
University of Magdeburg

School of Computer Science

Master’s Thesis

Processing OLTP Workloads on
Hybrid CPU/GPU Systems

Author:

Mudit Bhatnagar

November 04, 2016

Advisors:

Prof. Dr. rer. nat. habil. Gunter Saake

M.Sc. David Broneske

Department of Computer Science

Bhatnagar, Mudit:
Processing OLTP Workloads on Hybrid CPU/GPU Systems
Master’s Thesis, University of Magdeburg, 2016.

Abstract

In recent times there have been a plethora of researches done on the utilization of
co-processors like GPU and FPGA in database management system (DBMS). The
reason for this trend is that modern processors have reached a performance threshold.
Two major factors that have led to this behaviour are Memory Wall and Power Wall.
This has forced hardware vendors to come up with specialized processors that focus on
speeding up computation in specialized areas. Hence, we are moving towards the age of
heterogeneous computing where an efficient co-processor can be used along with the
traditional CPU to meet our performance requirements.

Various researches in the recent past have shown that database systems can effectively
use specialized processors, especially GPU to speed up query processing. This use
of GPUs for acceleration of traditional computing system is called GPGPU (General
Purpose GPU) based computing. To this end, we have been able to use GPUs as an
effective coprocessor in OLAP scenarios with increased performance. The support for
OLTP scenario is still under research with DBMS like GPUTx that executes bulk OLTP
transactions as a single task on GPUs only system.

In our work we are going to study the processing capabilities of heterogeneous (CPU-
GPU) systems in an OLTP scenario. For this we will implement the TPC-C Benchmark
in a bulk query execution model. Our work will also compare the Row Store and Column
Store based storage models on TPC-C Database and find out the most efficient storage
mechanism for query execution in a CPU/GPU based heterogeneous system.

iv

Acknowledgement

This thesis marks the end of my two years bonding with Otto-von-Guericke University
Magdeburg for graduating with a Master degree. At this moment, I would like to express
my gratitude to all the people who made it possible.

First and foremost, I would like to thank Professor Gunter Saake for giving me an
opportunity to undertake this thesis work in his department. I would also like to thank
for all his encouraging lectures on database topics as part of my degree that really
motivated me to approach this work.

I would like to express my sincere thanks to David Broneske for being a big support
throughout my research work. He has always been available for any help and gave his
valuable inputs whenever needed. It is only because of his support that I am able to
deliver my thesis in due time. I would also like to extend my sincere gratitude to Dr.-Ing.
Martin Schäler for being the second reviewer of my thesis and providing his valuable
feedback.

Lastly I would like to thank Sebastian Breß for his guidance at the start of the thesis.
His insights at the topic paved the way for choosing the right set of ideas for the work.

Contents

Acknowledgement v

List of Figures xi

List of Tables xiii

List of Code Listings xv

1 Introduction 1

2 Background 5
2.1 GPU and its architecture . 5
2.2 GPU as a co-processor . 6
2.3 Challenges in GPU computing . 7
2.4 Execution Model . 8

2.4.1 Data Parallelism . 8
2.4.2 Task Parallelism . 9

2.5 GPU Memory Model . 9
2.6 Coalesced Memory Access . 9
2.7 OLTP vs OLAP . 11

2.7.1 OLAP (On-line Analytical Processing) 11
2.7.2 GPU Acceleration in an OLAP Workload 11
2.7.3 OLTP (On-line Transaction Processing) 11
2.7.4 GPU Acceleration in an OLTP Workload 12

2.8 Transaction Management on GDBMS . 12
2.9 Operator Placement . 12

2.9.1 Compile Time Operator Placement 13
2.9.2 Run Time Operator Placement 13

2.10 Programming Model . 14

3 Related Work 17
3.1 GPU Accelerated Systems for OLAP . 17
3.2 GPU Accelerated Systems for OLTP . 18

4 Assumptions 19

viii Contents

4.1 Assumptions in Implementation . 19
4.1.1 No GPU Memory overflow . 19
4.1.2 Static Transaction Management 20
4.1.3 Static Operator Placement . 20
4.1.4 Static Query Plan Generation . 20
4.1.5 Bulk Query Execution . 20
4.1.6 No Database Caching . 21

4.2 OLTP workload Assumptions . 21
4.2.1 Benchmark Overview . 21
4.2.2 TPC-C Schema . 21
4.2.3 TPC-C Workload . 23

5 Approach 25
5.1 Row Store and Column Store Implementation 25

5.1.1 Row Store Implementation . 26
5.1.2 Column Store Implementation . 27

5.2 TPC-C Transaction . 28
5.2.1 New Order Transaction . 28

5.2.1.1 Input . 29
5.2.2 Payment Transaction . 29

5.2.2.1 Input . 30
5.2.3 Delivery Transaction . 30
5.2.4 Order Status . 31

5.3 Basic Approach . 31
5.3.1 Position Calculation . 32
5.3.2 Kernel Creation . 32
5.3.3 Input/Output Buffer Creation . 33
5.3.4 Copy Buffers to OpenCL Device 34
5.3.5 Operator Scheduling . 34
5.3.6 Reading Results . 35

5.4 Row Store vs Column Store Kernel . 35
5.5 Operators Implementation . 36

5.5.1 Insert . 37
5.5.2 Update . 37
5.5.3 Delete . 38
5.5.4 Selection . 38
5.5.5 Join . 39

5.6 Workload Distribution . 41

6 Evaluation 43
6.1 Evaluation Setup . 43
6.2 Row Store vs Column Store . 44

6.2.1 Evaluation: Workload level . 44
6.2.2 Result Discussion . 45

Contents ix

6.2.3 Evaluation: Transaction level . 46
6.2.4 Result Discussion . 46
6.2.5 Conclusion . 47

6.3 Hybrid CPU/GPU based system vs CPU Only System 48
6.3.1 Evaluation: Workload level . 48
6.3.2 Result Discussion . 50
6.3.3 Transaction level performance overview 50
6.3.4 Conclusion . 50

6.4 Threats to validity . 51
6.4.1 Threats to internal validity . 51
6.4.2 Threats to external validity . 51

6.5 Conclusion . 52

7 Conclusion 53

8 Future Work 55

Bibliography 59

List of Figures

2.1 GPU Architecture . 6

2.2 GPU Connectivity . 7

2.3 GPU Memory Model[SB] . 10

2.4 Execution Overview [SB] . 15

4.1 Company Structure . 22

4.2 TPC-C Schema . 23

5.1 Row Store Storage mechanism[SB] . 26

5.2 Column Store Storage mechanism[SB] . 27

5.3 Position Calculation Based On Predicate 33

5.4 Insert Operator Approach . 37

5.5 Update Operator Approach . 38

5.6 Delete Operator Approach . 39

5.7 Select Operator Approach . 40

5.8 Join Operation . 40

6.1 Row Store vs Column Store Execution time 45

6.2 Minimal Projection . 46

6.3 Column Store vs Row Store: TPC-C transaction execution time 47

6.4 Hybrid vs CPU only execution time comparison for Column Store imple-
mentation on TPC-C benchmark . 49

6.5 Comparison of Execution time of CPU, GPU and Hybrid System 49

6.6 Comparison of Execution time of each transaction in CPU, GPU and
Hybrid System . 51

xii List of Figures

List of Tables

4.1 TPC-C Workload . 24

6.1 TPC-C Workloads for evaluation . 44

List of Code Listings

2.1 Example Kernel: Coalesced Memory Access 10

2.2 Example Kernel: Coalesced Memory Access 11

5.1 Row Store Implementation of District table 27

5.2 Vector storing row store table data . 27

5.3 Column Store Data Structure . 28

5.4 New Order Transaction: Pseudo Code 29

5.5 Input Data New Order Transactrion . 29

5.6 Payment Transaction: Pseudo Code . 30

5.7 Delivery Transaction: Pseudo Code . 31

5.8 Order Status Transaction: Pseudo Code 31

5.9 Example: Kernel Program . 33

5.10 Code sample to create buffer objects . 34

5.11 Code sample to create buffer objects . 34

5.12 Creation of OpenCL kernel and Scheduling 35

5.13 Code sample for reading buffer . 35

5.14 Column Store Kernel . 36

5.15 Row Store Kernel . 36

5.16 Join Position Calculation . 41

xvi List of Code Listings

1. Introduction

The ever growing OLTP market through industries like banking, credit card, and online
retail have led to a significant increase in the amount of transactions. Also, the advent of
Web 2.0 based web technologies have further added to this number. Most OLTP based
application require the system to perform tens of thousands of transactions within a
short period of time which leads to the requirement of high throughput oriented systems
[HY11]. With the limitation in scaling the processing power of modern processors, it
has become important to use new age hardware like Graphical processing Units(GPUs)
to fully leverage the computing power at hand so that we can cater to the ever growing
need of the OLTP market [BBHS14].

It is evident from recent researches that GPU can serve as an efficient co-processor for
OLAP based scenario. The significance of using GPU as a co-processor for an OLTP
based scenario is still being investigated. This can be attributed to the nature of OLTP
workload which is believed to be non-suitable for GPU style of processing.

GPUs are more suitable for SIMD (Single Instruction Multiple Data) style execution
model where a single operation is performed on a bulk of data. This style of processing
greatly harness the architectural benefits of GPUs. The three major problem with the
OLTP workload that makes it non fit for GPU based acceleration are:

a. OLTP systems need to handle many small transactions with various read and update
operation on the database. In a multi user scenario, the transactions must adhere
to isolation and consistency for correctness when they perform concurrent updates
to the database. The massive thread parallelism of the GPU comes with various
technical challenges related to the correctness and efficiency of transaction executions
[KHL15][HY11].

b. OLTP queries are throughput oriented which requires executing tens of thousands of
transactions in a short time, instead of response time oriented as in case of OLAP [CD97].
High throughput requires multiple tasks to be executed in a small time duration. Hence,

2 1. Introduction

a system performing multiple tasks in parallel can give high throughput. GPUs are not
preferred for task parallelism, instead it is considered a good fit for data parallelism
which makes it unsuitable for executing OLTP workload.

c. The OLTP query processing engine mostly depends on the ad-hoc execution model
(due to user interaction) which poses a serious challenge for parallel GPU architecture
which can be exploited for parallelism only for bulk execution model otherwise the GPU
can not be utilized to its full potential [KHL15].

With the ever increasing OLTP workload it has become possible to bulk a large number
of transaction and execute it as a single unit, this has set ground for some of the recent
works like HSTORE [KKN+08] and GPUTx [HY11]. HSTORE is an OLTP based query
processing engine which focuses on high throughput. The important aspect of HSTORE
is that the complete workload is required to be specified in advanced as it assumes that
there will be no ad-hoc query. This leads to the removal of stalls due to user interaction
[SMA+07]. GPUTx further uses this bulk query processing model and tries to execute
bulk queries on a GPU based processor [KHL15].

Although GPUTx showed a significant improvement in throughput and achieved 4-10
times better performance than a CPU based query processing engine, there are still some
limitations in the approach. GPUTx is a query processing engine aimed at using GPUs
as an efficient query processor not as an efficient co-processor. Also the implementation
of a task or stored procedure as a kernel makes GPUTx tightly coupled to the database
schema and transactions. To use GPUTx with another set of transactions and schema,
the kernels will have to be reimplemented.

Another important aspect for a database engine is the storage model. It has been proved
that a column store model performs better on a CPU/GPU based in-memory database
for an OLAP scenario [Gho12]. There is, to the best of our knowledge, no research that
compares the Row Store and Column Store model for In Memory based OLTP engine
using CPU/GPU based co-processor. Hence, through this research we will also do a
comparative study between the two storage models and try to find out the most efficient
storage model.

Hence broadly speaking below are the research questions that we will answer through
our work:

• RQ1: Which is the most efficient storage mechanism for OLTP query
processing on a hybrid CPU/GPU System?

• RQ2: Is OLTP query processing on CPU/GPU based query process-
ing engine faster than traditional CPU only system?

To answer our research questions, we have implemented an in-memory database for TPC-
C benchmark. The same TPC-C schema is implemented for both Row Store and Column
Store storage scheme. We have also implemented various OLTP operators needed for

3

the TPC-C workload.Four out of five standard transactions of TPC-C workload have
been executed using a bulk execution model. All the operators will be placed in their
corresponding device i.e. CPU or GPU. Finally we compared the execution time of
CPU/GPU based query processing vs CPU only query processing. Further we also
compare the execution time of Row Store and Column Store implementation to find a
better performing model.

Hence, our work will make the following contributions :

• Implementation of TPC-C benchmark in Column Store and Row Store

• Implementation of reusable set of OLTP operators as OpenCL kernels.

• Implementation of TPC-C transactions using a static query plan (No dynamic
transaction management).

• Comparative study of storage mechanisms in a hybrid CPU/GPU based OLTP
system.

• Comparative study between hybrid CPU/GPU based system and CPU only system
for an OLTP workload.

The initials results showed that Column Store storage mechanism can speed up the
execution of an OLTP based system by a factor a 4x. We also identified some of the
benefits of GPU based computing that can be harnessed efficiently using a Column
Store implementation. Our evaluation also suggested that a hybrid CPU/GPU based
systems can speed up the execution time of an OLTP workload by a factor 2x. Our
results also suggested that given a good load balancing mechanism the hybrid system’s
performance can be further improved.

Structure of the Thesis

Apart from this chapter, this thesis comprises seven more chapters. Chapter 2 presents
background information about GPU based computing and will introduce all the aspects
of GPU based query processing. This chapter will also give a brief description about
TPC-C database and its transaction that we have used for evaluation of our work.

Chapter 3 will introduce some state of the art GPU based databases and present some
related works in the field of GPU based OLTP systems. Chapter 4 presents some of
the assumptions that have been used in this work. Chapter 5 presents the approach
that has been used for implementation of the TPC-C database and will also show the
methods used for implementing the transactions in a typical TPC-C workload. The
evaluation done for this work has been covered in Chapter 6. This chapter will give the
complete information about the evaluation set-up and the results of our work. This
chapter will show the comparative study of OLTP workload performance on Row Store
vs Column Store and CPU only vs Hybrid CPU/GPU based systems. This chapter

4 1. Introduction

also summarizes the complete evaluation phase and will draw a conclusion from our
evaluation. In this chapter we will try to answer the research question that we had put
forward for this work.

Chapter7 will give a brief summary of our work and will draw the conclusion of this work.
Finally, Chapter 8 will present the limitation of our work and scope for improvements.
In this chapter we will also present some of the open areas that needs future research to
come up with a fully functional hybrid CPU/GPU based OLTP system.

2. Background

This chapter provides background information needed to understand the basics of
GPGPU computing and GDBMS (GPU based DBMSs). This chapter starts by intro-
ducing the basic architecture of GPUs. It will also present some of the challenges of
GPU based computing. Further this chapter will talk about transaction processing
on a GDBMS and introduce important aspects like operator placement and execution
model. Finally, this chapter will introduce the programming model used for GPU based
computing. Towards the end, this chapter will give information about the TPC-C
benchmark that has been used in this research for testing OLTP workload.

2.1 GPU and its architecture

Graphical Processing Units are specially designed processors that were traditionally
designed for gaming application. Recent works have shows that GPUs can significantly
increase the processing power of general computing problems [HYF+08]. The use of
GPUs in arbitrary workloads and problems instead of graphical processing only is
referred as GPGPU (General-purpose computing on graphics processing units).

Figure 2.1 on the following page gives a high level comparison between CPU and GPU
architecture. The ALU (Arithmetic Logical Unit) is responsible for computing tasks,
hence it performs all the logical and arithmetic operation. The Control unit handles
synchronization and is also responsible to direct the system for instruction execution.
Cache keeps the frequently accessed data to save memory access time.

Architecturally, the CPU is composed of just few cores i.e. ALUs with a common Control
unit. Also a big part of CPU transistor is used for control unit, this allows multiple
cores to interact, perform out of order execution and have better flow control. A major
part of the CPU chip is used for caches which gives it low memory latency as more data
can be cached. All the thread in the CPU are heavy-weight and self-sufficient and can
perform a task individually, this allows them to perform multiple tasks in parallel.

6 2. Background

Figure 2.1: GPU Architecture

On the contrary the GPU contains 10,000s of cores which are scheduled in batches
or thread blocks. Each thread block shares a common control unit and the memory
cache. Hence, within a thread block, the threads can cooperate via shared memory
and synchronize their execution. All the threads within the thread block execute same
instruction in parallel, hence they execute the same operation for different set of data,
which is referred as Single Program Multiple Data (SPMD) style of execution. Overall,
we can see from the architecture thata major part of GPU chip space is used for ALUs
and, thus, dedicated to computation which will lead to better throughput. In contrast,
the cache size of GPUs are 10x smaller than CPU counterparts which will increase the
memory latency [HYF+08].

Given the architecture we can say that, algorithms well-suited to GPGPU implementation
are those that exhibit two properties: they are data parallel and data intensive. Data
parallel means that a processor can execute the operation on different data elements
simultaneously. Data intensive means that the algorithm is going to process lots of
data elements, so there will be plenty to operate on in parallel. Due to these properties,
GPUs can achieve high performance by using a lot of small processing units that can
operate on different data elements in parallel [Cen].

However, individual processing units in a GPU cannot beat a CPU for general purpose
performance. The CPUs have simpler architecture and has optimization techniques like
long pipelines, out-of-order execution, branch prediction and instruction-level-parallelism.

2.2 GPU as a co-processor
Given the limitation in scaling the processing power of the CPUs we have to find
alternative solutions like using specialized processors like GPU to aid CPU in its
computing task. A GPU can be used as an efficient coprocessor in tandem with a CPU
to increase the performance of various scientific and engineering problems([Bre15]) that
can leverage the data parallel execution model of GPUs.

A CPU can offload various compute-intensive tasks to GPU and use it to speed up the
execution. In the meanwhile the CPU can also execute tasks by itself. This style of

2.3. Challenges in GPU computing 7

execution not only uses the computing power of GPU to speed up data parallel tasks
but also gives us inter device parallelism between CPU and GPU. For end user the
application will run faster. This style of computing is termed as Hybrid computing
[Bre15].

Figure 2.2: GPU Connectivity

Figure 2.2 illustrates the connectivity of GPU with the CPU. GPUs are a separate
device which is connected to the CPU via a high speed PCIe express bus. All the data
that needs to be executed on the GPU needs to be transferred from CPU memory over
a PCIe bus to the GPU memory. After the processing the resulted data will then be
transferred back to the CPU over the same PCIe bus.

2.3 Challenges in GPU computing

A GPU is architecturally a very different device as compared to the CPU. Also, unlike
CPU it is an external device connected via a PCIe bus to a host device. Traditional
computing techniques which gave good results cannot fare well on a GPU as they are
not designed to leverage the architectural benefits of a GPU. Being a separate device
and having architectural changes, GPU computing faces various challenges:

a. Communication Bottleneck: As GPUs are separate device with their own memory,
all the data that needs to be processed on GPU has to be transferred over the PCIe
bus. Also the processed data needs to be transferred back to the host [BGW+08]. This
transfer overhead introduces high latency as the GPU remains idle during this process.
This problem becomes more severe with data-intensive problems like query processing
[MBS15].

b. Small Memory Size: The traditional GPUs like NVIDIA Titan X have 12 GB
of device memory which is relatively small for Query Processing. The small memory
capacities on GPU limits the amount of data that can be processes [BGW+08]. Due to

8 2. Background

this limitation the data needs to be transferred to GPU in multiple chunks for subsequent
processing which will have negative impact on the processing speed.

c. Bandwidth Bottleneck: The bandwidth of the PCIe bus is less as compared to
the bandwidth of the GPU. This leads to a latency. The currently available PCIe 3.0
has a memory bandwidth of 16 GB/s, whereas the high-end GPUs like Titan X have
bandwidth of 480 GB/s which is more than twenty times that that of the PCIe 3.0. Due
to this limitation the PCIe bus is note able to feed GPU with sufficient amount of data
and a major processing power of GPU goes in vain. This can affect the performance of
GPU based task [BGW+08].

d. I/O Bound vs Compute Bound Problems: Due to the Communication bot-
tleneck and Bandwidth bottleneck not all algorithms in computing can benefit from
GPU acceleration. An I/O bound algorithm will have multiple stalls due to I/O device
interaction, hence CPU will not be able to delegate the task to GPU and would require
multiple data and instruction transfers over the PCIe bus. A compute intensive problem
that can be parallelized to leverage GPU’s architecture fares well on it as the GPU
can be utilized for most of the time in computation rather than waiting for data and
instructions.

e. Use of Specialized API: A traditional CPU based system cannot utilize the
computing power of GPU by simple hardware extension. An application can only use
the co-processing capability of hybrid systems when it is specifically programmed for
GPU computing using a programming APIs, such as OpenCL or CUDA.

In a nutshell, to do efficient query processing on GPUs we need to handle the limitations
like small device memory, communication bottleneck and bandwidth bottleneck. These
limitations are mostly related to architecture. Hence we cannot remove them, but they
can be hidden. The PCIe bottleneck and communication bottleneck can be hidden by
providing sufficient tasks to GPU so that the majority of processing time is spent on
computing. To hide the limitations due to local GPU memory we need to make sure
that the maximum amount of data that can fit into GPU memory is sent in a single
transfer and multiple communication between host and GPU is avoided. The algorithms
like block nested join works efficiently with chunks of data and has shown performance
gain on GPU.

2.4 Execution Model

The execution models which are mostly used in parallel computing are task parallelism
and data parallelism.

2.4.1 Data Parallelism

A data parallel method is performed by distributing the data amongst computing units.
In a DBMS a huge operation can be broken down into multiple small operations and
performed in parallel using data parallelism. The same instruction is executed on

2.5. GPU Memory Model 9

multiple data items in parallel. The framework that is used to realize this kind of
parallelism is ”Single Instruction, Multiple Data” (SIMD). This execution model is used
in GPGPU computing, as a single instruction in a thread block is executed on multiple
threads with different units of data. Given the small amount of space devoted for control
logic, we cannot give each ALU a different instruction, but need to synchronize the
execution of all ALUs. Due to the limited space, we only have one instruction decoder
per Warp. This leads to a SIMD execution style, as a single instruction is performed on
multiple chunks of data in parallel.

2.4.2 Task Parallelism

A task parallel approach is used to solve computation problems where multiple tasks
can be performed in parallel. Each task in the computation problem is scheduled to
respective cores for execution. Given the architecture of CPU where a lot of chip space is
devoted to control unit, it is designed to perform different set of instructions on different
cores [fc]. This makes CPU a good device for task parallel operations.

2.5 GPU Memory Model

The Memory model of GPU is different compared to the memory model of a CPU. Fig-
ure 2.3 on the following page shows the memory model of the GPU. We can see from
the figure that there is a global memory which is shared amongst multiple work groups.
Whenever a thread block (or work group) needs to access the Global memory, it needs
to copy the memory into its shared memory for execution. Each thread block has a
shared memory or local memory which is divided into memory banks. Each thread in
a thread block can access the shared memory bank. The condition when two or more
threads try to access the same shared memory bank is referred as bank conflict. Each
thread in a work group has an exclusive memory which is called registers, hence each
thread can access only its own register memory.

In a Nutshell we can say that:

• Each work item or thread has private memory named registers.

• Work items are grouped into a work group or thread blocks. Each work group has
its own shared memory.

• Global memory is shared across all work groups

2.6 Coalesced Memory Access

As mentioned in GPU memory model, a GPU has an internal memory hierarchy that is
used for efficient access of data. To make the most out of the available hardware the
GPU work group should fetch data from the global memory using a coalesced memory

10 2. Background

Figure 2.3: GPU Memory Model[SB]

access pattern. Whenever a work group fetches memory from the global memory a
minimum number of elements are fetched together, hence the work group can work on
this pre-fetched memory block using fast shared memory. To achieve this optimized
execution behaviour of the GPU each thread within a work group should access sequential
blocks of memory , this phenomenon where each work item within a work group accesses
a sequential block of memory is termed as Coalesced Memory Access.

Listing 2.1 shows a kernel program to increment the value of each item in the int array
by 10. This kernel will lead to coalesced memory access. This kernel increments the
value of an int array which has been sent as an input from the host program. As we can
see from the code listing that each ith work item is accessing the i-th index of the array.

Listing 2.2 on the facing page gives the example of a kernel with non coalesced memory
access, this kernel performs the increment of every alternate element of an integer array.
As we can see from the kernel half of the memory loaded into the local memory of work
group goes waste due to alternate access pattern used.

Listing 2.1: Example Kernel: Coalesced Memory Access
1 __kernel void coalesced(__global int∗ arr)
2 {
3 int i = get_global_id (0);
4 arr[i]+=10;
5
6 }

2.7. OLTP vs OLAP 11

Listing 2.2: Example Kernel: Coalesced Memory Access
1 __kernel void non_coalesced(__global int∗ arr)
2 {
3 int i = get_global_id (0);
4 arr[2∗i]+=10;
5
6 }

2.7 OLTP vs OLAP

In this section, we differentiate between the OLTP and OLAP workloads. Also, this
section shows the potentials of GPU acceleration on these workloads along with the
challenges that GPU acceleration faces due to the nature of these workloads.

2.7.1 OLAP (On-line Analytical Processing)

OLAP mostly deals with historical or archival data. A typical OLAP workload has
few number of transactions that are performed on a big chunks of data. Queries in an
OLAP workload are complex and requires aggregations. For OLAP systems response
time is an effectiveness measure of performance. OLAP applications are widely used for
data mining techniques. A typical OLAP workload includes business reporting for sales,
marketing, management reporting, business process management (BPM), budgeting and
forecasting, financial reporting and similar areas [OvO]

2.7.2 GPU Acceleration in an OLAP Workload

Given the nature of the OLAP workload which require performing a limited number
of instructions on a bulk of data, it becomes easy to exploit data parallelism. The
data can be broken down to multiple chunks and the same instructions are applied
on each chunk in parallel, this can be referred as performing a single instruction on
multiple data or SIMD style of processing. Hence an OLAP Scenario fits perfectly to
the GPU style of processing. Given the GPU architecture which has less chip space for
control logic and more space for execution units like ALU, a small number of instructions
can be performed on large number of data in parallel. The developer can schedule a
heavy data-parallel task to the GPU, which leads to higher parallelism then its CPU
counterpart.

2.7.3 OLTP (On-line Transaction Processing)

The OLTP workload is characterized by a large number of short on-line transactions
(INSERT, UPDATE, and DELETE). In OLTP systems fast query processing and data
integrity in multi user environment is of prime importance. The effectiveness measured
performance is the number of transactions executed per second or throughput. A typical
OLTP database consists of detailed and current data. The database tables used to
store transactional databases are stored in 3NF form. An OLTP system should handle
multiple users concurrently with low latency. It is interactive in nature, meaning that

12 2. Background

latency impacts user experience. A typical example of an OLTP system is an ATM
machine where multiple users issue transactions in parallel through multiple machines
on the same database of the bank [OvO].

2.7.4 GPU Acceleration in an OLTP Workload

Due to ad-hoc queries, the traditional OLTP workload does not fit for GPU acceleration
as we do not have bulk data that can be chunked and executed on different cores.
However, an OLTP environment where the workload is pre-determined we can perform
a bulk execution model that can leverage the GPU architecture just like in an OLAP
scenario. The realization of ACID properties remains a challenge in OLTP workloads
due to frequent update operations, this problem can be handled by efficient scheduling
and locking mechanism.

2.8 Transaction Management on GDBMS

The transaction management on a GDBMS is completely different as compared to
traditional DBMSs. All the thread blocks in a GPU work independently of each other
with no inter-kernel communication. Since GPU is a separate device from CPU it is hard
to realize a centralized locking mechanism that maintain consistent query processing
between CPU and GPU. Also a lock-based transaction processing significantly breaks
the performance of a GDBMS. Hence a lock free transaction processing is needed to
fully utilize the potential of a GDBMS.

The approach used in GDB is widely used for lock free transaction management on
GDBMS are based on finding the transactional dependency. In this approach a transac-
tion is evaluated to find all conflicting operations which cannot be performed concurrently.
All the non-conflicting operations can be scheduled in parallel whereas the conflicting
operations needs to be scheduled serially to maintain data consistency. This can be
achieved by having a helping data structure that stores the dependency between the
transactions and using it for generating a query plan that avoids conflicts. A typical
example of such data structure is a T-Graph.

2.9 Operator Placement

To efficiently utilize heterogeneous devices in a hybrid system a co-processor based
DBMS should be able to place the operator on the device which is best suited for
its performance. The method of placing operator on a suitable device during query
execution by the database system is referred as operator placement. There are various
operator placement schemes that have been used with varied results, these can be
broadly divided into the types compile-time operator placement and run-time operator
placement

2.9. Operator Placement 13

2.9.1 Compile Time Operator Placement

This approach places the operator before the actual execution of the query is done. This
operator placement scheme is data driven as the operator placement is decided based on
the availability of the data in GPU’s memory. Statistical measures are used to find the
most accessed or the frequently accessed data in the system, this data is then loaded
into the GPU memory given the condition that it fits in it. Based on the availability of
the data on the GPU, the operator that needs to be performed on this data is placed.
A background job is used to identify the access pattern of the workload and identify the
frequently accessed data and place it in GPU memory. In case of the unavailability of
the data in GPU, the corresponding operation is performed on the CPU as a fall-back
option this leads to serious degradation due to the increased overhead of transferring
data and operator to the GPU. The drawbacks of this strategy are:

• This approach can execute the complete operator chain only if all the data needed
in the operator chain are available on GPU. Given the small size of GPU memory,
this becomes a serious limitation as there is every possibility of complete input
data for the operator chain not fitting in the memory. To overcome this problem
only those inputs are processed on the GPU which can fit in its memory else the
operation is performed on the CPU.

• The increased number of operators in this approach leads to performance degrada-
tion. During the execution of multiple operators there can be a case that their
collective memory footprint exceeds that of GPU memory. In such a scenario the
system goes to the fall-back scenario where the complete operator is restarted
on CPU which leads to the wastage of processing time due to transfer of an
unsuccessful operator and respective data.

• This approach tightly couples the query execution engine with the environment
variables such as current load and memory usage. It is a challenging task to
estimate these parameters before the actual execution of the workload.

2.9.2 Run Time Operator Placement

The run-time operator-placement strategy places operators at the run-time of the
workload. This placement scheme do not require information of the workload as the
operator placement is performed after all input data is available [BFT16]. A learning
based cost model is constructed to estimate the execution time of a particular operator
on the processing devices. The model observes the cost of executing an operator on input
data for different processors and learns the correlation. After training with sufficient
data sets and operators the models learns the optimal device for the operator [BS13].
Due to the dynamic nature of this approach it has various benefits over the compile
time approach:

14 2. Background

• As the operator placement scheme is fully aware of the input data, it can dynami-
cally react to the shortcoming of the compile time approach like memory overflow
for input data [BFT16]

• The transfer of the data and operator to the GPU is done at run-time unlike the
compile time approach where data was pre-loaded. In case a leaf operator in an
operator tree is aborted due to high memory footprint then we can stop scheduling
other operators from the operator tree and save our self from transfer overhead of
sending data for aborted transactions [BFT16].

• Unlike the compile time approach, this approach has low dependency on the
knowledge of the environment variable as the cost model can be retained and used
with a new workload.

• Using approach like query chopping along with the run-time operator placement
can limit the number of executions running in parallel hence we can significantly
reduce the problem of aborting operators due to memory overflow [BFT16].

2.10 Programming Model

A kernel programming model is the standard programming model used for GPU program-
ming by many programming frameworks, such as OpenCL and CUDA [HSP+13, Bro15].
A kernel is a program which is executed on a single unit of data. A GPU device executes
multiple instances of this kernel programs on different cores, each core executes the
same kernel program for different unit of data. The CPU works as a scheduler of these
kernels and is also referred to as a host. The primary function of the host program is to
schedule tasks to the connected devices like GPUs through kernel invocation. The host
also transfers raw unprocessed data over the PCIe bus to GPU’s memory, finally when
the data is processed by the GPU it is again transferred back to the host memory over
the PCIe bus [HSP+13].

Figure 2.4 on the next page shows how the CPU (host) communicates with the GPU for
executing kernels. Firstly the CPU (host) sends the data to be processed on the GPU
over PCIe bus. After transferring data, the host invokes the kernel to be executed over
the data. After the invocation of the kernel, the host has no control over the execution.
Also a kernel program cannot interact with another kernel program in the course of
their execution. The host is informed when the data processing is finished on the GPU
and the final processed data is transferred back to the CPU (host) over the PCIe bus.

The APIs currently used in the market for GPGPU programming are CUDA and
OpenCL:

CUDA (Compute Unified Device Architecture) was launched for the first time in 2006
by NVIDIA. It is a general purpose parallel programming API that uses the parallel
architecture of NVIDIA GPUs to solve computation problems more efficiently than a
CPU does.

2.10. Programming Model 15

Figure 2.4: Execution Overview [SB]

16 2. Background

OpenCL OpenCL (Open Computing Language) is the first open, standard for general-
purpose parallel programming of heterogeneous systems. It tries to provide a unique
programming environment for software developers to write portable code for servers,
laptops, desktop computer systems and handheld devices using both multi-core CPUs
and GPUs [OAD14]

In this work we have used OpenCL programming API for the following reasons:

• It perfectly fits our need to schedule kernels on multiple devices to have not only
inter-device parallelism but intra-device parallelism.

• CUDA API is designed only for NVIDIA GPUs whereas OpenCL can be used
with various hardware vendors which makes an OpenCL solution more device-
independent and cross-platform.

• One major advantage of OpenCL over CUDA is that a single host application of
OpenCL can host multiple kernels on multiple devices [Sca].

3. Related Work

This chapter presents some of the work that has been done in the field of GDBMSs.
This chapter starts by introducing some of the state of the art databases which use GPU
acceleration for both OLAP and OLTP Scenario. Further this chapter will present a
research work which is related to some of the important aspects of GDBMS like operator
placement and Transaction Management.

3.1 GPU Accelerated Systems for OLAP

He et al. presented the first hybrid CPU-GPU based In Memory database named GDB.
They used a Selinger-style optimizer to create a heterogeneous query plan and used a
learning based model for data placement and operator placement. They used split and
sort primitives to execute some of the common relational operators using data-parallel
approach. Their research showed that the performance of the query execution for OLAP
based queries can be increased by 2-27 times despite some of the limitation of GPUs
like transfer bottleneck [HLY+09].

To further improve the performance of hybrid query processing an efficient operator
placement scheme needed to be devised. Breß et al. came up with HyPE which is a
hybrid query plan generator that uses a learning based approach to generate an efficient
query plan to fully utilize the processing power of CPU and GPU. The basic objective
of HyPE is to find the right device for operator placement and generation of efficient
query execution plan [BS13].

Breß et al. developed CoGaDB, a main-memory column store DBMS with built-in
GPU acceleration for OLAP workloads. The operator placement in CoGaDB is done by
using HyPE. CoGaDB showed that it could quickly adapt to the hardware and generate
efficient query plans to be executed in a hybrid scenario [SMA+07].

Ocelot is a hardware-oblivious data processing engine that extends MonetDB. Breß et al.
extended Ocelot by using HyPE for operator placement decisions, resulting in a hardware

18 3. Related Work

adaptive database using heterogeneous processors [BKH+14]. The combination of HyPE
and Ocelot proved to be an efficient query processing engine on different architectures
that can learn device specific cost of the operator and make an efficient operator
placement scheme.

3.2 GPU Accelerated Systems for OLTP

All the researches discussed so far focused on GPU acceleration for an OLAP environment.
He et al. further tried to investigate the processing power of GPUs for an OLTP
workload and developed GPUTx. GPUTx used bulk execution model to group multiple
transactions into a bulk and to execute the bulk on the GPU as a single task to
get high throughput [HY11]. GPUTx also developed a mechanism to identify the
conflicting transaction to maintain database consistency by using T-graph (Transactional
Graph). GPUTx was able to achieve 4-10 times higher throughput than its CPU-based
counterpart. This research showed that GPU accelerated databases can outperform
traditional DBMSs even for an OLTP workload.

The main limitations of GPUTx are:

a. GPU only Query Processing: GPUTx performs high throughput transaction
processing for an OLTP workload using only GPU. This leads to research potentials
of using GPU as an efficient co-processor along with CPU to further enhance the
performance of query processing engine.

b. Transactional Dependency: The kernels written for GPUTx are similar to a
stored procedures for a transaction i.e. GPUTx supports only a predefined set of
transactions. For adding a new transaction to the system a new implementation of the
kernel needs to be done.

c. Database Schema Dependency: Implementation of kernels depends on the
schema design of the database. Any change in the schema calls for a change in the
kernel. Also a new set of kernels has to be written for a generalized RDBMS.

Our work is aimed to further investigate the query processing capability of the CPU/GPU
based query processing engine. We believe that there is potential of increasing the
query throughput by using the processing capacity of both CPU and GPU as both of
these devices have their sweet spots for different operations. Further our research is
aimed to do operation based rather than task based query processing. This can be done
by creating general operators needed for OLTP query processing and schedule it on
corresponding device for execution. This will give our implementation freedom from
transaction dependency and schema dependency.

To the best of our knowledge there is no research which investigate the most efficient
storage scheme for GDBMS in an OLTP environment. Researches like GPUTx are
inspired by OLAP based GDBMS to accept column store as the most efficient storage
mechanism. This research will compare both Row Store and Column Store schemes to
find out the most efficient storage scheme for OLTP based GDBMS.

4. Assumptions

This chapter will present the assumptions that we have made for the implementation of
this work. This chapter will start by introducing all the assumptions that have been
used for the implementation of a prototype database for OLTP workload execution. In
the Second part of this chapter we will focus towards elaborating the TPC-C benchmark
which has been used to simulate a real life OLTP database and workloads.

4.1 Assumptions in Implementation

This work is aimed at investigating the processing capabilities of a hybrid CPU/GPU
systems for query processing. In a full-fledged GDBMS there are many factors like query
plan generation, operator placements, transaction management and data placement
which work in harmony for effective query execution. All of these topics are very wide in
their scope and present their own challenges. To focus our work towards identifying the
computing capabilities of the hybrid CPU/GPU systems, we have replaced many of these
dynamic factors with manual or static techniques. This section is aimed to pre-declare
all of these assumptions so that the reader can focus on the problems addressed in this
research.

Here are the assumptions that we have used for the implementation of our work:

4.1.1 No GPU Memory overflow

In this work we have assumed that the data needed to be executed on the GPU can
fit in GPU’s memory. Hence all the required amount of data will be transferred to the
GPU device in a single run. Due to this assumption the algorithms for implementing
the operators do not consider any blocked approached which deals with chunks of data.

20 4. Assumptions

4.1.2 Static Transaction Management

Transaction Management is an important aspect of query processing in DBMS as during
the parallel execution of multiple transactions it maintains all four ACID (Atomicity,
Consistency, Isolation, and Durability) properties. Transaction management is out of
the scope for this work as we have manually created the query plan and generated the
workloads such that our system adheres to all ACID properties. The workload is created
such that all the transactions are isolated from each other. The consistency of the critical
data is maintained by executing multiple conflicting operations in parallel. Hence, instead
of dynamically finding the transactional dependencies, we use the existing knowledge
about the TPC-C workload to identify the conflicting operations or transactions and
schedule them accordingly.

4.1.3 Static Operator Placement

As discussed in the previous section, operator placements has a major role in query
processing in a hybrid CPU/GPU based systems. The state of the art hybrid databases
uses either a learning based approach like HyPE or a statistical approach (Compile Time)
to find out the best device for a particular operator to execute on. In our work we have
scheduled operators with in a transaction to multiple devices such that the workload
is evenly distributed between the devices. Hence, in this work we have scheduled the
operators to devices based on the workload instead of scheduling preferably on a better
performing device.

4.1.4 Static Query Plan Generation

A query plan is a blueprint for the query execution, it is an ordered set of all the
operations to be executed so that the data adheres to ACID properties. In a full-
fledged DBMS with a support for ad-hoc query execution, the query plan is generated
dynamically.

Given the pre-defined set of transactions in TPC-C workload we have created a static
query plan for each transaction. Hence, our query plans are hard bound to the TPC-C
transaction types only and cannot be reused with any other transaction. For a fully
functional OLTP database we need to create the mechanism to generate the query plan
in the run time so that it can become independent of a particular workload.

4.1.5 Bulk Query Execution

In an OLTP environment the queries are mostly executed in ad-hoc model but in our
work we have implemented a bulk execution model as we believe that with the ever
increasing OLTP transactions and advent of Web 2.0 bulk execution can be supported
for OLTP environment. Hence in our work, the complete TPC-C workload is executed
as a single bulk. All the inputs needed for the bulk execution will be pre-loaded into the
system. This execution model can leverage the computing power of a hybrid CPU/GPU
based system as it will save the multiple data transfers from device to host, also bulk
execution can leverage SIMD style of processing.

4.2. OLTP workload Assumptions 21

4.1.6 No Database Caching

One of the best ways to improve query performance is database caching as it caches
some of the recently or frequently accessed data. In GPGPU computing ,caching can
play a crucial role as it can reduce the overhead of data transfer from CPU memory
to GPU memory. We consider this topic to be out of scope of this work and hence no
cached data will be in consideration.

4.2 OLTP workload Assumptions
This section is aimed to describe the database and its corresponding workloads that
have been used for simulating a functional OLTP system. This section gives an overview
of the real life scenario that has been implemented in the TPC-C benchmark. Further
this section will illustrate the complete database schema and transactions that we have
used in this work.

4.2.1 Benchmark Overview

TPC-C is an OLTP benchmark published by the Transaction Processing Performance
Council (TPC). TPC-C is different than some of the old benchmarks like TPC-A due to
its multiple transaction types, more complex schema, and overall execution structure.
The TPC-C benchmark is designed to simulate a general wholesale supplier structure.
The workload is primarily a transaction processing workload with multiple queries
executed as a bunch within a transaction.

Figure 4.1 on the following page, shows the company structure represented of TPC-C
benchmark. On an abstract level, the company consists of one or more warehouses,
each warehouse serves 10 districts and each district caters to 3000 customers each. The
complete life-cycle of an order starts when a customer makes an order to its corresponding
district and ends when the customer finally receives the order and issues the payment.

4.2.2 TPC-C Schema

The TPC-C schema needs 9 tables to represent the company structure and perform the
life-cycle of a complete order. Figure 4.2 on page 23, illustrates the schema of TPC-C
benchmark. It show all nine tables along with their relationships.

The warehouse table contains information about all the warehouses in the company.
The district table represents all available districts along with their reference to a unique
warehouse. The customer table maintains all the information about the customers
registered in a company, each customer uniquely belongs to a district and warehouse.
The Item table contains all available items in the company. The Stock relation maintains
the stock level for each item in each warehouse. Each order placed by a customer is
maintained in three relations. The Order table maintains a record of an order placed by
a customer. The pending orders are maintained in New Order table which are deleted
once the order is delivered. In Order-Line table, a separate entry is made for each
item in a order. A history of the payment transaction is appended to the History table
[LD93a].

22 4. Assumptions

Figure 4.1: Company Structure

4.2. OLTP workload Assumptions 23

Figure 4.2: TPC-C Schema

4.2.3 TPC-C Workload

TPC-C benchmark is intended to model a medium complexity online transaction
processing (OLTP) workload. It simulates an order-entry workload, with multiple
transaction of varied complexity. The transactions ranging from simple transactions
that are comparable to thecan be as simple as a simple debit-credit workload in the
TPC-A/B benchmarks, or can have medium complexitywith more that two to fifty times
the number of calls of the simple transactions [LD93a].

A mix of five concurrent transactions of varying type and complexity are executed on
the database. Table 4.1 on the following page shows all the transaction types and their
corresponding frequencies.

• The New Order transaction places an order for 5 to 15 items from a warehouse.
[LD93b].

• The Payment transaction performs a payment for a customer. It updates various
data in Warehouse, District and Customer relations. A customer is selected by a
unique customer-id or by a name [LD93b].

• The Order Status transaction returns the status of the last order placed by the
customer. As in the Payment transaction, the customer may be specified by the
customer-id or by name. [LD93b].

24 4. Assumptions

Transaction Frequency (Percent)

New Order 45

Payment 43

Order Status 4

Stock Level 4

Delivery 4

Table 4.1: TPC-C Workload

• The Delivery transaction processes orders corresponding pending orders, one for
each district, with 5 to 15 items per order. The corresponding entry in the
New-Order relation is deleted [LD93b].

• Finally, the Stock Level transaction examines the quantity of stock for the items
that have been recently ordered from a district [LD93b].

5. Approach

For our work we have done separate implementation of TPC-C schema in column store
and row store storage structure. The query execution mechanism used for both of this
approach is same, where we have implemented various operators as OpenCL kernels.
These kernels will be used to execute the TPC-C workload. The operators will be reused
throughout the execution of workload wherever necessary. The host program will create
non-conflicting and ACID properties complying query plans though which it will send
data to the executing device and invoke the kernels. The query plan will also make the
decision of scheduling an operator on a device and will try to put the operator in the
respective device that best suits it in terms of performance. Host will also make sure of
not underutilizing or over utilizing any particular device so that proper load balancing
is done between devices e.g. if operator ‘A’ performs better on GPU, but for execution
on GPU it needs to be in queue, whereas CPU is free. In such scenarios to avoid the
overhead of waiting in queue, operator A can be scheduled on CPU as it has no task at
hand.

The approach to implement our work can be broadly classified into the following sections:

1. Row Store and Column Store Implementation.

2. Test Data Generation to be sent as input to transactions.

3. Operators Implementation

4. Operator placement decision

5. Implementation of TPC-C transactions

5.1 Row Store and Column Store Implementation

Given the characteristics of both storage mechanisms, we need a completely different set
of data structures to efficiently represent row store and column store storage mechanism.

26 5. Approach

5.1.1 Row Store Implementation

The data in a row store implementation requires the storage of rows of a table in
contiguous blocks of memory. Figure 5.1 shows row store storage mechanism for a table
with multiple columns represented with different colors. As we can see from the figure
row-wise storage or n-ary storage model is used to represent row store, i.e. for a row all
the column values will be stored in contiguous blocks of memory which will be followed
by the column values of next row.

Figure 5.1: Row Store Storage mechanism[SB]

To represent row store storage model as a data structure we need a C++ structure.Each
member variable of the structure represents a column of a table, hence, an instance
of this structure will represent a row of a table. All the members in an instance of a
structure are stored in contiguous blocks of memory e.g. for the table given in Figure 5.1
an instance of the structure will contain a1,b1,c1 and d1 as the values of member
variables, this instance will represent the first row of this table.

To represent multiple rows of a table we can use C++ Vectors. C++ Vector is a sequence
container that can represent an array with dynamic size. C++ Vectors use contiguous
memory blocks for storing their elements, each members of the vector can be accessed
using index or offsets. A C++ Vector of structure can be used to represent the complete
table in a row store storage mechanism, where each index of the vector represents a row
of the table. Given the contiguous storage mechanism of the vectors all the rows will be
stored in contiguous memory locations.

Listing 5.1 on the next page shows the structure used to represent district table with
all the members representing the columns in District table. All the columns in the table
that represent string value are made a fixed length character array so that a single
instance of this structure will have a constant size. A constant size of the structure is
needed so that during the query execution the right amount of space can be allocated
on the devices.

Listing 5.2 on the facing page represents the vector array that stores multiple rows of
the tables. A vector of District is created to save the complete table data. Using the

5.1. Row Store and Column Store Implementation 27

1 struct District
2 {
3 short int d_id;
4 short int d_w_id;
5 float d_ytd;
6 int d_next_o_id;
7 float d_tax;
8 char d_name[10];
9 char d_street_1[20];
10 char d_street_2[20];
11 char d_city[20];
12 char d_state[2];
13 char d_zip[9];
14 };

Listing 5.1: Row Store Implementation of District table

inbuilt vector functions like push_back and erase we can insert or remove a row from
the table.

1 vector<District> dist_Data;

Listing 5.2: Vector storing row store table data

5.1.2 Column Store Implementation

In column store storage mechanism all the data inside a column of a table is stored in
contiguous blocks of memory. Figure 5.2 shows the storage mechanism for column store
data. The direction of the arrow in the figure shows the data storage sequence. At first
all the data of first column is stored in contiguous blocks of memory followed by the
data of second column and so on.

Figure 5.2: Column Store Storage mechanism[SB]

To represent column store data each column can be considered as a vector, so that each
column will have homogeneous and contiguous blocks of memory. The complete table

28 5. Approach

can be represented by a structure which contains all the columns as vectors. Hence all
the columns will be saved one after another in the memory. An instance of this structure
will represent the complete table.

Listing 5.3 shows the representation of the column store data in C++ data structures.
This code listing shows the representation of District table from the TPC-C framework.
To represent the string columns a structure with the name structArray is created, this
structure will only contains a character array of size 20. This structure has been so that
all the columns with string values can be pushed to a vector.

1 std::vector<int> D_ID;
2 std::vector<int> D_W_ID;
3 std::vector<float> D_YTD;
4 std::vector<int> D_NEXT_O_ID;
5 std::vector<float> D_TAX;
6 std::vector<structArray> D_NAME;
7 std::vector<structArray> D_STREET_1;
8 std::vector<structArray> D_STREET_2;
9 std::vector<structArray> D_CITY;
10 std::vector<structArray> D_STATE;
11 std::vector<structArray> D_ZIP;

Listing 5.3: Column Store Data Structure

5.2 TPC-C Transaction

This section will provide the implementation overview of each transaction in a TPC-C
benchmark that we have implemented in our work. The aim of this section is to make
the readers aware about all the operators that have been used in TPC-C transactions
and the Query plan of each transaction. Looking at these implementation overviews the
reader can get an elaborate idea about the implementation details of the host programs.
This section will also describe the input data that is needed to execute these queries in
a bulk execution model.

5.2.1 New Order Transaction

This transaction simulates the process of creation of a new order by a customer for a
specific district and warehouse. Each order in the transaction consists of 5 to 15 items.
For each New Order transaction, an entry into three tables viz. New Order, Order Line
and Order is made. For each item in an order, an entry is made in Order Line table.
The order details are stored in the New Order and Order table whereas the details of
each items associated with an order is stored in the Order Line table. When an order is
delivered, then the entry of this order from New Order table is deleted and this data is
archived using History table.

Listing 5.4 on the next page shows the implementation of the New Order transaction
in a simplified way using a pseudo code. As we can see from the code listing a unique

5.2. TPC-C Transaction 29

customer is selected for triggering a new order transaction. Each customer is associated
with a district and a warehouse. After selecting the customer an entry is made into
the New Order and Order table. Each order consists of 5 to 15 items; these items are
randomly selected from the Item table. For each item in a new order an entry is made
into the Order Line table.

Listing 5.4: New Order Transaction: Pseudo Code
1 Get random (w_id) from Warehouse
2 Get random (d_id, w_id) from District
3 Get Random (c_id, d_id, w_id) from Customer
4 Insert into Order
5 Insert into New−Order
6 For each item in a order:
7 Get Random (item−id) from Item
8 Insert into Order−Line
9 Commit

5.2.1.1 Input

To perform New Order Transaction in a bulk scenario in an OpenCL context we need
three input relations viz. New Order, Order and Order Line. These three input can be
sent to the OpenCL devices along with the table or column data for the execution of the
New Order Query. Once all the input relations are generated all the kernels associated
with this transaction can be executed out of order. Listing 5.5 shows the data structure
used to store the input data for New Order transaction in a Row Store implementation.
We can see from the listing that each member of the structure represents the input
relation. For Column Store implementation the input data will contain all the columns
from respective table as vectors.

Listing 5.5: Input Data New Order Transactrion
1 struct InputDataNewOrderRowStore
2 {
3 vector<New_Order> no_input;
4 vector<Orders> o_input;
5 vector<Order_Line> ol_input;
6 };

5.2.2 Payment Transaction

Payment transaction processes a payment for an order by a random customer. There
are two cases for selecting the customer:

1. For 40% of cases the customer is selected by customer id.

2. For 60% of cases the customer is selected by last name.

In case of multiple matches of the last name a customer is selected by a random choice.
For each selected customer an update is made into the District, Warehouse and Customer
Table. An Insert is made into the History table to record all the archival payments.

30 5. Approach

Listing 5.6 on the next page shows the pseudo code of the implementation of Payment
Transaction.

Listing 5.6: Payment Transaction: Pseudo Code
1 Get random (w_id) from Warehouse
2 Get random (d_id, w_id) from District
3 Case 1: Select(c_id, d_id, w_id) from Customer
4 Case 2: Non−Unique Select (c_name d_id, w_id) from Customer
5 Update (w_id) in Warehouse
6 Update (d_id) in District
7 Update (c_id, d_id, w_id) in Customer
8 Insert into History
9 Commit

5.2.2.1 Input

The payment transaction needs the following inputs to execute the transactions for a
bulk load in OpenCL context for Row Store Implementation:

1. Customer ID / Customer Name

2. District ID

3. Warehouse ID

4. Input table for History.

The Customer ID, Warehouse ID and District IDs are used to find the update positions
for Customers District and Warehouse table. The input table for History table is used
to insert new records into the History table.

For Column Store Implementation the input will be the same like above, only the Input
table for History table will be replaced by many input columns that form the History
table.

5.2.3 Delivery Transaction

The Delivery transaction simulates the database operations to be done for a successful
delivery of an order. All the recent orders are present in the New Order table. Hence,
the delivery transaction picks the latest order IDs from the New Order table. Listing 5.7
on the facing page shows the pseudo code for the execution of the Delivery Transaction.

We can see from the listing that random order ids are selected from the New Order table.
These randomly selected order ids will be used as input order ids to Delivery transaction.
A Delete operation is performed on the New Order table for all the randomly selected
order ids. This is followed by an update operation on the Orders table which will set
the order as delivered. All the entries in the Order Line table for the input order ids
are also selected using a join operation and corresponding rows are updated to set the
delivery date. Towards the end a select operation is performed on the Customer table
to select the effected customers that have placed the input orders. Finally the selected
Customer‘s data is also updated to update customer balance and credit limit.

5.3. Basic Approach 31

Listing 5.7: Delivery Transaction: Pseudo Code
1 Get random (o_id) from New Order table
2 Get (o_id , w_id, d_id) from New Order table
3 Delete (o_id) from New−Order
4 Select (o_id) from Order
5 Update (o_id) Order
6 For each joining item in Order Line corresponding to o_id (i.e. 5 to 15):
7 Select (o_id) from Order Line table
8 Update columns in Order Line table
9 Select (c_id) from Customer

10 Update (c_id) Customer

5.2.4 Order Status

The Order status simulates the process of providing the status of an order that has
been queried by the end user. In a nutshell it returns the information of the customer
and details about the order. This transaction takes customer id as input and returns
all the information of the latest order placed by this customer. The customer id is
determined exactly like in Payment transaction where 40% of customer ids are retrieved
by customer’s last name and remaining 60% by customer’s id. The Order Status
transaction only requires a unique set of customer id and its associated district id and
warehouse id. Using various selection and join operations all the information of Order
and Order Line table is retrieved.

Listing 5.8 shows the pseudo code for the execution of the Order status query. We can
see from the listing that the customer information is selected in the same manner like
payment transaction. For each selected customer a unique order id is retrieved from the
Order table which represents the latest order by this customer. To find the latest order
for a customer we have to find the maximum order id for the searched customer. After
selecting the latest order ids a join operation is performed with the Order Line table to
select all the rows in the Order Line table that refers to the selected order ids.

Listing 5.8: Order Status Transaction: Pseudo Code
1 Select Customer
2 Case 1: Select (Random (c_id), w_id, d_id) from Customer
3 Case 2: Non−Unique Select (customer−name, d_id, w_id) from Customer
4 Select (Max (o_id), c_id, d_id, w_id) from Order
5 For each item in the order:
6 Select (o_id) from Order Line
7 Commit

5.3 Basic Approach

The basic methodology for implementing an operator in an OpenCL context is same for
all operators with minor changes in input and output data. This section will introduce
this basic methodology in detail. The aim of this section is to let the reader understand
the execution mechanism of OpenCL kernels; it will let the reader understand the
approach used for implementing operators used in this work with more clarity.

32 5. Approach

To implement an operator in an external device like GPU firstly the host program sends
the input data to the device as an input buffer. The same instruction set is then applied
on the input data through a kernel program. After the processing of the input data, a
result set is generated that is sent back to the host program in output buffer. The host
program predefines the memory requirement of the input buffer and the output buffer.
Hence, the host program needs to pre-calculate the expected amount of memory that
needs to be used by OpenCL device output and the input buffers.

The approach to implement an operator in the bulk scenario can be broadly classified
into following stages:

1. Position Calculation

2. Kernel Creation

3. Input/ Output Buffer Creation

4. Copy Buffers to OpenCL Device

4. Scheduling Operators

5. Reading Results

5.3.1 Position Calculation

Most operators are applied based on a predicate. To apply any operator on a table
we need to firstly identify all the rows (in Row Store) and columns indexes(in Column
Store) that satisfy the predicate. In position calculation phase all the indexes of the
tables that are to be manipulated by the operator is calculated by the host program.
A positions array is created based on the indexes of the selected rows of the table. In
a bulk OLTP execution model, multiple predicates are matched to create a position
array. Figure 5.3 on the facing page shows the algorithm for the creation of positions
array from an input array based on a predicate. We can see from the figure that a flag
array is of the size of the input array is created. The input array is scanned and for
each index that satisfies a predicate a value of 1 is inserted in the same index of flag
array. The flag array is used to find the size of the result set. This result set is then
filled with the index positions of the selected rows.

5.3.2 Kernel Creation

The instruction set that is executed on the OpenCL device is referred as kernel. A
kernel is a function written in C programming language which can only be executed
in an OpenCL device. The host program is responsible for creation, scheduling and
providing input parameters to the kernel. Listing 5.9 on the next page shows a sample
kernel program that takes three input parameters. The value array and positions array
are sent to the kernel to find the values of the indexes that satisfies the predicate. The
processed data is then stored in the output buffer which is passed as the third parameter.
OpenCL provide a mechanism to access the unique id of each work item that is executed
in an OpenCL device for a kernel execution. Each execution of the work item can access
its unique Id using get global id (0) function.

5.3. Basic Approach 33

Figure 5.3: Position Calculation Based On Predicate

Listing 5.9: Example: Kernel Program
1 __kernel void op_kernel(__global int∗ val, __global int∗ pos ,__global int∗ output_Data)
2 {
3 const int g_id = get_global_id (0);
4 int index= pos[g_id];
5 output_Data[g_id]=val[index]+10;
6 }

5.3.3 Input/Output Buffer Creation

The data is transferred to the OpenCL devices like GPU through buffer objects. All
the data that needs to be processed as an input of an operator is sent to the OpenCL
device as an input buffer. The position array created in Figure 5.3 is also sent along
with the input relation or column to identify the indexes of the effected rows. The result
or the output of an operator is stored in output buffer. In operators like insert and
select an empty output buffer is sent to the OpenCL device which is then filled with
processed results using input buffer. In operators like update and delete the input array
itself needs to be edited and returned as result hence, the input array is return back as
output buffer after processing.

Listing 5.10 on the next page shows the code to create buffers in an OpenCL context. We
can see from the listing that three buffers have been created for performing an operation
on data created in Figure 5.3. The parameters for creating buffers in clCreateBuffer
functions are:

1. context: an OpenCL context associated with a device.

34 5. Approach

2. cl memory flag: a bit field used to specify the usage information.

3. size t: size of the memory allocated.

4. errorcode ret: it returns an error code. Setting it to null returns no error codes.

Two input buffers have been created which contains the data of the position array (pos)
and Value array (val). Since the value of the position array is never changed in the
course of the operation, it is kept as a read only memory. The third buffer is created to
get the output result from the device, the size of the output array is the same as the
size of the position array, and hence the size of the position array is used to get the size
of the output buffer.

Listing 5.10: Code sample to create buffer objects
1
2 cl_mem ib_pos_index = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, sizeof

(int)∗res_size, pos.data(), &error);
3 cl_mem ib_val = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, sizeof(int)

∗6, Val.data(), &error);
4 cl_mem ob_output = clCreateBuffer(context, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR, sizeof(

int)∗ res_size, output.data(), &error);

5.3.4 Copy Buffers to OpenCL Device

In this work we have not considered the overheads due to transfer of data from the host
memory to an external device like GPU. To avoid this overhead we need to store the
data needed for kernel execution in the OpenCL device beforehand. Listing 5.11 shows
the code block which transfers the data from the host memory to the OpenCL device.
As we can see from the code clEnqueueWriteBuffer method is used to do the data
transfer. This method takes the command queue associated with a OpenCL device as
parameter along with the information of the buffer object that needs to be transferred.
The code sample given in Listing 5.11 copies the buffer objects created in Listing 5.10
and puts them on the GPU as the command queue associated with the GPU is used as
the parameter.

Listing 5.11: Code sample to create buffer objects
1
2 clEnqueueWriteBuffer(queueGPU, ib_pos_index,CL_TRUE, 0, sizeof(int)∗res_size, pos.data(), &

error);
3 clEnqueueWriteBuffer(queueGPU, ib_val ,CL_TRUE, 0, sizeof(int)∗6, Val.data(), &error);
4 clEnqueueWriteBuffer(queueGPU, ob_output ,CL_TRUE, 0, sizeof(int)∗res_size, output.data(), &

error);

5.3.5 Operator Scheduling

In our scenario operators are the OpenCL kernel programs. The decision to perform a
kernel execution on a particular device is made by the host application. The decision of

5.4. Row Store vs Column Store Kernel 35

the host application to put a particular kernel on a particular device is referred as operator
scheduling. Operator scheduling in an important aspect in OpenCL programming in a
hybrid scenario as it lets the host application to effectively utilize a particular device for
a better performing operation, it can also let the host application to do effective load
balancing between devices.

Listing 5.12 shows the creation of an OpenCL kernel using a kernel program. The host
application reads the op int insert.cl file from the file system. This file contains an
OpenCL kernel program. The cl program object is created using the loaded program.
The created program is then built to check for errors. After successful build a kernel
object is created. The buffers created in Listing 5.10 on the preceding page sections
can now be sent as an input parameter to the created kernel. After setting the kernel
argument the kernel can be queued for execution on a device using the command queue of
a particular device. In the listing globalWorkSize CPU represents the total number
of work items that will be processed in the kernel execution. In this scenario the total
number of work items processed will be the size of the position array as corresponding
to each index of the position array a work item will be executed.

Listing 5.12: Creation of OpenCL kernel and Scheduling
1 cl_program program_int_insert = CreateProgram(LoadKernel("operator . c l "), context);
2 CheckError(clBuildProgram(program_int_insert, deviceIdCount, deviceIds.data(), nullptr,

nullptr, nullptr));
3 cl_kernel kernel = clCreateKernel(program_int_insert, "operator_name", &error);
4 clSetKernelArg(kernel, 0, sizeof(cl_mem), &ib_res_index);
5 clSetKernelArg(kernel, 1, sizeof(cl_mem), &ib_val);
6 clSetKernelArg(kernel, 2, sizeof(cl_mem), &ob_output);
7 CheckError(clEnqueueNDRangeKernel(queueCPU,kernel,1,nullptr,globalWorkSize_CPU, nullptr,0,

nullptr,nullptr));

5.3.6 Reading Results

After the successful execution of the kernels the results are sent back to the host
application from OpenCL device. The results are read from the output buffer to the
a data structure that stores result in host application. Listing 5.13 shows the code to
read the data from the output buffer. We can see from the code listing that the data
from the output buffer (ob output) is copied from the CPU queue to a data structure
named output in host application. The size of the output object and output buffer
must exactly match to avoid errors due to over flow and under flow of memory.

Listing 5.13: Code sample for reading buffer
1 CheckError(clEnqueueReadBuffer(queueCPU,ob_output,CL_TRUE,0,sizeof(int)∗res_size, output.data

(), 0, nullptr, nullptr));

5.4 Row Store vs Column Store Kernel
In our work the kernel implementation for Row Store and Column Store methods are
different due to the use of different data structures for both scenario. The Column

36 5. Approach

Store kernels are dependent on a data type of the column whereas the Row Store
kernels are tightly bound to the schema of the operand table. This make our Row
Store kernels non reusable for different table schemas. Listing 5.15 and Listing 5.14
shows the implementation of the Row Store and Column Store Implementations of a
kernel to update a float column names w ytd in Warehouse table. In the Column Store
implementation we can see that a generic kernel is created which takes an input column
and the update positions and performs the update on the input column. This same
update logic can be reused in any other float column by using the same kernel.

Listing 5.14: Column Store Kernel
1 __kernel void OP_INT_ADD_CONSTANT(__global int∗ pos, __global float∗ val)
2 {
3 const int g_id = get_global_id(0);
4 int id = pos[g_id];
5 int id = pos[g_id];
6 val[id]+ = 10;
7 }

The implementation of the same operation in a Row Store kernel requires the redefinition
of the structure representing the Warehouse table. An array of the structure representing
Warehouse table along with the position is sent to get the row index for update. The
w ytd property of the row is then accessed and the update operation is performed.
The Row store implementation requires the definition of the table structure inside the
kernel and hence unlike column store implementation, this kernel cannot be reused for
updating any float column from other table.

Listing 5.15: Row Store Kernel
1 typedef struct Warehouse
2 {
3 short int W_ID;
4 float w_ytd;
5 float w_tax;
6 char w_name[10];
7
8 }Warehouse;
9

10 __kernel void op_Update_Warehouse(__global Warehouse∗ input_data, __global int∗ pos)
11 {
12 const int g_id = get_global_id (0);
13 int index= pos[g_id];
14 input_data[index].w_ytd+= 10;
15
16 }

5.5 Operators Implementation

You will see TPC-C transaction section that we have used Insert, Update, Delete, Select
and Join operators for implementing TPC-C queries. This section only introduces
the methodology that has been used to perform these operations using a data parallel

5.5. Operators Implementation 37

approach in OpenCL context. The technical implementation of each operator has been
done using the same basic methodology defined in Basic Approach section.

5.5.1 Insert

The insert operator inputs the data into the table. In TPC-C workload insert operator
is used in New Order transaction. In New Order transaction the input data is given to
the operator along with the table or column where the data needs to be inserted. The
insert operator will then insert the data into the table or column using the data parallel
approach. Insert operation do not require the position array as the new records are only
added at the end of each table or column and not at a specific index.

Figure 5.4 shows the concept used for insert approach using the data parallel method.
As we can see from the figure that an output buffer is created with null values and sent
to the kernel along with the input data that needs to inserted. The information about
the amount of data to be inserted is also provided to the kernel which is termed as
work size in OpenCL terminology. We do not need to calculate the output result size
because during the execution of New Order transaction the amount of new orders to be
generated are known beforehand. Using the result size the host program can allocate
the right amount of space to the output buffer.

All the threads of the device can independently process the kernel with their own chunk
of input and output data. Figure 5.4 represents threads functioning with blue lines
where each line represents a thread. Each thread reads the input from a unique index in
input array and replaces the same index in the output array with it. After the execution
of the threads the output buffer will have all the values from the input buffer. After
successful execution of the kernel the output array is read by the host program.

Figure 5.4: Insert Operator Approach

5.5.2 Update

Update operator updates the values of a column or a row. Unlike Insert operator, the
Update operator requires index position of a column or row where update operation
needs to be performed. These index positions are calculated based on a predicate.
Update positions and input data are provided to the kernel as buffers. Since in an

38 5. Approach

update operation the row or columns are updated itself hence the input table or column
are treated as output buffer.

Figure 5.5 shows the update operation for an array named Val that satisfies a predicate.
All the items in the Val array that satisfies the predicate Val[i]<5 should be set to
100. To do this operation firstly the update positions are calculated using the approach
discussed in earlier section. The position array and the value array are sent to the
OpenCL kernel as input buffer and output buffer. For all the values in position array
corresponding index are updated to 0 in the value buffer. Finally the output buffer is
returned back to the host application where the updated value array is retrieved.

Figure 5.5: Update Operator Approach

5.5.3 Delete

It is not possible to allocate or de-allocate memory inside an OpenCL kernel as it only
works on the memory allocated by host program. To perform delete operation we need
to set an invalid flag on the row or column index. The value of the Primary key is set
to 0 inside the kernel program. The Row or Column with invalid flag is read back to
the host application where it can be de-allocated in regular intervals.

The implementation of the Delete kernel is very similar to the Update kernel as we only
need to update the value of the primary key to 0. Figure 5.6 on the facing page depicts
the implementation details for Delete operation in an OpenCL context. Firstly the
position value is calculated based on the predicate. Using position array as input buffer
and Value array as output buffer the OpenCL kernel sets the values inside the input
array as 0 and sets them as invalid. The updated column will always be the primary
key of the table.

5.5.4 Selection

The selection operator is a unary operation that collects the result which satisfies a
predicate and sends it back as an output. The host needs to find out the size of the

5.5. Operators Implementation 39

Figure 5.6: Delete Operator Approach

selected result beforehand so that it can allocate the space for output and send it to the
kernel. The kernel can then fill the result in the allocated space and send it in an output
buffer. Different implementations for a selection operator have already been investigated
by Broneske et al. [BBS14].

Figure 5.7 on the next page shows the algorithm used for selection operator. This
algorithm selects all the items in the Val array whose values are less than 5. To perform
this operation in an external device like GPU we need to first identify the result size.
An array containing the positions of the selected rows or column is created using the
result set. An empty array to contain the result set is constituted using the result set.
The position array and the value array are passed in input buffers and the result array
is passed in an output buffer to OpenCL device. The value of the result array is filled
using the position array and the value array. The result array is finally sent back to
host application.

5.5.5 Join

Join operators are used to get the joining results from two tables based on a join
condition. Join operators are way more heavy weight as compared to other operators in
general. In selection operator the maximum size of the result can be equal to the input
relation, whereas in a join operation this can be very large e.g. if we want to join two
relations R and S then their maximal result size can be as big as (|R|.|S|) or even larger.
The problem becomes more difficult to handle in case of multiple join partners.

In TPC-C workload the Queries like Delivery and Payment needs the join operation. Fig-
ure 5.6 shows two tables i.e. Order and New Order that needs to be joined on the given
condition. In our implementation the the join operator is not performed on the OpenCL
devices, instead the row or column indexes of the joining result is calculated on the host
application and sent to the OpenCL devices. Hence, to perform the join we just need
to perform the join between the columns used in joining condition. Hence, the joining
positions are retrieved by performing a nested loop where each index of the joining

40 5. Approach

Figure 5.7: Select Operator Approach

Figure 5.8: Join Operation

5.6. Workload Distribution 41

column of the left operand is compared with all the indexes of joining column in right
operand.

Listing 5.16 shows the join position calculation where both the joining columns are
iterated in the nested loop to get the joining indexed of the right operand.

Listing 5.16: Join Position Calculation
1 int k=0;
2 for (int j = 0; no_o_id.size(); j++)
3 {
4 for (int i = 0; o_id.size(); i++)
5 {
6 if (no_o_id[j] == o_id[i])
7 {
8 Pos[k]=j;
9 K++;

10 }
11 }
12 }

5.6 Workload Distribution

In a hybrid system the workload needs to be divided between the CPU and GPU. In
our work we have manually distributed the workload using the host program. During
Workload distribution special emphasis is given on utilizing both CPU and GPU to its
full potential. Previous researches in the field of GPGPU have clearly suggested that
GPU is a faster device to perform the database operations [GLW+04]. Keeping this in
mind we have tried to distribute the workload such that GPU gets to do the major part
of the work.

In New Order transaction there are entries made to New Order, Order and Order Line
table. Corresponding to each new order placed there is a single entry in New Order and
Order table but 5 to 15 entries in Order Line table one for each item in a order. For
new order transaction we have performed the input in New Order and Order table on
the CPU whereas the insert of Order Line in GPU. To summarize, if we place 100 new
orders with 5 items each then 100 entries will be made into New Order and Order table
and 500 entries will be made into Order Line table. Hence in total 200 inserts will be
performed on CPU and 500 inserts on GPU.

42 5. Approach

6. Evaluation

This chapter will give a detailed description of the evaluation setup, evaluation mechanism
and result of our thesis. This chapter will start by introducing the evaluation setup that
has been used for our research. Further, in this chapter we will show the evaluation
mechanism for both of our research questions. There will be two evaluation scenarios
which will be discussed in this chapter:

1. Comparison of the execution time of TPC-C workload for Row Store and Column
store storage mechanism on a hybrid CPU/GPU based system.

2. Comparison of the execution time of TPC-C workloads on hybrid CPU/GPU based
system and CPU only system.

Towards the end, this chapter will give a brief description of the evaluation results and
will answer our research questions that have been set forward. Finally, we will discuss
some of the factors than can be a threat to the validity of our evaluation followed by a
collective conclusion.

6.1 Evaluation Setup

The machine used for evaluation has the following configuration:

• CPU: Intel(R) Core(TM) i5-2500 @3.30 GHz

• GPU: NVIDIA GeForce GT 640

• OS: Linux

• API: OpenCL

44 6. Evaluation

Workload ID New Order Payment Delivery Order Status

Workload 1 1000 1000 100 100

Workload 2 10000 10000 1000 1000

Workload 3 100000 100000 10000 10000

Workload 4 200000 200000 20000 20000

Workload 5 300000 300000 30000 30000

Workload 6 400000 400000 40000 40000

Workload 7 600000 600000 60000 60000

Workload 8 800000 800000 80000 80000

Table 6.1: TPC-C Workloads for evaluation

To answer our research question we need to perform a comparative study of the execution
time of the TPC-C workload for various scenarios. Hence, the configuration of the
system will have little impact on our end results as all the scenarios will be executed on
the same machine. Further, we have kept the workload size to a limit where it does not
overrun our GPU memory or RAM size.

Table 6.1 shows different workloads that have been used for performing the evaluation
each workload has a different number of transactions. The ratio of the number of each
transaction is decided based on Table 4.1 on page 24.

6.2 Row Store vs Column Store
This section of evaluation chapter is focused towards answering our first research question
which has been restated below:

RQ1: Which is the most efficient storage mechanism for OLTP query
processing on a hybrid CPU/GPU System?

6.2.1 Evaluation: Workload level

To answer our first research question we have executed the TPC-C workloads define
in Table 6.1 in a hybrid CPU/GPU based system for Row Store and Column Store
storage mechanism. We will show our evaluation results firstly by comparing the kernel
execution time of each workload in Row Store and Column Store storage mechanism.
Further we will drill down into each transaction to see the impact of these storage
mechanisms at a operator level.

Figure 6.1 on the next page shows the comparison of execution time of TPC-C workloads
for Row Store and Column Store storage mechanism. We can see from the graph that
Column Store implementation performs better for all the workloads except the first two
smaller workloads. For heavier workloads Column Store implementation can outperform
the Row Store implementation by a factor of 4x.

6.2. Row Store vs Column Store 45

Figure 6.1: Row Store vs Column Store Execution time

6.2.2 Result Discussion

In this section we have discussed the evaluation results obtained by comparing Row
Store and Column Store implementation. We will start by discussing the reason for the
fast performance of Column Store implementation for heavier workloads. The next part
of this section will discuss the reasons for fast performing Row Store implementation for
smaller workloads. Finally,we will draw a conclusion from these results and will answer
our research question.

The fast performance of Column Store implementation for heavier workloads can be
attributed to following factors:

1. Better Coalesced Memory Access: In a Column Store implementation memory
access is done in a more coalesced way as compared to Row Store Implementation.
In operations like select, delete and update local memory of the work group is better
utilized as multiple column indexes that are required by a work group can be loaded
together. This will lead to faster kernel execution as multiple access to slow performing
global memory is reduced.

2. Minimum Projection: In Column Store kernel we only need to load the columns
which are needed to perform a particular operation, this is not possible in Row Store
kernel as complete table is sent as a single unit to the OpenCL device. Figure 6.2 on
the following page shows this phenomenon where only two columns that are needed for
performing an operation are projected. There are many operations in OLTP workload
like update and delete which needs to access only a single column. These operators are
performed better in a Column Store implementations.

3. Fewer instructions in a kernel: The Column Store kernels are very light weight
as compared to Row Store kernels in terms of instructions. To update two column in a
table we need to create two kernels in a Column Store system whereas a single kernel in

46 6. Evaluation

Figure 6.2: Minimal Projection

Row Store kernel with more instructions. In a hybrid scenario a Row Store kernel cannot
take full advantage of external devices like GPU as performing heavy instructions in
them seriously effects the performance.

The slow performance of Column Store implementation in case of smaller workloads can
be attributed to the following factor:

OpenCL function call overhead: Each call to an OpenCL function has an overhead
as every function call to an OpenCL device is first scheduled to the appropriate driver
which then schedules the activity for processing. Hence, every kernel call from the
host program has a function call overhead. This functional overheads are less in Row
Store implementation compared to a Column Store implementation e.g. to perform
an insert operation for a table with 10 columns there will be 10 kernel(one for each
column) scheduled in a Column Store implementation whereas only one kernel would be
scheduled in Row Store implementation. The extra time taken by functional overheads
in a Column Store implementation is hidden by benefits discussed above for bigger
workloads. In smaller workloads the overheads of functional overheads in Column Store
implementation takes a considerable time as compared to the actual execution time.
This leads to better performance of Row Store kernels in smaller workloads.

6.2.3 Evaluation: Transaction level

To further study the effect of Row Store and Column Store storage mechanism on an
OLTP workload we have studied the execution time of each transaction for workload 8.
Each transaction uses a unique set of operations; this will give us a clear idea about the
performance of each operator in both storage mechanisms. Figure 6.3 on the next page
shows the comparison of the execution time of each transaction of TPC-C benchmark
in Column Store and Row Store mechanism. We can see from the figure that only the
New Order transaction performs better in Row Store Implementation whereas all other
transactions perform better on the Column Store implementation.

6.2.4 Result Discussion

Looking at the nature of New Order transaction we can say that only the insert operations
perform better on the Row Store implementation.There are various factors that lead to
the better performance of insert operation in Column Store implementation:

6.2. Row Store vs Column Store 47

1. Less Functional Overheads: In an insert operation all the columns of the table
are accessed which is not the case of operations like delete and update. Due to this
behaviour a single Row store kernel can perform the task of insert in a Row Store kernel
whereas in Column store multiple kernels will be needed. Hence the Row Store kernels
will have less functional overheads.

2. Better Coalescing: One of the biggest benefit of Column Store Data is minimal
projection which allows only the transfer of required columns to the OpenCL device.This
behaviour makes OpenCL kernels more efficient as better coalescing is achieved in a
single column. As we require all the columns of a table in an insert operation, the
Row Store implementation can also get better coalescing as multiple work items access
multiple rows which are stored sequentially.

All other operators like update, delete and select do not use all the columns of the table,
hence the column store implementation performs better then Row Store counterpart for
these operators.

Figure 6.3: Column Store vs Row Store: TPC-C transaction execution time

6.2.5 Conclusion

In our research we have found that leaving Insert operation all other operators perform
better on a Column Store storage mechanism. Even though the workload of TPC-C
contains about 50% Insert operation through New Order Query, but still the performance
gain achieved in other operators overpowers the slow performing insert operations for a
Column Store scenario. Hence, even after having better performance of many Insert
operators in TPC-C workload Column Store implementation outperforms the Row Store
implementation. Apart from it their are various proven factors like Vectorizations and
Data Compression that can be effectively utilized to further boost the performance
of a Column Store implementation. In the end we can safely say from our evaluation
that for a Hybrid CPU/GPU based system Column Store is a better storage method

48 6. Evaluation

as it effectively uses the memory hierarchy of the CPU and leads to better cohesion in
memory access.

6.3 Hybrid CPU/GPU based system vs CPU Only

System

In this section the evaluation will be centred towards finding the answer to our second
research question which is restated below:

RQ2: Is OLTP query processing on CPU/GPU based query processing
engine faster than traditional CPU only system?

6.3.1 Evaluation: Workload level

To answer our second research question we have performed a detailed comparison of
TPC-C workload execution time for a hybrid CPU/GPU based system versus a CPU
only system. In an OpenCL context, all the kernels in a CPU only system will be
queued to the CPU device whereas, in the hybrid scenarios the kernels will be distributed
amongst CPU and GPU. The Data that needs to be worked on is separated manually
on the host program and copied to the respective device before the kernels are executed.

To compare the execution time of CPU only system with hybrid CPU/GPU based system
we have performed the execution of all the TPC-C workloads given in Table 6.1 on
page 44 for Column Store implementation of TPC-C schema. We will be using Column
Store implementation for this evaluation as we have seen from the previous section that
Column Store is a better storage mechanism for implementing the CPU/GPU based
hybrid system for an OLTP workload.

Figure 6.4 on the next page shows the comparison of the execution time of each workload
in both scenarios. We can see from the trend of the graph that for small workload the
execution time of CPU only machine is comparable to hybrid CPU/GPU based machine.
With increasing size of the workload the hybrid system starts over performing the CPU
only counterpart. For heavier workloads like Workload 7 and Workload 8 we can see
that the hybrid system outperforms the CPU only system by a factor of 2x.

Although the above analysis gives a clear edge to the hybrid systems but, to study
the exact behaviour of the hybrid system we need to do a comparative study of each
OpenCL device used and their performance. To further drill down we did a comparative
study amongst CPU only, GPU only and Hybrid systems to find the better performing
device. Figure 6.5 on the facing page shows the execution time of different workloads for
each of the mentioned scenarios. We can see from the graph that the GPU only system
performs the best as compared to any other systems followed by hybrid CPU/GPU
based system. This behaviour clearly indicates that GPU is a faster device to execute
OLTP workload than CPU.

6.3. Hybrid CPU/GPU based system vs CPU Only System 49

Figure 6.4: Hybrid vs CPU only execution time comparison for Column Store imple-
mentation on TPC-C benchmark

Figure 6.5: Comparison of Execution time of CPU, GPU and Hybrid System

50 6. Evaluation

6.3.2 Result Discussion

Even through the hybrid implementation outperforms the CPU counterpart by a factor
of 2x for heavier workloads, still it under performs when compared to a GPU only system
by a factor of 2x for heavier workloads. The reason for this behaviour can be attributed
to following factors:

Under utilization of GPUs: In our implementation we were not able to properly
distribute the load between the devices which led to under utilization of GPUs. For
better performance of a Hybrid system the fast performing device should be fed with
more tasks which will lead to a significant improvement of the overall system.

Lack of Inter Transaction Parallelism: Our implementation performs all the TPC-
C transactions sequentially. Hence, at times there are not enough tasks that can be
allocated to a fast performing device like GPU. For better utilization of the GPU there
should be enough tasks available that can be scheduled as it will greatly reduce GPU’s
idle time. Performing multiple transactions in parallel will make more tasks available
which can be scheduled to each OpenCL device.

6.3.3 Transaction level performance overview

To study the behaviour of each TPC-C transaction in CPU only, GPU only and Hybrid
processor we evaluated the execution time of each transaction for each scenario. Figure 6.6
on the next page shows the execution time of each implemented TPC-C transaction
for GPU based system, CPU based system and hybrid CPU/GPU based system for
workload 8 respectively. We can see from the figure that all the transactions have shown
improvement in a hybrid system. Even though the performance of each transaction in
a hybrid system depends heavily on the workload distribution but still we can get a
rough idea about the performance of different operator on CPU and GPU device. New
Order and Payment transaction contains Insert and Update operation respectively. By
comparing the execution time of these two transaction with CPU only and GPU only
system we can say that a speed up of upto 2x is achieved on insert operation and 3x for
update operation in a GPU only system. Order Status transaction has multiple select
operations, it performs better on a GPU only device by a factor of 6x. Delete operations
performs exactly like a update operation as we only update the value of the primary key
to 0. Hence, our evaluation results suggest that delete operations can also be performed
faster on GPU by a factor of 3x.

6.3.4 Conclusion

A typical OLTP workload performs multiple Select, Update, Delete and Insert operations.
We can see from our evaluation results that all OLTP operators are performed faster on
a GPU only device. Our results also suggests that a proper load balancing can lead to a
faster hybrid systems for OLTP workload. The performance of the complete TPC-C
workload (only for implemented transaction) suggests that a hybrid CPU/GPU based
systems can easily outperform a CPU based system by a factor of 2x which can be
further improved by effective load balancing.

6.4. Threats to validity 51

Figure 6.6: Comparison of Execution time of each transaction in CPU, GPU and Hybrid
System

6.4 Threats to validity

In this section we are going to discuss the internal and external threats to validity

6.4.1 Threats to internal validity

For evaluation we performed thirty iterations for executing each workload in different
scenarios like Column Store in a hybrid system, Column Store in a CPU only system
etc. We did multiple iterations to get a mean value from a large set of result so that we
can get more reliable results. This helped us to get more precise result for the reliability
of our work.

For heavier workloads the GPU almost reaches its memory limits hence we can observe
more variation in results for multiple iteration. Even though we have taken a mean
of our results but still, we believe a GPU with more memory can provide more stable
results in heavier workloads.

6.4.2 Threats to external validity

We are aware of the fact that using a standard benchmark like TPC-C do not automati-
cally simulate a real time OLTP database. However, they are helpful to get a detailed
evaluation of the behaviour of various OLTP workloads on systems of varied types. A
typical TPC-C workload consists many insert, update, delete and select operation and
few join operations, a change in the nature of the workload can effect the performance
of the system.

52 6. Evaluation

The Join operation that we have implemented in our work does not perform the actual
join operation on the OpenCL device as we calculate the joining indexes on the host
program. Even though there are less Join operations in the TPC-C workload but still a
properly implemented join operation can vary the performance of the system.

In this work we have not implemented Stock level transaction in the TPC-C benchmark
which consists of join and select operation. Even though we can easily see from our
evaluation that all operators gain highly from a hybrid system but still, the inclusion of
stock level transaction will help to simulate a more life like OLTP system and evaluate
better.

6.5 Conclusion

Through our research we were able to find the answers to our research question which
will pave the way for finding the architectural properties and potentials of a hybrid
CPU /GPU based system. It was evident from evaluation that a Column Store hybrid
system can greatly benefit from the co-processing power of CPU and GPU. Our results
showed that Column Store is a preferred storage mechanism for a hybrid CPU/GPU
based system. A Column Store implementation benefits greatly from the architecture of
GPU and is more space efficient. A hybrid system using a Column Store mechanism
can outperform the CPU only Column Store OLTP system for all operators. A OLTP
workload can benefit highly from a hybrid system if proper load balancing is done and
emphasis is given on keeping a faster device like GPU always occupied.

7. Conclusion

Over the past years GPUs have shown tremendous speed up in the performance of
OLAP workload. This can be highly attributed to the possibility of executing OLAP
queries using a data parallel approach. In this work we have investigated the capabilities
of hybrid CPU/GPU based systems for the execution of bulk OLTP workload. Column
Store storage mechanism is a preferred storage mechanism in state of the art GPU
based databases for OLAP scenario as it provides coalesced memory access and supports
compression. In traditional CPU based systems Row Store becomes a preferred choice
for OLTP query execution as OLTP queries have multiple attribute access. In our
work we have done research to find out the better performing storage mechanism in a
hybrid CPU/GPU based OLTP system. We first started our research by finding the
best storage mechanism for an OLTP workload in a hybrid CPU/GPU based systems
by comparing the performance between Row Store and Column Store implementation of
our work. After finding this answer we tried to investigate the capabilities of a hybrid
CPU/GPU based system for executing a bulk OLTP workload.

There have been previous researches like GPUTx which have shown that a GPU only
system can speed up the query execution time of an OLTP workload. In our work we
have further investigated the possibilities of using hybrid system for OLTP workload
execution. One of the major contribution of this research is the implementation of OLTP
transactions using operators unlike GPUTx where a OLTP transaction is executed as a
single task. Operator based approach made it possible for us to investigate multiple kernel
handling overheads. It also made our implementation independent to the transaction
nature and schema as our operators can be reused irrespective of the nature of query and
schema in use. This work will take us one step closer to finding the right architecture
and capabilities for a hybrid OLTP system.

For this work we have done two separate implementation for Row Store and Column store
storage mechanism. We have used the standard TPC-C database and its transaction to
do the evaluation. To find the better storage mechanism we have executed workloads of

54 7. Conclusion

varying sizes on both the implementation. The better performing storage mechanism
was chosen based on rigorous evaluation of the execution time of different workloads for
both the scenario. The capabilities of a hybrid CPU/GPU based system is calculated
by comparing it against CPU only and GPU only systems. The comparison is made
by executing TPC-C workloads of varying sizes on each system and comparing the
execution time.

Our results clearly showed that Column Store is a better storage mechanism as compared
to Row Store for executing bulk OLTP workloads in a hybrid CPU/GPU based system.
For heavier workloads the Column Store implementation outperformed the Row Store
implementation by a factor of 4x. This can be largely attributed to the efficient use of
the GPU memory model by better coalesced memory access. Factors like projection of
only used columns and lightweight kernels also make Column Store a preferred choice.
Apart from it there are some proven factors like vectorization and data compression
which makes Column Store a preferred choice.

The Hybrid CPU/GPU based systems were able to outperform the CPU only system
by a factor of 2x for heavier workloads. The GPU only system clearly outperformed
the hybrid systems by a factor of 1.5x for heavier workloads. We attribute the under
performance of our hybrid system against GPU only system to the improper utilization
of GPU device. The fast performance of GPU device clearly indicates that our workload
distribution between CPU and GPU was not sufficient to fully utilize the potentials of
a hybrid system. Apart from it there are various characteristics of OLTP workloads
like multiple access to critical data and uneven memory access which stops the OLTP
workload to benefit heavily from GPU style of processing.

Through this research we have identified the storage structure needed and the capabilities
of a hybrid CPU/GPU base system for OLTP workload. This work is a prototypical
implementation which can be used as a starting point for creating a hybrid OLTP system.
There are various aspects in GPU programming which have not been considered in our
work like data transfer overheads and index calculation overheads which needs future
research. Also we have identified the gaping holes in our implementation in workload
distribution between CPU and GPU. We need to identify a better workload distribution
mechanism to effectively utilize the hybrid systems. Some of the optimization techniques
like better coalesced memory access and vectorization needs to be investigated as they
can greatly boost the performance of a hybrid CPU/GPU based system.

8. Future Work

In our work we have tried to demonstrate the potential and limitations of using a hybrid
CPU/GPU based system for an OLTP workload. Due the scope of this thesis and time
limits there are many perspectives which have not been considered in our work. We have
also identified various aspects that need to be improved in our work. In this chapter we
have described all the limitations in our work that can lead to an improved system and
can lead towards further evidences to support our work.

1. Coalesced Memory Access: We have identified the problem of coalesced memory
as the biggest bottleneck for slow performing hybrid CPU/GPU System. To overcome
this limitation we need to have sorted indexes which can lead to a coalesced memory
access. Although we are assuming that sorting can be a potential bottleneck but still
this approach can be further investigated.

2. Inter transaction Parallelism for better operator placement: In this work
all the implemented transactions in TPC-C workload have been executed sequentially
in a data parallel approach. During the execution of a single transaction mostly a
homogeneous set of operations are performed. Due to homogeneous nature of operations
we do not have the choice to do effective operator placement as the best device cannot
always be chosen for the placing the operator as it can lead to ineffective load balancing.
Performing multiple transactions in parallel will provide heterogeneous operators that can
be effectively scheduled to better performing devise. We assume than intra transaction
parallelism needs to be investigated as it can further speed up the performance of
heterogeneous CPU/GPU based systems.

3. Better Load Distribution: In our work the biggest limitation that led to the
slower performance of hybrid CPU/GPU based system as compared to GPU only was
due to improper load balancing. We tried to distribute the load based on the performance
of the devices but still, the GPU device was left task hungry which led to a slower
hybrid system. We strongly recommend that a proper study about the load distribution
is needed as it is of paramount importance for the performance of hybrid system.

56 8. Future Work

4. Memory Overrun: In our work we have limited the number of transactions based
on the available memory in OpenCL devise s. Our Implementation do not deal with
the scenario of memory overrun. In real time OLTP systems the size of the workload
should not be a limiting factor as a large volume of OLTP transactions are performed
at a single time. In state of the art GPU based systems; the issue of memory overflow is
handled by aborting the unfinished transactions on GPU and performing then on CPU.
We assume that a successful hybrid CPU/GPU based system should handle the issue of
memory overrun efficiently. Hence, a detailed investigation of this topic is needed for
future works.

5. Data Compression: Data Compression is an efficient methodology that can use the
limited memory of external devices like GPU to execute heavy workload. It can greatly
reduce the problem of memory overrun. There are lots of light weight compression
techniques like Dictionary Encoding; Run Length Encoding etc. which have shown good
results of a GPU based system. These compression techniques need to be investigated
on hybrid OLTP system for improved hybrid database in future.

6. Dynamic Query Plan Generation: In our work we have implemented static
query plans that can only perform TPC-C Workload. These query plans cannot be
re-used for other transactions. A real time OLTP system should be able to generate
efficient query plans dynamically so that it can serve any transaction on the fly.

7. Dynamic Load Balancing In our work we have done static load balancing to
provide both CPU and GPU enough tasks for execution. We used the existing knowledge
about the data access patterns in TPC-C transactions to perform load balancing. A
real time OLTP system should be able to perform dynamic load balancing and operator
placement to effectively utilize both devices.

8. Vectorization: Vectorization is the capabilities of certain hardware to allows the
processing of multiple instructions of the same nature in a single cycle. The task of a
single Work Item in OpenCL devices can be vectorized so that multiple operations can
be performed in a single Work Item. Although in the CPU it can lead to performance
gain but in devices like GPU its performance needs to be investigated due to different
memory hierarchy. Multiple instructions will lead to multiple the accesses to the Global
Memory and this can be a potential bottleneck. The Vectorized approach of kernel
implementation needs to be investigated as it can improve the performance of OLTP
systems. The Vectorization approach can only be used with the Column Store storage
mechanism as the OpenCL kernels of Column Store implementation perform instructions
on a single data type.

9. Data transfer overhead consideration: In our work we have only calculated the
kernel execution times for execution of TPC-C transaction. We had an assumption that
data is already placed in OpenCL device memories, hence data transfer overheads in
external device like GPU has not been considered. In a real life OLTP scenario, it is
not possible to pre-load the data into the devices as the consistency of the data would
be hard to maintain. Hence, for realizing a real life OLTP system we assume that the
transfer overheads should be taken into consideration and evaluated.

57

10. Critical Data Access: In our implementation of TPC-C database we have used
only one warehouse along with 10 district. During a bulk execution lots of transactions
can try to update the information of the Warehouse or District which makes these
records as critical data. In our work we have scheduled performed operations on critical
data on the host program as they can not be performed in a data parallel way. We
believe that in future works the overheads due to the access of critical data needs to be
investigated as it is an important aspect of OLTP workload.

58 8. Future Work

Bibliography

[BBHS14] David Broneske, Sebastian Breß, Max Heimel, and Gunter Saake. Toward
hardware-sensitive database operations. In Proceedings of the International
Conference on Extending Database Technology (EDBT), pages 229–234, 2014.
(cited on Page 1)

[BBS14] David Broneske, Sebastian Breß, and Gunter Saake. Database scan variants
on modern CPUs: A performance study. In VLDB Workshop on In Memory
Data Management (IMDM), volume 8921 of LNCS, pages 97–111. Springer,
2014. (cited on Page 39)

[BFT16] Sebastian Breß, Henning Funke, and Jens Teubner. Robust query processing
in co-processor-accelerated databases. In Proceedings of the 2016 Interna-
tional Conference on Management of Data, pages 1891–1906. ACM, 2016.
(cited on Page 13 and 14)

[BGW+08] Edward W Bethel, Luke J Gosink, Kesheng Wu, Edward Wes Bethel, John D
Owens, and Kenneth I Joy. Bin-hash indexing: A parallel method for fast
query processing. Technical report, Ernest Orlando Lawrence Berkeley
National Laboratory, Berkeley, CA (US), 2008. (cited on Page 7 and 8)

[BKH+14] Sebastian Breß, Bastian Köcher, Max Heimel, Volker Markl, Michael Saecker,
and Gunter Saake. Ocelot/hype: optimized data processing on heterogeneous
hardware. Proceedings of the VLDB Endowment, 7(13):1609–1612, 2014.
(cited on Page 18)

[Bre15] Sebastian Breß. Efficient Query Processing in Co-Processor-accelerated
Databases. PhD thesis, University of Magdeburg, Germany, 2015. (cited on

Page 6 and 7)

[Bro15] David Broneske. Adaptive reprogramming for databases on heterogeneous
processors. In Proceedings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD ’15 PhD Symposium, pages 51–55,
New York, NY, USA, 2015. ACM. (cited on Page 14)

[BS13] Sebastian Breß and Gunter Saake. Why it is time for a hype: A hybrid query
processing engine for efficient GPU coprocessing in DBMS. Proceedings of
the VLDB Endowment, 6(12):1398–1403, 2013. (cited on Page 13 and 17)

60 Bibliography

[CD97] Surajit Chaudhuri and Umeshwar Dayal. An overview of data warehousing
and olap technology. SIGMOD Rec., 26(1):65–74, March 1997. (cited on

Page 1)

[Cen] Texas Advanced Computing Center. 8 things you should know about gpgpu
technology. https://www.tacc.utexas.edu/documents/13601/88790/8things.
pdf. Accessed July, 2016. (cited on Page 6)

[fc] fujitsu co. White paper: Benchmark overview tpc-c. https://sp.ts.fujitsu.
com/dmsp/publications/public/benchmark overview tpc-c.pdf. Accessed
Oct 2, 2003. (cited on Page 9)

[Gho12] Pedram Ghodsnia. An in-gpu-memory column-oriented database for pro-
cessing analytical workloads. VLDB 2012 PhD Workshop, 2012. (cited on

Page 2)

[GLW+04] Naga K. Govindaraju, Brandon Lloyd, Wei Wang, Ming Lin, and Dinesh
Manocha. Fast computation of database operations using graphics processors.
In Proceedings of the 2004 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’04, pages 215–226, New York, NY, USA,
2004. ACM. (cited on Page 41)

[HLY+09] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K Govindaraju, Qiong
Luo, and Pedro V Sander. Relational query coprocessing on graphics
processors. ACM Transactions on Database Systems (TODS), 34(4):21,
2009. (cited on Page 17)

[HSP+13] Max Heimel, Michael Saecker, Holger Pirk, Stefan Manegold, and Volker
Markl. Hardware-oblivious parallelism for in-memory column-stores. Pro-
ceedings of the VLDB Endowment, 6(9):709–720, 2013. (cited on Page 14)

[HY11] Bingsheng He and Jeffrey Xu Yu. High-throughput transaction executions
on graphics processors. Proceedings of the VLDB Endowment, 4(5):314–325,
2011. (cited on Page 1, 2, and 18)

[HYF+08] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong Luo,
and Pedro Sander. Relational joins on graphics processors. In Proceedings of
the 2008 ACM SIGMOD international conference on Management of data,
pages 511–524. ACM, 2008. (cited on Page 5 and 6)

[KHL15] Tomas Karnagel, Dirk Habich, and Wolfgang Lehner. Local vs. global
optimization: Operator placement strategies in heterogeneous environments.
Computing, 1:O2, 2015. (cited on Page 1 and 2)

[KKN+08] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexan-
der Rasin, Stanley Zdonik, Evan PC Jones, Samuel Madden, Michael Stone-
braker, Yang Zhang, et al. H-store: a high-performance, distributed main

https://www.tacc.utexas.edu/documents/13601/88790/8things.pdf
https://www.tacc.utexas.edu/documents/13601/88790/8things.pdf
https://sp.ts.fujitsu.com/dmsp/publications/public/benchmark_overview_tpc-c.pdf
https://sp.ts.fujitsu.com/dmsp/publications/public/benchmark_overview_tpc-c.pdf

Bibliography 61

memory transaction processing system. Proceedings of the VLDB Endow-
ment, 1(2):1496–1499, 2008. (cited on Page 2)

[LD93a] Scott T Leutenegger and Daniel Dias. A modeling study of the TPC-C
benchmark, volume 22. ACM, 1993. (cited on Page 21 and 23)

[LD93b] Scott T. Leutenegger and Daniel Dias. A modeling study of the tpc-c
benchmark. SIGMOD Rec., 22(2):22–31, June 1993. (cited on Page 23 and 24)

[MBS15] Andreas Meister, Sebastian Breß, and Gunter Saake. Toward gpu-accelerated
database optimization. Datenbank-Spektrum, 15(2):131–140, 2015. (cited on

Page 7)

[OAD14] Bogdan Oancea, Tudorel Andrei, and Raluca Mariana Dragoescu. Gpgpu
computing. arXiv preprint arXiv:1408.6923, 2014. (cited on Page 16)

[OvO] Oltp vs olap. http://datawarehouse4u.info/OLTP-vs-OLAP.html. (cited on

Page 11 and 12)

[SB] TU Dortmund Sebastian Breß. Co-processor accelerated data manage-
ment(lecture slides). Summer Term, 2015. (cited on Page xi, 10, 15, 26, and 27)

[Sca] Matthew Scarpino. A gentle introduction to opencl. http://www.drdobbs.
com/parallel/a-gentle-introduction-to-opencl/231002854. Accessed August,
2011. (cited on Page 16)

[SMA+07] Michael Stonebraker, Samuel Madden, Daniel J Abadi, Stavros Harizopoulos,
Nabil Hachem, and Pat Helland. The end of an architectural era:(it’s time
for a complete rewrite). In Proceedings of the 33rd international conference
on Very large data bases, pages 1150–1160. VLDB Endowment, 2007. (cited

on Page 2 and 17)

http://datawarehouse4u.info/OLTP-vs-OLAP.html
 http://www.drdobbs.com/parallel/a-gentle-introduction-to-opencl/231002854
 http://www.drdobbs.com/parallel/a-gentle-introduction-to-opencl/231002854

62 Bibliography

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Magdeburg, den

	Acknowledgement
	Contents
	List of Figures
	List of Tables
	List of Code Listings
	1 Introduction
	2 Background
	2.1 GPU and its architecture
	2.2 GPU as a co-processor
	2.3 Challenges in GPU computing
	2.4 Execution Model
	2.4.1 Data Parallelism
	2.4.2 Task Parallelism

	2.5 GPU Memory Model
	2.6 Coalesced Memory Access
	2.7 OLTP vs OLAP
	2.7.1 OLAP (On-line Analytical Processing)
	2.7.2 GPU Acceleration in an OLAP Workload
	2.7.3 OLTP (On-line Transaction Processing)
	2.7.4 GPU Acceleration in an OLTP Workload

	2.8 Transaction Management on GDBMS
	2.9 Operator Placement
	2.9.1 Compile Time Operator Placement
	2.9.2 Run Time Operator Placement

	2.10 Programming Model

	3 Related Work
	3.1 GPU Accelerated Systems for OLAP
	3.2 GPU Accelerated Systems for OLTP

	4 Assumptions
	4.1 Assumptions in Implementation
	4.1.1 No GPU Memory overflow
	4.1.2 Static Transaction Management
	4.1.3 Static Operator Placement
	4.1.4 Static Query Plan Generation
	4.1.5 Bulk Query Execution
	4.1.6 No Database Caching

	4.2 OLTP workload Assumptions
	4.2.1 Benchmark Overview
	4.2.2 TPC-C Schema
	4.2.3 TPC-C Workload

	5 Approach
	5.1 Row Store and Column Store Implementation
	5.1.1 Row Store Implementation
	5.1.2 Column Store Implementation

	5.2 TPC-C Transaction
	5.2.1 New Order Transaction
	5.2.1.1 Input

	5.2.2 Payment Transaction
	5.2.2.1 Input

	5.2.3 Delivery Transaction
	5.2.4 Order Status

	5.3 Basic Approach
	5.3.1 Position Calculation
	5.3.2 Kernel Creation
	5.3.3 Input/Output Buffer Creation
	5.3.4 Copy Buffers to OpenCL Device
	5.3.5 Operator Scheduling
	5.3.6 Reading Results

	5.4 Row Store vs Column Store Kernel
	5.5 Operators Implementation
	5.5.1 Insert
	5.5.2 Update
	5.5.3 Delete
	5.5.4 Selection
	5.5.5 Join

	5.6 Workload Distribution

	6 Evaluation
	6.1 Evaluation Setup
	6.2 Row Store vs Column Store
	6.2.1 Evaluation: Workload level
	6.2.2 Result Discussion
	6.2.3 Evaluation: Transaction level
	6.2.4 Result Discussion
	6.2.5 Conclusion

	6.3 Hybrid CPU/GPU based system vs CPU Only System
	6.3.1 Evaluation: Workload level
	6.3.2 Result Discussion
	6.3.3 Transaction level performance overview
	6.3.4 Conclusion

	6.4 Threats to validity
	6.4.1 Threats to internal validity
	6.4.2 Threats to external validity

	6.5 Conclusion

	7 Conclusion
	8 Future Work
	Bibliography

