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Abstract—Maodel-based languages such as MATLAB/Simulink
are crucial for the development of embedded software systems.
To adapt to changing requirements, engineers commonly copy
and modify existing systems to create new variants. Commonly
referred to as clone-and-own, this reuse strategy is easy to
apply and beneficial in the short term, but it entails severe
maintenance and consistency issues in the long term, leading to a
huge amount of redundant and similar assets. Moreover, a later
transition towards structured reuse such as with software product
lines inevitably requires the comparison of all existing variants
prior to the actual migration. However, current work mostly
revolves around the comparison of only two systems and despite
approaches proposed that can cope with more, such are not appli-
cable to embedded software systems such as MATLAB/Simulink.

In this paper, we bridge this gap and propose Static Connectiv-
ity Matrix Analysis (SCMA), a novel comparison procedure that
allows for the evaluation of multiple MATLAB/Simulink model
variants at once. In particular, we transform models into a matrix
form which is used to compare all models and to identify all
similar structures between them, even with model parts being
completely relocated during clone-and-own. We allow engineers
to tailor results and to focus on any arbitrary variant subset, en-
abling individual reasoning prior to migration. We provide a feasi-
bility study from the automotive domain, showing our matrix rep-
resentation to be suitable and our technique to be fast and precise.

I. INTRODUCTION

Embedded systems are prevalent in various industrial domains
such as factory automation, avionic, automotive and rail [1].
In such fields where large, complex, and safety-critical systems
are developed, their reliability and maintainability are vital [2].
Model-Driven Engineering (MDE) is a paradigm commonly
used in these domains and is known to improve reliability [3].
Instead of manually implementing functionality with im-
perative programming languages, MDE uses function-block-
based designs [1]. To this end, modeling languages such
as MATLAB/Simulink' are used, which enforce modularity
and are considered to enhance maintainability [4], [5]. While
they allow for functionality to be implemented on a more
intuitive level for engineers, overall development and evolution
of embedded software systems remains a challenging and
time-intensive task. In order to adapt to new requirements,
engineers commonly reduce both work and time effort by
copying and subsequently modifying existing systems [6].
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Denoted clone-and-own [7], this reuse approach is easy to use,
as existing functionality is copied rather than reimplemented.
However, in the long-run, this technique has severe implications
on maintenance and evolution of the variant portfolio [8], [9].
Among others, redundancies emerge that need to be evolved
and maintained separately as knowledge about commonalities
and differences between variants is not present.

Recent approaches addressed this problem by exploiting
modularity of modeling languages for variant composition,
and thus, mitigate the drawbacks of clone-and-own [10], [11].
While this may help to fight the symptoms of clone-and-own,
it does not allow for a comprehensive understanding of such
variants. It also does not tackle the root cause, which is unstruc-
tured reuse. Thus, redundant artifacts across systems and the
inherently increased maintenance effort are still pervasive [9].

In contrast, Software Product Lines (SPLs) [12], [13]
facilitate strategic reuse and promote maintainability while
preventing redundancies between related software systems [14].
In practice, however, it is hard to foresee the entire scope of
functionality required upfront [15]. Thus, families of similar
systems often emerge ad-hoc using clone-and-own, resulting
in a proliferation of legacy systems without information about
their relations [16], [17]. The need to transition from clone-
and-own towards an SPL often becomes evident only after
variant genesis and requires major migration [15], [18]-[20].

Unfortunately, reactively migrating variants to an SPL or
taking other measures to instantiate structured reuse, and thus,
improving maintainability, poses an enormous challenge to prac-
titioners [8], [21]-[23]. In particular, current approaches incre-
mentally compare pairs of related systems [24], which consid-
erably impose efficiency and accuracy of the results [25], [26].

Hence, we argue that it is inevitable to consider all relevant
systems at once for their strategic migration towards an SPL.
To allow for their assessment and eventually, migration to-
wards an SPL practice, it is indispensable to compare all
system variants with each other rather than contenting with a
restricted evaluation such as incremental pairwise approaches.
However, in MDE, most work addressing SPL migration
strategies and system maintainability are only applicable
to two systems, which limits applicability in-the-wild [26],
[27]. Although approaches have been proposed that evaluate
multiple models [22], [26]-[28], they are not applicable to an
entire family of complex MATLAB/Simulink model variants.



In this paper, we tackle the aforementioned problems and
propose our Static Connectivity Matrix Analysis to compare
multiple MATLAB/Simulink models. To cope with an entire
portfolio of models, we introduce the Connectivity Matrix,
an intermediate representation that exploits the data flow and
modular construction inherent to MATLAB/Simulink models.
With our technique, we provide a comprehensive overview of
all variants. Furthermore, engineers can filter the produced
results and focus on arbitrary variant combinations. Hence,
engineers can tailor results, perform individual reasoning and
by using their domain knowledge, facilitate strategic decisions.
In particular, we make the following contributions:

®  We introduce the Connectivity Matrix, a descriptor that transforms
models into matrix form, allowing for their efficient comparison.

®  We propose Static Connectivity Matrix Analysis (SCMA), a procedure
to compare multiple MATLAB/Simulink models evolved from clone-
and-own regardless of input order. We identify all similar structures
between all input models and allow for their preliminary assessment
regarding a strategic migration towards an SPL practice.

®  We evaluate our descriptor and approach using a feasibility study
from the automotive domain and show our technique to be fast,
precise and applicable to models of industrial size.

The remainder of this paper is structured as follows. We provide
background information on MATLAB/Simulink models and
properties we utilize for our technique and outline descriptors
to abstract from complex systems (Sec. II). We introduce our
descriptor, the Connectivity Matrix (CM) and propose our
SCMA (Sec. III). We assess our technique using a feasibility
study with models from the automotive domain (Sec. IV)
and discuss the results produced (Sec. V). We state related
work (Sec. VI), future work and conclude our paper (Sec. VII).

II. PRELIMINARIES

In this section, we provide details on MATLAB/Simulink models,
properties that we utilize for our proposed technique, and
introduce descriptors [29] to abstract from complex systems.

A. MATLAB/Simulink

MATLAB/Simulink is a block-based behavioral modeling lan-
guage that utilizes functional blocks and signals to specify
certain software system functionality. It is vital for the devel-
opment of embedded software systems in various industrial
domains such as avionic and automotive engineering [30], [31].
Such models constitute the central development artifact and are
used to generate code for operation on microcontrollers [32].
Each block of a MATLAB/Simulink model either represents
a specific functionality or it is used to structure the model.
Every block has a set of syntactical and semantical properties
that allow for it to be identified and to be compared with other
blocks. Focusing on MATLAB/Simulink, the following block
properties are of interest for the remainder of this paper:

® function: Represented function, i.e., what the block is used for.

® abel: Non-unique textural name of the block.
® interfaces: For incoming and outgoing data:
— in-ports: A block contains an arbitrary number of in-ports.
Each in-port connects to exactly one out-port.
— out-ports: A block contains an arbitrary number of out-ports.

Each out-port can connect to one or more in-ports.

® signal: A directed edge, connecting in-ports and out-ports.

Industrial MATLAB/Simulink models comprise thousands of
blocks to capture complex system behavior [16], [30], [32].
Logically connected blocks are commonly grouped together
and encapsulated within a Subsystem (SM) block. SMs can
be nested and structure the model horizontally, constituting
a model hierarchy [1]. Every SM resides on a specific
hierarchical layer 0 ; that corresponds with its nesting depth.

Complex models comprise numerous hierarchical layers and
can exhibit a total hierarchical depth of ten and more [33].
In Figure 1, we depict a simple MATLAB/Simulink model My,
and highlight in gray the contained SMs labeled 2, 3, and 6.
For clarity, models throughout this paper contain unique block
labels only. The corresponding graph representation includes
an artificial SM named root, highlighted in gray respectively.
It comprises all blocks residing on the first hierarchical layer
dp to illustrate My’s model hierarchy being a tree structure.
We refer to the SM labeled 6 on the second hierarchical
layer 01 as the child system of its respective parent system,
the SM labeled 2 in Figure 1. Every SM on any layer §;
is the root of its respective subtree and, thus, every model
structured with SMs can be represented as a tree (cf. Figure 1).

Fig. 1: MATLAB/Simulink Model and its Graph Representation

B. Model Abstraction Using Descriptors

To allow for the analysis of multiple MATLAB/Simulink models
in their entirety, their complexity needs to be reduced first.
Extensively applied in various fields such as robotics, image
processing, network and electrical circuit design [34]-[37],
descriptors abstract from complex systems by describing salient
system information and representing them in a simpler format.
Descriptors can be compared efficiently, and thus, even allow
for the comparison of large quantities of data [38]. A descriptor
should exhibit the following key characteristics [39]:

® The descriptor should be easy to extract from the original model.
® There should be a low probability of mismatch, that is, two distinct
models should not result in the same descriptor.

Given their numerical efficiency, matrices have prevailed as
one of the most widely utilized descriptor formats [29], [40],
[38]. Furthermore, matrices are a generally accepted repre-
sentation for graph structures and regarding their numerical
efficiency, are intrinsically suitable for large-scale graph trans-
formation and analysis procedures [41]. As shown in Figure 1,
function block diagrams such as MATLAB/Simulink inherently
constitute such graph structure. Consequently, we utilize
matrices in our technique to derive a descriptor, the Connectivity
Matrix, to abstract from MATLAB/Simulink models.



ITI. STATIC CONNECTIVITY MATRIX ANALYSIS

In this section, we propose Static Connectivity Matrix Analysis
to identify and group all similar SM structures across all
MATLAB/Simulink model variants, regardless of their location
or their input order. Given SCMAs’ workflow in Figure 4, we
illustrate its four sequentially processed phases using the three
models shown in Figure 5 for the remainder of this section.

A. Descriptor Creation - The Connectivity Matrix

We introduce our descriptor, the Connectivity Matrix, to
abstract MATLAB/Simulink SMs into a matrix representation.
Inherently characteristic of function block diagrams, MAT-
LAB/Simulink models and, thus, SMs, are the composition of di-
rectly connected blocks, each of them having a specific function.

The CM exploits this property to approximate a given SM.
Precisely, a CM represents which two block functions directly
connect and how often they connect within the evaluated SM.
For the models M; and M, from Figure 2, we show the corre-
sponding CMs created by SCMA, CM; and CM3;, in Figure 3.
The depicted models contain six signals as well as eight blocks
with a total of four distinct functions. For each block, its specific
function is given in Figure 2 and pointed out to using arrows.
The CMs from Figure 3 highlight in gray the single connection
present in both abstracted models M; and M, from Figure 2,
connecting the functional block types Gain and Outport.
For readability reasons, non-present connections are left blank.

To ensure all CMs to have the same dimensions, SCMA
preprocesses all input models and generates a dictionary of all
distinct block functions. The size of the dictionary then
determines the dimensions of every single CM. For instance,
CM,; in Figure 3 contains the block Integrator as a row and
column entry, although this block function is not present
in the corresponding model M, in Figure 2. However, this
function is present within the input model M;. It is, therefore,
part of the dictionary and used to construct the CMs. The
retrieved dictionary is ordered and constitutes both CM axes,
resulting in CMs being quadratic (cf. Figure 3). Moreover,
when preprocessing SMs to create the dictionary, we already
store all connections between any block functions within the
corresponding CM. The order of the dictionary’s entities can
be chosen arbitrarily after preprocessing but it must be fixed,
and thus, static for subsequent CM creation. As illustrated
in Figure 4, every input model is processed separately and for
each SM, a corresponding CM is created. For a MATLAB/-
Simulink model comprising k& SMs, k CMs are generated
by SCMA plus one additional CM to represent connections
present on the top hierarchical layer &y (cf. Sec. II-A).
Each CM holds a reference to the specific SM it represents.

In Table I, we list all entities required to transform any SM
from a MATLAB/Simulink model into its respective CM. We
explicate the applied transformation procedure in Algorithm 1.

TABLE I: Entities Required for Creating the CM

M; A MATLAB/Simulink model

SM ; A SM from the model M;

Ay A CM representing the SM; from the model M;
CM; Set of all CMs for the model M ;

(] Set of all sets CM; for all models M;
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Fig. 2: Models M; & M, Fig. 3: CMs for M; & M,

For the remainder of this paper, we refer to a connection as
both functions of a specific signals’ source- and target block.
Within any CM, the source of a connection always resides on
the x-axis whereas its target resides on the y-axis (cf. Figure 3).
Connections can be present multiple times in a certain SM.
If, for instance, blocks with the functions Gain and QOutport
connect n times, the corresponding entry in the CM would be n.
We refer to the CM as static, meaning that upon instantiation,
every single CM has the same dimensions and is identical
in its row and column construction. Only the entries of the
CMs vary, depending on the individual connections present
within the specific SM abstracted by the CM (cf. Figures 2 & 3).
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Algorithm 1: Creating the Connectivity Matrices
Input: &, M;
Output: ¢

1 CM; + 0

2 forall SM; € M; do

Almxn) 1}
ij

foreach Block b € SM; do

forall Signals ¢,u: € b do
x < function(b)
y < function(target(Qout))
Aij(z,y) < (Aij(z,y) +1)
end

Iterate through all SMs of the model
and create a new connectivity matrix A;;

Store every connection
in the corresponding
entry of the matrix A;;

/

Store the matrix A;; in
the set of matrices
for the current model M;

L= B Y

10 end

11 CM; <—CM1U{A”}
12 end

B3P+ dU{CM,;}

14 return ¢
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Fig. 4: Workflow of the Static Connectivity Matrix Analysis (SCMA)



Fig. 5: MATLAB/Simulink Models Used as a Running Example for SCMA

Preprocessing the models from Figure 5 yields eleven distinct
block functions. The model M, comprises nine functions, Mp
introduces the Summation and Inverse function located in its
SMs B:3 & B:15 (cf. blocks SUM & 18) and M does not exhibit
new functions. The order in which models are processed to

retrieve all distinct functions for the dictionary can be arbitrary.

Using the model Mg from Figure 5 as input for Algorithm 1,
an empty set CMp is created (cf. Line 1). For every SM;
present within the evaluated model My (cf. Line 2), a new CM
Apj is created that holds references to both, the specific SM;
it abstracts as well as the corresponding MATLAB/Simulink
model (cf. Line 3). The dimensions of any CM correspond
to the size of the retrieved dictionary, hence n=117 for the
three models shown in Figure 5, and therefore, Ag;xu).
For every block within the current SM, all outgoing signals
pout are evaluated and the connection established between
the source and the target blocks’ function is stored in the
corresponding field of the CM (cf. Lines 4-8 & Figure 3).

An existing entry is simply incremented by one when

processing a connection that is already present within the CM.

Every CM Ag; is stored in the set CMp prior to processing
further SMs (cf. Line 11). Once all SMs of Mz have been

processed, the resulting set CMp is stored in @ (cf. Line 13).

For the models My, Mg and M. from Figure 5, SCMA yields:
@ ={CMs} U {CMp} U {CMc},

For the models from Figure 5, all CMs generated by SCMA
are shown in Figure 6, illustrating that they preserve the

|CM4| =3, |CMp| =4, |CMc| =5

parent-child relation that exists between the associated SMs.

Hence, CMs exhibit a hierarchical depth ¢; and fully resemble
the entire model hierarchy (cf. Figures 5 & 6). Illustrated
in Figure 6, we refer to the CM labeled B:3 as the parent P
of its respective child, the CM labeled B:15 (cf. Sec. II-A).

5 CMy oM CMp oM CMc oM
0- A:0 B:0 C:0
51 cM cM cM cM cM cM
1- A:3 A:10 B:3 B:10 C:3 C:10
— | | |
5o Size: Parent \ | CM Child CM CM
11=x11 B:15 C:15 C:19

Fig. 6: CMs created by SCMA for the Models from Figure 5

B. Comparing Connectivity Matrices

To identify all similar CMs across all models despite relo-
cation, SCMA compares all generated CMs with each other.

More precisely, any CM from a model My is compared with
all other CMs except those from My. For instance, the CM
A:0 from Figure 6 is, therefore, not compared with itself or
another CM (e.g. A:3) associated with the model My, but with
each CM associated with another model (here: Mg and M().
With SCMA, the focus is not to analyze a single but multiple
model variants to support their migration towards an SPL.
However, even the former can be achieved by SCMA using a
single model and its copy only. For each CM comparison, a
similarity value 0 < w < 1 is calculated that represents the
normalized distance between all two entries with the same x-
and y-coordinates. Thus, w reflects to what extent the respective
SMs exhibit the same connections between certain functions.

Algorithm 2 details the procedure applied with SCMA to
compare any two CMs. The entities required for Algorithm 2
are provided in Table II and complement those listed in Table 1.

TABLE II: Entities Required for Comparing CMs

w(A;j, Bzy) Compared CMs A and B with their similarity value w
Az, y) Entry of the CM A, given its x and y coordinates
Q Set of all CM comparisons

Algorithm 2: Comparison of the Connectivity Matrices

Input: ¢
Output: 2 Retrieve the set CM; for
L Q0 the respecive model M;
2 forea_ch CMi € do Retrieve another set CM; and
3 g (i+1) compare all comprised CMs
4 while j < |®| do - -
5 foreach Matrix A € CM; do
6 forall Matrix B € CM; do
n n 0 A(xy) = B(xy) = 0
; ; {mm(Au.y),B(x,y)) else }
7 w(AB)= 2= LnaxCAey), By
f: i { 0 A(x,y) = B(x,y) = 0}
z=1y=1 1 else
Q<+ QU{w(4B)}
end
10 end Compare all entries of the matrices
11 end with the same indices  and y and
12 end store the normalized value w
13 return )




Prior comparison, 2 is initialized to store every calculated simi-
larity value w along with its associated CMs A & B (cf. Line 1).
Every set of CMs within ¢ (cf. Line 2) is compared with all
remaining sets representing different models (cf. Lines 2 to 4).
For instance, given the sets CM4.¢ from Figure 6, Algorithm 2
compares all CMs present within CM,4 with all CMs contained
in CMp and CM¢. Consequently, for CMp, only CM¢ remains
and for CMc itself, no further comparisons are necessary.
This is because the similarity value calculation (cf. Line 7) is
based on the minimum and maximum of the specific matrix
entries, and thus, is commutative. Entries that are non-present
in both CMs and by that, indicating non-existing connections
in the SMs, are disregarded. Taking such connections into
account would wrongfully increase the similarity value, and
thus, adversely affect its soundness. Within CM; and CM,
from Figure 3, a total of five entries exist that are non-zero
in either of both CMs. For instance, for the connection Gain
- Outport, the calculated similarity value would be % =0.5.

Comparing the CMs from Figure 3 in their entirety yields a sim-
ilarity value of (230240 _ 0.5 _ ) 195 For the CM
y value o @n+azwo) . — 4 — Y- . For the
sets CMy.¢ from Figure 6, representing the MATLAB/Simulink

models My.¢ from Figure 5, Algorithm 2 yields a total of

Q] = [CMu| * (|CMg| + |CMc|) + (|CMp| * |CMc|) = 47

distinct CM comparisons. In Table III, we list all similarity
values w calculated by Algorithm 2 for the CMs illustrated
in Figure 6. Gray entries represent comparisons between CMs
for which the associated SMs originate from the same MAT-
LAB/Simulink model (cf. Figure 5). Blank entries depict com-
parisons that are obsolete because of the commutativity of w.

TABLE III: Similarity Values for CMs from Figure 6

w A0 A:33 A:10 B:0 B:3 B:10 B:15 C:0 C:3 C:10 C:15 C:19
KR 1.0 | O

B:3 0.42

B:10 U 0 [1.0

B:15

(Gm 1.0 | O 0 |10]| O

(GXl 0 |0.42 0 |10

(6B} 0.16| O | 0.4 [0.16( O | 0.4

C:15 0 0 0 0 0 ]1.0

C:19 U 0 0 0 0 0 ]1.0

CM comparisons such as w(A:0,B:0) reflect identical
SMs (cf. Figure 5), and thus, exhibit a similarity value of
w=1.0. This holds for other comparisons as well, such as for
those representing the SMs A:10 and B:10 or B:3 and C:3.
Looking at A:0 and C:10 in both, Table IIT and Figure 5, there
is one common connection, Subsystem to Outport (cf. blocks
10 to 2 & 19 to 12). Considering all connections, this accounts
for a minute, but not necessarily negligible similarity value w.

Furthermore, the information provided in Table III permits
a preliminary assessment of more than two input models. For
instance, A:0 is not only identical to B:0 but also to C:O0.

C. Structuring Connectivity Matrices - The Forest Creation

SCMA utilizes the CM comparisons to group together similar
CMs within nodes. We regard CMs similar if their comparison
result exceeds a threshold w,,;,. We do not preset this value,
but given their domain knowledge, allow practitioners to define
it either prior to SCMA or afterwards as part of an optional
filtering step (cf. Sec. III-D). The nodes get connected if the
contained CMs exhibit a parent-child relation (cf. Sec. II-A
& Figure 6). As a result, nodes form frees. Since each CM
corresponds to a SM, a tree represents a similar hierarchical
SM structure between multiple models. Regardless of their
hierarchical depth or structural location across models, SCMA
creates all trees, and thus, identifies all similar SM structures
between all input models. We store all trees within a forest.

In Table IV, we list the entities required for the forest
creation, complementing those listed in Tables I & II. We detail
the procedure utilized for the forest creation in Algorithm 3.

TABLE IV: Entities Required for Creating the Forest

Gt = (Vi, Ey) Tree with index ¢ and nodes V' and edges E
)4 Forest containing all generated trees
Px Parent CM of the CM X (cf. Figure 6)

w Average of all similarity values w for a node

Algorithm 3: Forest Creation Using Connectivity Matrices

Input:
Output: ¥
1 UV {G=(V,E)}
2 foreach w(A, B) € Q do

3 insertionPossible < false

4 TreeLoop:

5 foreach (V;, E:) € ¥ do

6 if 3k € Vi : {Pa, P} € k then

7 if 3v e Vi : {A, B} Nv # 0 then

8 ifVrev:w(z,y) >0, y € {A, B} then

9 v+ ovU{A,B}
w(z,y), ©#y

10 () « 1zviee o

1 insertionPossible < true

12 break TreeLoop

13 end

14 end

15 else

16 z«+ {A, B}

17 @(z) « w(A, B)

18 Vi ViU {z}

19 E; + {e(k,2)}

20 insertionPossible < true

21 break TreeLoop

22 end

23 end

24 end

25 if linsertionPossible then

26 Gy < (V\\p\ﬂ, E\\If\+1)

27 z <« {A,

28 @(z) «+ w(A, B)

2 Viws1 < Vigjpa U {2}

30 U+ vy G‘\phul

31 end

32 end

33 return ¥




All CMs within each set CM; (cf. Table I) are sorted in a
descending order with respect to their hierarchical depth ¢ ;.
We thus ensure that for any CM comparison, the respective
parent CMs P (cf. Sec. III-A), have already been processed.
This way, Algorithm 3 can at all times establish the parent-child
relation between compared CMs if such is present. With each
set CM; being sorted, the order in which they are processed
by Algorithm 3 can be arbitrary. In other words, the input
order for MATLAB/Simulink model variants, reflected by the
sets CM;, is irrelevant for the forest produced by SCMA.

Setting the similarity threshold w,,;, to O causes Algo-
rithm 3 to process all comparisons provided in Table IIT ex-
ceeding that value. Every w is evaluated separately (cf. Line 2)
and the associated CMs are then either inserted into an
existing node within a tree (cf. Lines 8-12), used to create a
new node within an existing tree (cf. Lines 15-22) or utilized to
start a new tree (cf. Lines 25-31). For every w and its associated
CMs, every tree is evaluated separately (cf. Line 5) and a
new tree is created only if no insertion in any existing tree is
possible (cf. Lines 3 & 25). If an insertion is possible, no further
trees are evaluated (cf. Lines 12 & 21). Consequently, no two
trees can exist that exhibit the same CM comparison, resulting
in the forest to be duplicate-free. Line 6 specifically returns frue
when comparing top level elements (i.e. A:0 & B:0) that do
not have parent CMs. However, no node exists within the
current tree G that either contains A:0 or B:0 (cf. Line 7).
Hence, the CMs cannot be grouped within an existing node
but are stored within a new node (cf. Line 16). Followed by
A:0 & C:0, Line 7 now holds because A:0 has already been
processed. Within a node, we only group together those CMs
that for all possible combinations exhibit a similarity value
greater zero (cf. Line 8). This way, a node being part of a larger
structure only contains CMs that are at all similar to each other.

Consequently, grouping A:0 & C:0 together with A:0
& B:0 requires w(B:0,C:0) to be greater than zero. This
holds (cf. Table III), and thus, the CMs are grouped together
and the overall similarity value for that node @ is recalculated
as the average of all comprised w values. When evaluating
w(A:0,C:10), no tree exists that contains a node comprising
both parent CMs (cf. Figure 6). Hence, a new tree and a node
are created for that comparison (cf. Lines 26 & 27) and added
to the forest (cf. Line 30) so that they can be used when process-
ing further comparisons. For the comparisons from Table III,
we provide all three trees generated by SCMA in Figure 7.

Tree I: Tree 2: Tree 3:
CMs w CMs w CMs w
A0 - B:0| 1.0 ] ]
& |A0-Co| 10 %O, g;g : (c:fig g'jg B:15-C:19| 1.0
® B:0 - C:0| 1.0 %, T %
S
A3-B3| 042 [A:10-B:10]L0 1
A3 -C:3|042 A:10 - C:10|0.4
B:3 i C:3 /.g B:10 - C:10 (0.4 Similar CM structures
Teol 061 across different models also
. . Tw=0. hint at redundancies within
B:l5 - Cil5 <I'0 one model (C:15 & C:19)

Fig. 7: Forest based on the Comparisons from Table III

Overall, SCMA identifies three trees for the models from our
example (cf. Figure 5) and their respective CMs (cf. Figure 6
& Table III). Tree I reflects the largest similar structure with
three nodes containing CMs from all input models. Tree I
also indicates that the models My and M. exhibit a stronger
similarity for parts of the structure than, for instance, My
and Mg or Mg and M respectively. Additionally, such tree
representation reveals CMs on the third hierarchical layer J5 to
be part of the structure but only between models Mp and M.
Finally, Tree 3 reveals similar structures that, within their orig-
inal models Mg and M, reside at entirely different locations.

D. Filtering the Forest

The forest can be filtered to provide tailored information
depending on individual demands. For instance, the similarity
threshold w,,;, 1S customizable and can even be set after
forest creation. All CM comparisons not exceeding the
specified value are then removed from the trees. Therefore,
stakeholders must not necessarily set thresholds in advance,
which bears the risk of losing information, especially without
precise domain knowledge. For instance, setting w,, ;y, =0.2
would remove Tree 2 from the forest in Figure 7 while
Wmin=0.5 would additionally remove parts of Tree 1.

Specifically, we provide two filtering procedures X, and X s
that can be applied to the forest WU and filter it given a
customizable subset A of all initial input models M. Hence,
X and X s constitute a projection [42] of the forest to a refined
subset, allowing practitioners to tailor the forest to perform
further reasoning. Applying X, results in the same output as
for the forest creation A but only for that subset A alone.

U= A(M)
XT(\I/,A) =AA), ACMA|M|>|A|+2

More precisely, x, removes all CM comparisons that contain a
CM with the corresponding model not contained within A. For
instance, A={My,Mp} would remove Tree 3 from the forest
in Figure 7 because the corresponding model for the CM C:22
is not in A, and thus, the only node of Tree 3 is removed.
The second filtering procedure Y, only retains nodes that
contain CM comparisons encompassing all models within A.
For instance, given A={M4,Mp,Mc}, x s would remove the
bottom node from Tree I because it does not comprise a CM
associated with M. Applying this A but with procedure
would retain that bottom node because B:15 and C:15 associate
to My and Mp. Thus, x s produces a subset of x,’s results.

v (T.8) = xo (e (w,8)) £ A

Filtering can be reverted and reapplied with different settings.
Thus, results can be tailored to specific demands while SCMA
needs to process input models only once. With SCMA, we
allow engineers to compare all input variants. Afterwards,
filtering enables them to explicitly focus on a specific subset of
these variants. For instance, engineers can perform additional
analysis which targets certain SMs to identify more fine-grained
variability [43] and to obtain profound understanding.



IV. EVALUATION

In this section, we provide our objectives, information about the
analyzed models, and the data analysis guidelines [44] we used.

A. Research Questions

With SCMA, we compare all system variants and identify all
similar structures between them. For our empirical evaluation,
we use F-measure, an approach widely used in software
engineering that combines precision and recall [45]. We focus

on the following research questions:
RQ1: Can we regard CMs suitable to abstract MATLAB/Simulink models?
For our proposed SCMA, CMs are crucial and only suitable if they

fulfill the characteristics defined in Sec. II. Hence, we evaluate if

they are easy to extract and have a low probability of mismatch.
RQ2: What level of precision and recall can we achieve with SCMA?
Precision and recall are vital for engineers to accept our technique.
We refer to precision as the extent to which each generated tree
reflects a similar hierarchical CM structure between all analyzed
models. We refer to recall as the extent to which each tree only con-
tains CMs that are similar and that exhibit such hierarchical relation.

RQ3:

Is SCMA’s performance reasonable when scaling up?

Especially in an industrial environment, an acceptable runtime is
essential for our proposed technique to be applicable in practice. We
refer to performance as the total runtime required and its distribution
over SCMA'’s three mandatory phases: CM creation, CM comparison,
and forest creation. (cf. Sec. III).

B. Setup

To assess the feasibility of our proposed technique and our
descriptor, the CM, we conducted a case study with real-
world models from the automotive domain. Using an exemplary
driver assistance system (DAS) from the publicly available
SPES_XT? project, we artificially generated a set of model
variants by identifying self-contained parts within the DAS
model and extracting them. The extracted parts we used for
the composition of model variants are listed in Table V, along
with information on their overall size and structural complexity.

TABLE V: DAS Model Parts used for Variant Creation

Model name & Abbreviation #blocks #SMs Hp
EmergencyBreak ‘EB’ 409 43 7
FollowToStop (req. CC) ‘FTS’ 699 71 11
SpeedLimiter ‘SL’ 497 57 10
CruiseControl ‘CC’ 671 74 11
Distronic (.req CC) ‘DT’ 728 78 11

SMs — subsystem blocks, H p — max. hierarchical depth, req. - requires

Using the project documentation, we identified dependencies
for FTS & DT that prohibit using them in isolation. Respecting
the identified dependencies given in Table V, we combined
the listed DAS model parts and created a total of 19 different
variants that explicitly address a clone-and-own scenario. For
instance, the largest model variant created contains all DAS
model parts listed in Table V. Other variants contain only one
DAS model part, e.g., FTS or two parts respectively, e.g., FTS
and EB. From a clone-and-own standpoint, functionality was
copied to the new variant and then extended by adding EB.
The DAS model contains a total of 37 distinct block functions.

2Software Platform Embedded Systems ‘XT’, TU Miinchen - spes2020.
informatik.tu-muenchen.de/spes_xt-home.html - July 2018

C. Data Analysis Guidelines

For the suitability of CMs, we evaluate their compliance with
the characteristics defined for descriptors (cf. Sec. II). Hence,
we first assess algorithmic complexity of the CM creation.
Second, we evaluate whether (a) distinct MATLAB/Simulink
SMs correctly result in distinct CMs and (b) whether dis-
tinguishable SMs exist that wrongfully result in identical
CMs. To assess the feasibility of our proposed technique,
manual evaluation of all possible 524.268 combinations® is
infeasible. For precision and recall, we, therefore, focus on
18 comparisons, ranging from the smallest including only
two systems to the largest possible comparison that includes
all 19 model variants. The corresponding trees, generated
by SCMA, were evaluated by an expert well familiar with
the DAS model. Results were assessed directly within the
MATLAB/Simulink environment. For performance, we state the
algorithmic complexity and examine the actual runtime and its
distribution over SCMAs mandatory phases. Each comparison
was performed 10 times and the average was calculated to
account for runtime deviations inherently present in a non-
closed system. We implemented our technique in Java* using
Eclipse® and its Modeling Framework®.

V. RESULTS

The SPES_XT case study was evaluated on a Dual-Core i7
processor with 12 GB of RAM, running Windows™ 7 on 64bit.
We can only show aggregated data in this section, but detailed
results as well as a screencast on SCMA can be found online’.

RQ1I: Suitability of the CM as a Descriptor

According to Sec. II-B, our descriptor is considered suitable
if it is (a) easy to extract given a SM and (b) exhibits a low
probability of mismatch for multiple SMs. For (a), creation
of any CM inevitably requires a dictionary to be built in
advance (cf. Sec. III-A). Hence, preprocessing input models to
retrieve such a dictionary is mandatory for the CM creation,
and thus, part of the overall process of deriving our descriptor.
The dictionary is build by evaluating all blocks of all input
models with every block and its function retrieved only once.

To this end, every SM is retrieved separately and all
connections are stored accordingly within the associated CM.
For each block within any SM, its own function as well as,
for any of its outgoing signals, the respective target blocks’
function are retrieved once (cf. Sec. II-A, III-A & Algorithm 1).
Consequently, the CM creation exhibits a linear complexity of:

O(n) - Complexity of CM Creation

Figure 8 depicts the runtime required to create all CMs for a
certain subset of model variants (cf. Sec. IV-B) given their size
in the total number of contained blocks, provided on the x-axis.

322‘:2 (2) because comparing no or only one variant can be omitted.
4Oracle Systems® - https://www.java.com/en/ - July 2018

SEclipse Foundation®- https://eclipse.org/ - July 2018

®Eclipse Foundation®- https:/eclipse.org/modeling/emf - July 2018
7Supplemental Material - http://www.vmsoftworks.com/reseach/SCMA
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Each data point represents a comparison, ranging from the
smallest with two models (= 1.500 blocks) to the largest with
all 19 models (= 14.300 blocks). For the latter, 1528 CMs are
created in ~ 19 milliseconds, a runtime we consider acceptable.
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Fig. 8: Runtime of the Overall CM Creation

To check for mismatches, we first analyzed the dissemination
of the similarity values for all ~ 1.1 million CM comparisons
performed when using all 19 model variants as input to SCMA.
In Figure 9, we show the results with similarity values w on
the x-axis and their occurrence in percentage on the y-axis.
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Fig. 9: Distribution of Similarity Values for CMs

Our data reveal that only two peaks appear within the similarity
value distribution. First, with ~ 80%, the majority of CM
comparisons exhibit a similarity of w = 0, and thus, indicate
distinct SMs. Secondly, ~ 5% of all CM comparisons exhibit
a similarity value of w = 1, and thus, indicate identical SMs.
Moreover, the remaining ~ 15% distribute almost equally
with a slight separation of values for ~ 0.3 > w > = 0.6
(cf. Figure 9). For the four similarity value increments from
w = 0.2 to w = 0.8 shown on the x-axis in Figure 9, we
manually evaluated 100 CM comparisons with their associated
SMs varying in size, yielding a total of 400 comparisons. Addi-
tionally, we evaluated 2000 comparisons with a similarity value
of w =0 as well as another 2000 for those with w = 1. For
the former, all comparisons (100%) correctly represented MAT-
LAB/Simulink SMs that were distinct. For the latter, we found
1863 (93.15%) to correctly represent identical SMs while for
the remaining 137 (6.85%), associated SMs were not identical.

For these 137 comparisons, we identified all respective 274
SMs to be very small and, thus, to comprise only a few blocks.
We found their connections to be identical but rearranged. For
example, two SMs, each with Inport blocks connecting to a
Summation block, but at different interfaces (cf. Sec. II-A).
Given the linear runtime required for their extraction and
our manual evaluation on a subset of 4400 comparisons, we
consider the CM to be easy to derive from a given system and
for such, to exhibit a low probability of mismatch. As a result,
we argue that the CM is suitable to abstract MATLAB/Simulink
models (and contained SMs), evolved from clone-and-own.

RQ2: Precision and Recall of our Technique

SCMA may generate a vast amount of trees, depending on the
number of input models and their structural diversity. Further-
more, practitioners can define a similarity threshold to exclude
those CM comparisons not exceeding it from the forest creation.
Depending on their settings, the forest size can drastically vary
as similarity values distribute almost equally (cf. Figure 9).
In Table VI, we provide details about the trees we evaluated
for our 18 model comparisons, which is an excerpt from all
trees generated by SCMA. We give more information online’.

TABLE VI: Trees Evaluated For Precision & Recall

Tree Size in Terms of Contained Nodes

1 2 3 4 21 30 44

1-2 10/152 2/2 1/1 1/1
1-3 10/361 2/2 1/1 1/1
w | 1-4 10/718 2/2 22 2/3 1/1
é 1-5 10/1369 272 3/5 2/5 1/1 1/1
5| 1-6 10/1974 272 3/7 2/7 1/1 1/1
i 1-7 10/2985 3/3 3/9 2/9 1/1 171
3| 1-8 10/3670  3/3 3/9 2/9 1/1 1/1
EO 1-9 10/4632  3/3 3/13 2/13  1/1 1/1
g 1-10 10/6143 3/3 3/17 2/17 11 1/1
5| 1-11 10/6586  3/3 3/17 2/17 171 1/1
g 1-12 10/7831 3/3 3/21 2121 11 1/1
S| 1-13 10/9763 3/3 3/26 2125 11 11
1-14 10/11287  3/3 3/32 2/31  1/1 1/1
1-15 10/13609  3/3 3/38 /1 2/37 1/ 1/1
1-16 10/15381  3/3 3/44 /1 2/43  1/1 1/1
1-17 10/18063  3/3 3/50 171 2/49 1/1 1/1
1-18 10120113 3/3 3/58 /1 2/57 11 1/1
1-19 10/23185  3/3 3/66 /1 2/65 1/1 1/1
Total: | 180 49 47 5 34 16 17

Due to the sheer number of generated trees®, we set the simi-
larity threshold for CMs used for the forest creation to w = 1.
In Table VI, we list the model variants included in the compari-
son on the y-axis. For instance, /-10 refers to the comparison of
10 model variants (cf. Sec. IV-B). Moreover, SCMA generates
trees of seven different sizes in terms of the number of com-
prised nodes and we list them at the top of Table VI. For each
of the 18 comparisons and the tree sizes listed in Table VI, we
provide the total number of generated trees and the number of
manually evaluated trees. For instance, for the comparison /-10,
SCMA generated 17 trees of size three, for which we manually
assessed three trees regarding precision and recall (3/17).

8SCMA produces ~ 38 thousand trees for all 19 variants and w ., ;,, = 0



In Table VI, fields left blank indicate tree sizes not created
by SCMA for that specific comparison. Stated at the bottom
of Table VI, we manually evaluated a total of 348 trees of
various sizes. For instance, we evaluated 180 trees of size one
(i.e., comprising only one node) while we evaluated a total
of 16 trees with size thirty. We assessed precision and recall
directly within the MATLAB/Simulink working environment
and we provide more detailed information on our website’.

For precision, all evaluated trees and their comprised nodes
respectively, correctly represented a similar SM structure
between the compared model variants. Furthermore, CMs
contained within such nodes at all times correctly indicated a
parent-child relation (cf. Sec. II & Figure 6). In other words,
evaluated trees always did reflect a hierarchical structure that
was similar between all analyzed models. For recall, we found
all trees to be complete and by that, no CM comparison to be er-
roneously missing. Hence, each tree reflects a similar and com-
plete hierarchical structure between all variants used as input.

Consequently, we argue that our proposed technique is
precise and exhibits a high recall for the evaluated comparisons.

RQ3: Performance of our Technique

SCMA comprises three sequentially processed phases that
determine its overall performance (cf. Sec. III-A-III-C &
Figure 4). For the first phase, CM creation, we showed it to
be of linear complexity (cf. Figure 8). The second phase, CM
comparison, requires all created CMs to be compared gvith
each other. Given their commutativity (cf. Sec. IlI-B), "
distinct comparisons can be performed for n CMs. Thus, their
comparison depicted in Algorithm 2 exhibits a computational

complexity that is quadratic in the total number of CMs:

O(n?) - Complexity of CM Comparisons

The third phase, forest creation (cf. Sec. III-C), inserts every
generated CM comparison either into an existing tree or
utilizes it to found a new tree. To this end, each tree must be
assessed and the comprised nodes must be checked for their
compatibility (cf. Lines 6-8 in Algorithm 3). In the worst case,
a new tree is created for every single CM comparison. For n

— 2
CMs, a total of ZZ:& n = 2" trees can be constructed

2
and, thus, need to be evaluated. Hence, the computational
complexity for the forest creation is quadratic in the number

of CM comparisons:
O(n?) - Complexity of the Forest Creation

Combining all stated complexities for the three mandatory
phases, SCMA exhibits a quadratic computational complexity.
Supporting that assessment, Figure 10 illustrates the overall
runtime required by SCMA to process a given number of CMs.
In particular, we illustrate SCMA’s runtime with regard to the
number of used CMs, defined by the similarity threshold w, ;.
Each data point in Figure 10 represents a model comparison
(cf. Table VI). We provide information on the combined size
of all models, included in the comparison by the number of
blocks, on the x-axis and the respective runtime on the y-axis.
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Fig. 10: SCMAs Runtime in Relation to the Number of CMs

For the largest comparison that includes all 19 model
variants, comprising = 14.300 blocks and ~ 220.000 CMs
(cf. Figure 10), SCMA required ~ 47 minutes. Only
considering comparisons with a similarity value of w = 0.4 or
greater drastically reduces the runtime to under 5 minutes for
all 19 variants. For w = 0.6, SCMA terminates in just ~ 2
minutes for all 19 variants. The overall runtime distributes as
follows. CM creation accounts for =~ 3.4%, CM comparisons
require ~ 0.8% and ~ 95.8% are needed for the forest creation.
With the analysis and structuring of an entire model family of
19 model variants but without expertise of domain engineers,
we conservatively argue that SCMA scales very well, and thus,
is applicable to MATLAB/Simulink models of industrial size.

With the similarity threshold set to w = 1, SCMA identifies
all identical structures and, thus, type-1 and type-2 clones [46].
However, by adjusting the threshold, SCMA can also capture
type-3 and, thus, near-miss clones that contain relocated model
fragments and small additions and removals. Details on how
SCMA copes with different clone types can be found online’.

Threats to Validity
For the evaluation, we utilized models from the automotive
domain only and assessed feasibility using a single study. We
developed SCMA independently and prevented ourselves from
being biased to that specific domain. The results may not be
generalizable, however, we argue that models from the auto-
motive domain are of considerable complexity, which makes
us confident that our technique is applicable to other domains
as well. Nevertheless, we acknowledge that other domains
may exhibit peculiarities we did not consider and which may
adversely affect our technique. We furthermore acknowledge
that clone-and-own sceneries present in industry may not
be fully reflected by the SPES_XT models we evaluated.
We abstract models using descriptors and compare them to
calculate a similarity value. Our descriptor only approximates
syntactical but not semantical equality. Thus, practitioners
might judge differently on the suitability of the descriptor.
They may also question the procedure we use to compare them.
We argue that we have shown our descriptor to be suitable
in a clone-and-own scenario and that we allow practitioners
using their domain knowledge to adjust or replace the com-
parison procedure accordingly to meet their specific demands.



VI. RELATED WORK

Current model comparison techniques mainly focus on the analysis
of just two models [27]. In [47], the authors propose an approach
to derive the differences of MATLAB/Simulink models and seman-
tically lift them to ease comprehensibility. While we also aim to
reinstate maintainability by enhancing system comprehensibility,
the approach proposed in [47] is applicable to only two models.
Respectively, model clone detection approaches are proposed in [6]
and their applicability is shown. However, our work fundamentally
differs from most clone-detection approaches as our technique is
specifically designed to cope with multiple models whereas work
such as [6], [47] is limited to comparing only two models. Although
clone-detection approaches exist that can cope with more [48],
applicability is shown only on small case studies and found clones
are not aggregated. Our work aggregates similar structures to
provide an extensive overview of multiple models while work
such as [48] does not. In [1], the authors identify variation points
within multiple MATLAB/Simulink models, also using a matrix
representation for their approximation. Their approach facilitates
on finding cliques of maximum size, an NP-hard problem. Hence,
applicability is shown only using small models while our approach
is designed to cope with an entire variant portfolio. In [22], the
authors identify similarities between Unified Modeling Language
(UML) model variants, mapping them to features to allow for their
SPL migration. With our work, we do not identify features. The
approach that was first proposed in [27] and extended upon by
visualizing results in [22], [49], however, indispensably requires
domain knowledge to map system artifacts to features. Our
approach was motivated by the fact that such domain knowledge is
not present in a clone-and-own scenario. In [28], the authors utilize
EMF Compare to identify variability by means of the Common Vari-
ability Language (CVL). Similar to the approach proposed in [27],
domain knowledge is required in the process. Much like [28],
authors propose to use CVL in [50] to identify commonalities
and differences within model variants for their migration towards
an SPL practice. Their work also relies on domain knowledge
and the definition of a base model. Our work differs by that no
domain knowledge is required upfront and no specific starting point
has to be defined. Utilizing CVL to achieve the identification of
feature locations with a model family, authors in [51] evaluate
different search algorithms. We do not focus on features and,
in contrast to [51], do not require domain knowledge upfront.
Proposing the ECCO tool in [10], [52] the authors identify, much
like our work, similar structures between system variants. Their
approach targets source code while our approach targets model-
based languages. Furthermore, domain knowledge is required
for their analysis. In [53], the authors slice MATLAB/Simulink
models. Although they utilize trees for their approach, much like
our technique, their work focuses on a single model only. Our
approach, however, targets multiple models. In [54], compatibility
between MATLAB/Simulink model versions and variants is evalu-
ated. Models are transformed into state machines and compared
with each other. However, comparison is only performed on two
models at a time and precise domain knowledge is required to
determine which model versions and variants are to be compared.

Our work focuses on a larger data set and does not require such
knowledge. An approach to extractively generate a SPL from a set
of system variants is proposed in [S5]. Unlike our approach, their
work focuses on source code rather than model-based languages.
Furthermore, evaluation is done using only three variants while we
utilized a portfolio comprising nineteen variants. Assessing source
code in [56], domain knowledge is again required for the analysis
proposed by the authors. Extending upon NICAD [57], a code clone
detection tool, authors leverage it to cope with MATLAB/Simulink
models in [58] and introduce SIMONE. Using their textural form
rather than a descriptor for comparison, SIMONE, much like our
approach, identifies type-3 and, thus, near-miss clones [46] within
model subsystems. However, SCMA furthermore aggregates results
with respect to hierarchical structures. An approach to compare
multiple UML models is proposed in [26]. Classes are compared
based on their attributes, assuming them to vary between different
models. With MATLAB/Simulink, however, blocks always have the
same attributes (i.e. name & function) and it is rather their value that
differs. With the computational complexity of their approach, we
argue that the work in [26] is not applicable to MATLAB/Simulink.

VII. CONCLUSION AND FUTURE WORK

To adapt to new requirements, clone-and-own, describing the pro-
cess of copying and modifying existing systems in an unstructured
and undocumented fashion, prevails. It eases development efforts in
the short-term but unfortunately, results in a proliferation of almost-
alike redundant copies of assets with information on their relations
rendered incomprehensible. As a result, system maintainability
is severely impeded and sustainable development may be at risk.

Consequently, it is of superior interest for engineers to regain
comprehensibility of the emerged model portfolio. In practice, such
models are of considerable complexity and size. Hence, techniques
must scale to deal with an entire model family, which is a limitation
for current techniques. We address this problem by proposing
a new technique for the comparison of an arbitrary number
of MATLAB/Simulink models, called Static Connectivity Matrix
Analysis (SCMA). In its core, our technique creates a descriptor,
called Connectivity Matrix (CM), that abstracts salient information
of actual models, and thus, allows for an efficient comparison of an
entire model portfolio at large scale. Moreover, based on CMs, we
are able to create trees that resemble structural similarities of the
original models. Our evaluation shows that creating CMs is fast and
that SCMA is precise and scales even for a vast amount of models.
Thus, our technique can be applied even to real-world scenarios to
recreate information about commonalities across several models.

For future work, we plan to extend our evaluation with further
industrial case studies. We also intend to discuss our technique
with engineers to identify and tackle limitations they may see.
Ultimately, we plan to apply clustering to our results to quantify
redundancies within models, and thus, their reduction potential.
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