To better analyze the importance of the switching points, we show the
performance difference of Q3 executed with all possible switching points in Figure 7.7.

100 110 120 130 140 150 160 170 180 190 200

1,000

2,000

3,000

HA

HJ2
HJ1

SC

Scale factor

E
x
ec
u
ti
o
n
ti
m
e
(i
n
m
s)

a)Performance of execution models

Hybrid execution - Hash aggregate Hybrid execution - hash join 1 Hybrid execution - hash join 2

Compiled execution Vectorized execution HA compile time

HJ2 - compile time HJ1 - compile time Stand-alone compile time (SC)

Hash join 1 Hash join 2 Hash aggregation

100 110 120 130 140 150 160 170 180 190 200
0

50

100

Scale factor

%
ti
m
e
sp

en
t
p
er

p
ip
el
in
e

b)Impact of pipelines

Figure 7.7: Illustrating the impact of switching points using TPCH-Q3.

As discussed, Q3 is composed of three pipelines. Therefore, depending on the
data size, vectorized execution could have finished some of the pipelines before
compilation was complete. By injecting the switching point at the hash join, we see
that we are either worse than or on par with the stand-alone compiled performance.
This shows two implications: 1) a hybrid hash probe in the compiled engine of
Tether incurs a performance penalty, and 2) the vectorized engine of Tether is not

7.5. Experiments 107

completely busy until the compilation has finished. To have a better picture of the
most performance-critical pipeline, we measured the execution time for individual
pipelines and presented them in Figure 7.7(b). We see that 60% of Q3 is spent on
the final pipeline (i.e., the hash aggregation). Using this pipeline as the switching
point, we see a drastic improvement in performance. Since hash aggregation is the
final pipeline in Q3, the execution characteristics are similar to those of Q1 and
Q6. When compilation takes longer than vectorized execution, Tether follows the
performance of vectorized execution. However, if the compilation finishes before
vectorized execution, Tether outperforms the performance of vectorized execution
due to compiled execution. Thus, similar to the case of Q1 and Q6, our overall
improvement by Tether is about a factor of 2 compared to compiled execution and
1.5 to vectorized execution after the cut-off point.

100 110 120 130 140 150 160 170 180 190 200
0

2,000

4,000

HC SC

Scale factor

E
x
ec
u
ti
o
n
ti
m
e
(i
n
m
s)

a)Performance of execution models

Hybrid execution Compiled execution Vectorized execution

Hybrid compile time (HC) Stand-alone compile time (SC) Vectorized

Wait Compiled

100 110 120 130 140 150 160 170 180 190 200

40

60

80

100

Scale factor

%
of

ti
m
e
sp
en
t

b) Merge points vs data size

Figure 7.8: Illustrating wait time while switching using TPCH-Q18

As a final and most challenging query, we investigate Q18 with 5 pipelines to show
the impact of changing the switching points between the engines. From Figure 7.8(a),
we see that even with less than scale factor 100, compilation time is less than the total
execution time of vectorized execution. Hence, during the transition from vectorized
to compiled execution, Tether processes only a partial result of some internal pipeline.
This connection pipeline, similar to that of Q3, has to be identified.

With compilation time being static for all the datasets, depending on the data size,
vectorized will be processing a different part of the query pipeline (the bigger the
amount of input data, the fewer pipelines have been already processed at the time of
switching). Below are the different pipelines available within Q18:

1. Build customer hash table

2. Group by lineitem

3. Build lineitem hash table

4. Probe orders over customer and lineitem tables and build the final table

5. Probe lineitem and compute aggregates

108 7. Tier 2: Runtime Layer - Developing an Execution Model

Out of these, the first pipeline on the customer table has only a few values to process.
Therefore the second pipeline with grouping of the lineitem table is taken as our
cut-off pipeline-breaker. The execution of this query plan shows that we have the
performance improvement from both engines only after SF 160. To better understand
the impact of the switching points, we depict the percentage of time spent on each
of the execution engines in Figure 7.8(b).

For scale factors 100 to 150, vectorized execution is able to process its given pipeline
completely before the hybrid query is compiled. Therefore for these scale factors, we
have a worse execution time than vectorized execution. With an increasing data size,
this gap reduces as vectorized execution has to process more data.

One way to reduce the wait time is to move the switching point to the next pipeline,
i.e., building the hash table of the lineitem table. However, this will not be an optimal
choice. The subsequent pipeline, i.e., the order’s probing pipeline, probes over both
the built hash tables of lineitem aggregates and customer from vectorized execution.
With the first three pipelines executed by vectorized execution, compiled execution
has to issue another probe call to the built customer table as well as a partially built
lineitem table. These probe calls, as the results of Q3 show, are way too expensive.
Hence, we keep using the second pipeline breaker as a switching point. Thus, with a
penalty of smaller wait times, our Tether execution outperforms compiled execution
by a factor of 1.5. Once we bridge the execution gap, we outperform vectorized
execution by a factor of 1.2.

In summary, complex pipelined queries require a complete analysis to decide on
the right switching points. Therefore, such queries could benefit from an optimizer
providing these switching points during runtime. We consider this as our future
work.

7.6 Discussion

From our experiments, we show that our approach has achieved the overall best
execution time. Our system is the fastest or it is on par with the execution time
of vectorized execution, which completely hides the compilation time. On average,
we are three times faster than the combined execution time for compilation and
compiled query execution. We also outperform vectorized execution after switching
to compiled execution by up to a factor of two for bigger datasets. Based on the
results, we have the following observations and discussion points:

Hiding compilation: An overall positive result of our experiments is that Tether
effectively hides compilation time. Hence, since starting the processing concurrent
with compilation reduces the overall amount of data to be processed, the overall
performance of Tether is above the performance of stand-alone systems.

Merging overhead : Despite the impressive performance of Tether, its main drawback
is the inclusion of an extra merging step in the pipeline breaker. This leads to a some-
times increased compilation time and adds a processing overhead to Tether’s compiled
execution engine. Such overhead is visible in the performance difference between
stand-alone compiled versus Tether’s compiled execution in Q1 (cf., Figure 7.6(a)).

7.7. Summary 109

Hence, one significant optimization space is the development of efficient merging
strategies, that allow both engines to handshake more efficiently on switching.

Furthermore, especially when using the hash probe as a switching point, it is visible
that the functional invocation of vectorized primitives inside compiled execution
affects performance negatively. Therefore, important future work is to implement
custom pipeline breakers that can be optimally executed in vectorized execution and
read without overhead within compiled execution.

Performance critical pipelines : Another observation from Q3 is that different pipelines
contribute to a different extent to the overall execution time. Pipelines that are
composed of complex operators and process a large input dataset are promising for
being started in vectorized execution. By identifying these pipelines and sharing
their results, we can improve the overall performance significantly.

Selection of the right pipeline breaker : For the best performance of our hybrid system
Tether, an optimal switching point is required. Such an optimal switching point is
present at the cross-point of the performance impact of vectorized processing of the
input query, input data size, and compilation time. Hence, vectorized execution may
process more than one pipeline. As a consequence, an optimizer should choose the
right pipeline breaker to switch between both engines of Tether.

Data size vs. compilation time: For datasets with considerably smaller data sizes,
vectorized execution might complete processing the workload before compilation
finishes. In this case, it is not beneficial to start compilation. Therefore, the query
optimizer should decide on the right execution model based on the input sizes and
the query compilation time.

7.7 Summary
In this chapter, we aim to solve the biggest pain point of compiled execution:
compilation times. To this end, we investigate whether its competing query engine,
a vectorized engine, can help in effectively hiding compilation times. This leads to
our hybrid engine Tether which starts query processing in its vectorized engine and
after compilation is finished, continues query processing in its compiled engine.

For switching between the execution paradigms, we use pipeline breakers as a natural
switching point. We realize such a data sharing between the execution engines using
the pipeline breakers: aggregation, hash aggregation, and hash join operators.

From our results, we show that by switching from vectorized to compiled execution
we reach the best performance compared to both, vectorized and compiled execu-
tion. Hiding compilation time using vectorized execution can improve performance
by up to a factor of three compared to stand-alone vectorized or compiled query
performance. Therefore, our Tether framework shows that query processing can
be significantly improved when combining the features of the two state-of-the-art
approaches. However, our results also show that choosing the right pipeline breaker
for switching between the engines is of significant importance. Hence, the query
optimizer has to be extended in future work to incorporate these design decisions.

110 7. Tier 2: Runtime Layer - Developing an Execution Model

Thus, in this chapter we investigate the two popular execution models to adapt them
for our cross-device execution. However, these models have inherent disadvantages
which can be solved with a hybrid model. Still, this solution is tailor-made for CPU-
based systems and cannot be easily extended to a cross-device system. Specifically,
we are at a disadvantage in supporting compiled query execution for any co-processor
(for example: compilation time for FPGA is very poor). Similarly, we are also at
a disadvantage with co-processors in terms of available on-chip memory. Usually,
these memory spaces are quite limited and do not hold a complete database (more
explained in the next chapter). Hence, we explore a solution that considers these
problems while supporting query execution over an abstract co-processor. Such a
runtime is discussed in the next chapter.

8. Tier 2: ADAMANT – A Pluggable
Query Executor

Thus far, we have looked into primitives, their use in isolating functions, and existing
execution models. However, to develop a complete co-processor pluggable query
engine, we need to combine these two along with a pluggable interface for co-processor
drivers. In this chapter, summarize the solutions so far, and extend them to have a
complete pluggable query engine. Specifically, we use the primitives as the means for
plugging operators and the existing execution models to develop various execution
models. Parts of this chapter has been based on the following publication:

B. Gurumurthy, D. Broneske, G. C. Durand, T. Pionteck and G. Saake, ”ADAMANT:
A Query Executor with Plug-In Interfaces for Easy Co-processor Integration,”
IEEE 39th International Conference on Data Engineering (ICDE), Anaheim,
CA, USA, 1153-1166(2023)

8.1 Query Executor On Co-Processors - A Primer
Turning to co-processors, there is now a broad consensus that these diverse domain-
specific processors are here to stay and many new ones will be available in the market
shortly. For example, the prominent co-processor - GPU - has many supporting
SDKs, both hardware-sensitive as well as hardware-oblivious. We have already seen
this in Chapter 6, where we list a plethora of libraries written for GPUs. We could
see such a trend branching towards other co-processors as well. New generation
CPUs with SIMD acceleration [41, 142] and FPGAs with query execution in line-rate,
and most importantly with good SDK support for these co-processors (OpenCL,
OneAPI, CUDA, Verilog, etc.), has renewed the interest in co-processor acceleration
for query execution. Such a problem poses a new challenge: frequent adaptation of
query executors24 for the different SDKs (on top of the co-processors). With various
combinations of co-processors and SDKs, it is often the case that engineers have

24We define the query executor as the component handling the execution of a query, which calls
the kernels to be executed and is responsible for data provisioning on the processing devices.

112 8. Tier 2: ADAMANT – A Pluggable Query Executor

to develop multiple versions of query executors. This is challenging, as with every
SDK, the existing query executor has to be updated. As we briefly addressed in
Chapter 2 (See Figure 2.6, a query executor can be extended with co-processors in
two ways [91]: 1) using hardware-oblivious SDKs or 2) using hardware-aware SDKs.
The former is portable across SDK but has poor performance; whereas, the latter
offers good performance with high re-work cost. Though both these approaches
are valid, as the co-processor landscape gets broader with different accelerators, the
disadvantages in these approaches are ever more noticeable. Therefore, we need a
query executor that is extensible while not compromising performance. hence, we
propose a unified query executor – ADAMANT – that supports the free plug-and-play
use of any SDK/co-processor, without reworking the execution modules (like the one
in Figure 8.1).

HW Sensitive SDK

XXX SDK

DB Operators

Device

HW Oblivious SDKHW Sensitive SDK

Query Execution Engine
DB OperatorsDB OperatorsDB Operators

Figure 8.1: A common pluggable executor for any type of SDK.

To realize the functionality of ADAMANT, we add to the characteristics of the
primitives, two additional concepts: a set of device-pluggable interfaces and a unified
runtime. These parts address two key challenges. 1) Multiple implementation
alternatives: With multiple SDKs per co-processor (e.g., a GPU has OpenCL,
CUDA, oneAPI, etc.), one has to capture multiple versions of database operations.
In addition, there may be multiple versions for an algorithm with a single SDK
specialized for a specific workload (c.f. Chapter 6). Here, the device-pluggable
interfaces define signatures for database operators so that any new implementation
can be plugged into the system. Using the interfaces, we can freely couple any SDK
together with its operator implementation. 2) Handling co-processor execution:
With each co-processor, a runtime has to manage the data transfer across the device,
as well as the execution itself. These functionalities are highly SDK dependent,
such that updating SDK calls for one device might affect the functionalities for
another. We overcome this challenge with a unified runtime that supports abstract
execution models. These models handle query execution over any co-processor that
is plugged in. Additionally, the models support larger-than-memory data sizes,
i.e., processing data that does not fit completely in the co-processor memory. We
implement a chunked execution model to transfer data without putting pressure on
device memory.

The novelty of our approach can be considered by seeing existing related approaches
that support co-processor acceleration with varying degrees of extensibility [14,

8.2. Related Work 113

76]. Even though these systems support execution over heterogeneous processors
(providing scheduling, data placement, etc.), their support for query execution is
limited. Unlike these, our unified runtime expresses execution models that support
query execution on arbitrary co-processors. Overall, in this paper, we architect
a pluggable query engine to couple a new co-processor or API with an existing
co-processor without reworking the complete query engine. Our main results and
contributions are as follows.

• A query executor that supports easy operator and device plugin

• Alternative execution models for co-processor acceleration, that include operator-
at-a-time, chunked execution, pipelined execution, and 4-phase pipelined execu-
tion.

• An experimental study with two heterogeneous processors (CPU, GPU) and
three different API implementations (OpenCL, OpenMP, and CUDA) shows the
versatility as well as shortcomings of our query executor.

The remainder of this chapter is structured as follows. First, in Section 8.2, we provide
further context to our study by reviewing related work. Next, we present the necessary
background for co-processor accelerated query processing (Section 8.3). In Section 8.4,
we present the different tiers in our query execution engine and list available interfaces
that enable the pluggability of co-processors. Next, in Section 8.5, we explain the
different execution models incorporated in the runtime. Section 8.6 covers the details
of our experimental study of ADAMANT, with various heterogeneous operator
implementations. Finally, we conclude this chapter in Section 8.7.

8.2 Related Work

In this section, we compare our approach with other existing techniques for co-
processor acceleration.

Query engines over co-processors - Based on the underlying co-processor capability,
many DBMS systems have been developed [37, 67]. Most prominently, various
query engines are available for CPU-GPU coupled systems: Systems like GDB [87],
Ocelot [91], CoGaDB [35], OmniDB [192], Saber [111], works in SQLite by Bakkum
et al. [15] and many more (BlazingSQL, PG-Storm, etc.) [51] are examples of DBMS
engines over GPU. Similar works on DBMS over FPGAs include work by Ziener et
al. [194], DoppioDB [166], dbX [164], AxelDB [159]. Additionally, query engines also
exist over emerging co-processors like TPUs [93], and tensor cores [96]. These systems
focus on optimal execution over the underlying co-processor, and they need extra
support in terms of portability. Our system supports such extensions with its plugins.
Components from all these systems, mainly operator implementations and device
drivers, can be freely interchanged in our ADAMANT system and make use of the
scalable execution models. Further, one can also combine operator implementation
across these systems together, as well as link them to an optimal device driver for
improved query execution.

114 8. Tier 2: ADAMANT – A Pluggable Query Executor

Cross-device execution models - Recent works like HAPE [50], HetExchange [49],
Fluidic co-processing [83], work by Lutz et al. [121] explore an optimal query execution
model of running GPU in tandem with CPU. Unlike these, our work focuses on
execution models for processing over only co-processors.

Other than DBMS engines, there are also abstract runtimes that support general-
purpose processing over a co-processor. Popular systems like StarPU [14], fluidic
kernels [135], elastic computing [186], Kokkos [61], DAGuE [33], Parsec [32] support
cross-device execution. However, these systems are not aware of the DBMS workload.
Ours complement these with primitives and execution models to be DBMS conscious.
Still, our ADAMANT can benefit from concepts in these systems to have an improved
execution over a co-processor.

Task model and query compilers - Finally, As mentioned previously, we extend the
definitions of our primitives based on existing works. Some such works we closely
relate to are Hawk [39], work of He et al. , Voodoo [140], HorseQC [73]. These
systems can be integrated into our ADAMANT system given the proper primitive
signatures are maintained.

Other than these, many works have a layered architecture for extensible query
processing environments such as He..roDB [129] which also supports co-processor
acceleration, Apache calcite [21], that extends pluggable interface for any data
sources. Overall, ADAMANT varies from the existing works in terms of enabling
a co-processor pluggable query engine with a pre-existing abstract query execution
model.

8.3 Diversity in Programming Abstractions
Before we dive into our execution engine implementation, we quickly summarize
co-processor acceleration and programming abstractions once again. We use this
knowledge to develop our suitable query engine in later sections. Today, co-processors
are being deployed across various domains (e.g., GPUs are used for gaming, data
mining, deep learning, etc.) [134, 114]. As a consequence, there is a steady rise of
SDK alternatives, as well as libraries, for co-processors [40]. In this section, we briefly
explore these programming abstractions for co-processors in the context of query
execution.

Co-processor SDKs give access to specialized hardware components. For example,
Intel’s SSE instruction set25 gives access to SIMD features of CPUs. Based on SDKs,
we identify three access levels while integrating a query engine with a co-processor. At
the lowest level, vendor-specified SDKs give access to almost all hardware components
of the co-processor. They offer the best performance, at the cost of poor code
portability [102]. Next, some wrappers cover SDKs, abstracting device-specific
details (e.g., OpenCL). They have standard functional abstractions for all supported
hardware. Finally, co-processors have libraries with pre-written functions. These
are written by device experts using one of the low-level SDKs, abstracting all key
implementation details from an end user (e.g., OpenBLAS, cuDNN) [174]. After
providing a context for SDKs and co-processors, in the upcoming sections, we
explain our query engine architecture and its components for query execution in
co-processors.

25https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html

8.4. AQuery Executor to Plug-in Co-Processors 115

8.4 AQuery Executor to Plug-in Co-Processors
Since the execution routines of a co-processor are normally handled by a host CPU
(briefly detailed in Chapter 2), our architecture depicted in Figure 8.2 has a unified
runtime running on a host CPU. The runtime interacts with the plugged co-processor
using predefined device interfaces. These interfaces act as functional boundaries,
separating the query engine from co-processor SDKs. Finally, we introduce an
intermediate task layer to handle alternative implementations of a database operator
across these SDKs. Overall, our architecture is split into three loosely coupled layers.
At their core, these layers are responsible for:

Host Side

Runtime Layer

Data transfer hub Execution manager

Data
Lookup

Primitive
Lookup

Co-Processor Side

Task Layer
Task

Data Container

Kernel
Container

execute()

Device

D
riv

er

Kernel
Interface

Data
Interface

Execution
Interface

Device Layer

Primitive

SQL Query
(Primitive Based Graph)

Figure 8.2: Architecture with a unified runtime and interfaces (purple blocks) to
interact with plugged components.

• Device Layer represents the implementation of the driver on the target.

• Task Layer links runtime handlers to database operators on the underlying
device driver.

• Runtime Layer is at the host, and handles the execution across multiple devices.

As shown in Figure 8.2, our runtime takes a query plan (generated from any existing
optimizer) translated into a primitive graph with annotations, which mark the target
device. Using these annotations, the custom execution models at the runtime layer
(see Section 8.5) process the primitives using the interfaces in the device and task
layers, respectively. Thus, our executor is split into a host-dependent runtime layer
interacting with flexible co-processor-dependent device and task layers. Below, we
first explain these interfaces in detail and show how to construct arbitrary execution
models for co-processor acceleration.

116 8. Tier 2: ADAMANT – A Pluggable Query Executor

8.4.1 Device Layer

CUDA

OpenCL

Global Memory

int A[]

cudaint*

Thrust

vector<int>
cl_mem

Boost.Compute

vector<int>

Figure 8.3: Data types across SDKs. Data
type (Solid) used by a developer & in SDKs
(dotted)

Since a device can support multi-
ple SDKs, the overall performance
from the device varies based on the
SDK being used [123]. For exam-
ple, profiling the bandwidth range
of OpenCL and CUDA in Figure 8.4
shows variations in transfer band-
widths. Generally, results show a
lower bandwidth range for OpenCL
compared to CUDA. This difference
arises from OpenCL’s translation
overhead. Such a minor yet signif-
icant difference affects the overall
query execution considerably. Sim-
ilar performance differences can also
be observed in other functionalities
of the wrappers (e.g., during kernel launch, memory allocation etc.). Therefore, it
is expected that if a newer and more efficient SDK is available, these functions will
have to be rewritten. Therefore, for such re-work, we propose a device layer, which
we use to pack SDK functions into two groups: 1) kernel management and 2) data
management. We split the kernel functions separately and make them optional,
as not all the SDKs support runtime compilation of kernels. On the contrary, the
interface functions for data management are mandatory to be able to plug in a
co-processor, as data management needs to be handled explicitly at runtime. These
data management tasks include allocation/freeing memory space in the device, and
transferring data into the allocated space.

Pinned
(H2D)

Pinned
(D2H)

Pageable
(H2D)

Pageable
(D2H)

0

5

10

15

B
an

d
w
id
th

(G
B
/s
ec
) a) NVIDIA RTX 2080Ti

Pinned
(H2D)

Pinned
(D2H)

Pageable
(H2D)

Pageable
(D2H)

0

5

10

15

B
an

d
w
id
th

(G
B
/s
ec
) b) NVIDIA A100

CUDA OpenCL

Figure 8.4: Data transfer bandwidths using CUDA and OpenCL across GPUs. H2D:
Host to device, D2H: Device to host

Furthermore, we dedicate an interface to explicitly transform data from one SDK’s
data type to another. To understand data transformation complexity, consider a
GPU using libraries Thrust & Boost.compute and SDKs CUDA and OpenCL. Each
interprets a GPU’s memory space in its data type, as shown in Figure 8.3.

8.4. AQuery Executor to Plug-in Co-Processors 117

Here the host is unaware of the relation between SDKs, so in a naive case the data
is transferred into the host, transformed into the target format, and transferred back
into the device. Such unwanted transfers to and from a co-processor can be avoided
with a transform function, which internally transforms the memory objects from one
representation to another without actual data movement. Based on the criteria, we
have defined ten interfaces for the device layer:

• place data(data, size, offset) - push data to the device.

• retrieve data(id, size, offset) - receive data from the device.

• prepare memory(size) - allocate memory in the device.

• transform memory(source, target) - convert data type from source to target.

• delete memory (id) - de-allocates memory in the device.

• prepare kernel(name, location) - compile functions in the device.

• initialize() - set relevant properties for the co-processor.

• create chunk(ID, chunk size, offset) - access a subset of data in the device.

• add pinned memory(ID, chunk size, offset) - reserve host-accessible memory.

• execute() - execute any task tagged to the device.

With any new SDK developed for an existing or new co-processor, one can realize
these interfaces to couple them with our runtime. Next, let us see a sample integration
of an OpenCL-programmed GPU into the ADAMANT system.

8.4.1.1 Case Study - Integrating a GPU

To showcase our ADAMANT’s ease of use, we take the OpenCL GPU wrapper as a
case-study and show how it can be integrated into our ADAMANT system. A similar
integration is also possible with CUDA and other GPU wrappers, as well as for
other systems. For this case study, we use the example code shown in Section 2.2.2
integrating them into the device layer interfaces.

To place a column into device memory, we use the place_data() interface. It takes
an array of values as input, along with its size and optionally the starting index
of the data. The corresponding OpenCL wrapper code looks like the one given
in Listing 8.1, where we show the called functions for buffer creation and memory
transfer.

i n t OpenCLDevice : : p l a ce data (unsigned i n t ∗ data , s i z e t s i z e , s i z e t
↪→ s t a r t i d x) {

. . .
m data buf f e r = c lCrea t eBu f f e r (m context , NULL, (s i z e) ∗ s i z e o f (T) ,

↪→ NULL,& m err) ;
m err = clEnqueueWriteBuffer (m device queue , m data buf fer , CL TRUE

↪→ , 0 , s i z e ∗ s i z e o f (T) , data , 0 , NULL, NULL) ;
. . .
}

Listing 8.1: OpenCL code for transferring data to a GPU

118 8. Tier 2: ADAMANT – A Pluggable Query Executor

Additionally, one can include support for unified memory if possible. In case of GPU
supporting unified memory, it is added in the add_pinned_memory() as shown in
Listing 8.2.

i n t OpenCLDevice : : add pinned memory (shor t a l i a s , s i z e t s i z e , s i z e t
↪→ s t a r t i d x) {

. . .
m data buf f e r = c lCrea t eBu f f e r (m context ,CL MEM ALLOC HOST PTR, (

↪→ s i z e) ∗ m ∗ s i z e o f (T) , NULL, & m err) ;
. . .
}

Listing 8.2: OpenCL code to allocate space in unified memory

We explicitly define these pinned memory functions to take advantage of fast data
transfer. We use this memory space to transfer chunks onto the device, while utilizing
the dedicated device memory to store intermediate results. More details on using
the pinned memory is given in Section 8.5. Finally, we clear these allocated memory
spaces as shown in Listing 8.3.

i n t OpenCLDevice : : d e l e t e da ta (shor t a l i a s) {
c l i n t e r r = clReleaseMemObject (m data buf f e r) ;

}

Listing 8.3: OpenCL code to delete space

Now that the data management functions are present, we focus on integrating the
kernel compiler and its corresponding execution functions. First, we compile a
primitive kernel as shown in Listing 8.4.

i n t OpenCLDevice : : p r epa r e ke rne l (shor t a l i a s , s t r i n g k e rn e l S r c) {
c l program m program = clCreateProgramWithSource (context , 1 , &

↪→ kerne lS rc , NULL, NULL) ;
c l i n t m err = clBuildProgram (m program , 1 , & dev ice , cmdAgrs . c s t r

↪→ () , NULL, NULL) ;
m kerne l = c lCreateKerne l (m program , kernelName , & m err) ;

}

Listing 8.4: OpenCL code to compile a kernel

Our system compiles all the pre-existing kernels during initialization. These compiled
binaries are tagged to their corresponding tasks (detailed in the next section),
therefore, task->execute() performs the current task. This execute() in OpenCL
can be implemented as in Listing 8.5.

i n t OpenCLDevice : : execute () {
f o r (i n t i = 0 ; i < m arg s s i z e ; i++)
m err |= clSetKerne lArg ((∗ m ite r) . second , i , s i z e o f (cl mem) , &

↪→ m argument buffer) ;
f o r (i n t i = 0 ; i < m param size ; i++)
m err |= clSetKerne lArg ((∗ m ite r) . second , i + m args s i z e , s i z e o f (

↪→ i n t) , & param [i]) ;
m err = clEnqueueNDRangeKernel (m device queue , ke rne l , wd, NULL, &

↪→ g l oba l S i z e , & l o c a l S i z e , 0 , NULL, NULL) ;
}

Listing 8.5: OpenCL code for kernel execution

8.4. AQuery Executor to Plug-in Co-Processors 119

8.4.1.2 Integration of Other Co-Processors

Other than GPUs, we can also integrate FPGAs and other co-processors into our
system. For the case of FPGA, we can consider generating binary files from input for
transferring into the device as place_data() and reading back from binary to be
retrieve_data(). Since FPGAs are commonly used to directly execute operations
as soon as the data arrives into the device, the DMA function for data transfer will
act as execute(). However, this execute() must be capable of targeting the right
task. This depends on the implementation of these tasks. In case of sophisticated
mechanisms such as creating a runtime configurable overlay [20], the device driver
must be capable of handling the execution.

Limitations: One of the caveat of our system is the integration of near data processors
such as smart NICs that sits between a host and a co-processor / data store. Still,
one can support such smart NICs extending the execute() interface. Here, the
custom driver for execute() must be capable of differentiating between the NIC and
the target executing the operators individually in them. Here, the smart NIC and
the co-processor are represented as a single co-processing entity to our ADAMANT
system. Thus, our ADAMANT can be pluggable with any new device wrapper as
well as a co-processor without any changes to other execution system components.

8.4.2 Task Layer

The task layer encapsulates multiple implementations of a database primitive. Once
again, their performance varies according to the implementation. For example, a
straightforward map and reduce will vary in their performance based on the SDK
in which they are implemented. OpenCL (represented with a circular mark in the
graph in Figure 8.5) and device-aware implementations (CUDA, OpenMP) show
mostly the same performance. However, more complex operations will have clear
variations in their performance (see Section 8.6). Apart from the results in the
experiments, the implementation approaches can be: 1) hand-written, 2) library, or
3) generated on the fly or in other words compiled during runtime. Therefore, this
layer collects implementations (task model) and enforces functional signatures of
database operations (primitive definitions).

8.4.2.1 Task Model

As discussed above, a task reduces the complexity of including a new implementation
variant, without making changes to the device interface. Now, to handle the execution
of a task or even a series of tasks, we propose the use of two containers.
1) Kernel Container: This is a simple adapter with additional runtime information
required for executing a custom-written function. In the case of runtime compilation,
the kernel string or generator is present in the container.
2) Data Container: Manages data formats for a task. Internally, a lookup table is
used for data transformations. Using these, our runtime is capable of handling data
transfer and execution on different devices. With this generic task model, we can
introduce database-specific operations defining the signatures of individual database
primitives.

120 8. Tier 2: ADAMANT – A Pluggable Query Executor

Primitive definition Description

MAP(NUMERIC in[n],NUMERIC out[n]) Does one-to-one mapping operation e.g. arithmetic operation.

AGG BLOCK(NUMERIC in[n],(NUMERIC
out)† Does reduce operation on input (in) into result space - out.

HASH AGG(NUMERIC in1[n],NUMERIC
in2[n],HASH TABLE hashTable[m])† Does group-by aggregation of in2 based on groups in in1. In case of

COUNT in2[n] is not required.

HASH BUILD(NUMERIC
in[n],HASH TABLE hashTable[m])† Populates the hashTable with the input - in.

HASH PROBE(NUMERIC
in[n],HASH TABLE hashTable[m],JOINLEFT
left[n],JOINRIGHT right[n])

Returns joins pairs in left and right respectively based on input in
probing over hashTable.

SORT AGG(NUMERIC in[n],PREFIX SUM
pxsum[n],NUMERIC aggregates[m])† Does group-by aggregation over sorted data, with positions pointed

by computing their prefix-sum.

FILTER BITMAP(NUMERIC in[n],BITMAP
bitmap[k],NUMERIC parameter)

Filters input in based on the parameter mentioned and stores the
results in form of bitmap. Here, k = n/b - where b is the size of the

bits packed per unit data.

FILTER POSITION(NUMERIC
in[n],POSITION position[k],NUMERIC
parameter)

Filters similarly like FILTER BITMAP, but returns the position of
selected input. The size of the result is estimated.

PREFIX SUM(NUMERIC
in[n],PREFIX SUM pxsum[n])† Computes prefix sum for a sequence of sorted input or input with

series of 1s and 0s.

MATERIALIZE(NUMERIC in[n],BITMAP
bitmap[k],NUMERIC output[m])

Returns the column values in input based on the bitmap.

MATERIALIZE POSITION(NUMERIC
in[n],POSITION position[k],NUMERIC
output[m])

Returns the column values in input based on the position list.

Table 8.1: Primitive definitions for encapsulating multiple database operator imple-
mentations

8.4.2.2 Primitive Definitions

As we have detailed in Chapter 5, there exist multiple levels of primitives in RDBMS.
Most of these primitives were found by surveying related work [140, 87, 39]. Ad-
ditionally, we also define the I/O signatures for these primitives. Therefore, any
custom implementation of primitives can be included in the system given that they
adhere to the I/O semantics. This also helps include varying implementations of
a primitive in our ADAMANT system. Further, with our I/O semantics, we can
freely combine implementations of primitives from different wrappers together: like
an OpenCL implementation of arithmetic followed by a reduce implementation using
CUDA for a single device.

8.4. AQuery Executor to Plug-in Co-Processors 121

20 21 22 23 24 25 26 27 28

101

102

Data Size (in powers of 2)T
h
ro
u
gh

p
u
t
(G

b
/s
ec
)

Map

20 21 22 23 24 25 26 27 28
10−1
100
101
102

Data Size (in powers of 2)T
h
ro
u
gh

p
u
t
(G

b
/s
ec
)

Reduce

21 22 23 24 25 26 27 28 29

101

102

Data Size (in powers of 2)T
h
ro
u
gh

p
u
t
(G

b
/s
ec
)

21 22 23 24 25 26 27 28 29
10−1
100
101
102

Data Size (in powers of 2)T
h
ro
u
gh

p
u
t
(G

B
/s
ec
)

OpenCL - CPU OpenCL - GPU OpenMP - CPU CUDA - GPU

Figure 8.5: Performance of map and reduce depends on the underlying implementa-
tion, as well as the device. (The results are measured on top: NVIDIA RTX 2080Ti
and Intel core i7-8700 & bottom: NVIDIA A100 and Intel Xeon Gold 5220R).

Query Pipelines: Other than the awareness of primitive signatures, our system is also
aware of the characteristics of these primitives. Specifically, ADAMANT is aware
of pipeline breakers (denoted with †) and materializes their intermediate results
into the device memory. These pipeline breakers mark the end of a query pipeline.
Thus, given a query with several pipeline breakers (for example, Q3 of TPCH), our
system splits into an equal number of pipelines. These pipelines are considered an
execution group and all primitives are executed together (more details on execution
are given in Section 8.5). Since a query is processed pipeline-wise, our framework
can also work with compiled operators as they are also forced to generate code until
a pipeline-breaker before the next operator in the query can be executed.

8.4.2.3 I/O Definitions

Other than the primitive functional definitions, we explicitly define the I/O definitions
to call an appropriate primitive further down the execution pipeline. For example, a
selection primitive might return bitmaps or even a position list instead of column
values to reduce the transfer load. However, if the materialization primitive is not
aware of the incoming data scheme, it might generate wrong results, (or might even
run into system exceptions). Therefore, we encode some of the common I/O semantics
of the above-mentioned primitives in the data edges. Hence, when a selection produces
its results as a bitmap, the corresponding materialize can be executed. Moreover,
the result of a primitive might be forwarded to different primitives in the plan. For
example, in a hash join, the results of the left and right tables will be materialized
separately. Based on these scenarios, we define the following I/O semantics:

122 8. Tier 2: ADAMANT – A Pluggable Query Executor

• NUMERIC - Any numeric or column values.

• BITMAP - A bit-packed result. These are the results of a FILTER primitive.

• POSITION - A position list. These are the results of a FILTER primitive.

• PREFIX SUM - results of PREFIX SUM primitive. Useful with SORT AGG.

• HASH TABLE - result of HASH BUILD or HASH AGG.

• GENERIC - Any custom data semantic (e.g. a specialized tree structure for
filtering).

Using these three components, one can form a query execution plan using primitives.
This enables a developer to include any custom implementation into the runtime and
subsequently into the query execution.

8.4.3 Runtime Layer
The runtime layer interprets a query execution plan, executing it in the target devices.
Below are the components present in the layer.

Primitive Graph: It models a query execution plan with primitives (Section 8.4.2.2)
as nodes, and the data flow across primitives as edges. The graph encodes additional
data information at the edges. Below are some details on the information encoded:

• data ID - unique ID for the data path.

• device ID - data location across devices.

• processed until - index until which the data have been processed so far.

• fetched until - index until which the input is transferred into device memory.

Using the data ID and device ID, we infer the type of transfer necessary for the
target device. Pointers defined as processed & fetched-until allow for parallelism in
query execution.

Data Transfer Hub: The data transfer hub has three main tasks:

• load data(): loads data to the target device before execution. This includes
either loading the complete data into the device or incurring overhead from
partial loads. Internally, this function calls place_data() to load the input.

• router(): Handles all SDK-to-SDK and device-to-device data transfers. This
function iterates over all the incoming edges to a primitive and loads the data
to the target device. Internally, the function calls interfaces : place_data(),
retrieve_data(),transform_memory().

• prepare output buffer(): It estimates and creates a result space for a given
primitive. It also handles data semantics based on the primitive.

In summary, the runtime couples operator implementation with device interfaces.
Thus, the three layers enable query execution of any of the plugged co-processors.
Such an out-of-the-box query execution is possible because of multiple execution
models present in the runtime. In the next section, we describe these execution
models for plugging devices.

8.5. Execution Model Alternatives for Co-Processors 123

8.5 Execution Model Alternatives for Co-Processors
Execution models are the key to query execution. They define the process and data
flow within the system while processing a query. Hence, defining a suitable execution
model for co-processor acceleration in turn characterizes the execution flow of our
runtime. In this section, we explore the scalability limitation in the operator-at-a-time
execution model with examples. To overcome the limitation, we propose an abstract
chunk-based execution model capable of supporting any co-processor. Additionally,
we modify this chunked execution model to be hardware-aware using GPU as a case
study.

8.5.1 Limitations inOperator-At-A-TimeExecution inCo-Processors
Operator-at-a-time (OAAT) is one of the common execution models for query
execution in co-processors, where complete database tables are stored within device
memory to avoid costly transfers. However, this is not a scalable solution as co-
processors usually have smaller on-chip memory compared to the main-memory sizes.
To illustrate this, we plot the data size of the input for different queries in the TPCH
benchmark and the complete TPCH dataset against the memory capacity on various
GPUs (cf. Figure 2.10). From the results, we can observe that only some of the
TPCH queries can be executed on a device with input data completely in the device
memory. As a normal OLAP query requires only a few columns from the complete
dataset, storing the complete dataset reduces the space to store intermediate results.
For example, the query plan for TPCH query 6 (given in Figure 2.10) has the memory
footprint as shown in Figure 8.7 during execution. Thus, storing the complete dataset
in co-processor memory reduces the space available for the intermediate results of a
query. To reduce such memory pressure on the co-processor, we need an alternative
execution model.

SF1 SF10 SF50 SF100 SF150 SF200

10 MB

100 MB

1 GB

10 GB

100 GB

NVIDIA Riva TNT2

NVIDIA RTX 3090

NVIDIA Quadro K5200

NVIDIA GRID K520

NVIDIA H100

Scale Factor (SF)

M
em

or
y
si
ze

re
q
u
ir
ed

Query-6 Query-3 Query-4 TPCH dataset

Figure 8.6: Memory capacity in GPU devices vs memory required for processing
TPCH data

As an alternative to the operator at a time, a scalable chunked execution model is
already available [73]. We construct a similar chunked execution model using the
interfaces discussed in the previous sections. Using this execution model, our runtime
can scale query execution over any arbitrary co-processor.

8.5.2 Chunked Execution for Arbitrary Co-Processors
Even with chunked execution, a long query execution plan might generate multiple
intermediate results utilizing the complete memory space of a co-processor. Therefore,

124 8. Tier 2: ADAMANT – A Pluggable Query Executor

se
le
ct
io
n
1

se
le
ct
io
n
2

se
le
ct
io
n
3

lo
gi
ca
l 1

lo
gi
ca
l 2

m
at
er
ia
liz
e
1

m
at
er
ia
liz
e
2

ar
ith
m
et
ic
m
ul

ag
gr
eg
at
e
su
m

0

0.5

1

1.5

2

M
em

or
y
fo
ot
p
ri
n
t

(i
n
G
B
)

Mem. while processing

Size of intermediate results

Figure 8.7: Memory footprint of individual primitives in TPCH-Query 6

our execution plan executes a query pipeline-wise to reduce both the memory load,
as well as processing load in the device.

Time

Copy

Compute

Figure 8.8: Process flow in chunked execution model

Algorithm 3: Chunked execution

1 foreach chunk C of input do
2 foreach Primitive P in pipeline (QEP) do
3 Edge ie = incoming edges(dag[P]);
4 router(ie.source device ID, ie.target device ID,c,chunk size);
5 available device[target device ID]→ prepare memory(output size);
6 available device[target device ID]→ execute();

The chunked execution constructed using our interfaces is given in Algorithm 3.
The execution starts with a chunk of input transferred to the co-processor. This
chunk is processed through a complete pipeline and the intermediate result of the
final pipeline operator is persisted, while others are overwritten by the results of
processing the next chunk. The overall memory consumed for intermediate results
depends on the chunk size; therefore, only a fraction of the memory is utilized. Since
a chunk has to be processed until the end of a pipeline, the next chunk is transferred
only the current chunk is processed. Here, the transfer waits for the execution to
compete before transferring the next chunk. Even though the execution model works
with arbitrary data sizes, its performance might not be optimal due to constant
data transfers. Such transfer delays are hardware-dependent and, therefore, can be
improved only using a hardware-aware approach.

Since improving chunked execution is hardware-centric, we take a current generation
GPU as a case study and utilize its components in improving our execution model.

8.5. Execution Model Alternatives for Co-Processors 125

8.5.3 Case Study: Pipelined Execution in GPUs for Concurrent
Execution with Data Transfer

Since data transfer is a bottleneck, we hide the transfer time with concurrent execution
(cf. Figure 8.9). However, the transfer delay is so high that hiding it with a single
primitive execution will not be beneficial. Hence, we hide the transfer of a data chunk
with the execution of a complete pipeline. We incorporate this copy-compute routine
into our runtime using separate threads for data transfer and pipeline execution on a
co-processor.

Time

Copy

Compute

Figure 8.9: Process flow in pipelined execution model

Algorithm 4: Pipelined execution

1 foreach Primitive P in pipeline(QEP) do
2 thread transfer = spawn thread(transfer data());
3 foreach i=0 until input/chunk do
4 Edge ie = incoming edges(dag[P]);
5 wait until(ie.fetched until ≤ ie.processed until); available device[target device ID]→

execute();
6 ie.processed until+=chunk size

7 transfer data(){
8 foreach Chunk C of input do
9 foreach Edge ie in incoming edges(dag[P]) do
10 router(ie.source device ID, ie.target device ID,c,chunk size);
11 available device[target device ID]→ prepare memory(output size);
12 ie.fetched until+=chunk size;

13 }

We track the processed chunks to effectively synchronize the threads. The execution
thread keeps track of the amount of data processed using a counter processed_until.
A similar counter - fetched_until - is used to track data transferred so far. If the
fetched until value is smaller than processed until, the execution thread waits for
the data to be transferred by the transfer thread, and vice versa. The threads also
synchronize at the end of each pipeline breaker and start with the next pipeline.

Even though the execution model hides execution with transfer, the overall transfer
overhead is still the same as that of naive chunked execution. We improve this further
using a four-phase approach, described in the next section.

4-Phase Pipelined Execution With Memory Reuse

Since transfer is a severe bottleneck, improving it should in turn increase performance.
We optimize the transfer delay in this execution model, as shown in Figure 8.10, with
four different phases.

126 8. Tier 2: ADAMANT – A Pluggable Query Executor

Time

Copy

Compute

DeleteStage

Figure 8.10: Process flow in 4-phase pipelined execution model

The detailed execution of the four-phase query execution is given in Algorithm 5.
As the memory transfers for a query are predefined, we use pinned memory (cf.
Figure 8.4) for faster transfer. As pinned memory is accessible to both the host and
the co-processor, the host directly transfers data here while the co-processor executes
its primitives. One problem arises here with copy-compute, that the copy phase
might overwrite the data currently being executed. However, we ensure the data is
not overwritten using the processed-until index.

Algorithm 5: 4-phase pipelined execution

1 //Stage Phase
2 foreach Primitive P in pipeline(QEP) do
3 foreach edge E in P do
4 if Source(E) is Data Scan then
5 alias1 = available device[target device ID] →add pinned memory(memory size);
6 data dictionary.insert(E,alias1); alias2=available device[target device ID]

→add pinned memory(memory size);
7 data dictionary.insert(E,alias2);

8 else
9 alias=available device[target device ID] →prepare memory(memory size);

data dictionary.insert(alias,E);

10 //Copy-compute phase
11 foreach Primitive P in pipeline(QEP) do
12 thread transfer = spawn thread(transfer data());
13 foreach i=0 until input/chunk do
14 Edge ie = incoming edges(dag[P]);
15 wait until(ie.fetched until ≤ ie.processed until); available device[target device ID]→

execute();
16 ie.processed until+=chunk size

17 //Delete phase
18 foreach Primitive P in pipeline(QEP) do
19 foreach entry in data dictionary do
20 available device[target device ID] →delete data(entry.alias);

To avoid such scenarios, we create two identical memory spaces to alternate execution
and transfer. The transfer and execution threads alternate between these memories
that access the chunks, as shown in Figure 8.11. Additionally, the intermediate
results of any pipeline breaker are also transferred back to the host using pinned
memory. All other intermediate results are stored in the device memory itself. Once
the execution is complete, we deallocate these memory locations. In summary,
execution starts by creating pinned memory spaces - stage phase - over which the

8.6. Experiments 127

chunks are copied - copy phase. Once a chunk is copied, the compute phase processes
these data. After execution, the deletion phase clears memory for the next query.

Host

Co-processor

B A

AIR-1IR-2... B

Copy

Figure 8.11: Dual memory
spaces for concurrent transfer-
execution

Replacing add_pinned_memory() with add_data(),
we make the above execution models support any ar-
bitrary co-processor. However, the performance still
depends on the implementations of the device driver.
To this end, we have developed custom drivers for
GPU and CPU using CUDA and OpenMP, respec-
tively, in addition to a common implementation in
OpenCL. We use these drivers to evaluate the perfor-
mance of our ADAMANT framework, and the results
are discussed in the next section.

8.6 Experiments
We evaluate in this section the performance of our custom primitive implementation,
the overhead from our abstraction layers, and the performance of using the above-
mentioned execution models, the latter with special consideration for larger-than-
memory processing. For our evaluations, we use the device drivers: OpenCL (for
CPU), OpenMP, OpenCL (for GPU), and CUDA, running on top of two different
environments. Details about the environments are given in Table 8.2. The primitives
over the evaluated drivers follow semantically similar implementations. All these
implementations are written in C++26. For the baseline, we consider HeavyDB
(formerly MapD) for its compiled execution model and compare it with our proposed
execution models.

Setup 1 Setup 2

CPU Intel(R) Core(TM) i7-8700 Intel Xeon Gold 5220R

GPU GeForce RTX 2080 Ti Nvidia A100

GCC 9.3.0 8.4.0

OpenCL 2.1 2.1

CUDA 11.0 10.1

OS Ubuntu 18.04 Ubuntu 20.04

Table 8.2: Device setup used in evaluating ADAMANT engine

8.6.1 Profiling Primitives

We profile the throughput of our primitives using 228 integers values (1GB) in
random distribution. Our filter operator can perform early and late materialization
with bitmaps as an intermediate data type. We measure the performance of both

26code available at: https://git.iti.cs.ovgu.de/dead-ops/ADAMANT/-/tree/master

https://git.iti.cs.ovgu.de/dead-ops/ADAMANT/-/tree/master

128 8. Tier 2: ADAMANT – A Pluggable Query Executor

approaches. Similarly, as the hash join has both the hash-build phase and the hash-
probe phase, we measure them individually. We use linear probing as the underlying
hashing technique. The hash table is placed in a global memory and all the threads
compete to place their data in a bucket, which is resolved using atomic operations.
The performance profile of these primitives is shown in Figure 8.12 for two hardware
configurations.

1 10 20 30 40 50 60 70 80 90100

102

103

104

Selectivity in %

T
h
ro
u
gh

p
u
t
(G

B
/s
) a) Filter (with bitmap - both setups)

1 10 20 30 40 50 60 70 80 90100

101

102

103

104

Selectivity in %
T
h
ro
u
gh

p
u
t
(G

B
/s
)b) Filter (with materialize - both setups)

100 101 102 103 104 105 106
100

101

102

Group size

T
h
ro
u
gh

p
u
t
(G

B
/s
) c) Hash aggregation (setup 1)

100 101 102 103 104 105 106
100

101

102

103

Group size

T
h
ro
u
gh

p
u
t
(G

B
/s
) d) Hash aggregation (setup 2)

220221222223224225226227228
0

2

4

6

Data size

T
h
ro
u
gh

p
u
t
(G

B
/s
) e) Hash probe (setup 1)

220221222223224225226227228
0

5

10

15

Data size

T
h
ro
u
gh

p
u
t
(G

B
/s
) f) Hash probe (setup 2)

220221222223224225226227228
0

0.5

1

1.5

Data size

T
h
ro
u
gh

p
u
t
(G

B
/s
) g) Hash build (setup 1)

220221222223224225226227228
0

5

10

Data size

T
h
ro
u
gh

p
u
t
(G

B
/s
) h) Hash build (setup 2)

OpenCL - CPU OpenCL - GPU OpenMP - CPU CUDA - GPU

Figure 8.12: Profile of primitives in OpenCL, OpenMP and CUDA

8.6. Experiments 129

Filter (bitmap): The results in Figure 8.12(a) are nearly constant for the different
devices, as we perform a bitwise comparison of the values in an array. Since each
comparison of input takes roughly the same amount of time irrespective of their
selection, the performance graph is similar to that of a map in these devices (cf.
Figure 8.5). However, on both devices, OpenCL performs better than OpenMP
on the CPU but is equivalent to CUDA on the GPU. In our case, the OpenMP
variant suffers from data movement overheads, as the hardware threads are explicitly
scheduled, whereas OpenCL handles them internally. Perhaps further evaluation
with varying thread sizes could improve this.

Filter (with materialize): Comparing Figure 8.12 (a & b), we see that adding
materialization leads to a significant performance drop in a GPU - about 30% the
performance from using only bitmap. This is mainly from the time taken to extract
bits from a bitmap in a GPU. Since we pack results from multiple inputs into a
single bitmap, GPU threads must cooperatively extract their respective bitmap input,
leading to performance degradation. However, such an impact of materialization is
very small for CPUs, as threads are scheduled with a sequence of 32 input values,
avoiding data sharing among threads.

Hash aggregation: Our hash aggregation uses a single global hash table for aggrega-
tion. Based on the results in Figure 8.12 (c & d), we see that the performance of
OpenCL decreases drastically with increasing group sizes. As the data from SIMT
threads is served through a common memory controller, inserting multiple data in
parallel requires more time.

We also see the profile of CUDA is not deteriorating with larger group sizes than that
of OpenCL. We believe that this is due to the static scheduling of threads in OpenCL.
Finally, the high performance of GPUs comes from its faster internal bandwidth
from memory controllers.

Hash build: Similar to hash aggregation, hash build also has a shared hash table for
insertion. We see that the hash build performance drops with larger data sizes. This
is mainly due to the repeated data insert calls from threads for larger data sizes. On
the other hand, the CPU performance is still the same. Again, the threads spawned
in a workgroup lead to minor performance differences across OpenCL and OpenMP
execution. Additionally, by comparing the performance with hash probing, we can
easily identify the overhead of insertion using a single shared hash table. Here, we
use atomics for insertion, which serializes the threads during insertion. The difference
in performance indicates this serialization overhead of atomics.

Hash probe: Since a hash probe follows nearly the same execution path as a
hash build, the reflected performance also has similar characteristics to a hash build.
However, the performance from CUDA is affected by the probe, compared to OpenCL.
This again might be due to the influence of the order of threads accessing the global
memory.

8.6.2 Impact of Abstraction Layers

As our abstraction layers are loosely coupled, they incur overhead in query execution.
To understand this overhead, we measure the difference between the overall execution

130 8. Tier 2: ADAMANT – A Pluggable Query Executor

Q
3-
O
pe
nC

L
(G

P
U
)

Q
3-
O
pe
nC

L
(C
P
U
)

Q
3-
O
pe
nM

P

Q
3-
C
U
D
A

Q
4-
O
pe
nC

L
(G

P
U
)

Q
4-
O
pe
nC

L
(C
P
U
)

Q
4-
O
pe
nM

P

Q
4-
C
U
D
A

Q
6-
O
pe
nC

L
(G

P
U
)

Q
6-
O
pe
nC

L
(C
P
U
)

Q
6-
O
pe
nM

P

Q
6-
C
U
D
A

10−2

10−1

100

101

O
ve
rh
ea
d
(m

s)

a) Setup 1

Q
3-
O
pe
nC

L
(G

P
U
)

Q
3-
O
pe
nC

L
(C
P
U
)

Q
3-
O
pe
nM

P

Q
3-
C
U
D
A

Q
4-
O
pe
nC

L
(G

P
U
)

Q
4-
O
pe
nC

L
(C
P
U
)

Q
4-
O
pe
nM

P

Q
4-
C
U
D
A

Q
6-
O
pe
nC

L
(G

P
U
)

Q
6-
O
pe
nC

L
(C
P
U
)

Q
6-
O
pe
nM

P

Q
6-
C
U
D
A

10−2

10−1

100

O
ve
rh
ea
d
(m

s)

b) Setup 2

Figure 8.13: Overhead of abstraction layers

time and the total sum of processing time of the individual primitives of a query. The
results in Figure 8.13 show maximum overheads for OpenCL wrappers, compared
to CUDA and OpenMP. This overhead arises from explicit data mapping to a
target kernel, whereas OpenMP and CUDA do not need one such data mapping
explicitly. Based on the results, we see that the abstraction layers and the overhead
of our execution model are quite small compared to direct execution. Furthermore,
by comparing the performance across devices, we see that the hardware-sensitive
implementation for the primitives plays a major role in performance. In general, our
OpenCL implementation incurs significant delays due to explicit data mapping.

8.6.3 Performance of Execution Models
Our execution models focus on co-processor acceleration of larger-than-memory
datasets, as described in Section 8.5. In this section, we evaluate the performance of
these execution models with larger TPC-H scale factors (with total input size for
queries varying from 2GB (229 integer values) to 3.5GB (229.7 32-bit integer values).
Since multiple TPC-H queries have similar patterns, we consider queries Q3 (multiple
joins), Q4 (subquery), and Q6 (heavy aggregation) for our evaluation. We consider

8.6. Experiments 131

SF100 SF140
0

1

2

3
·104

Scale Factor

E
x
ec
u
ti
on

ti
m
e
(i
n
m
s)

Query Q3 - Setup 1

SF100 SF140
0

500

1,000

1,500

Scale Factor

E
x
ec
u
ti
on

ti
m
e
(i
n
m
s)

Query Q3 - Setup 2

SF100 SF140
0

0.5

1

1.5

2
·104

Scale Factor

E
x
ec
u
ti
on

ti
m
e
(i
n
m
s)

Query Q4 - Setup 1

SF100 SF140
0

1

2

3

4
·104

Scale Factor

E
x
ec
u
ti
on

ti
m
e
(i
n
m
s)

Query Q4 - Setup 2

SF100 SF140
0

2,000

4,000

Scale Factor

E
x
ec
u
ti
on

ti
m
e
(i
n
m
s)

Query Q6 - Setup 1

SF100 SF140
0

0.5

1

1.5

·104

Scale Factor

E
x
ec
u
ti
on

ti
m
e
(i
n
m
s)

Query Q6 - Setup 2

Chunked - OpenCL Chunked - CUDA 4-phase chunked - OpenCL

4-phase chunked - CUDA 4-phase pipelined - OpenCL 4-phase pipelined - CUDA

HeavyDB w transfer HeavyDB w/o transfer

Figure 8.14: Performance of the execution models versus HeavyDB across various
scale factors

132 8. Tier 2: ADAMANT – A Pluggable Query Executor

the size of chunks to be 225 ints across all the queries. This chunk size is found to be
optimal for the underlying GPU based on the available space in the device.

Overall, the plots in Figure 8.14 show the overall execution time for the execution
model, with the underlying SDK and even the query being executed. In general,
results show that 4-phase execution is faster than naive chunked execution in both
OpenCL and CUDA. Mixing pinned memory with normal transfer consistently leads
to better performance compared to the alternatives. Additionally, the results show
that 4-phase pipelining produces similar improvements when compared with four-
phase chunked execution. This shows that the execution time of a query is so small
that hiding it with transfer only provides minimal benefit. The rationale for the
performance difference is as follows.

In particular, the query being executed on the target has the largest impact on
performance. For example, Q4 has an adverse performance with 4-phase execution in
OpenCL. This behavior shows that using pinned memory for multiple data transfers
(which is the case with Q4) to a GPU degrades its performance. Since the query
starts with building a hash table, there is no other operation between data transfer
and hash build that has a considerable execution time for the transfer-time hiding.
Therefore, the overall time for the pipeline is nearly the same as the data transfer
time, leading to no performance benefit from attempting to hide execution time. Due
to such poor execution behavior, 4-phased execution for OpenCL is nearly 2x slower
than chunked execution. However, CUDA can overcome this issue and has up to
1.5x speed-up when compared to chunked execution. This shows that the overhead
of handling query execution using OpenCL incurs additional effort, which degrades
overall performance. For Q3 and Q6 4-phased execution is faster than chunked
execution. We see that the execution is nearly 2x faster for CUDA and 1.5x faster
for OpenCL. Since these queries have a pipeline comparatively deeper than Q4, the
4-phase execution is beneficial. Therefore, depending on the query and its operators,
the pipelined execution is found to be beneficial. For the most part, four-phased
execution has a speed-up of 3x (in the best case - Q6) until 1.3x (the worst case - Q3)
over chunked execution. This performance difference is subject to change with newer
GPUs. Next, we see that OpenCL performs worse in general compared to CUDA.
As seen in Figure 8.12 and Figure 8.13, the difference in execution of individual
primitives as well as the overhead of handling execution for OpenCL leads to a higher
execution time.

Comparison with HeavyDB: We compare our execution models with HeavyDB27

(formerly MapD [153]) both with a cold start (HeavyDB w transfer - with data
transfer) and pure execution (HeavyDB w/o transfer). We use larger scale factors SF
100,120,140 datasets for our evaluation. Since HeavyDB works with in-place tables
in the GPU, Q3 cannot be executed for the given scale factors, as the hash table
size exceeds the maximum capacity. For the other queries, we see that the in-place
execution of HeavyDB is comparable with our chunked execution, whereas cold start
is quite slower than our execution models. In the case of Q4 and Q6, our execution
models show a performance improvement of up to 2x for in-place and up to 4x for
cold start execution. This behavior can be associated with the delay in transferring a

27https://github.com/heavyai/heavydb

https://github.com/heavyai/heavydb

8.7. Summary 133

complete table to the device memory, whereas we only transfer chunks of the column
necessary for execution. The transfer delay within HeavyDB can also be inferred
from the difference in performance between cold and hot start.

In summary, using pinned memory for costly transfer and using device memory for
intermediate results improves query execution. The results show such a benefit with
up to 3x the performance of naive chunked execution. However, the benefits of such
execution still depend on the query (and its pipelines). Furthermore, the execution
of pipelining with transfer has a small impact, since the transfer time dominates the
execution of the overall query. Therefore, the hiding execution time only improves a
little. Finally, our results show that there is indeed a performance difference between
OpenCL and CUDA that hardware-sensitive implementation is highly necessary for
better performance.

Evaluation Summary: Overall, with our architecture, multiple SDKs can be plugged
in, which allows us to have a common performance comparison module for database
operations (Figure 8.12). Furthermore, we measure the overhead of handling these
SDKs (Figure 8.13). Finally, our results from Figure 8.14 show that scaling data
sizes requires an efficient execution model that utilizes both pinned memory and
normal transfer for data management.

8.7 Summary
Hardware architectures are increasingly heterogeneous and many database engines are
trying to utilize their capabilities for faster query execution. In this chapter, instead
of developing a query engine from scratch over each of these devices or SDK choices,
we propose a pluggable architecture that can plug in multiple devices and SDKs, with
a low overhead. Our proposed architecture, for ADAMANT, has three layers that
handle execution in a co-processor using granular database primitives. Along with
our architecture, we also propose an execution model for scaling execution to larger-
than-memory datasets. Based on our evaluation of CPU (OpenMP, OpenCL) and
GPU (OpenCL, CUDA) prototypes, we observe that there is a marked overhead in
handling OpenCL execution compared to OpenMP and CUDA. Furthermore, we also
identify that our four-phased execution can be employed for significant performance
improvements over chunked execution of up to 3x. Our experimental evaluation
emphasizes the complex optimization space of queries in a co-processor environment,
which other than traditional optimization, spans further execution models, operator
placement, and primitive implementation (including micro-optimizations or SDK
choices), among more parameters. We believe our ADAMANT prototype can
facilitate the study of this optimization space for database systems. Overall, our
ADAMANT query engine can be used to build an efficient query processing system
around new hardware, with less effort.

9. Conclusion

It has been evident that processor architectures are going to be diverse in the future.
Consequently, the processor ISAs will also get diverse, leading to an abundance of
options to develop an optimal application. This also meant, painstakingly testing
each of these options to identify the best among them, which is quite hard and
time-consuming. Hence, it is necessary to come up with a system that increases
productivity in terms of integrating co-processors.

Diverse changes to co-processor architecture are a ubiquitous challenge across various
domains, and many have come up with various solutions to adapt to the architectural
changes. On one hand, many hand-made solutions are developed for DBMSs over
a particular co-processor. On the other hand, abstract runtimes are proposed to
hide implementation-specific details for faster integration. Though these solutions
have their benefits, there is still a need for a holistic query engine that supports easy
co-processor integration, still supporting extended performance from the device. In
this work, we explored such a query execution engine.

Case-Study: Sort-Based Aggregation

As a first step towards realizing our system, we performed a case study to understand
the importance of hardware-aware implementation. We consider the case of optimizing
group-by operator that is aware of the underlying GPU. Specifically, we implement
the operator with the support for atomic operations - a special operator executed
directly in a GPU component. We investigate how to tune sort-based grouped
aggregation using atomics and see its implication in execution. Furthermore, we also
designed two alternative variants using a private variable or array and investigated
their performance on various GPU memory spaces. Our results show that our variants
speed up grouped aggregation compared to a naive usage of atomics by a factor
of 1.5 to 2, when well configured. Furthermore, a sort-based grouped aggregation
using atomics can outperform a hash-based aggregation by 1.2x to 2x for most
used group sizes. Based on these results, we conclude that hardware-awareness
indeed improves performance. However, direct operator implementation is still time-
consuming. Hence, we split the implementations into various smaller functions called
primitives.

136 9. Conclusion

Primitives

A DBMS operator can be realized by coupling various primitives. We surveyed the
existing works to come up with a comprehensive list of primitives, that can support
various standard database operators. We have also shown that these primitives
work at different levels of granularity, and discuss hardware-based tuning for the
finest-granular level of primitives. Finally, we discuss the impact of these primitives
in the design of a query engine. Even though these primitives are minimal and even
reusable in multiple operations, we have the problems of realizing these primitives
and handling them across devices.

Realizing Primitives

For primitive realization, we consider the different GPU libraries that support
DBMS operators. To this end, we reviewed different expert-written libraries to be
used for faster prototyping of a GPU-accelerated database system. Based on our
review, we identified 43 GPU libraries, out of which 6 support database operators.
Though we have quite a handful of libraries for GPUs, only three of those support
database operators directly. Hence, we studied their performance implication in
query execution and summarized their level of usability and usefulness. Now that
the operator implementation is available, the next challenge addressed is to couple
them with query execution.

Understanding Execution Models

Query execution relies heavily on the execution model used. Hence, we have studied
the existing execution models in CPU: compiled & vectorized to develop one for
our query engine. Based on our review of the execution models, we identify that
compilation time has a huge impact on query performance. Hence, to overcome
this issue, we integrated vectorized with compiled execution. Specifically, we hide
compilation time with vectorized execution. This prototype - named Tether - first
starts execution using a vectorized model concurrently with compilation. Once
compilation is done, the system switches to compiled execution via pipeline breakers.
These pipeline breakers are specialized primitives that enforce the intermediate results
to be materialized completely before the next primitive in the execution pipeline can
be processed. Thus, our system can successfully utilize the time for compilation into
processing partial results, thereby improving performance. Based on our experiments,
we saw that we get benefits up to 3x the baseline approaches. Though the approach
is beneficial, it is still centered around CPU-based systems. Hence, to have abstract
co-processor support, we developed a unified query engine runtime.

ADAMANT Architecture

Our proposed architecture - ADAMANT - has three layers that handle execution
in a co-processor using granular database primitives. Along with our architecture,
we also propose an execution model for scaling execution to larger-than-memory
datasets. Based on our evaluation of CPU (OpenMP, OpenCL) and GPU (OpenCL,
CUDA) prototypes, we observe that there is a marked overhead in handling OpenCL
execution compared to OpenMP and CUDA. Furthermore, we also identify that our

137

Main code base

device-specific
operators

device-specific
operators

CompilerCompiler

CPU GPU

Binary Binary

(a) Hardware-aware query en-
gine

 Unified runtime

Primitives

SDKSDK SDK

Device 1 Device 2

Binary

Execution
model

Device Interfaces

(b) Hardware-pluggable query engine

Figure 9.1: An updated query engine for plugging in an arbitrary co-processor

four-phased execution can be employed for significant performance improvements
over chunked execution of up to 3x. Our experimental evaluation emphasizes the
complex optimization space of queries in a co-processor environment, which other
than traditional optimization, spans further execution models, operator placement,
and primitive implementation (including micro-optimizations or SDK choices), among
more parameters. We hope that our ADAMANT prototype can facilitate the study of
this optimization space for database systems. Overall, our ADAMANT query engine
can be used to build an efficient query processing system around new hardware, with
less effort.
Thus, here we explored developing a query engine for emerging co-processors. We
extend the current hardware-aware query executor architecture, like in Figure 9.1
(a), to be pluggable. Such a hardware-aware architecture is time-consuming, which
we have showed in our case study. Our extension to the hardware-aware architecture
is to have pluggable components, so that we can support any co-processor through
any one of its corresponding SDKs (as given in Figure 9.1 (b)). These extensions
span over three main components: First, we showed in this chapter the need for
hardware awareness and used them for developing abstract primitives - forming the
task layer. Additionally, we also realized these abstract primitives using GPU-based
libraries. Second, we explore the existing execution models, optimizing them with a
hybrid execution model - forming the runtime layer. Finally, we develop an abstract
query engine that supports the pluggability of any co-processor- using the device
layer. Thus, we have a unified runtime that supports plugging any co-processors that
increase productivity as well as support increased performance.

Future Work
Our pluggable query engine so far supports co-processor integration specifically imple-
mented for query execution. However, optimal execution needs various optimizations
to be carried out. These can be the natural next step for the work.

138 9. Conclusion

First, we need an optimizer that does informed placement of database operations
onto target co-processors. To this end, we envision a two-level optimizer. On the
global level, the optimizer decides to place operations into a target co-processor.
Once placed, a local optimizer must then identify the best implementation to have
improved performance. These two optimizers must be in symbiosis to attain the best
performance out of the overall system.

Next, as an extension to our current execution, we can support parallelism across
processors. The current execution engine supports only co-processor acceleration
while the host CPU is idle. Hence, adding parallelism constructs in execution should
enable concurrent execution across both the host and co-processor. The parallelism
can enable functional parallel, data parallel as well and pipelined execution across
the devices.

Finally, our work can be used to develop primitives for other database models (like
graphs, and key-value stores). These primitives along with their supported execution
models can be explored to develop a unified runtime that supports query execution
across other database paradigms.

Moreover, within the scope of each of the chapters, we propose the following future
work:

Sort-Based Aggregation

Since sort-based aggregation has been ubiquitous for query execution, we took it as
a case for exploring hardware-sensitive implementations. The natural next step is to
replicate the same optimizations for sort-merge joins.

Additionally, we focused only on atomics as a hardware-sensitive option, and we
tuned it to obtain better performance. However, other parameters like loop-unrolling
and predication can also be integrated into the existing code to further improve
performance.

Finally, the current setup only explores atomics-based aggregation in isolation from
other steps like sorting. Hence, a hybrid sort-aggregation setup could be explored –
where we generate partial aggregates with sorted runs to improve performance.

Primitives

As mentioned above, the straightforward next step for primitives is to explore the
ones present for operators running over other data models (like graphs). Similar
primitives can also be identified for other database functionalities, especially query
optimizations.

Realizing Primitives

For our future work, we can extend our approach with other libraries built on top of
other low-level wrappers like OneAPI and do a comprehensive study of all libraries
w.r.t. their support for database operators. Furthermore, building an optimizer
that chooses the best-performing library-based operator during runtime is another
important tuning task.

139

Hybrid Execution Model

Since merging vectorized and compiled execution benefits execution, there are various
directions to improve the current performance. Tuning options like identifying
optimal cross-over points, storing existing compiled plans for future re-use, and a
dedicated optimizer to find the optimal compilation paths. One other key area to
explore is ways to debug these two different execution models without increasing
complexity.

Optimization

Ultimately, the next step in advancing our query engine is developing an appropriate
optimizer. Our query engine functionalities like primitive placement, variant selec-
tion, and execution island selection require optimizations to have an efficient query
execution.

Such a variety of optimizations must work together to have the best execution. For
example, based on the operator placed on a particular co-processor, its corresponding
optimal variant must be selected across the different implementations from different
SDKs. Hence, we must progressively optimize for best execution. Our possible next
steps in this scenario are to first identify execution islands - a set of query operators
that act as a single execution unit. Next, we need to place this execution island
onto a co-processor. Once placed, we then can identify the optimal variant for faster
execution. To achieve such an optimal query execution plan, we need a special
optimizer that is aware of the co-processor characteristics that are also pluggable
through interfaces like the ones in our query engine.

A. Appendix

Here we provide the various code snippets and additional references to the concepts
presented in this work. We first start with queries we used throughout this work,
followed by the code snippets used in realizing the functions / operators used in our
experiments.

A.1 BenchmarkQueries
Throughout this work, we use TPC-H extensively for benchmarks and evaluation. It
is a decision support benchmark developed and curated by Transaction Processing
Performance Council (TPC). They have defined a database with eight tables. The
records in the database can be generated with different scale factors, with a 1 scale
factor (1SF) equalling 1 GB of data. These tables are used to benchmark decision
support systems (DSS) via 22 benchmark queries. Out of these, we use the following
in this work:

Query 1
SELECT

l r e t u r n f l a g , l l i n e s t a t u s ,
sum (l quan t i t y) as sum qty ,
sum (l e x t endedp r i c e) as sum base pr ice ,
sum (l e x t endedp r i c e ∗ (1 − l d i s c o un t)) as sum di sc pr i c e ,
sum (l e x t endedp r i c e ∗ (1 − l d i s c o un t) ∗ (1 + l t a x)) as sum charge ,
avg (l quan t i t y) as avg qty ,
avg (l e x t endedp r i c e) as avg pr i ce ,
avg (l d i s c oun t) as avg d i sc ,
count (∗) as count order

FROM
l i n e i t em

WHERE
l s h i pd a t e <= date ’ 1998−12−01 ’ − i n t e r v a l ’ 90 ’ day

GROUP BY
l r e t u r n f l a g , l l i n e s t a t u s

ORDER BY
l r e t u r n f l a g , l l i n e s t a t u s ;

142 A. Appendix

Query 3
SELECT

sum (l e x t endedp r i c e ∗ (1 − l d i s c o un t)) as revenue ,
l o rde rkey , o orderdate , o s h i p p r i o r i t y

FROM
customer , orders , l i n e i t em

WHERE
c mktsegment = ’BUILDING ’
AND c cus tkey = o custkey
AND l o r d e rk ey = o orderkey
AND o orderdate < date ’ 1995−03−15 ’
AND l s h i pd a t e > date ’ 1995−03−15 ’

GROUP BY
l o rde rkey , o orderdate , o s h i p p r i o r i t y

ORDER BY
revenue desc , o o rde rdate

LIMIT 20 ;

Query 4
SELECT

o o rd e r p r i o r i t y , count (∗) as order count
FROM

orde r s
WHERE

o orde rdate >= date ’ 1993−07−01 ’
and o orderdate < date ’ 1993−10−01 ’
and e x i s t s (

SELECT ∗ FROM l i n e i t em
WHERE l o r d e rk ey = o orderkey and l commitdate < l r e c e i p t d a t e)

GROUP BY o o r d e r p r i o r i t y
ORDER BY o o r d e r p r i o r i t y

Query 6
SELECT

sum (l e x t endedp r i c e ∗ l d i s c o un t) as revenue
FROM

l i n e i t em
WHERE

l s h i pd a t e >= date ’ 1994−01−01 ’
AND l s h i pd a t e < date ’ 1994−01−01 ’ + i n t e r v a l ’ 1 ’ year
AND l d i s c o un t between 0 .06 − 0 .01 AND 0 .06 + 0.01
AND l q u an t i t y < 24 ;

Query 18
SELECT

c name , c custkey , o orderkey , o orderdate , o t o t a l p r i c e ,
sum (l quan t i t y)

FROM
customer , orders , l i n e i t em

WHERE
o orderkey i n (
SELECT l o r d e rk ey FROM l i n e i t em
GROUP BY

l o r d e rk ey hav ing sum (l quan t i t y) > 300
)
and c cus tkey = o custkey and o orderkey = l o rd e rk ey

GROUP BY
c name , c custkey , o orderkey , o orderdate , o t o t a l p r i c e

ORDER BY
o t o t a l p r i c e desc , o o rde rdate

LIMIT 100

We use these (and in few cases, tiny variations of these) queries to evaluate the
performance of our systems. These queries cover the behaviors of other TPCH queries
as well, hence the performance profile would be similar for others.

A.2. Code Snippets for Sort-Based Aggregation 143

A.2 Code Snippets for Sort-Based Aggregation

In the case of sort-based aggregation, atomic operations play a key role in overall
performance. Hence, we develop a simple atomic-based aggregation mechanism
that can work with sorted results to clearly see the impact of these functions over
execution. To make it a fair comparison, we also developed a fairly straightforward
hashing mechanism (linear probing in this case) that uses atomics for aggregation.
Here are the code snippets for them:

Simple atomic aggretation over sorted values on global memory
k e r n e l vo id atomic aggregate (g l o b a l uns i gned i n t ∗ ps ,
g l o b a l uns i gned i n t ∗ r e s) {

atomic add(& re s [ps [g e t g l o b a l i d (0)]] , 1) ;
}

The Listing A.2 shows a straightforward atomic based aggregation mechanism. In
this case, we execute count aggregation, however it is easy to update with other
aggregation operations like sum, max and min.

Simple atomic aggretation over sorted values on local memory
k e r n e l vo id a t om i c agg r e ga t e l o c a l (g l o b a l uns i gned i n t ∗ ps ,
g l o b a l uns i gned i n t ∗ res ,
l o c a l uns i gned i n t ∗ l o ca lRe s) {

/∗
∗ I n i t i a l i z e l o c a l memory and requ i red parameter
∗/
s i z e t pos = g e t l o c a l i d (0) ;
l o ca lRe s [pos] = 0 ;
b a r r i e r (CLK LOCAL MEM FENCE) ;

uns i gned i n t f i r s tPS , lastPS ;
f i r s tPS = ps [g e t g roup id (0) ∗ g e t l o c a l s i z e (0)] ;
lastPS = ps [((g e t g roup id (0)+1)∗ g e t l o c a l s i z e (0)) − 1] ;

/∗
∗ Variant proces s ing s t ep f o r aggrega t ion
∗/
i n t i n s e r tPo s = ps [g e t g l o b a l i d (0)] − f i r s tPS ;
atomic add(& loca lRe s [i n s e r tPo s] , 1) ;
b a r r i e r (CLK GLOBALMEM FENCE) ;

/∗
∗ Push r e s u l t s to g l o b a l memory from l o c a l
∗/
// F i l l in f i r s t and l a s t p o s i t i on
i f (g e t l o c a l i d (0) == 0) {

atomic add(& re s [ps [g e t g l o b a l i d (0)]] , l o ca lRe s [g e t l o c a l i d (0)]) ;

i f (lastPS − f i r s tPS > 1) {
f o r (i n t i = 1 ; i < lastPS − f i r s tPS ; i++)
r e s [f i r s tPS + i] += loca lRe s [i] ;

}
r e tu rn ;

}
e l s e i f (g e t l o c a l i d (0) == g e t l o c a l s i z e (0) − 1) {

i f (lastPS != f i r s tPS)
atomic add(& re s [lastPS] , l o ca lRe s [ps [g e t g l o b a l i d (0)] − f i r s tPS]) ;
r e tu rn ;

}
}

144 A. Appendix

To store partial aggregates in the local memory, we have to initialize the local memory.
The Listing A.2 initializes local memory in lines 1-3. Next, we have to store the
partial results onto global memory which is also given in the Listing.

Private variable aggretation over sorted values on global memory
vo id ke rne l branched aggregate (
g l oba l c on s t i n t ∗ PS ,
g l oba l i n t ∗ r e s
) {

i n t l o c a l r e s =1;
s i z e t pos = g e t g l o b a l i d (0) ∗ ITERATOR;
f o r (uns i gned i n t i = 0 ; i < ITERATOR−1; ++i) {

i f ((PS [pos + i] − PS [pos + i + 1])) {
atomic add(& re s [PS [pos + i]] , l o c a l r e s) ;
l o c a l r e s =1;

}
e l s e
l o c a l r e s++;

}
atomic add(& re s [PS [pos + ITERATOR − 1]] , l o c a l r e s) ;
}

Private array aggretation over sorted values on global memory
vo id ke rne l p r i v a t e a r r a y s e qu en t i a l a g g r e g a t e (
g l oba l i n t ∗ PS ,
g l oba l i n t ∗ r e s
) {

i n t l o c a l p s [ITERATOR] ;
i n t l o c a l r e s [ITERATOR] ;
s i z e t pos = g e t g l o b a l i d (0) ∗ ITERATOR;
i n t l c = 0 ;

l o c a l p s [l c] = PS [pos] ;
l o c a l r e s [l c] = 1 ;

f o r (uns i gned i n t i = 0 ; i < ITERATOR − 1 ; ++i) {
i f ((PS [pos + i] − PS [pos + i + 1])) {

l c++;
l o c a l p s [l c] = PS [pos + i +1] ;
l o c a l r e s [l c] =1;

}
e l s e
l o c a l r e s [l c]++;

}
atomic add(& re s [l o c a l p s [0]] , l o c a l r e s [0]) ;

f o r (i n t i = 1 ; i < l c ; i++){
r e s [l o c a l p s [i]]+= l o c a l r e s [i] ;

}

i f (l c !=0)
atomic add(& re s [l o c a l p s [l c]] , l o c a l r e s [l c]) ;

}

As mentioned, since atomics is the key factor influencing the execution, we use the
same for aggregation via hashing. In our case, we use simple linear probing has our
hashing technique as shown in Listing A.2.

A.3. Tether - Linking Vectorwise with Hyper 145

Group by aggregation using linear probing - atomics variant
#pragma OPENCL EXTENSION c l kh r g l o b a l i n t 3 2 ba s e a t om i c s : enable
#pragma OPENCL EXTENSION c l k h r l o c a l i n t 3 2 b a s e a t om i c s : enable
#pragma OPENCL EXTENSION c l kh r g l oba l i n t 3 2 ex t end ed a t om i c s : enable
#pragma OPENCL EXTENSION c l kh r l o c a l i n t 3 2 e x t e nd ed a t om i c s : enable

k e r n e l vo id hashAggregation (g l o b a l i n t ∗ input , g l o b a l i n t ∗ r e su l t , uns i gned
↪→ i n t HASH TABLE SIZE) {

i n t i n s e r t v a l = input [g e t g l o b a l i d (0)] ;
i f (! i n s e r t v a l)
r e tu rn ;

s i z e t p o s i t i o n = 1300000077∗ input [g e t g l o b a l i d (0)]%HASH TABLE SIZE ;
f o r (s i z e t i = 0 ; i< HASH TABLE SIZE ; i++){

i n t t e s t v a l = atomic cmpxchg(& r e s u l t [p o s i t i o n ∗2] , 0 , i n s e r t v a l) ;
i f ((t e s t v a l==0) | | (t e s t v a l == i n s e r t v a l)) {

atomic add(& r e s u l t [p o s i t i o n ∗2+1] ,1) ;
break ;

}

po s i t i o n = (po s i t i o n+1)%(HASH TABLE SIZE) ;
}
}

A.3 Tether - Linking Vectorwise with Hyper
One of the critical component in our Tether framework is the function that links
vectorwise with hyper. This is essentially the function that allows the execution
to switch from interpreted mode to compiled execution, thereby triggering faster
query execution. We achieve this using threading where - thread 1 starts compilation;
thread 2 executes query using interpreted execution. The code for this execution is
presented below.

Group by aggregation using linear probing - atomics variant
// Execute us ing hybr id approach
Relat ion q6 hybr id (Database& db , s i z e t nrThreads , s i z e t vec to rS i z e ,
c on s t std : : s t r i n g& pa t h t o l i b s r c , boo l fromLLVM,
boo l verbose) {
u s i n g namespace vec to rw i s e ;
u s i n g namespace std : : c h r o n o l i t e r a l s ;

// 1 . START COMPILING Q6 IN TYPER
std : : atomic<hybrid : : SharedLibrary∗> typerLib (nu l l p t r) ;
s td : : thread compilat ionThread ([& typerLib , &pa t h t o l i b s r c , &fromLLVM,
&verbose] {

c on s t std : : s t r i n g& pa t h t o l i b =
hybrid : : CompilationEngine : : i n s t ance () . l inkQueryLib (p a t h t o l i b s r c ,
fromLLVM) ;
// open l i b r a r y
typerLib = hybrid : : SharedLibrary : : load (p a t h t o l i b + ” . so ”) ;
auto end = std : : chrono : : s t e ady c l o ck : : now() ;

}) ;

// 2 . WHILE Q6 IS COMPILING, START TECTORWISE
vec to rw i s e : : SharedStateManager shared ;
WorkerGroup workers (nrThreads) ;
GlobalPool pool ;
s td : : atomic<i n t64 t> aggr (0) ;
s td : : atomic<s i z e t> processedTuples (0) ;
workers . run ([&] {
// i n i t query
auto query = queryBui lder . getQuery () ;
// ge t top operator

146 A. Appendix

std : : unique ptr<vec to rw i s e : : FixedAggr> topAggr (s t a t i c c a s t <vec to rw i s e : : FixedAggr
↪→ ∗>(query−>rootOp . r e l e a s e ())) ;

// wh i l e ch i l d r en prov ide tup l e s , compute the aggrega te
f o r (auto pos = topAggr−>ch i ld−>next () ; pos != EndOfStream && ! typerLib ;
pos = topAggr−>ch i ld−>next ()) {

topAggr−>aggregate s . eva luate (pos) ;
processedTuples . f e t ch add (v e c t o rS i z e) ;

}
// s t o r e r e s u l t from t h i s thread
aggr . f e t ch add (query−>aggregator) ;
}) ;

// 3 . PROCESS REMAINING TUPLES WITH TYPER
compilat ionThread . j o i n () ;
s i z e t nrTuples = db [” l i n e i t em ”] . nrTuples ;
i f (processedTuples . load () > nrTuples) { processedTuples . s t o r e (nrTuples) ; }
// load l i b r a r y
i f (! typerLib) {

throw hybrid : : HybridException (”Could not load shared Typer l i b r a r y ! ”) ;
}
// ge t compiled func t i on
c on s t std : : s t r i n g& funcName = ” Z15hybrid typer q6RN7runtime8DatabaseEmml ” ;
hybrid : : CompiledTyperQ6 typer q6 = typerLib . load ()−>getFunction<hybrid : :

↪→ CompiledTyperQ6>(funcName) ;
// compute typer r e s u l t
Relat ion r e s u l t =
typer q6 (db , nrThreads , processedTuples . load () , aggr . load ()) ;
end = std : : chrono : : s t e ady c l o ck : : now() ;
r e tu rn r e s u l t ;
}

Bibliography

[1] Tor M. Aamodt, Wilson Wai Lun Fung, and Timothy G. Rogers. General-
Purpose Graphics Processor Architectures. Morgan & Claypool Publishers,
2018. (cited on Page 46)

[2] Daniel J. Abadi, Daniel S. Myers, David J. DeWitt, and Samuel Madden. Mate-
rialization strategies in a column-oriented DBMS. In International Conference
on Data Engineering (ICDE), pages 466–475, 2007. (cited on Page 67 and 68)

[3] Ildar Absalyamov, Prerna Budhkar, Skyler Windh, Robert J Halstead, Walid A
Najjar, and Vassilis J Tsotras. FPGA-accelerated group-by aggregation using
synchronizing caches. Proceedings of the International Workshop on Data
Management on New Hardware (DaMoN), pages 1–9, 2016. (cited on Page 1)

[4] Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neumann. Massively
parallel sort-merge joins in main memory multi-core database systems. Pro-
ceedings of the VLDB Endowment (VLDB), 5(10):1064–1075, June 2012. (cited

on Page 70)

[5] Markus Ålind, Mattias V Eriksson, and Christoph W Kessler. Blocklib: a
skeleton library for cell broadband engine. In Proceedings of the international
workshop on Multicore software engineering (IWMSE), pages 7–14, 2008. (cited

on Page 38)

[6] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan
Edelman, and Saman Amarasinghe. Petabricks: A language and compiler for
algorithmic choice. ACM Special Interest Group on Programming Languages
notices (SIGPLAN), 44(6):38–49, 2009. (cited on Page 40)

[7] I. Arefyeva, D. Broneske, M. Pinnecke, M. Bhatnagar, and G. Saake. Column
vs. row stores for data manipulation in hardware oblivious cpu/gpu database
systems. In GI-Workshop Grundlagen von Datenbanken (GvDB), pages 24–29.
CEUR-WS, 2017. (cited on Page 80)

[8] I. Arefyeva, G. Campero Durand, M. Pinnecke, D. Broneske, and G. Saake.
Low-latency transaction execution on graphics processors: Dream or reality? In
Workshop on Accelerating Data Management Systems Using Modern Processor
and Storage Architectures (ADMS), 2018. (cited on Page 75)

[9] Iya Arefyeva, David Broneske, Gabriel Campero, Marcus Pinnecke, and Gunter
Saake. Memory management strategies in CPU/GPU database systems: A

148 Bibliography

survey. In Proceedings of the International Conference Beyond Databases,
Architectures and Structures (BDAS), pages 128–142. Springer, September
2018. (cited on Page 44)

[10] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi,
et al. Spark SQL: Relational data processing in Spark. In Proceedings of the
International Conference on Management of Data (SIGMOD), pages 1383–1394,
2015. (cited on Page 95)

[11] Yuki Asada, Victor Fu, Apurva Gandhi, Advitya Gemawat, Lihao Zhang, Dong
He, Vivek Gupta, Ehi Nosakhare, Dalitso Banda, Rathijit Sen, et al. Share
the tensor tea: how databases can leverage the machine learning ecosystem.
arXiv preprint arXiv:2209.04579, 2022. (cited on Page 36)

[12] Ben Ashbaugh, Alexey Bader, James Brodman, Jeff Hammond, Michael Kin-
sner, John Pennycook, Roland Schulz, and Jason Sewall. Data parallel c++
enhancing sycl through extensions for productivity and performance. In Pro-
ceedings of the International Workshop on OpenCL (IWOCL), pages 1–2, 2020.
(cited on Page 78)

[13] Cédric Augonnet and Raymond Namyst. A unified runtime system for het-
erogeneous multi-core architectures. In International European Conference
on Paralleland Distributed Computing Workshops (Euro-Par), pages 174–183.
Springer, 2009. (cited on Page 41)

[14] Cédric Augonnet, Samuel Thibault, et al. StarPU: a unified platform for
task scheduling on heterogeneous multicore architectures. Concurrency and
Computation: Practice and Experience, 23(2), 2011. (cited on Page 41, 113, and 114)

[15] Peter Bakkum and Kevin Skadron. Accelerating SQL database operations
on a GPU with CUDA. Proceedings of the Workshop on General–Purpose
Computation on Graphics Processing Units, pages 94–103, 2010. (cited on Page 1,

36, 46, 75, 78, and 113)

[16] Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M Tamer Özsu. Multi-
core, main-memory joins: Sort vs. hash revisited. Proceedings of the VLDB
Endowment (VLDB), 7(1):85–96, 2013. (cited on Page 43)

[17] Gerassimos Barlas. Multicore and GPU Programming: An integrated approach.
Elsevier, 2014. (cited on Page 19)

[18] Andreas Becher, Lekshmi B.G., et al. Integration of FPGAs in database
management systems: Challenges and opportunities. Datenbank-Spektrum,
2018. (cited on Page 44)

[19] Andreas Becher, Achim Herrmann, Stefan Wildermann, and Jürgen Teich. Re-
provide: Towards utilizing heterogeneous partially reconfigurable architectures
for near-memory data processing. Database Systems for Business, Technology
and Web Workshops (BTW), 2019. (cited on Page 36)

Bibliography 149

[20] Andreas Becher, Achim Herrmann, Stefan Wildermann, and Jürgen Teich. Re-
provide: Towards utilizing heterogeneous partially reconfigurable architectures
for near-memory data processing. In Holger Meyer, Norbert Ritter, Andreas
Thor, Daniela Nicklas, Andreas Heuer, and Meike Klettke, editors, Database
Systems for Business, Technology and Web Workshops (BTW), pages 51–70.
Gesellschaft für Informatik, Bonn, 2019. (cited on Page 119)

[21] Edmon Begoli, Jesús Camacho-Rodŕıguez, Julian Hyde, Michael J Mior, and
Daniel Lemire. Apache calcite: A foundational framework for optimized query
processing over heterogeneous data sources. In Proceedings of the International
Conference on Management of Data (SIGMOD), 2018. (cited on Page 114)

[22] Tobias Behrens, Viktor Rosenfeld, Jonas Traub, Sebastian Breß, and Volker
Markl. Efficient SIMD Vectorization for Hashing in OpenCL. International
Conference on Extending Database Technology (EDBT), pages 3–6, 2018. (cited

on Page 43, 44, 46, 59, and 75)

[23] Evgenij Belikov, Pantazis Deligiannis, Prabhat Totoo, Malak Aljabri, and
Hans-Wolfgang Loidl. A survey of high-level parallel programming models.
Heriot-Watt University, Edinburgh, UK, 1(2):2–2, 2013. (cited on Page 40 and 41)

[24] Nathan Bell and Jared Hoberock. Thrust: A productivity-oriented library for
cuda. In GPU computing gems Jade edition. Elsevier, 2012. (cited on Page 76

and 79)

[25] Siegfried Benkner, Sabri Pllana, Jesper Larsson Traff, Philippas Tsigas, Uwe
Dolinsky, Cedric Augonnet, Beverly Bachmayer, Christoph Kessler, David
Moloney, and Vitaly Osipov. Peppher: Efficient and productive usage of hybrid
computing systems. IEEE/ACM International Symposium on Microarchitecture
(MICRO), 31(5):28–41, 2011. (cited on Page 23 and 37)

[26] BlazingDB. High Performance GPU Database for Big Data SQL. 2015. (cited

on Page 76 and 78)

[27] Guy E. Blelloch. Vector Models for Data-parallel Computing. MIT Press, 1990.
(cited on Page 64 and 65)

[28] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E
Leiserson, Keith H Randall, and Yuli Zhou. Cilk: An efficient multithreaded
runtime system. ACM Special Interest Group on Programming Languages
notices (SIGPLAN), 30(8):207–216, 1995. (cited on Page 23)

[29] P. A. Boncz and M. L. Kersten. Mil primitives for querying a fragmented world.
Proceedings of the VLDB Endowment (VLDB), 8(2):101–119, Oct 1999. (cited

on Page 2 and 62)

[30] Peter Boncz, Thomas Neumann, and Orri Erling. TPC-H analyzed: Hidden
messages and lessons learned from an influential benchmark. In Technology Con-
ference on Performance Evaluation and Benchmarking, pages 61–76. Springer,
2013. (cited on Page 44)

150 Bibliography

[31] Peter A Boncz, Martin L Kersten, and Stefan Manegold. Breaking the memory
wall in monetdb. Communications of the ACM, 51(12):77–85, 2008. (cited on

Page 2 and 36)

[32] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge,
Thomas Hérault, and Jack J Dongarra. Parsec: Exploiting heterogeneity
to enhance scalability. Computing in Science & Engineering, 15(6):36–45, 2013.
(cited on Page 41 and 114)

[33] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Herault, Pierre
Lemarinier, and Jack Dongarra. Dague: A generic distributed dag engine for
high performance computing. Parallel Computing, 38(1-2):37–51, 2012. (cited

on Page 114)

[34] Alexander Branover, Denis Foley, and Maurice Steinman. Amd fusion apu:
Llano. Ieee Micro, 32(2):28–37, 2012. (cited on Page 14)

[35] Sebastian Breß. The design and implementation of CoGaDB: A column-oriented
GPU-accelerated dbms. DBS, 14(3):199–209, 2014. (cited on Page 75, 78, and 113)

[36] Sebastian Breß, Henning Funke, and Jens Teubner. Robust query processing
in co-processor-accelerated databases. In Proceedings of the International
Conference on Management of Data (SIGMOD), pages 1891–1906, 2016. (cited

on Page 44)

[37] Sebastian Breß, Max Heimel, et al. GPU-accelerated database systems: Survey
and open challenges. In Transactions on Large-Scale Data and Knowledge-
Centered Systems (TLDKS), pages 1–35. Springer, 2014. (cited on Page 1, 36,

and 113)

[38] Sebastian Breß, Max Heimel, Norbert Siegmund, Ladjel Bellatreche, and
Gunter Saake. GPU-accelerated database systems: Survey and open challenges.
Transactions on Large-Scale Data- and Knowledge-Centered Systems, pages
1–35, 2014. (cited on Page 12)

[39] Sebastian Breß, Bastian Köcher, Henning Funke, Steffen Zeuch, Tilmann Rabl,
and Volker Markl. Generating custom code for efficient query execution on
heterogeneous processors. Proceedings of the VLDB Endowment (VLDB),
27(6):797–822, December 2018. (cited on Page 26, 37, 38, 73, 78, 114, and 120)

[40] Robert A Bridges, Neena Imam, and Tiffany M Mintz. Understanding GPU
power: A survey of profiling, modeling, and simulation methods. ACM Com-
puting Surveys (CSUR), 49(3), 2016. (cited on Page 114)

[41] David Broneske, Sebastian Breß, Max Heimel, and Gunter Saake. Toward
hardware-sensitive database operations. International Conference on Extending
Database Technology (EDBT), pages 1–6, 2014. (cited on Page 2, 29, 43, 67, 75,

and 111)

[42] David Broneske, Veit Köppen, Gunter Saake, and Martin Schäler. Accelerating
multi-column selection predicates in main-memory - the Elf approach. In

Bibliography 151

International Conference on Data Engineering (ICDE), pages 647–658. IEEE,
2017. (cited on Page 71)

[43] David Broneske, Andreas Meister, and Gunter Saake. Hardware-sensitive scan
operator variants for compiled selection pipelines. In Database Systems for
Business, Technology and Web (BTW), pages 403–412, 2017. (cited on Page 25

and 67)

[44] Brytlyt. World’s most advanced GPU accelerated database. 2013. (cited on

Page 76)

[45] Daniel Cederman and Philippas Tsigas. GPU-Quicksort: A Practical Quicksort
Algorithm for Graphics Processors. Journal of Experimental Algorithmics
(JEA), pages 4:1.4—-4:1.24, jan 2010. (cited on Page 6)

[46] Rohit Chandra, Leo Dagum, David Kohr, Ramesh Menon, Dror Maydan, and
Jeff McDonald. Parallel programming in OpenMP. Morgan kaufmann, 2001.
(cited on Page 23)

[47] Cheng-Hsiang Chiu, Tsung-Wei Huang, Zizheng Guo, and Yibo Lin. Pipeflow:
An efficient task-parallel pipeline programming framework using modern c++.
arXiv preprint arXiv:2202.00717, 2022. (cited on Page 41)

[48] Iris Christadler and Volker Weinberg. Rapidmind: Portability across archi-
tectures and its limitations. Facing the multicore-challenge: aspects of new
paradigms and technologies in parallel computing, pages 4–15, 2010. (cited on

Page 37)

[49] Periklis Chrysogelos, Manos Karpathiotakis, Raja Appuswamy, and Anastasia
Ailamaki. Hetexchange: Encapsulating heterogeneous cpu-gpu parallelism in
jit compiled engines. Technical report, 2019. (cited on Page 27 and 114)

[50] Periklis Chrysogelos, Panagiotis Sioulas, and Anastasia Ailamaki. Hardware-
conscious query processing in gpu-accelerated analytical engines. In Conference
on Innovative Data Systems Research (CIDR), number CONF, 2019. (cited on

Page 114)

[51] Hawon Chu, Seounghyun Kim, Joo-Young Lee, and Young-Kyoon Suh. Empir-
ical evaluation across multiple gpu-accelerated dbmses. In Proceedings of the
International Workshop on Data Management on New Hardware (DaMoN),
pages 1–3, 2020. (cited on Page 113)

[52] Murray I Cole. Algorithmic skeletons: structured management of parallel
computation. Pitman London, 1989. (cited on Page 24)

[53] Jason Cong, Zhenman Fang, Michael Lo, Hanrui Wang, Jingxian Xu, and
Shaochong Zhang. Understanding performance differences of fpgas and gpus. In
International Symposium on Field-Programmable Custom Computing Machines
(FCCM), pages 93–96. IEEE, 2018. (cited on Page 16)

152 Bibliography

[54] T.Mostak C.Root. Mapd: A GPU-powered big data analytics and visualiza-
tion platform. Special Interest Group on Computer Graphics and Interactive
Techniques Conference (SIGGRAPH), pages 73–74, 2016. (cited on Page 12)

[55] Andrew Crotty, Alex Galakatos, Kayhan Dursun, Tim Kraska, Carsten Binnig,
Ugur Cetintemel, and Stan Zdonik. An architecture for compiling UDF-centric
workflows. Proceedings of the VLDB Endowment (VLDB), 8(12):1466–1477,
2015. (cited on Page 95)

[56] Marco Danelutto and Massimo Torquati. Structured parallel programming with
“core” fastflow. Central European Functional Programming School (CEFP),
pages 29–75, 2015. (cited on Page 37)

[57] G Diamos, H Wu, A Lele, J Wang, and et al. Efficient relational algebra
algorithms and data structures for GPU. Technical report, Georgia Institute
of Technology, 2012. (cited on Page 72 and 73)

[58] Yuri Dotsenko, Naga K Govindaraju, Peter-Pike Sloan, Charles Boyd, and John
Manferdelli. Fast Scan Algorithms on Graphics Processors. In International
Conference on Supercomputing (ICS), pages 205–213, 2008. (cited on Page 32)

[59] Markus Dreseler, Jan Kossmann, Johannes Frohnhofen, Matthias Uflacker, and
Hasso Plattner. Fused table scans: Combining AVX-512 and JIT to double
the performance of multi-predicate scans. In International Conference on Data
Engineering Workshops (ICDEW), pages 102–109. IEEE, 2018. (cited on Page 96)

[60] Tobias Drewes, Jan Moritz Joseph, and Thilo Pionteck. An fpga-based pro-
totyping framework for networks-on-chip. In International Conference on
ReConFigurable Computing and FPGAs (ReConFig), pages 1–7. IEEE, 2017.
(cited on Page 36)

[61] H Carter Edwards, Christian R Trott, and Daniel Sunderland. Kokkos: En-
abling manycore performance portability through polymorphic memory access
patterns. Journal of parallel and distributed computing, 74(12):3202–3216, 2014.
(cited on Page 114)

[62] Kento Emoto and Kiminori Matsuzaki. An automatic fusion mechanism
for variable-length list skeletons in sketo. International Journal of Parallel
Programming, 42:546–563, 2014. (cited on Page 37)

[63] Johan Enmyren and Christoph W Kessler. Skepu: a multi-backend skeleton
programming library for multi-gpu systems. In International workshop on
High-level parallel programming and applications (HLPP), pages 5–14, 2010.
(cited on Page 37 and 38)

[64] Steffen Ernsting and Herbert Kuchen. A scalable farm skeleton for heteroge-
neous parallel programming. Parallel Computing: Accelerating Computational
Science and Engineering (CSE), 25:72, 2014. (cited on Page 37)

[65] August Ernstsson, Johan Ahlqvist, Stavroula Zouzoula, and Christoph Kessler.
Skepu 3: Portable high-level programming of heterogeneous systems and hpc

Bibliography 153

clusters. International Journal of Parallel Programming, 49(6):846–866, 2021.
(cited on Page 37)

[66] August Ernstsson, Lu Li, and Christoph Kessler. Skepu 2: Flexible and type-
safe skeleton programming for heterogeneous parallel systems. International
Journal of Parallel Programming, 46:62–80, 2018. (cited on Page 37)

[67] Jian Fang, Yvo TB Mulder, et al. In-memory database acceleration on FPGAs:
a survey. Proceedings of the VLDB Endowment (VLDB), 29(1), 2020. (cited on

Page 1, 16, 36, and 113)

[68] Jianbin Fang, Chun Huang, Tao Tang, and Zheng Wang. Parallel program-
ming models for heterogeneous many-cores: a comprehensive survey. CCF
Transactions on High Performance Computing (CCF THPC), 2:382–400, 2020.
(cited on Page 23 and 25)

[69] Rui Fang, Bingsheng He, Mian Lu, Ke Yang, Naga K. Govindaraju, Qiong
Luo, and Pedro V. Sander. GPUQP: Query co-processing using graphics
processors. In Proceedings of the International Conference on Management of
Data (SIGMOD), pages 1061–1063, 2007. (cited on Page 77 and 78)

[70] Rob Farber. Parallel programming with OpenACC. Newnes, 2016. (cited on

Page 19)

[71] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J Knight, Larkhoon Leem,
Mike Houston, Ji Young Park, Mattan Erez, Manman Ren, Alex Aiken,
William J Dally, et al. Sequoia: Programming the memory hierarchy. In
Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, pages
83–es, 2006. (cited on Page 37)

[72] Matteo Frigo, Charles E Leiserson, and Keith H Randall. The implementation
of the Cilk-5 multithreaded language. In Conference on Programming language
design and implementation (PLDI), pages 212–223, 1998. (cited on Page)

[73] Henning Funke, Sebastian Breß, et al. Pipelined query processing in coprocessor
environments. In Proceedings of the International Conference on Management
of Data (SIGMOD), 2018. (cited on Page 37, 38, 114, and 123)

[74] Henning Funke, Jan Mühlig, and Jens Teubner. Efficient generation of machine
code for query compilers. In Proceedings of the International Workshop on
Data Management on New Hardware (DaMoN), pages 1–7, 2020. (cited on

Page 37)

[75] Henning Funke and Jens Teubner. Low-latency compilation of sql queries to
machine code. Proceedings of the VLDB Endowment (VLDB), 14(12):2691–
2694, 2021. (cited on Page 37)

[76] Thierry Gautier, Joao VF Lima, et al. Xkaapi: A runtime system for data-
flow task programming on heterogeneous architectures. In IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2013. (cited on Page 113)

154 Bibliography

[77] David B. Glasco, Peter B. Holmqvist, George R. Lynch, Patrick R. Marchand,
Karan Mehra, and James Roberts. Cache-based control of atomic operations
in conjunction with an external alu block, March 13 2012. US Patent 8,135,926.
(cited on Page 46)

[78] Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. Gput-
erasort: high performance graphics co-processor sorting for large database
management. In Proceedings of the International Conference on Management
of Data (SIGMOD), pages 325–336, 2006. (cited on Page 36)

[79] Naga Govindaraju, Nikunj Raghuvanshi, Michael Henson, David Tuft, and
Dinesh Manocha. A cache-efficient sorting algorithm for database and data
mining computations using graphics processors. Technical report, University
of North Carolina, June 2005. (cited on Page 70)

[80] Naga K Govindaraju, Brandon Lloyd, Wei Wang, Ming Lin, and Dinesh
Manocha. Fast computation of database operations using graphics proces-
sors. In Proceedings of the International Conference on Management of Data
(SIGMOD), page 215, 2004. (cited on Page 1 and 43)

[81] Goetz Graefe. Query evaluation techniques for large databases. ACM Comput-
ing Surveys (CSUR), 25(2):73–170, 1993. (cited on Page 72)

[82] Goetz Graefe. Volcano - an extensible and parallel query evaluation system.
IEEE Transactions on Knowledge and Data Engineering (TKDE), 6(1):120–135,
1994. (cited on Page 96)

[83] Tim Gubner, Diego Tomé, Harald Lang, and Peter Boncz. Fluid co-processing:
Gpu bloom-filters for cpu joins. In Proceedings of the International Workshop
on Data Management on New Hardware (DaMoN), pages 1–10, 2019. (cited on

Page 114)

[84] Bala Gurumurthy, David Broneske, Marcus Pinnecke, Gabriel Campero Du-
rand, and Gunter Saake. SIMD vectorized hashing for grouped aggregation.
In Proceedings of the European Conference on Advances in Databases and
Information Systems (ADBIS), pages 113 – 126, 2018. (cited on Page 44)

[85] Mark Harris, John Owens, Shubho Sengupta, Yao Zhang, and Andrew Davidson.
CUDPP: CUDA data parallel primitives library, Dec 2016. (cited on Page 76)

[86] M. Hauck, M. Paradies, and H. Fröning. Software-based buffering of associative
operations on random memory addresses. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 943–952, May 2019. (cited

on Page 46)

[87] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K. Govindaraju, Qiong Luo,
and Pedro V. Sander. Relational query coprocessing on graphics processors.
ACM Transactions on Database Systems (TODS), 34(4):1–39, 2009. (cited on

Page 1, 6, 12, 32, 36, 44, 46, 50, 62, 75, 113, and 120)

Bibliography 155

[88] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong Luo,
and Pedro Sander. Relational joins on graphics processors. In Proceedings
of the International Conference on Management of Data (SIGMOD), pages
511–524. ACM, 2008. (cited on Page 66, 69, and 70)

[89] Dong He, Supun Nakandala, Dalitso Banda, Rathijit Sen, Karla Saur,
Kwanghyun Park, Carlo Curino, Jesús Camacho-Rodŕıguez, Konstantinos
Karanasos, and Matteo Interlandi. Query processing on tensor computation
runtimes. arXiv preprint arXiv:2203.01877, 2022. (cited on Page 36)

[90] Jiong He, Shuhao Zhang, and Bingsheng He. In-cache query co-processing on
coupled cpu-gpu architectures. Proceedings of the VLDB Endowment (VLDB),
8(4):329–340, 2014. (cited on Page 15)

[91] Max Heimel, Michael Saecker, et al. Hardware-oblivious parallelism for in-
memory column-stores. Proceedings of the VLDB Endowment (VLDB), 6(9),
2013. (cited on Page 1, 17, 37, 75, 78, 112, and 113)

[92] John L Hennessy and David A Patterson. Computer Architecture: A Quantita-
tive Approach. Morgan Kaufmann Publishers Inc., 5th edition, 2011. (cited on

Page 64)

[93] Pedro Holanda and Hannes Mühleisen. Relational queries with a tensor process-
ing unit. In Proceedings of the International Workshop on Data Management
on New Hardware (DaMoN), pages 1–3, 2019. (cited on Page 13, 36, and 113)

[94] Daniel Horn. Stream reduction operations for GPGPU applications. In Matt
Pharr, editor, GPU Gems, volume 2, pages 573–589. Addison-Wesley, 2005.
(cited on Page 65)

[95] Fazeleh Hoseini, Aras Atalar, and Philippas Tsigas. Modeling the performance
of atomic primitives on modern architectures. In Proceedings of the International
Conference on Parallel Processing (ICPP), pages 28:1–28:11, New York, NY,
USA, 2019. ACM. (cited on Page 46)

[96] Yu-Ching Hu, Yuliang Li, and Hung-Wei Tseng. Tcudb: Accelerating database
with tensor processors. In Proceedings of the International Conference on
Management of Data (SIGMOD), SIGMOD ’22, page 1360–1374, New York,
NY, USA, 2022. Association for Computing Machinery. (cited on Page 12, 13, 36,

and 113)

[97] Tsung-Wei Huang, Chun-Xun Lin, Guannan Guo, and Martin Wong. Cpp-
taskflow: Fast task-based parallel programming using modern c++. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pages
974–983. IEEE, 2019. (cited on Page 41)

[98] Keith R Jackson, Lavanya Ramakrishnan, Krishna Muriki, Shane Canon,
Shreyas Cholia, John Shalf, Harvey J Wasserman, and Nicholas J Wright.
Performance analysis of high performance computing applications on the
amazon web services cloud. In international conference on cloud computing

156 Bibliography

technology and science (CloudCom), pages 159–168. IEEE, 2010. (cited on

Page 14)

[99] Norman Jouppi, Cliff Young, Nishant Patil, and David Patterson. Motivation
for and evaluation of the first tensor processing unit. IEEE/ACM International
Symposium on Microarchitecture (MICRO), 38(3):10–19, 2018. (cited on Page 13)

[100] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter performance analysis of a tensor processing
unit. In International Symposium on Computer Architecture (ISCA), pages
1–12, 2017. (cited on Page 13)

[101] Tim Kaldewey, Guy Lohman, Rene Mueller, and Peter Volk. GPU join
processing revisited. Proceedings of the International Workshop on Data
Management on New Hardware (DaMoN), pages 55–62, 2012. (cited on Page 6

and 75)

[102] Kamran Karimi, Neil G Dickson, and Firas Hamze. A performance comparison
of CUDA and OpenCL. arXiv preprint, 2010. (cited on Page 114)

[103] Tomas Karnagel, Tal Ben-Nun, Matthias Werner, Dirk Habich, and Wolfgang
Lehner. Big Data Causing Big (TLB) Problems: Taming Random Memory
Accesses on the GPU. Proceedings of the International Workshop on Data
Management on New Hardware (DaMoN), (2):6:1—-6:10, 2017. (cited on Page 43)

[104] Tomas Karnagel, René Müller, and Guy M. Lohman. Optimizing GPU-
accelerated group-by and aggregation. Workshop on Accelerating Data Man-
agement Systems Using Modern Processor and Storage Architectures (ADMS),
pages 1–12, 2015. (cited on Page 44, 46, 57, 59, and 75)

[105] Chetana N Keltcher, Kevin J McGrath, Ardsher Ahmed, and Pat Conway. The
amd opteron processor for multiprocessor servers. IEEE/ACM International
Symposium on Microarchitecture (MICRO), 23(2):66–76, 2003. (cited on Page 17)

[106] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew Pavlo,
and Peter Boncz. Everything you always wanted to know about compiled and
vectorized queries but were afraid to ask. Proceedings of the VLDB Endowment
(VLDB), 11(13):2209–2222, 2018. (cited on Page 94, 95, 96, 99, and 100)

[107] Changkyu Kim et al. FAST: Fast architecture sensitive tree search on mod-
ern CPUs and GPUs. In Proceedings of the International Conference on
Management of Data (SIGMOD), pages 339–350. ACM, 2010. (cited on Page 71)

[108] Changkyu Kim, Tim Kaldewey, Victor W. Lee, Eric Sedlar, Anthony D.
Nguyen, Nadathur Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep
Dubey. Sort vs. hash revisited: Fast join implementation on modern multi-core
cpus. Proceedings of the VLDB Endowment (VLDB), page 1378–1389, 2009.
(cited on Page 59)

Bibliography 157

[109] Donald E Knuth. The Art of Computer Programming: Fundamental Algorithms,
volume 1. Addison Wesley Longman Publishing Co., Inc., 3rd edition, 1997.
(cited on Page 68)

[110] André Kohn, Viktor Leis, and Thomas Neumann. Adaptive execution of
compiled queries. In International Conference on Data Engineering (ICDE),
pages 197–208. IEEE, 2018. (cited on Page 94 and 95)

[111] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L
Wolf, Paolo Costa, and Peter Pietzuch. Saber: Window-based hybrid stream
processing for heterogeneous architectures. In Proceedings of the 2016 Inter-
national Conference on Management of Data, pages 555–569, 2016. (cited on

Page 113)

[112] Konstantinos Krikellas, Stratis D Viglas, and Marcelo Cintra. Generating code
for holistic query evaluation. In International Conference on Data Engineering
(ICDE), pages 613–624. IEEE, 2010. (cited on Page 95)

[113] Herbert Kuchen. A skeleton library. In International European Conference
on Paralleland Distributed Computing Workshops (Euro-Par), pages 620–629.
Springer, 2002. (cited on Page 37 and 38)

[114] Ian Kuon, Russell Tessier, and Jonathan Rose. FPGA architecture: Survey
and challenges. Now Publishers Inc, 2008. (cited on Page 114)

[115] Tobias Lauer, Amitava Datta, Zurab Khadikov, and Christoffer Anselm. Explor-
ing Graphics Processing Units As Parallel Coprocessors for Online Aggregation.
In Proceedings of the ACM International Workshop on Data Warehousing and
OLAP, pages 77–84. ACM, 2010. (cited on Page 46)

[116] O. S. Lawlor. Embedding OpenCL in C++ for expressive GPU programming.
In International Workshop on Domain-Specific Languages and High-Level
Frameworks (WOLFHPC), 2011. (cited on Page 79)

[117] Joeffrey Legaux, Frédéric Loulergue, and Sylvain Jubertie. Osl: an algorithmic
skeleton library with exceptions. Procedia Computer Science, 18:260–269, 2013.
(cited on Page 37)

[118] Kevin Lepak, Gerry Talbot, Sean White, Noah Beck, Sam Naffziger, SENIOR
FELLOW, et al. The next generation amd enterprise server product architecture.
IEEE hot chips, 29, 2017. (cited on Page 17)

[119] Mario Leyton and José M Piquer. Skandium: Multi-core programming with
algorithmic skeletons. In IEEE/ACM International Symposium on Microarchi-
tecture (MICRO), pages 289–296. IEEE, 2010. (cited on Page 37)

[120] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin: exploiting parallelism
on heterogeneous multiprocessors with adaptive mapping. In IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 45–55, 2009.
(cited on Page 40)

158 Bibliography

[121] Clemens Lutz, Sebastian Breß, et al. Pump up the volume: Processing large
data on GPUs with fast interconnects. In Proceedings of the International
Conference on Management of Data (SIGMOD), 2020. (cited on Page 80 and 114)

[122] Andreas Meister, Sebastian Breß, and Gunter Saake. Toward gpu-accelerated
database optimization. Datenbank-Spektrum, 15:131–140, 2015. (cited on Page 23)

[123] Suejb Memeti, Lu Li, et al. Benchmarking OpenCL, OpenACC, OpenMP,
and CUDA: programming productivity, performance, and energy consumption.
In Workshop on Adaptive Resource Management and Scheduling for Cloud
Computing (ARMS-CC), 2017. (cited on Page 116)

[124] Prashanth Menon, Todd C Mowry, and Andrew Pavlo. Relaxed operator fusion
for in-memory databases: Making compilation, vectorization, and prefetching
work together at last. Proceedings of the VLDB Endowment (VLDB), 11(1):1–
13, 2017. (cited on Page 95)

[125] Sparsh Mittal. A survey on evaluating and optimizing performance of intel xeon
phi. Concurrency and Computation: Practice and Experience, 32(19):e5742,
2020. (cited on Page 14)

[126] Sparsh Mittal and Jeffrey S Vetter. A survey of CPU-GPU heterogeneous
computing techniques. ACM Computing Surveys (CSUR), 47(4):1–35, 2015.
(cited on Page 77)

[127] Mehdi Moghaddamfar, Christian Färber, Wolfgang Lehner, and Norman May.
Comparative analysis of OpenCL and RTL for sort-merge primitives on FPGA.
In Proceedings of the International Workshop on Data Management on New
Hardware (DaMoN), 2020. (cited on Page 6)

[128] Mahmoud Mohsen, Norman May, Christian Färber, and David Broneske. Fpga-
accelerated compression of integer vectors. In Proceedings of the International
Workshop on Data Management on New Hardware (DaMoN), DaMoN ’20, New
York, NY, USA, 2020. Association for Computing Machinery. (cited on Page 6)

[129] Michael Müller, Thomas Leich, Thilo Pionteck, Gunter Saake, Jens Teubner,
and Olaf Spinczyk. He..ro db: A concept for parallel data processing on
heterogeneous hardware. In André Brinkmann, Wolfgang Karl, Stefan Lankes,
Sven Tomforde, Thilo Pionteck, and Carsten Trinitis, editors, Architecture of
Computing Systems (ARCS), Cham, 2020. (cited on Page 114)

[130] Aaftab Munshi, Benedict Gaster, Timothy G Mattson, and Dan Ginsburg.
OpenCL programming guide. Pearson Education, 2011. (cited on Page 19)

[131] Thomas Neumann. Efficiently compiling efficient query plans for modern
hardware. Proceedings of the VLDB Endowment (VLDB), 4(9):539–550, 2011.
(cited on Page 32, 65, 72, 95, and 96)

[132] Thomas Neumann and Viktor Leis. Compiling database queries into machine
code. IEEE Data Engineering Bulletin, 37(1):3–11, 2014. (cited on Page 93, 94,

96, and 97)

Bibliography 159

[133] John Owens. Gpu architecture overview. Special Interest Group on Computer
Graphics and Interactive Techniques Conference (SIGGRAPH), 10, 2007. (cited

on Page 46)

[134] John D Owens, David Luebke, et al. A survey of general-purpose computation
on graphics hardware. In Computer graphics forum, volume 26, 2007. (cited on

Page 114)

[135] Prasanna Pandit and R Govindarajan. Fluidic kernels: Cooperative execution
of OpenCL programs on multiple heterogeneous devices. In International
Symposium on Code Generation and Optimization (CGO), pages 273–283,
2014. (cited on Page 27 and 114)

[136] Styliani Pantela and Stratos Idreos. One loop does not fit all. In Proceedings
of the International Conference on Management of Data (SIGMOD), pages
2073–2074, 2015. (cited on Page 64)

[137] Jignesh M Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti, Zuyu
Zhang, Marc Spehlmann, Hakan Memisoglu, and Saket Saurabh. Quickstep:
A data platform based on the scaling-up approach. Proceedings of the VLDB
Endowment (VLDB), 11(6):663–676, 2018. (cited on Page 95)

[138] Johns Paul, Bingsheng He, Shengliang Lu, and Chiew Tong Lau. Revisiting
hash join on graphics processors: A decade later. Distributed and Parallel
Databases, 38:771–793, 2020. (cited on Page 89)

[139] Marcus Pinnecke, David Broneske, Gabriel Campero Durand, and Gunter
Saake. Are databases fit for hybrid workloads on GPUs? A storage engine’s
perspective. In International Conference on Data Engineering (ICDE), pages
1599–1606, 2017. (cited on Page 80)

[140] Holger Pirk, Oscar Moll, Matei Zaharia, and Sam Madden. Voodoo-a vector
algebra for portable database performance on modern hardware. Proceedings
of the VLDB Endowment (VLDB), 9(14), 2016. (cited on Page 37, 38, 62, 114,

and 120)

[141] Constantin Pohl and Kai-Uwe Sattler. Joins in a heterogeneous memory hier-
archy: Exploiting high-bandwidth memory. In Proceedings of the International
Workshop on Data Management on New Hardware (DaMoN), pages 1–10, 2018.
(cited on Page 14)

[142] Orestis Polychroniou, Arun Raghavan, and Kenneth A Ross. Rethinking simd
vectorization for in-memory databases. In Proceedings of the International
Conference on Management of Data (SIGMOD), 2015. (cited on Page 43, 68,

and 111)

[143] Orestis Polychroniou and Kenneth A. Ross. A comprehensive study of main-
memory partitioning and its application to large-scale comparison- and radix-
sort. Proceedings of the International Conference on Management of Data
(SIGMOD), pages 755–766, 2014. (cited on Page 69)

160 Bibliography

[144] Orestis Polychroniou and Kenneth A. Ross. Efficient lightweight compression
alongside fast scans. Proceedings of the International Workshop on Data
Management on New Hardware (DaMoN), 2015. (cited on Page 67)

[145] Raphael Poss, Mike Lankamp, Qiang Yang, Jian Fu, Michiel W van Tol,
I Uddin, and C Jesshope. Apple-core: harnessing general-purpose many-cores
with hardware concurrency management. Microprocessors and Microsystems,
37(8):1090–1101, 2013. (cited on Page 37)

[146] SARC European Project. Parallel programming models for heterogeneous multi-
core architectures. IEEE/ACM International Symposium on Microarchitecture
(MICRO), 30(5):42–53, 2010. (cited on Page 37)

[147] J. Teubner R. Müller and G. Alonso. Data processing on fpgas. Proceedings of
the VLDB Endowment (VLDB), 2(1):910–921, 2009. (cited on Page 1)

[148] Jun Rao and Kenneth Ross. Making B+-Trees cache conscious in main mem-
ory. In Proceedings of the International Conference on Management of Data
(SIGMOD), pages 475–486. ACM, 2000. (cited on Page 71)

[149] Hannes Rauhe, Jonathan Dees, Kai-Uwe Sattler, and Franz Faerber. Multi-
level parallel query execution framework for CPU and GPU. In Proceedings of
the European Conference on Advances in Databases and Information Systems
(ADBIS), pages 330–343. Springer, 2013. (cited on Page 71, 72, and 73)

[150] Stefan Richter, Victor Alvarez, and Jens Dittrich. A seven-dimensional analysis
of hashing methods and its implications on query processing. Proceedings of
the VLDB Endowment (VLDB), 9(3):96–107, 2015. (cited on Page 68)

[151] Krzysztof Rojek and Roman Wyrzykowski. Performance and scalability analysis
of ai-accelerated cfd simulations across various computing platforms. In Interna-
tional European Conference on Paralleland Distributed Computing Workshops
(Euro-Par), pages 223–234. Springer, 2022. (cited on Page 14)

[152] Tiark Rompf and Martin Odersky. Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled dsls. In International
conference on Generative programming and component engineering (GPCE),
pages 127–136, 2010. (cited on Page 40)

[153] Christopher Root and Todd Mostak. MapD: A GPU-powered big data analytics
and visualization platform. In Special Interest Group on Computer Graphics
and Interactive Techniques Conference (SIGGRAPH). 2016. (cited on Page 132)

[154] Viktor Rosenfeld, Sebastian Breß, and Volker Markl. Query processing on
heterogeneous CPU/GPU systems. ACM Computing Surveys (CSUR), 55(1),
2022. (cited on Page 1 and 36)

[155] Viktor Rosenfeld, Max Heimel, Christoph Viebig, and Volker Markl. The
operator variant selection problem on heterogeneous hardware. Workshop on
Accelerating Data Management Systems Using Modern Processor and Storage
Architectures (ADMS), 2015. (cited on Page 36, 54, 65, 70, and 75)

Bibliography 161

[156] K. A. Ross. Efficient hash probes on modern processors. In International
Conference on Data Engineering (ICDE), pages 1297–1301, 2007. (cited on

Page 68)

[157] Kenneth A. Ross. Selection conditions in main memory. ACM Transactions
on Database Systems (TODS), 29(1):132–161, 2004. (cited on Page 67)

[158] Ran Rui, Hao Li, and Yi-Cheng Tu. Join algorithms on gpus: A revisit after
seven years. In 2015 IEEE International Conference on Big Data (Big Data),
pages 2541–2550. IEEE, 2015. (cited on Page 89)

[159] Behzad Salami, Gorker Alp Malazgirt, Oriol Arcas-Abella, Arda Yurdakul, and
Nehir Sonmez. Axledb: A novel programmable query processing platform on
fpga. Microprocessors and Microsystems, 51:142–164, 2017. (cited on Page 113)

[160] Robert R Schaller. Moore’s law: past, present and future. IEEE spectrum,
34(6):52–59, 1997. (cited on Page 9 and 10)

[161] Michael Scherger. Design of an in-memory database engine using intel xeon
phi coprocessors. In Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA), page 1. The
Steering Committee of The World Congress in Computer Science, Computer . . . ,
2014. (cited on Page 14)

[162] Felix Martin Schuhknecht, Pankaj Khanchandani, and Jens Dittrich. On the
surprising difficulty of simple things. Proceedings of the VLDB Endowment
(VLDB), 8(9):934–937, 2015. (cited on Page 69)

[163] Karsten Schwan, Ada Gavrilovska, and Sudha Yalamanchili. HyVM-hybrid
virtual machines-efficient use of future heterogeneous chip multiprocessors. In
Architecture of Computing Systems (ARCS), pages 1–1. Springer, 2010. (cited

on Page 37)

[164] Todd C Scofield, Jeffrey A Delmerico, Vipin Chaudhary, and Geno Valente.
Xtremedata dbx: an fpga-based data warehouse appliance. Computing in
Science & Engineering, 12(4):66–73, 2010. (cited on Page 113)

[165] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D Owens. Scan
primitives for GPU computing. In Graphics Hardware, pages 97–106. Euro-
graphics Association, 2007. (cited on Page 65 and 84)

[166] David Sidler, Zsolt István, et al. doppiodb: A hardware accelerated database.
In Proceedings of the International Conference on Management of Data (SIG-
MOD), 2017. (cited on Page 113)

[167] Dhirendra Pratap Singh, Ishan Joshi, and Jaytrilok Choudhary. Survey of
GPU based sorting algorithms. International Journal of Parallel Programming,
46(6):1017–1034, 2018. (cited on Page 84)

[168] P. Sioulas, P. Chrysogelos, M. Karpathiotakis, R. Appuswamy, and A. Ailamaki.
Hardware-conscious hash-joins on GPUs. In International Conference on Data
Engineering (ICDE), 2019. (cited on Page 75)

162 Bibliography

[169] Evangelia A Sitaridi and Kenneth A Ross. Optimizing select conditions on
GPUs. Proceedings of the International Workshop on Data Management on
New Hardware (DaMoN), pages 1–8, 2013. (cited on Page 67)

[170] Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho-Seop Kim, Krishna Vinod,
Sundaram Chinthamani, Steven Hutsell, Rajat Agarwal, and Yen-Chen Liu.
Knights landing: Second-generation intel xeon phi product. IEEE Micro,
36(2):34–46, 2016. (cited on Page 13)

[171] Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho-Seop Kim, Krishna Vinod,
Sundaram Chinthamani, Steven Hutsell, Rajat Agarwal, and Yen-Chen Liu.
Knights landing: Second-generation intel xeon phi product. IEEE/ACM
International Symposium on Microarchitecture (MICRO), 36(2):34–46, 2016.
(cited on Page 13)

[172] SQream Technologies. GPU based SQL database. 2010. (cited on Page 76 and 78)

[173] Michel Steuwer, Philipp Kegel, and Sergei Gorlatch. Skelcl-a portable skeleton
library for high-level gpu programming. In International Symposium on Parallel
and Distributed Processing (IPDPS) Workshops and Phd Forum, pages 1176–
1182. IEEE, 2011. (cited on Page 25, 37, 38, and 79)

[174] Harish Kumar Harihara Subramanian, Bala Gurumurthy, et al. Analysis
of GPU-libraries for rapid prototyping database operations: A look into li-
brary support for database operations. In International Conference on Data
Engineering Workshops (ICDEW), 2021. (cited on Page 114)

[175] Arvind K Sujeeth, Kevin J Brown, Hyoukjoong Lee, Tiark Rompf, Hassan
Chafi, Martin Odersky, and Kunle Olukotun. Delite: A compiler architecture for
performance-oriented embedded domain-specific languages. ACM Transactions
on Embedded Computing Systems (TECS), 13(4s):1–25, 2014. (cited on Page 40)

[176] Yifan Sun, Saoni Mukherjee, Trinayan Baruah, Shi Dong, Julian Gutierrez,
Prannoy Mohan, and David Kaeli. Evaluating performance tradeoffs on the
radeon open compute platform. In International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 209–218. IEEE, 2018. (cited

on Page 78)

[177] J. Szuppe. Boost.Compute: A parallel computing library for C++ based on
OpenCL. International Workshop on OpenCL (IOWCL), 15:1–39, 2016. (cited

on Page 79)

[178] Peter Thoman, Kiril Dichev, Thomas Heller, Roman Iakymchuk, Xavier Aguilar,
Khalid Hasanov, Philipp Gschwandtner, Pierre Lemarinier, Stefano Markidis,
Herbert Jordan, et al. A taxonomy of task-based parallel programming tech-
nologies for high-performance computing. The Journal of Supercomputing,
74(4):1422–1434, 2018. (cited on Page 23 and 41)

[179] Diego G Tome, Tim Gubner, Mark Raasveldt, Eyal Rozenberg, and Peter A.
Boncz. Optimizing Group-By and Aggregation using GPU-CPU Co-Processing.

Bibliography 163

International Workshop on Accelerating Analytics and Data Management Sys-
tems Using Modern Processor and Storage Architectures, pages 1–10, 2018.
(cited on Page 46)

[180] Chun-Wei Tsai, Chin-Feng Lai, Han-Chieh Chao, and Athanasios V Vasilakos.
Big data analytics: a survey. Journal of Big data, 2(1):1–32, 2015. (cited on

Page 9)

[181] Hans Vandierendonck, Polyvios Pratikakis, Dimitrios S Nikolopoulos, et al.
Parallel programming of general-purpose programs using task-based program-
ming models. In USENIX Workshop on Hot Topics in Parallelism (HotPar),
2011. (cited on Page 27)

[182] MartenWallewein-Eising, David Broneske, and Gunter Saake. Simd acceleration
for main-memory index structures – a survey. In Proceedings of the International
Conference Beyond Databases, Architectures and Structures (BDAS), sep 2018.
accepted for publication. (cited on Page 43)

[183] Skye Wanderman-Milne and Nong Li. Runtime code generation in Cloudera
Impala. IEEE Data Engineering Bulletin, 37(1):31–37, 2014. (cited on Page 95)

[184] Kaibo Wang, Yin Huai, Rubao Lee, Fusheng Wang, Xiaodong Zhang, and
Joel H Saltz. Accelerating pathology image data cross-comparison on cpu-gpu
hybrid systems. In Proceedings of the VLDB Endowment (VLDB), volume 5,
page 1543. NIH Public Access, 2012. (cited on Page 15)

[185] Yu Emma Wang, Gu-Yeon Wei, and David Brooks. Benchmarking tpu, gpu,
and cpu platforms for deep learning. arXiv preprint arXiv:1907.10701, 2019.
(cited on Page 13)

[186] John Robert Wernsing and Greg Stitt. Elastic computing: a framework for
transparent, portable, and adaptive multi-core heterogeneous computing. ACM
Special Interest Group on Programming Languages (SIGPLAN), 45(4):115–124,
2010. (cited on Page 27, 41, and 114)

[187] Thomas Willhalm, Yazan Boshmaf, Hasso Plattner, Nicolae Popovici, Alexan-
der Zeier, and Jan Schaffner. SIMD-Scan: Ultra fast in-memory table scan
using on-chip vector processing units. Proceedings of the VLDB Endowment
(VLDB), 2(1):385–394, 2009. (cited on Page 67)

[188] Thomas Willhalm, Ismail Oukid, Ingo Müller, and Franz Faerber. Vectorizing
database column scans with complex predicates. In Workshop on Accelerating
Data Management Systems Using Modern Processor and Storage Architectures
(ADMS), pages 1–12, 2013. (cited on Page 67)

[189] Haicheng Wu, Gregory Diamos, Srihari Cadambi, and Sudhakar Yalamanchili.
Kernel weaver: Automatically fusing database primitives for efficient GPU
computation. IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 107–118, 2012. (cited on Page 37, 38, 72, and 73)

164 Bibliography

[190] Steffen Zeuch and Johann-christoph Freytag. Selection on modern CPUs.
Proceedings of the International Workshop on In-Memory Data Mangement
and Analytics (IMDM), pages 1–8, 2015. (cited on Page 67)

[191] Steffen Zeuch, Johann-Christoph Freytag, and Frank Huber. Adapting tree
structures for processing with SIMD instructions. In International Conference
on Extending Database Technology (EDBT), pages 97–108, 2014. (cited on

Page 71)

[192] Shuhao Zhang, Jiong He, et al. Omnidb: Towards portable and efficient query
processing on parallel CPU/GPU architectures. Proceedings of the VLDB
Endowment (VLDB), 6(12), 2013. (cited on Page 36 and 113)

[193] Dimitrios Ziakas, Allen Baum, Robert A Maddox, and Robert J Safranek. In-
tel® quickpath interconnect architectural features supporting scalable system
architectures. In 2010 18th IEEE Symposium on High Performance Intercon-
nects, pages 1–6. IEEE, 2010. (cited on Page 17)

[194] Daniel Ziener, Florian Bauer, et al. FPGA-based dynamically reconfigurable
SQL query processing. ACM Transactions on Reconfigurable Technology and
Systems (TRETS), 9(4), 2016. (cited on Page 113)

[195] Marcin Zukowski and Peter A Boncz. Vectorwise: Beyond column stores. IEEE
Data Engineering Bulletin, 35(1):21–27, 2012. (cited on Page 97)

[196] Marcin Zukowski, Mark Van deWiel, and Peter Boncz. Vectorwise: A vectorized
analytical dbms. In International Conference on Data Engineering (ICDE),
pages 1349–1350. IEEE, 2012. (cited on Page 96)

I herewith assure that I wrote the present thesis independently, that the thesis has
not been partially or fully submitted as graded academic work and that I have used
no other means than the ones indicated. I have indicated all parts of the work in
which sources are used according to their wording or to their meaning.

Magdeburg, 25th October 2023

	Contents
	1 Introduction
	1.1 The Need for Hardware-Awareness in DBMS
	1.2 Challenges in Hardware & SDK Trends
	1.3 DBMS over Heterogeneous Co-Processors
	1.4 Goal of this Thesis
	1.5 Contributions: Three Tiers of a Pluggable Query Executor
	1.6 Corresponding Publications
	1.7 Outline of this Thesis

	2 Tier 0: Current Co-Processor Ecosystem
	2.1 Current Generation Co-Processors
	2.2 Programming Co-Processors
	2.2.1 Programming Paradigms
	2.2.2 Programming APIs

	2.3 Abstraction Models
	2.3.1 Skeleton-Based Systems
	2.3.2 Task-Based Systems

	2.4 Challenges in DBMS with Co-Processors
	2.4.1 Device Features
	2.4.2 Abstraction Hierarchy
	2.4.3 Parallelism Complexity
	2.4.4 Optimization Strategies

	2.5 Opportunities for Query Execution
	2.5.1 Granularity of Operation
	2.5.2 Code Fusion
	2.5.3 In-Device Cache
	2.5.4 Execution Variants
	2.5.5 Device-Related Parameter Tuning

	2.6 Summary

	3 Existing Unified Runtime
	3.1 DBMS On Co-Processors
	3.2 Existing Abstract Runtime
	3.2.1 Skeleton-Based
	3.2.2 Component-Based

	3.3 Summary

	4 Tier 0/1: Crafting a Co-Processor Aware DBMS Operator
	4.1 Need for HW-Awareness in Group-By
	4.2 Related Work
	4.3 GPU and Atomic Functions
	4.3.1 Architectural Components Involved
	4.3.2 Profiling Atomic Operations

	4.4 Atomics within Sort-Based Aggregation
	4.4.1 Sort-Based Aggregation on a GPU: A Primer
	4.4.2 Minimizing Atomics Using Private Space

	4.5 Experiments
	4.5.1 Micro Benchmark
	4.5.2 Comparative Experiments

	4.6 Summary

	5 Tier 1: Primitive Definitions for Interfacing Operators
	5.1 Defining Primitives
	5.2 Atomic Primitives
	5.2.1 Map
	5.2.2 Scan
	5.2.3 Reduce / Aggregate
	5.2.4 Scatter & Gather

	5.3 Composed Primitives
	5.3.1 Filter
	5.3.2 Materialize
	5.3.3 Hash Build
	5.3.4 Hash Probe
	5.3.5 Split
	5.3.6 Sort

	5.4 Other Impact Factors
	5.4.1 Access Pattern
	5.4.2 Parallelism Mode
	5.4.3 Data Structure

	5.5 Primitive-Based Execution in a Query Engine
	5.5.1 Pipeline Patterns

	5.6 Summary

	6 Tier 1: Task Layer - Realizing Standard Primitives
	6.1 GPU Libraries within DBMS
	6.2 Levels of Programming Abstractions
	6.3 Implementing DBMS Operators With Libraries
	6.3.1 Review of GPU Libraries
	6.3.2 Operator Realization
	6.3.3 Summary of Library Usefulness

	6.4 A Connecting Framework for Library Operators
	6.4.1 Task Model
	6.4.2 Adapter Pattern

	6.5 Performance Comparison
	6.5.1 Transfer Time
	6.5.2 Micro-Benchmark: Individual Operators
	6.5.2.1 Selection
	6.5.2.2 Group By
	6.5.2.3 Joins
	6.5.2.4 Scatter & Gather
	6.5.2.5 Summary

	6.5.3 TPC-H Performance
	6.5.3.1 Single Library Performance
	6.5.3.2 Cross Library Performance

	6.6 Summary

	7 Tier 2: Runtime Layer - Developing an Execution Model
	7.1 Introduction
	7.2 Related Work
	7.3 Preliminaries on In-Memory Execution Models
	7.3.1 Vectorized Execution
	7.3.2 Compiled Execution

	7.4 Tether: A Hybrid Query Execution Engine
	7.4.1 Hiding Compilation Overhead With Vectorization
	7.4.2 Switching via Direct Aggregation
	7.4.3 Switching via Hash Join
	7.4.4 Switching via Hash Aggregation

	7.5 Experiments
	7.5.1 Experimental Setup
	7.5.2 Hybrid Compilation Overhead
	7.5.3 Single-Pipeline Queries
	7.5.4 Informed Switching Points

	7.6 Discussion
	7.7 Summary

	8 Tier 2: ADAMANT – A Pluggable Query Executor
	8.1 Query Executor On Co-Processors - A Primer
	8.2 Related Work
	8.3 Diversity in Programming Abstractions
	8.4 A Query Executor to Plug-in Co-Processors
	8.4.1 Device Layer
	8.4.1.1 Case Study - Integrating a GPU
	8.4.1.2 Integration of Other Co-Processors

	8.4.2 Task Layer
	8.4.2.1 Task Model
	8.4.2.2 Primitive Definitions
	8.4.2.3 I/O Definitions

	8.4.3 Runtime Layer

	8.5 Execution Model Alternatives for Co-Processors
	8.5.1 Limitations in Operator-At-A-Time Execution in Co-Processors
	8.5.2 Chunked Execution for Arbitrary Co-Processors
	8.5.3 Case Study: Pipelined Execution in GPUs for Concurrent Execution with Data Transfer

	8.6 Experiments
	8.6.1 Profiling Primitives
	8.6.2 Impact of Abstraction Layers
	8.6.3 Performance of Execution Models

	8.7 Summary

	9 Conclusion
	A Appendix
	A.1 Benchmark Queries
	A.2 Code Snippets for Sort-Based Aggregation
	A.3 Tether - Linking Vectorwise with Hyper

	Bibliography

