Using Reified Contextual Information for Safe Run-time
Adaptation of Software Product Lines

Sagar Sunkle
School of Computer Science
University of Magdeburg, Germany

sagar.sunkle@iti.cs.uni-magdeburg.de

ABSTRACT

Software product lines (SPLs) is a paradigm to implement
software products based on features. Contemporary SPL
implementation techniques provide support for compile-time
composition of features. Many approaches have been sug-
gested for run-time adaptation of product lines which do not
consider safe composition properties. This paper presents
FeatureJ which enables safe compile-time and run-time com-
position of multiple product lines. We identify four compi-
lation techniques necessary to achieve safe run-time adapta-
tion of product lines in FeaturelJ: (a) type checking of feature
modules, (b) availability of contextual information at run-
time, (c¢) resolving class-loading issues for multiple updated
variants, and (d) an application container for executing and
updating multiple variants. Accordingly, we show how an
existing approach can be integrated with FeatureJ to sup-
port safe run-time adaptation.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance, and Enhancement]:
[Extensibility]

General Terms
Design

Keywords

Software Product Lines, Composition, Run-time Adaptation

1. INTRODUCTION

Software Product Lines (SPLs) represent a software engi-
neering paradigm that enables creating a set of products
based on the common and the variable features. SPLs en-
able reuse in terms of features that can be shared among
software products. SPLs contain domain concepts (concep-
tual features) of a software system and their realization at
code level (concrete features). Traditionally, the decision as
to which products contain which features used to be made
statically. With the emergence of dynamic software systems,

Mario Pukall
School of Computer Science
University of Magdeburg, Germany
mario.pukall@iti.cs.uni-magdeburg.de

this decision is no longer static and may be delayed until run-
time |14]. Many researchers have assessed the value of using
SPLs for such systems. Run-time composition and adapta-
tion of SPLs has been explored in terms of dynamic product
reconfiguration [14], context aware and dynamic SPLs [10].

In a parallel line of work, researchers have extended tradi-
tional SPL implementation techniques to include safe com-
position mechanisms for SPLs [3,20]. Safe composition en-
tails checking that (a) products of an SPL adhere to the
specified domain constraints and (b) all selected features in
the code are synthesized into a compilable product variant
|3l {20]. By imposing type checking mechanisms on under-
lying feature representations, safe composition ensures any
errors in valid products are detected at compile-time. To our
knowledge, there is no approach that combines type check-
ing of product lines with run-time composition of features
to enable safe run-time adaptation.

In this paper, we take a step towards safe run-time adap-
tation of SPLs. We use FeatureJ which is an SPL imple-
mentation approach that differs from other approaches in
its representation of features, product lines, and variants
as types implemented atop the JastAdd Java compiler [7].
Both conceptual and concrete features are represented by a
common semantic entity in FeatureJ [18]. Multiple prod-
uct line and variant types can be defined and executed in
a single FeatureJ program. We show how safe compile-time
composition is supported in FeatureJ by extending seman-
tic analyses in JastAdd. We show how FeatureJ stores the
contextual information about features and how information
is made available at run-time via meta-class instances of
FeatureJ types which can be used to alter the structure of
already defined variants. Finally, we discuss how safe run-
time composition in FeatureJ can be extended to support
safe run-time adaptation.

2. BACKGROUND

An SPL represents family of related programs [5]. By rep-
resenting requirements of a domain as features, SPLs en-
able rapid customization of products. SPLs make use of
feature diagrams which graphically show the relationships
between the features [5]. The notepad product line (NPL)
shown in Figure [1]is based on the idea that the variants of
a notepad application can be obtained by selecting specific
features such as creating, editing, and formatting options.
An NPL variant is obtained by selecting features starting
with the top level features and further down the feature di-

Create
W

Color

BGColor

NewDocument

Figure 1: Feature Model of the Notepad Product
Line

agram by following the feature relations for each parent fea-
ture. Based on various relations and constraints, a valid
NPL product variant could be the set of features {File,
Edit, Format, Color, Create, ClipBoard, Font, NewDocu-
ment, Cut, Copy}. SPLs share many characteristics with
run-time adaptable systems (RTA), e.g., functionality that
needs to modified and adapted can be treated as a feature
[1]. In the following, we explain the relationship between
SPLs and RTAs.

2.1 Run-time Adaptability and SPLs

Run-time adaptability or dynamic reconfiguration refers to
software products that (a) monitor their operational con-
text, (b) process a reconfiguration request based on resources
and validation constraints, and (c¢) prepare and perform re-
configuration while system is running [14]. Alves et al. com-
pare variability management in SPLs and RTAs with respect
to goals, binding times, responsibility, the nature of vari-
ability models, and implementation mechanisms [1]. They
observe that (a) SPLs focus on providing functional require-
ments whereas RTAs focus on quality of service along with
functional requirements, (b) while variability is achieved at
pre-compile time, compile-time, and link time in SPLs, in
RTAs it is achieved at load time and run-time, (c) in SPLs,
the application engineer makes variability decision whereas
in RTAs this responsibility lies with the system itself, and (d)
in SPLs variability models are fixed based on domain engi-
neering while RTAs adapt variants based on reconfiguration
policies. At the core for RTAs lie reflection, separation of
concerns such as aspects, and component-based designs as
implementation mechanisms [1].

SPLs are primarily implemented by mapping code and other
related software artifacts pertaining to features and synthe-
sizing or composing required features to obtain specific vari-
ants |2} |4, 13]. Although traditionally implemented in a
static setting, SPLs are also used to facilitate dynamic re-
configuration [8} |14} |10].

2.2 Feature]J

FeaturelJ is based on the concept of feature as first-class en-
tities (19} [18]. FeatureJ implements features as semantic
entities with the properties that a) features should be rep-
resented as native first-class types or first-class entities in
the host language, b) first-class features should represent

the conceptual and concrete features uniformly, c) the se-
mantics of the first-class features should be rich enough to
subsume safe composition, d) the identity of features should
be retained throughout the life cycle of an application to
enable a manipulation at different stages of program exe-
cution, and e) first-class features should be extensible with
respect to advances in feature modeling and feature compo-
sition |18].

In accordance with these properties, FeatureJ represents fea-
tures, product lines, and variants as types in Java. We use
JastAdcﬂ a Java based compiler construction system [7]
to implement FeatureJ. The type definition for productline
types correlate to feature models whereas variant type defini-
tions indicate variants obtained from these models as shown
in Listing [T}

package testNotePadPL;
public class NotepadApps{
productline notepadPL {
features {

File : all(Create, Save?),
Create: more(NewDocument , Open),
Edit : more(ClipBoard, Paste),
ClipBoard: more(Cut, Copy),

Format : more(Font, Color),
Color one(FontColor, BGColor),
Help

all (File, Edit, Format, Help?)
constraints {
Paste <—> ClipBoard,
FontColor <—> Font

}
b
variant notepadPL SimpleNotepad {
File = [Create],
Create = [NewDocument],
Edit = [ClipBoard],
ClipBoard = [Cut and Copy],
Format = [Font],
Help
b
}
Listing 1: FeatureJ productline and variant type
declarations

FeatureJ represents both the conceptual and concrete fea-
tures as types. Listing [I] shows how the productline and
variant types indicating the NPL described earlier can be
defined. The feature types are similarly defined in the code
as block constructs that contain program elements of differ-
ent granularities ranging from single statement to collection
of methods [18].

3. ENABLING SAFE RUN-TIME ADAPTA-
TION IN FEATURE]

An important implication of representing features as types
is that FeatureJ can contain multiple productline and vari-
ant types in a single program. This fact combined with the
requirement that features in FeatureJ must retain their iden-
tity, necessitates four compilation techniques to ensure the

"http:/ /jastadd.org/the-jastadd-extensible-java-compiler

co-existence of multiple variants and safe run-time composi-
tion and adaptation: 1) extending semantic analyses in Java
compiler to address type checking of FeatureJ types to en-
sure safe composition of features, 2) addressing Java class-
loading issues for multiple variants with separate names-
paces, 3) reifying contextual information about feature, pro-
ductline, and variant types, and 4) generating an application
container that can instantiate multiple specific variants and
execute them. In the following we elaborate each of these
techniques.

3.1 Safe Composition

A FeatureJ program may contain many productline types
and correspondingly many variant and feature types. The
feature and variant types are declared within the context of
the parent productline type. We explain the type checking of
FeatureJ types in terms of two distinct processes: 1) check-
ing the validity of feature models in productline and variant
type definitions 2) type checking and error analysis of pre-
defined variants.

Feature Model Validation

Checking the validity of feature models consists of checking
productline, variant, and feature type names and validating
productline and variant types.

Name resolution in FeatureJ A FeatureJ program may
contain many productline types and correspondingly many
variant and feature types. The name resolution of these
types builds upon the Java name resolution mechanism of
JastAdd. A productline type in a different package can be
imported just like the regular Java types in that package.
When resolving variant and feature type names, they are
checked against their parent productline type. This typically
consists of checking for existence of feature types used in
the variant type declaration, checking for existence of fea-
ture type used in the feature containment expressions, and
checking that a variant type of a given productline type refers
only to the features of that productline.

Structural validation of variant types This consists
of checking the structure of a variant based on its parent
productline type for any inconsistencies in the feature selec-
tion based on the specified quantifiers and the inclusion and
exclusion constraints. This involves validating the quanti-
fiers on groups of features. Following this, FeatureJ checks
that all inclusion and exclusion constraints are satisfied for
a given variant. The structural validation and constraint
resolution is carried out on per product variant basis.

Type Checking Predefined Variants

FeatureJ extendes the type checking attributes defined in
JastAdd for semantically checking each of the newly gener-
ated variants for compilation errors. The compilation errors
in Java involve incompatible types and expressions, incor-
rect pairing of modifiers, multiple declarations, reachability
and normal completion errors, and exception related errors
They are detected in JastAdd using the nameCheck,
typeCheck, accessControl, exceptionHandling, checkUnreach-
ableStmt, definiteAssignment, and checkModifiers attributes

Zhttp://java.sun.com/docs/books/jls/

defined in each AST node of a Java program [7], each of
which is extended in FeaturelJ.

Following the type-checking of predefined variants, FeatureJ
proceeds with the error analysis for multiple variants which
takes into account the variant definitions in the Featurel
program, so that FeatureJ is able to report variant specific
error messages. This means that if a feature contains a se-
mantic error but is not included in the definition of a specific
variant, then error messages, if any, pertaining to this vari-
ant will not contain this error. On the contrary, if a variant
is defined to include this feature then the error message is
included in the error reporting for this variant. The error
analysis ensures that compilation errors pertaining to spe-
cific variants due to inclusion or exclusion of features are
reported accurately.

3.2 Addressing Java Class-loading issues for
Multiple Variants

A Java application runs with a Java Virtual Machine
(JVM) that interacts with Java classes in the .class file for-
mat. Creating first-class product lines and product variants
atop a Java application indicates that for a given application
many program variants may exists simultaneously. Whereas
a regular Java program only runs a single version of class(es)
/ interface(s) comprising it, running a FeatureJ program
consists of running many versions of the same class(es) / in-
terface(s) belonging to different variants. Two scenarios may
arise during the execution of a FeatureJ program which we
address using the concept of namespaces and separating in-
terface from implementation respectively as explained in the
following;:

Referring to different versions of the same class This
scenario takes place when multiple variants exist simultane-
ously consisting of different versions of the same SPL class.
All classes in a Java application are loaded using some sub-
class of the ClassLoader class. The JVM identifies a class
uniquely by a combination of its qualified name and the ef-
fective class loader, i.e., the class loader that loads this class.
To distinguish between the classes from different variants,
they must be placed in a path that is not in the classpath
of the SPL application. We achieve this by creating a sepa-
rate namespace for each variant in terms of folder hierarchy
with the variant name as the top folder and then all variant
specific classes arranged according to packages under this
folder.

Reloading modified versions of the same class This
scenario takes place when multiple variants are defined in a
FeatureJ program or a single variant is modified by adding
or removing a feature. When a class is loaded, all classes it
references are loaded recursively. A class is only loaded once
and then cached in the class loader by the JVM to ensure
that the byte-code of the class does not change. Reloading
the class is therefore not possible using Java’s class load-
ers. Also, the objects of classes that have exactly the same
qualified name but loaded by two different ClassLoader in-
stances are treated as objects from different classes. In order
to overcome this limitation, FeatureJ generates an interface
corresponding to an SPL class as the object type which is
loaded once and reloads the implementing class for a specific
variant. Using this arrangement, we can keep the interface

constant while reloading the implementation class.

3.3 Reifying Contextual Information to

Meta-classes
By contextual information about features, we mean the iden-
tity of features, i.e., all facts required to identify a given
feature at any stage of program execution. In order to be
able to use the attribute-based computational capabilities of
JastAdd , instead of storing this information in byte-code,
we store this information in the main AST during parsing
of a FeatureJ program. This enables us to process the main
AST of the FeatureJ program to generate ASTs of specific
variants. At run-time, three classes- PL, PLVariant, and
Feature, are used to represent a productline, a variant, and
a feature type. These classes are conceptually similar to the
meta-classes in the Groovy language, which is a dynamic
language for the JVM.

import com.unimag.sag.featurej.meta.x*;
public class NotepadApps {
public static void main(String args[]) {
PL NotepadPL= new PL("notepadPL");
PLVariant simpleNotepad=new PLVariant (<
NotepadPL ,"SimpleNotepad");

Notepad n=(Notepad)simpleNotepad.«<
getVariantObject ("Notepad");
n.setDefaultCloseOperation(JFrame.«

EXIT_ON_CLOSE);
n.setSize (300,200);
n.setVisible(true);
}
}

Listing 2: Using meta-classes PL and PLVariant to
access pre-defined productline and variant types

We call the PL, PLVariant, and Feature classes as meta-
classes in FeatureJ in the sense that these classes are used
by the FeatureJ compiler to govern the behavior of the cor-
responding FeatureJ types as shown in Listing The in-
formation exposed using theses meta-classes includes - 1)
the productline type to which current feature belongs to, 2)
structural information about current feature such as its im-
mediate scope, i.e., whether the current feature is a class
body definition or method body definition, and 3) the code
fragments contained in the current feature definition. This
information is stored relative to each compilation unit as a
feature may contain code fragments of different granularities
in various compilation units.

Many queries can be executed with the objects of these
meta-classes instantiated with the names of corresponding
FeatureJ types as shown in Listing [2[- a) a PL object can
be queried about the number features and constraints, the
classes in which the constituent features are located, etc. b)
a PLVariant object can be queried for its parent product-
line type, number and names of mandatory and optional
features selected etc. ¢) an object of Feature class can be
queried for its parent productline type, its immediate parent
feature and children, the code fragments with respect to dif-
ferent classes in a FeatureJ program etc. The information
about productline, variant, and feature types is made avail-
able to the meta-classes using the concept of an application
container which we describe next.

Parsing Feature)
Program
I

- = Featurel Run-time Variant
eature. o
/ Safe Composition D R Composition
Check Application
Container

Validation of Feature
Models
Error Checking
Predefined Variants
S — Ve —
Error Checking Application
\ Predefined Variants / Main +

Interfaces for
SPL Classes

{ J

Compile-time
Variant
Composition

Figure 2: FeatureJ Compiler Architecture

3.4 Application Container for Multiple

Variants

FeatureJ requires that one of the SPL classes be specified
as an application entry point. FeatureJ uses this class and
generates an application container with which to execute
the FeatureJ program. The application container shown in
Figure [2| can be thought of as variants deployment platform
using which FeatureJ combines compilation and execution
of a FeatureJ program so that multiple variant programs
can be generated and executed. When input with .fjava
files of a FeatureJ program, the FeatureJ compiler starts
by parsing the .fjava files. Syntactic errors (if any) are
found during parsing of the .fjava files. If there is no syntac-
tic error (in FeatureJ type declarations or feature contain-
ments) then the compilation proceeds to static type check-
ing of variants defined in the FeatureJ program. This is
carried out in a manner explained in Section If there
are any errors in one (or more) variants, these errors are
reported and the compilation process is halted. Otherwise,
it proceeds to the generation of folder hierarchies that cor-
respond to the variant definitions and the packages in the
classes of the SPL. For example, given that NPL classes
are part of the testNotePadPL package and the program
contains two variant definitions (SimpleNotepad and Col-
oredNotepad), FeatureJ generates following directories in a
temporary directory: 1) Main\testNotePadPL - For stor-
ing the interfaces corresponding to SPL classes + any pre-
existing interfaces in the testNotePadPL package + the ap-
plication main 2) SimpleNotepad\testNotePadPL and Col-
oredNotepadPL\testNotePadPL - for storing the implemen-
tations of the interfaces. To avoid class-loading problems in
reloading different versions of classes from different variants,
FeatureJ generates a common interface for each SPL class
against which specific implementations are generated based
on the variant type definitions. Using these directories to
store variant specific implementation also results in sepa-
rate namespace. This enables FeatureJ to avoid the Java
class-loading issues as discussed in Sectio The imple-
mentation classes are generated by composing variant ASTs
statically or dynamically as explained in the following:

Variant Composition at Compile-time If a variant type
is to be composed statically, the variant AST’s are composed
immediately after generating the folder hierarchy and inter-
faces and application main as shown in Figure 2 Either of
the JastAdd Backend (by transforming AST to byte-code
directly) and the Sun Java compiler (by transforming the
AST to Java program first and then compiling them) can
be used at this stage to generate .class files for the variants.
Once the .class files are generated they are stored in the cor-
responding PLVariant object discussed in Section [3.3] as a
pair of name, and a Class class object obtained by loading
these .class files. A getObject() method returns an object of
the required SPL class version specific to this variant which
can be used like a regular object as shown earlier in Listing

Variant Composition at Run-time In Featurel, a stati-
cally composed variant can be altered by adding or removing
features using a PLVariant object that encapsulates a pre-
existing variant. A PLVariant object communicates with
parent PL object which uses the main program AST to pro-
cess the request regarding addition or removal of features as
described in Section |[3.3| and shown in Figure For each
addition and removal of a feature, a PL object runs safe
composition check as explained in Section because any
modification can potentially introduce compilation errors.
The safe composition checks are required in FeatureJ be-
cause it checks individual predefined variants instead of the
entire SPL as in AHEAD [20]. If there are no errors in the re-
sulting AST then the variant specific implementation classes
are generated, compiled, and mapped. As stated earlier in
Section [3.2] a separate namespace is created automatically
for the modified variant so that new .class files are stored
and loaded without conflict. In the next section, we show
how safe run-time composition in FeatureJ can be extended
to support safe run-time adaptation.

4. EXTENDING FEATURE]J WITH SAFE
RUN-TIME ADAPTATION

Many approaches exist for run-time adaptation in Java which
allow anticipated or unanticipated changes at varying times
such as until load time or deploy-time [16} [15]. These ap-
proaches consist of using customized class-loaders |11], byte-
code transformations [21], dynamic aspectual mechanisms
[11]21], dynamic update enabled JVMs [9], or a combination
of these techniques. In order to extend FeatureJ’s run-time
composition mechanism to run-time adaptation we target
an adaptation approach that is easiest to integrate with the
existing FeatureJ compiler architecture.

4.1 Suitability of a Run-time Adaptation Ap-

proach for Feature]
Although any of the aforementioned approaches can be used
for extending FeatureJ with run-time adaptation, we take
into consideration the ease with which a given adaptation
approach can be plugged into the FeatureJ compiler archi-
tecture. Using byte-code transformation approaches for ex-
tending FeatureJ to support run-time adaptation would re-
quire communicating the contextual information about fea-
tures from meta-classes to a byte-code transformation tool.
Similarly, using dynamic aspectual mechanisms such as As-
pectWerkz’ annotations [21] would require adding another

phase to the FeatureJ compiler so that contextual informa-
tion about features is transformed into Java annotations over
program elements. Both these mechanisms would require
non-trivial extension of the FeatureJ compiler architecture.

Pukall et al. present a run-time adaptation approach that is
based on implementing a) class schema changes using class
renaming and b) caller update via Java HotSwap [15]. It is
implemented as an Eclipse plug-in that uses JVM tool in-
terface to obtain class information about currently running
application. This approach can be easily integrated with
FeatureJ’s run-time composition approach for two reasons:
1) We only have to input variant specific SPL classes to
the plug-in and do not have to take care of the details of
byte-code transformation ourselves. 2) The class renaming
technique for multiple versions of a class followed by this ap-
proach is similar to FeatureJ’s approach of addressing Java
class-loading issues described in Section In the next
section, we show how FeatureJ can be extended with the
run-time adaptation approach by Pukall et al. [16].

4.2 Integrating Run-time Adaptation with

FeatureJ

In Featurel, the interface generated for an SPL class rep-
resents a constant class schema. A feature exclusion that
makes a method unavailable and thus results in class schema
change is handled in FeatureJ as follows - a) If the FeatureJ
program contains an access to a method that will be unavail-
able due to feature exclusion, this is treated as error and
detected using FeatureJ safe composition check before gen-
erating variant specific implementation classes and the com-
pilation process is halted. b) If the FeatureJ program does
not contain an access to a method that would be unavailable
due to feature exclusion, then such a variant can indeed be
compiled without error because the missing method is not
called. Since the interface and a specific implementation of
SPL class must match so that an object of specific imple-
mentation class can be assigned to the interface as shown in
Listing [2] a method that is unimplemented is inserted with
a default body in the AST after FeatureJ safe composition
determines that there is no error present due to an invalid
access. With this arrangement, we can integrate FeaturelJ
with the approach by Pukall et al. [15] as described in the
following:

Reconciling class renaming and separate namespaces
for class schema changes In their approach, Pukall et al.
rename the class to be updated and load the renamed class
to indicate a different version of the same class [15]. Since,
the separate namespace in FeatureJ takes care of different
versions of the same class as explained in Section we can
use the FeatureJ’s mechanism as it is.

Reconciling Caller Updates using Java HotSwap The
next steps required in the run-time adaptation approach by
Pukall et al. [16} |15] include 1) changing all calls to the
instances of classes that have been updated, 2) creating an
instance of the updated class, and 3) mapping the state of
old callee instance to the newly generated instance. Of these,
first two steps are already present in FeatureJ as this is how
FeatureJ obtains an object of a variant specific SPL class as
shown in Listing[2] We only need to integrate the third step
in which state of the old caller object is mapped to the new

instance. Once the state of old object is mapped to the new
object, the new object can be used in place of old object of
the original variant.

In this way, combining safe variant composition at run-time
as described in Section [3.4] with the run-time adaptation
approach by Pukall et al. |15, we can achieve safe run-time
adaption for multiple variants and product lines in FeatureJ.

S. RELATED WORK AND CONCLUSION

Rosenmiiller et al. [17] present an approach for dynamic
composition of features using decorators and are currently
working on run-time adaptation support, but they do not
consider safe composition. Irmert et al. [11] present an
approach that combines dynamic aspects in JBoss for run-
time adaptation with OSGi modules that are used to create
separate namespaces for services. Run-time adaptation in
AspectWerkz uses class load time and run-time weaving of
byte-code |21]. Dinkelaker et al. [6] demonstrate the use
of meta-aspect protocol for run-time management of fea-
tures by mapping first-class aspect-oriented models in run-
ning systems to dynamic feature models.

It can be observed that variability and run-time adaptability
are achieved at different times during program execution [1].
In case of multiple variants and product lines this scenario is
further complicated due to the fact that multiple programs
may co-exist and can be composed at compile-time or run-
time. This paper presented an approach for achieving this
scenario at the same time assuring that variant composition
and adaptation are safe.

6. ACKNOWLEDGMENTS

We thank Christian K&stner for comments on an earlier
draft of this paper. Sagar Sunkle is a PhD candidate at
University of Magdeburg and receives scholarship from fed-
eral state of Saxony-Anhalt. Mario Pukall’s work is part of
the RAMSEEEl project funded by DFG.

7. REFERENCES

[1] V. Alves, D. Schneider, M. Becker, N. Bencomo, and
P. Grace. Comparitive study of variability
management in software product lines and runtime
adaptable systems. In VaMoS, pages 9-17, 2009.

[2] S. Apel and C. Késtner. An overview of
feature-oriented software development. Journal of
Object Technology (JOT), 8(5):49-84, 2009.

[3] S. Apel, C. Késtner, A. GroBlinger, and C. Lengauer.
Type-safe feature-oriented product lines. Technical
Report MIP-0909, Department of Informatics and
Mathematics, University of Passau, 2009.

[4] D. Batory. Feature-Oriented Programming and the
AHEAD Tool Suite. In Proceedings of the 26 th
International Conference on Software Engineering.
ACM, 2004.

[5] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[6] T. Dinkelaker, R. Mitschke, K. Fetzer, and M. Mezini.
A Dynamic Software Product Line Approach using

Shttp://wwwiti.cs.uni-magdeburg.de/itidb/forschung/ramses/

7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

Aspect Models at Runtime. First Workshop on
Composition and Variability, 2010.

T. Ekman and G. Hedin. The JastAdd system -
modular extensible compiler construction. Science of
Computer Programming, 69(1-3):14-26, 2007.

H. Gomaa and M. Hussein. Dynamic software
reconfiguration in software product families. In PFE
2003, pages 435-435, November 2004.

A. R. Gregersen, D. Simon, and B. N. Jgrgensen.
Towards a dynamic-update-enabled jvm. In RAM-SE
09, pages 1-7, New York, NY, USA, 2009. ACM.

S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid.
Dynamic software product lines. tse, 41(4):93-95,
2008.

F. Irmert, M. Meyerhofer, and M. Weiten. Towards
runtime adaptation in a SOA environment. In
RAM-SE’07, pages 17-26. Universitidt Magdeburg,
2007.

C. Kaewkasi and J. Gurd. Groovy AOP: a dynamic
AOP system for a JVM-based language. In
Proceedings of the 2008 AOSD - SPLAT workshop,
page 3. ACM, 2008.

C. Késtner and S. Apel. Virtual separation of concerns
— a second chance for preprocessors. Journal of Object
Technology (JOT), 8(6):59-78, Sept. 2009.

J. Lee and D. Muthig. Feature-oriented analysis and
specification of dynamic product reconfiguration. In
ICSR, pages 154-165, Berlin, Heidelberg, 2008.
Springer-Verlag.

M. Pukall, C. Késtner, S. G6tz, W. Cazzola, and

G. Saake. Flexible Runtime Program Adaptations in
Java - A Comparision. Technical Report
FIN-014-2009, Department of Computer Science,
University of Magdeburg, Germany, Nov. 2009.

M. Pukall, C. Késtner, and G. Saake. Towards
unanticipated runtime adaptation of java applications.
In APSEC, pages 85-92. IEEE, 2008.

M. Rosenmiiller, N. Siegmund, G. Saake, and S. Apel.
Code Generation to Support Static and Dynamic
Composition of Software Product Lines. In
Proceedings of the 7th International Conference on
Generative Programming and Component Engineering.
ACM Press, Oct. 2008.

S. Sunkle, S. Giinther, and G. Saake. Representing
and Composing First-class Features with Featurel.
Technical Report FIN-017-2009, Department of
Computer Science, Otto-von-Guericke University of
Magdeburg, Germany, Nov. 2009.

S. Sunkle, M. Rosenmiiller, N. Siegmund, S. S.

ur Rahman, and G. Saake. Features as First-class
Entities — Toward a Better Representation of Features.
In McGPLE, pages 27-34. Department of Informatics
and Mathematics, University of Passau, Oct. 2008.

S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe
composition of product lines. In Proceedings of the 6th
international conference on Generative programming
and component engineering, pages 95-104. ACM, 2007.
A. Vasseur. Dynamic AOP and runtime weaving for
Java—How does AspectWerkz address it? In DAW:
Dynamic Aspects Workshop, pages 135-145, Mar.
2004.

	Introduction
	Background
	Run-time Adaptability and SPLs
	FeatureJ

	Enabling Safe Run-time Adaptation in FeatureJ
	Safe Composition
	Addressing Java Class-loading issues for Multiple Variants
	Reifying Contextual Information to Meta-classes
	Application Container for Multiple Variants

	Extending FeatureJ with Safe Run-time Adaptation
	Suitability of a Run-time Adaptation Approach for FeatureJ
	Integrating Run-time Adaptation with FeatureJ

	Related Work and Conclusion
	Acknowledgments
	References

