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Abstract

Join-order optimization is used to optimize the join-order of tables to increase the
overall performance of a database. Since the join-order optimization problem is
a NP hard problem, which is considered to be complex, we use parallel dynamic
programming approach to solve it. Dynamic programming (DP) is an approach used
to solve complex problems i.e the problems with higher computational complexity.
The key idea is to save the solutions of sub-problems to avoid recomputation. The
bottom-up approach of dynamic programming variant is used to efficiently calculate
the result of a complex problem.

Parallelism is an important tool used to speed up the tasks performed by the ma-
chine. Because of the hardware limitations of a single computer as well as large-scale
computing requirements, parallel computing has been applied in many fields. In this
thesis, we adapt the distributed dynamic programming variant proposed by trum-
mer for join-order optimization to a centralized system with multi-core CPU’s. The
programming language used is C++. The framework used is GOO framework. The
distributed dynamic programming variant proposed by trummer is adapted to per-
form parallel computations by passing different number of threads to calculate the
result. Distributed dynamic programming variant proposed by trummer consists of
master and worker algorithms. The master will pass different number of threads
to the worker, where each thread will compute the result of worker in parallel and
return the result to master. The master merges and compares the results of different
workers to return the final cost.

We also evaluate the distributed dynamic programming variant proposed by trum-
mer for join-order optimization against different sequential and parallel dynamic
programming algorithms. The parallel DP variants are known to perform well in
clique queries with more number of tables. According to the evaluation results,
distributed dynamic programming variant proposed by trummer performs well in
complex queries like clique queries. The unconnected pairs and the less restrictive
constraints are responsible for inefficient results in other topologies.
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1. Introduction

A database is a collection of related data [EN10]. Data represents meaningful in-
formation [IB17]. Query is a ”language expression” that describes the data to be
retrieved from a database [IB17]. The query can be executed internally in different
number of ways. These ways are called query plans [IB17]. The query plans for a
given query increases exponentially as the number of relations joined increases [IB17].
Relations are nothing but tables containing data. When the query is executed, query
optimizer decides upon the query plan. A query optimizer is a database manage-
ment system(DBMS) component, which provides the effective query plans based on
the given query. The execution time of different query plans generated for a single
query vary, thus the query optimization problem arises. Query optimization is the
process of selecting an efficient query plan for the given query. Query optimizer
is an important part of modern DBMS, since its quality has crucial impact on the
performance of DBMS [IB17].

Join is a connection between two tables. Join order or the execution order of oper-
ators is one of the most important decisions to be taken by a query optimizer. Join
order in general is an NP hard problem [CEGY02], making it a challenging concept
in databases domain. Let us consider the concept of join-order optimization. In
this process, judicious decision about the join order (the order in which the tables
are joined in the query) is to be made. The decision taken during the join-order
optimization should assist us in optimizing the processing of the query. There are
a lot of join-order optimization algorithms that uses an exciting concept called dy-
namic programming. It is just a fancy name for saying that when we are breaking
the problem down into sub-problems, we will store their solutions. Next time, if we
are solving the same sub-problem, we will just reuse the stored solution instead of
recalculating [EB96].

If a sequential variant is used, we follow one single order to compute the values. In
sequential model, we assume that the machine executes one instruction in a time
step and can access any memory location with in the time step [EB96]. Thus, se-
quential algorithms do not fully utilize the potential of hardware architecture. There
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are several important criteria for algorithms such as time performance, space uti-
lization and programmability. The situation for parallel algorithms is much more
complicated due to the presence of additional parameters such as the number of
processors, capacities of local memories, the communication scheme and the syn-
chronization protocol [HL09].

Technological difficulties coupled with fundamental physical limitations will continue
to lead computer designers into introducing an increasing amount of parallelism.
The number of tasks completed in the given time is also essential in the context
of performance. Thus, parallelism is an essential tool responsible for the faster
execution time of programs by running several computations at the same time. The
dynamic programming problem can be parallelized by starting several threads at
the function call. Every thread runs exactly the same function, starting at the same
point, but the choice of sub-problems results in the threads diverging to compute
different sub-problems, while still reusing any value that has already been computed
by a thread. In this way, we take advantage of whatever parallel computing power
is available to us to compute different sub-problems simultaneously [SSdlB+10].

Distributed DP variant proposed by trummer is used for massively parallel query
optimization on a distributed system [TK16]. Distributed DP variant proposed by
trummer is executed in two parts. The first one is called the master and the second
one is called the worker. The master is responsible for providing the query for the
workers. The workers evaluate the assigned join order of the query in parallel. The
master obtains the cost from different workers and compares them to obtain the final
best cost. We have adapted the distributed DP variant proposed by trummer to a
centralized system with multi-core CPU. We invoke master with different number of
threads. The number of threads is equal to the number of workers performing parallel
computation of assigned join order. The language used is C++. The framework used
is GOO framework.

We will evaluate the distributed DP variant proposed by trummer against different
sequential and parallel dynamic programming variants. The sequential programming
variants used are DP(SUB) and DP(CCP). The parallel dynamic programming vari-
ants used are DP(DPE), DP(PDP) and DP(PDP LINEAR).

In Chapter 2, we give the basic information about query optimization, join-order
optimization, different approaches of join-order optimization and algorithms used
for evaluation. In Chapter 3, we discuss the details of the distributed DP variant
proposed by trummer for parallel join-order optimization using dynamic program-
ming approach. In Chapter 4, we discuss the evaluation results. In Chapter 5, we
summarize the thesis. In Chapter 6, we discuss the possible areas of future research
based on the thesis work.



2. Background

The background chapter is divided into the following sections. In the query pro-
cessing section (see Section 2.1), we will learn more about what is a query, the
factors to be considered while executing a query and what are phases involved in
query processing. In query optimization section (see Section 2.2), we will learn more
about logical optimization, physical optimization and cost-based selection. In the
join order optimization section (see Section 2.3), we will consider deterministic,
randomized, genetic and hybrid approaches that come under join order optimiza-
tion. We also discuss about the complexity of query with respect to different query
topologies. In dynamic programming section (see Section 2.4), we introduce dynamic
programming approach and further give more information about the sequential and
parallel dynamic programming variants considered in this thesis.

2.1 Query Processing

Data is a piece of information. Data can be used to derive patterns or rules which are
beneficial to the company. Let us consider the example of customer data obtained
from a supermarket. The company utilizes customer data to find out irregular
customers. Irregular customers are given discount coupons to lure them into buying
more from the supermarket. Walmart, the world’s biggest retailer generates up to
2.5 petabytes of data every hour [Mar17]. One can imagine the enormous amount of
data generated. We store the data using databases. The way to retrieve data from
databases is through queries.

SQL is one of the language used to query databases. Let us consider the example
of SQL query (see Figure 2.1) [MS16], SQL is called ”declarative language” for a
reason. SQL queries specifies the information required to execute the query. SQL
does not specify how to execute a query internally [MS16].

A SQL query (see Figure 2.1) contains information about the relations or tables on
which we need to perform joins i.e customer, order, lineitem, supplier, nation and
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Figure 2.1: SQL - TPC-H - query [TP1]

SELECT name, sum(extendedprice * discount))

FROM customer, orders, lineitem

supplier, nation, region

WHERE ccustkey = ocustkey

and lorderkey = oorderkey

and lsuppkey = ssuppkey

and cnationkey = snationkey

and snationkey = nnationkey

and nregionkey = rregionkey

and rname = ’ASIA’

and oorderdate >= 1994-01-01

and oorderdate < 1995-01-01

GROUP BY name

ORDER BY revenue DESC;

region. SQL does not provide any information about how the tables are accessed,
the type of join or the algorithm to be used in particular for executing the query
(see Table 2.1) [MS16].

Table 2.1: Criteria and options to be considered while executing a query

Criteria Options
Joins Hash, Sort-

merge,
Nested-Loop

Table access Index and
Scan

Execution Operator or-
der

The option that we choose for a particular criteria depends on the type of database,
data distribution, the available index structures and so on (see Table 2.1). We
cannot choose any random option as the efficiency of the database depends on our
choice. The computer system receives the query in high-level language like SQL
and the query needs to be converted into a low-level language understood by the
computer. Query processing is the procedure for this conversion. The phases of
query processing are(see Figure 2.2) [MS16]

(1) Translation and view resolving

(2) Standardization and simplification
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(3) Optimization

(4) Plan parameterization

(5) Code-Generation

(6) Execution

Figure 2.2: Phases of query processing [SS12]

The first phase in query processing is translation and view resolving. In this phase,
we translate SQL query into its equivalent algebraic expression. If the query com-
prises of sub-queries, we resolve it. We simplify the arithmetic expressions present
in the query. We also insert the view definitions for further processing. The second
phase is standardization and simplification. In this stage, we perform normalization
i.e we apply the equivalence rules to simplified expressions to find out whether we
can reduce it to a unified canonical form or not.

The third phase in query processing is the optimization phase. Under optimiza-
tion phase, we have logical, physical and cost-based optimization. In the query
optimization phase, we convert the SQL query into the access plan or query execu-
tion plan(QEP) and obtain the one best suited for the database. We will elaborate
furthur on query optimization in the next section.

In the plan parameterization stage, the QEP is obtained and internally the values of
the variables is replaced with parameters. Instead of creating a new QEP everytime a
query is called with different values, we can use cached QEP with the parameterized
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Figure 2.3: SQL query to select customer name
SELECT distinct c.customername

FROM customer c, package p, category t

WHERE c.cno = p.ono

and p.tno = t.no

and p.tno = t.no

and t.categoryname = "Books";

query. This step is performed by the server to eliminate the overhead of the system.
The plan parameterization step is relevant, when we consider the runtime of the
databases. The QEP is received by the code-generation phase, where it is converted
into the code. The execution phase executes the code to obtain the result.

2.2 Query Optimization

Let us consider query optimization phase (see Figure 2.2). Under optimization
phase, we have logical, physical and cost-based optimization.

2.2.1 Logical Optimization

Let us consider the logical optimization phase. SQL queries are of the form SE-
LECT...FROM...WHERE.. block. Let us consider the example of the following
SQL query (see Figure 2.3).

An eqvivalent relational algebra form of the above SQL query is as follows [vB87]

Π(customername)(σc.cno=p.ono∧p.tno=t.no∧t.categoryname=”Books”((Customer)× (Package)

×(Category))))

(2.1)

We can translate the SQL query into relational algebra form. Relation algebra is
a procedural query language used to query databases [Har10]. Relational algebra
consists of operators and operands. The operators being the select, project, union,
set difference, cartesian product and rename. The operand is nothing but the rela-
tions in the SQL query. Relational algebra can provide different representations of
the same SQL query using algebraic equivalences [EN10]. The different representa-
tions obtained can thus help in identifying the better representation for optimizing
the SQL query. The relational algebraic expression of SQL queries can be repre-
sented using query trees. The query tree representation for the algebraic expression
(see Equation 2.1)
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Figure 2.4: Initial query tree

Πcustomername

σc.cno=p.ono∧p.tno=t.no∧t.categoryname=”Books”

×

×

Customer Package

Category

Figure 2.5: Query tree obtained after moving the SELECT(σ) operation

Πcustomername

σp.pno=t.no

×

σc.cno=p.ono

×

Customer Package

σt.categoryname=”Books”

Category
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We can optimize the query tree (see Figure 2.4) by applying the rules of algebraic
equivalences [EN10]. The steps in optimizing a query are

1. Moving selection operation down the query tree (see Figure 2.5). We can
reduce the number of tuples obtained from Cartesian product by moving the
SELECT(σ) operation down the query tree [EN10].

2. Replacing Cartesian products and selections with join operations (see Fig-
ure 2.6). The query tree can be optimized further by replacing the Cartesian
product by a join operation with a join condition [EN10].

Figure 2.6: Query tree obtained after replacing Cartesian(×) product with join(./)
operation

Πcustomername

./p.pno=t.no

./c.cno=p.pno

Customer Package

σt.categoryname=”Books”

Category

3. Moving projections down the query tree (see Figure 2.7). We can push the
PROJECT(π) operations early so as to reduce the number of attributes in-
volved in the intermediate relations [EN10].

Figure 2.7: Query tree obtained after pushing down PROJECT(π) operation

Πcustomername

./p.pno=t.no

Πc.customername,p.pno

./c.cno=p.pno

Πc.customername

Customer

Πp.pno

Package

Πt.no

σt.categoryname=”Books”

Category
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2.2.2 Physical Optimization

The physical optimization phase consists of adding the execution details to the query
tree. The query tree can be also called the Query Execution Plan(QEP). There can
be many physical QEP for one specific logical QEP. We consider different kinds of
algorithms, storage information and processors under this step. The physical QEP
is considered to be low-level, while the logical QEP is considered to be high-level.
The physical QEP is considered to be low-level, as it is dependent on the system it is
implemented. In the physical optimization stage, we consider ordering and grouping
of joins, selections and projections. We replace every logical operator with the
physical operator i.e we replace the operator with an algorithm. We have different
algorithms for selection, projection and joins. Example : Block Nested Loop, Hash
Join, Sort-Merge Join, Symmetric Loop Join...

Let us consider the query tree (see Figure 2.7) and convert it into physical QEP
(see Figure 2.8). We give the information about how the customer and category
relation are accessed using index scan, maintained on the secondary indexes, cus-
tomername and categoryname, as it is used frequently. We use table scan on cus-
tomer relation and further also mention about the type of join used. We use single
loop join based on the index maintained on the customer name in the database. We
also use nested loop join finally to obtain the result [EN10].

Figure 2.8: Query execution plan

Πcustomername

./p.pno=t.no(nestedloopjoin)

Πc.customername,p.pno

./c.cno=p.pno(singleloopjoinwithindex[c.customername])

Πc.customername

Customer(index scan)

Πp.pno

Package(table scan)

Πt.no

σt.categoryname=”Books”

Category(index scan)

2.2.3 Cost-based selection

The final step under optimization includes the cost based selection which is coupled
usually with the physical optimization. The cost of executing a query depends on
the following components [EN10].
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1. Access cost to secondary storage : The cost is calculated based on the how
the data is transferred from secondary storage to main memory. The cost
depends on access structures, secondary indexes and the way file blocks are
allocated(contiguously or scattered) [EN10].

2. Computation cost : The cost is calculated based on the operations performed
on data(records) in data buffers during the execution of query. The operations
can be merging, searching or sorting records [EN10].

3. Memory usage cost : The cost depends on the memory buffers required to
execute a query [EN10].

To compute the costs mentioned above, we need some basic information needed for
the cost functions.

1. File size : If we have files of same size, then we have to consider the number
of records(tuples) or number of blocks [EN10].

2. Primary file organization : We need to know whether the file organization
records are ordered or unordered by the attributes [EN10].

3. Number of distinct values (d) : This information along with the selectivity
factor(sl) can be used to find out selection cardinality(s = sl ∗ r). d is nothing
but the fraction of records satisfying the equality condition on the key or non-
key attribute. Selection cardinality is the average number of records satisfying
the equality condition on that attribute [EN10].

4. Number of index levels(x) : Number of index levels of each multi-level in-
dex(primary, secondary, clustering) is needed to estimate the number of block
access during the execution the query. [EN10].

The cost-based selection depends on how the relation is stored (file size) in database.
The cost-based selection also depends on whether we use index structures, to access
the rows and columns of the relation or table and the number of distinct values (d)
in a table. A detailed example about the usage of the costs can be found in [EN10].

2.3 Join-order Optimization

Query optimization can be done on various parts of the query. The focus of this thesis
is join-order optimization or optimization involving the order in which the tables are
joined. Join-order optimization is a NP-complete or NP-hard problem [CEGY02].
For smaller queries, it is possible to find a global optimum solution, but as the
solution space grows above five or six relations, the search becomes exhaustive.

There are different approaches in join-order optimization. In deterministic approach
(see Section 2.3.1), we get the same output given the same input [MS16]. Exam-
ples for greedy deterministic approach are minimum selectivity and top-down ap-
proach [SMK97]. In general, greedy approach obtain a solution and try to improve
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it over time. Advantages of greedy deterministic approach are that they are pre-
dictable and can run faster. Example for exhaustive deterministic approach is dy-
namic programming. The exhaustive approach explores all possible solutions in the
search space and obtain the best one. The advantages of exhaustive deterministic
approach are that they ensure optimality [MS16].

Randomized approach (see Section 2.3.2) throws coin during the execution. Hence,
the order of execution and the result of the algorithm might be different for each
run on the same input. Examples for randomized approach are random walk, iter-
ative improvement and simulated annealing. Advantages of randomized approach
are that they are suitable for complex optimization problems and they have lim-
ited run time [MS16]. Genetic approach (see Section 2.3.3) follows the survival of
fittest theory to obtain good solutions. They start with initial population. Off
springs are generated randomly using crossover and mutation. The fittest member
of the population is selected after certain number of iterations with no improve-
ment. Example for genetic algorithm is optimizing expressions algorithm [SMK97].
Hybrid approach (see Section 2.3.4) combine the strategies deterministic and ran-
domized approaches [SMK97]. Example for hybrid algorithm is AB algorithm. We
explore these approaches in detail in the following section. We have complexity sec-
tion (see Section 2.3.5), where we give more information about how different query
topologies affect the complexity of join-order optimization.

2.3.1 Deterministic Approach

The algorithms which come under this class operate by finding the solutions in the
solution space deterministically i.e the algorithm will provide the same output for a
given input. We find solutions by dealing with the necessary data or by traversing
the entire solution space [SMK97].

DYNAMIC PROGRAMMING : Dynamic programming is a numerical algo-
rithm based on Bellman’s optimality principle [Bel57]. Bellman’s principle of op-
timality states that, “An optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision” [Bel57, KR13]. Using
this principle, we obtain the minimum value for the given objective function, which
satisfies the given constraints [KR13]. Dynamic programming converts a join-order
optimization problem into multi-stage sub-problems, where the solution of the sub-
problem calculated sequentially for each stage, determines the characteristic of the
sub-problem solution in the subsequent stage [KR13]. The process is continued un-
til the solutions for all sub-problems are calculated [KR13]. Finally, we return the
optimal value.

MINIMUM SELECTIVITY : Minimum selectivity algorithm constructs a left
deep processing tree step by step by keeping the intermediate solutions to mini-
mal [SMK97]. There are two sets namely, used and remaining set. Initially, the
used set is an empty set and the remaining set consists of all relations. Then in
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every step, the relation with lowest selectivity factor is chose and we join it with the
intermediate solution obtained so far and move it in the used set. The algorithm
runs till the used set is completely filled [SMK97].

TOP-DOWN HEURISTIC : In this approach, choose the relation that gives
the lowest cost when joined with all the other relations. This method is recursively
applied until no relations remain. Our main focus in this approach are the last
joins [S.V09]. In minimum selectivity, as the intermediate solution grows, the cost
becomes higher for last joins. In top-down heuristic, the last joins when joined with
the final relation gives lower cost.

IK ALGORTIHM : In this algorithm, the difficulties concerned with the amount
of time taken in calculating multi-relational joins is solved using the nested loop
method. Every relation is given a particular rank, the relations are then sorted
based on the rank. The output of the algorithm is an optimal left deep tree [S.V09].

KRISHNAMURTHY-BORAL-ZANIOLO ALGORITHM : This algorithm
is based on the IK algorithm. Every relation is considered for the root of the query
tree. For evaluating the relations, use a rank function. The rank function linearizes
the tree for all roots, then the optimally evaluated tree with the lowest cost is the
result. Thus, the query tree is changed into a rooted tree where every node can
be uniquely identified with its parent node. The cost function in this algorithm
is known to impose limitations. The algorithm performs very well with up to 15
joins [S.V09].

2.3.2 Randomized Approach

This is a simple and efficient algorithm offering solutions to a number of problems.
The solution space can be conceptualized as group of points. The edge that connects
the group of points is calculated by the move made according to the algorithm ran-
domly. We have different moves for different solution space. For left deep processing
trees, we have swap and 3-cycle rule (see Figure 2.9). For bushy processing, we have
left-join exchange and right-join exchange (see Figure 2.9).

RANDOM WALK : This approach starts with a randomly selected point. Then,
pick up another random point and check which one is better with respect to the
cost function chosen. Continue this for a predetermined set of moves or for a certain
period of time and then select the best one. The approach is useful where processing
of the entire data is not required or too expensive. It is mainly used for research
analysis. The problem in this approach is that only a small area of search space is
covered and we might not get the global optimal solution [SMK97].

ITERATIVE IMPROVEMENT : In this approach, start by finding a neighbour
i.e the one that can be traversed in just one move. If the cost of the neighbouring
point is lower than the current point, then it is selected. It is different from hill-
climbing, as we do not determine which neighbour has the lowest cost due to large
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Figure 2.9: Type of moves for Bushy solution space [SMK97]

number of neighbours. Repeat the process for certain number of iterations or wait
until it exceeds the time period assigned. The end result would be the lowest local
minimum encountered in the process. This process can be applied swiftly and may
cover better solution space when compared to random walk. In this approach, it is
possible to end up with multiple high cost local minima instead of one global minima
and algorithm can get easily trapped in one of the high cost local minima [SMK97].

SIMULATED ANNEALING (SA) : Annealing is a technique where metal is
heated at high temperatures and gradually cooled down, as the metal cools down its
atoms settle down into an optimal crystalline structure. SA algorithm is a similar
probabilistic algorithm [SMK97]. SA is suitable for covering larger search space be-
cause it covers the neighbourhood of a given relation completely. SA algorithm starts
the search from a randomly selected relation and in next step it selects one of the
adjacent relations and compares the cost. Unlike iterative improvement algorithm,
in SA algorithm we can make a move even if the cost is higher.

2.3.3 Genetic Approach

Genetic approach is based on the survival of the fittest theory by Charles Dar-
win [Mal17]. Given a population of species, the fittest members survive all the odds
and their features are passed onto their off-springs. In a similar manner, better
solutions for a problem can be found by passing solutions from one generation to
another. The basic algorithm includes five steps : Initial population, fitness function,
selection, crossover and mutation [SMK97].

Initial population is the selected first set of individuals with particular characteris-
tics [Mal17]. The fitness function determines the capacity of an individual to survive
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in the population. It determines the value for the fitness of an individual, which helps
us to compare it with others [SMK97].

Crossover stage comprises of selecting a cross-over point in the encoding available.
We will select this cross-over point randomly. The parents continue producing off-
spring till cross-over point after which the new off-spring is added to the population.
Mutation stage is used to introduce new features into the population. Mutation stage
consists of offspring containing one or more altered characteristics compared to the
parent population [SMK97]. The algorithm terminates if the offspring produced is
not different from previous generation [Mal17].

2.3.4 Hybrid Approach

Hybrid approaches combine the ideology of both deterministic and randomized ap-
proaches. We derive the solutions of deterministic approach and feed them to ran-
domized algorithms or genetic algorithms as their input and further continue join-
order optimization [SMK97].

AB ALGORITHM : This is an evolution of KBZ algorithm. We have both deter-
ministic and randomized methods involved. The inner loop finds the local minima
using heuristic methodology. The external loop generates random start points sim-
ilar to the iterative improvement concept. We use two join methods - sort merge
and nested loop [S.V09].

2.3.5 Complexity

Join-order optimization is a NP-complete problem [MS96]. The complexity of join-
order optimization depends on the different query topologies used. The query topolo-
gies considered in join-order optimization are linear, cyclic, star and clique (see Fig-
ure 2.10). The linear query topology consists of the relations joined one after another
(see Figure 2.10). The cyclic query topology consists of relations joined in a linear
manner, along with the first and last relation joined together resulting in the for-
mation of a cycle (see Figure 2.10). The star query consists of one relation joined
to other remaining relations (see Figure 2.10). The clique query consists of joining
every relation to other remaining relations (see Figure 2.10). The clique and star
queries are considered complex queries compared to linear and cyclic queries, as the
number of join pairs generated is more [MS17].

2.4 Dynamic programming
Dynamic programming is a technique used to solve the optimization problems con-
sisting of overlapping sub-problems. The cost of query plans in a query increases
exponentially as the number of relations(tables) increases. Join-order or the order
in which tables are joined in a query, is one of the important factor in determin-
ing the cost of query plans. We have dynamic programming algorithms that assist
us in optimizing the join-order of the query (see Section 2.4.1 and Section 2.4.2).
These algorithms can be divided into two categories, sequential dynamic program-
ming algorithms (see Section 2.4.1) and parallel dynamic programming algorithms
(see Section 2.4.2).
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Figure 2.10: Different query topologies [SMK97]

2.4.1 Sequential dynamic programming algorithms

Sequential dynamic programming algorithms execute the given number of tasks in
serial manner [EB96]. Sequential dynamic programming algorithms do not utilize
the potential of parallel hardware like multi-core CPU [JáJ92].

Let us consider the sequential algorithm by Vance [VM96] called DP(SUB). The
best query plan is calculated using the subset-driven approach [MN06]. Initially,
the data structure containing the best plan consists of all possible query plans with
respect to single relations like (Ri), (Ri+1), (Ri+2) and so on [MN06]. (Ri) represents
relation i. The next step would be to obtain the query plans for non-empty subsets
of relations like (R(i)(i+1)), (R(i+1)(i+2)), (R(i)(i+1)(i+2)) by iterating over them. The
integer that denotes the subset is represented in binary format using bit-vector
representation [MN06]. The subsets for the relations in the query is obtained by
using the integers the range of 1 to 2n - 1 for every (Ri). All subsets except the
empty set are covered. The query plan is constructed using the strict subsets of (Ri),
that satisfies disjoint condition [MN06]. Finally, we compare the cost and obtain
the best query plan.

In DP(SUB), Vance considers the subsets and the disjoint sets associated with the
subset to calculate the query plan. Since the enumeration of subsets is very quick,
this approach performs well in dense search space [MN06]. This approach does
not perform well in sparse search space, as it considers many unconnected sub-
problems [MN06]. Unconnected sub-problems are the sub-problems which are not
valid for a particular kind of query graph. In order to solve this problem, Moerkotte
introduced a sequential algorithm called DP(CCP) [MN06]. The computation for a
given query is calculated in breadth first manner. DP(CCP) is good for all types of
query graphs, since the subsequent computation is based on the sub-graphs present
in the query. The sub-graphs present in the query are determined and their comple-
ments are obtained [MS17]. Based on sub-graphs and their complements, optimal
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left and optimal right plan are calculated. Finally, the cheapest plan is figured out
based on the lowest cost.

2.4.2 Parallel dynamic programming algorithms

Parallel dynamic programming algorithms distribute the tasks over different number
of threads. Han et al. proposed an algorithm to minimize the time consuming dy-
namic programming query optimization process called DP(DPE) [HL09]. Producer
consumer model is used in DP(DPE). We use double buffer, one for consumer and
one for producer to avoid synchronization conflicts. The quantifier set is nothing but
the join pair sequence. The partial order is the grouping based on the size of larger
quantifier sets [HL09]. Producer builds the partial order to find out the dependent
join pairs [MS17]. When partial order is built, producer parses the join pairs and
stores it in concurrent buffers, so that consumers can evaluate them. To properly
utilize the threads available, consumer parses and evaluates the join pairs of cur-
rent iteration after building the join pairs of next iteration. Consumer evaluates the
independent join pairs in parallel. Consumer performs parallel evaluation on the
join pairs until none is left. Consumer performs the final pruning step to obtain the
optimal solution [MS17].

Another algorithm by Han et al. outlines parallelized join enumeration algorithm,
called DP(PDP) [HKL+08]. Quantifiers are the tuple variables seen from the FROM
clause of SQL query [OL90]. The quantifier set is nothing but the join pair se-
quence. The QEP in DP(PDP) is distinguished using quantifiers accessed or joined
by it [HKL+08]. The in-memory quantifier set table or MEMO table maintains
the QEP’s for the corresponding quantifier sets [HKL+08]. In general, each sub-
problem of size S is constructed using any combination of one smaller sub-problem
of size smallSZ and another sub-problem of size largeSZ, such that S = smallSZ +
largeSZ [HKL+08]. Using this approach, the join enumeration problem can be trans-
formed into multiple theta joins, which we call multiple plan joins(MPJs) [HKL+08].
The parts of multiple plan join is allocated to particular number of threads in the
search space [HKL+08]. Each thread will execute the allocated parts of multiple
plan join in parallel and obtain the result.

There are two variants of multiple plan join, depending on whether we exploit a
skip vector array (SVA) or not [HKL+08]. In order for the quantifier sets to form a
feasible join, the quantifier sets obtained should be disjoint and must have atleast
one join predicate between them [HKL+08]. When the quantifier sets are evaluated
in bottom-up approach, overlapping pairs are encountered. Processing overlapping
pairs leads to the additional overhead. In order to limit the effects of overlapping
pairs of quantifier sets, a special index called SVA is used [HKL+08]. The variant of
DP(PDP) that uses skip vector is called DP(PDP LINEAR).

Let us consider the distributed dynamic programming variant proposed by trummer.
The master and worker approach is used in the distributed dynamic programming
variant proposed by trummer. The master obtains the query and sends it to the
worker along with the number of partitions and partitionID. The worker evaluates
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the assigned join-order and sends the result back to the master. The master merges
the result of all workers obtained and compares it to provide the least cost. We will
describe the approach in detail in the next chapter (see Chapter 3).
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Distributed DP variant proposed by trummer is used for massive parallel join-order
optimization [TK16]. Distributed DP variant is executed in two parts, master
(see Section 3.1) and worker (see Section 3.2). Distributed DP variant works for
both bushy plan space and left-deep plan space. We consider only bushy variant in
this thesis, as it generates better execution plans [LRG+18]. Distributed DP variant
proposed by trummer is responsible for generating semantically valid parallel ac-
cess plans [TK16]. The parallel access plan is obtained by allocating “partitioning”
property to every slave. The partitioning property specifies a partitionID and the
total number of partitions [ZG09]. The partitioning property is used to constrain
the search space to obtain semantically correct query plans [ZG09].

3.1 Master

The master algorithm parallelizes the optimization of query Q over m machines (see
Algorithm 1) [TK16]. Let us consider the master algorithm (see Algorithm 1). The
master contains two important steps.

1. Sending the query to worker node along with the total number of partitions(m).
The total number of partitions represents the complete search space. The
search space is the space consisting of all possible solutions to the optimiza-
tion problem. The worker needs to find the optimal plan in the specified
partitionID(partID) (see Line 2, Algorithm 1) with respect to the total num-
ber of partitions(m) and return it to the master. The partitionId(partID)
is the part of the search space. The worker invocation happens in parallel
indicated by parfor loop (see Line 3, Algorithm 1). The plans returned by
the workers are stored in an array bestInPart[partID] (see Line 4, Algorithm 1).



20 3. Implementation

2. The master compares all the plans available from the workers using Final-
Prune(bestPlan, bestInPart[partID]) (see Line 9, Algorithm 1) function and
returns the optimal or the best plan.

EXAMPLE : The input value for the Query(Q) is A ./ B ./ C. The input
value for the total number of partitions(m) is 1 . The input value for partID
is 1 (see Line 2, Algorithm 1). We compute the value of bestInPart[1] using
Worker((Q((A ./ B ./ C), partID(1), m(1)) (see Line 3, Algorithm 1). We
will see how the worker performs the computation of the bestInPart[1] in the
next section (see Section 3.2). The best plan is bestInPart[1] in this example
(see Line 6, Algorithm 1). The cost of different plans generated by different
partitions are considered and compared only when the partID is more than 1
(see Line 7-9, Algorithm 1).

Algorithm 1 Master(Q,m) [TK16]

1: // Generate best plan for each partition in parallel
2: parfor partID ∈ {1, .....,m} do
3: bestInPart[partID]←Worker(Q,partID,m)
4: end parfor
5: // Prune plans and returns best plan
6: bestPlan← bestInPart[1]
7: for partID ∈ {2, .....,m} do
8: FinalPrune(bestPlan, bestInPart[partID])
9: end for
10: return bestPlan

3.2 Worker

The worker algorithm is used to generate the best query plan for query(Q) within
the total number of partitions(m) of the bushy plan space (see Algorithm 2). The
input for the worker algorithm is the query, partitonID and the number of partitions.
The partition ID is simply an integer between one and the number of workers, such
that each worker obtains a different number. The output is the optimal plan for
the given query. We have to optimize the join-order of the query containing n
relations(tables), where n is a multiple of 3. The pseudo-code for worker node can
be looked up in (see Algorithm 2). The master sends the query(Q) to the worker
node along with partition(m) and partitionID(partID). The worker node optimizes
the query containing n relations using three significant steps.

1. Each worker node translates its partitionID into a set of constraints using
PartConstraints(Q,partID,m) (see Line 4, Algorithm 2). The constraints
are used to restrict the join-order space [TK16]. PartConstraints(Q, par-

tID,m) are applied on the query tables (q ∈ Q) to obtain join results that
comply with the given constraints.
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Algorithm 2 Worker(Q,partID,m) [TK16]

1: //Generate best plan for query Q in partition with
2: //ID partID out of m partitions.
3: // Decode partition ID into a set of constraints
4: constr← PartConstraints(Q,partID,m)
5: // Generate admissible intermediate results
6: joinRes← AdmJoinResults(Q,constr)
7: //Initialize best plans for single tables
8: for q ∈ Q do
9: P [q]← SCAN(q)
10: end for
11: //Iterate over join result cardinality
12: for k ∈ {2, ....., | Q |} do
13: //Iterate over admissible join results
14: for q ∈ joinres :| q |= k do
15: //Try splits of q into two join operands
16: TrySplits[BUSHY](q,constr,P)
17: end for
18: end for
19: // Return best plan for query Q
20: return P[Q]

EXAMPLE :The input value for Query(Q) is ((A ./ B ./ C). The input
value for the total number of partitions(m) is 1. The input value for the
partitionId(partID) is 1. The master invokes worker (Worker(((A ./ B ./
C), 1, 1)) using the above mentioned input values. The worker node calculates
the constraint using PartConstraints((A ./ B ./ C), 1, 1) (see Line 4,
Algorithm 2).

1.1 The worker invokes the Algorithm PartConstraints(Q,partID,m) (see
Line 4, Algorithm 2). The algorithm PartConstraints (Q,partID,m)
(see Algorithm 3) is used to translate the partitionID into a set of con-
straints that restricts the search space. The initial step is to initialize the
constraint set constr to ∅ (see Line 5, Algorithm 3).

1.2 The second step in the PartConstraints(Q,partID,m) algorithm (see
Algortihm 3) is to iterate over the set of constraints. We need to compute
the value of i (see Line 7, Algorithm 3). All the workers use the constraints
on the same table pairs, but the direction of those constraints differ.
The direction of the constraints in this context means, which two tables
to join first. To determine the direction of the constraints, Trummer
uses Bit(partID,i) function and obtain the precedence order or precOrd.
Thus, we compute precOrd using Bit(partID,i) (see Line 9, Algorithm 3).
The binary representation of the partitionId(partID) encodes the set of
constraints that we use. Based on the precOrd, Trummer generates the
constraint on the i-th subset of query Q (see Line 11, Algorithm 3).
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Algorithm 3 PartConstraints(Q,partID,m) [TK16]

1: // Decode partition ID partID into a set of constraints
2: // restricting the plan space for query Q. The total
3: // number of partitions is m and partID ≤ m.
4: // Initialize constraint set
5: Constr← ∅
6: // Iterate over constraints
7: for i ∈ {0, ......, log2(m)− 1} do
8: // i-th bit encodes precedence order
9: precOrd← Bit(partID, i)
10: //Generate constraint on i-th subset of Q
11: c← Constraint[BUSHY](Q, i, precOrd)
12: // Add new constraint into set
13: constr← constr ∪ c
14: end for
15: return constr

EXAMPLE :The input for the PartConstraints(Q,partID,m) algo-
rithm is Q((A ./ B ./ C)), m(1), partID(1). Initially, the value of constr
= ∅ (see Line 5, Algorithm 3). The value of i is (-1) i.e (log2(1)) − 1
(see Line 7, Algorithm 3). Thus, the for loop will not execute since the
value of i should be above 0, so we use the initialized value for con-
straint (constr) i.e ∅. For different value of precOrd, we can generate the
constraint(constr) using Constraint[Bushy](Q((A ./ B ./ C)), i(0),
precOrd(value) (see line 12, Algorithm 3) and add it to the constraint set
(see Line 13, Algorithm 3).

Algorithm 4 Constraint[BUSHY](Q,i,precOrd) [TK16]

1: if precOrd = 0 then
2: return Q3·i � Q3·i+1 | Q3·i+2

3: else
4: return Q3·i+1 � Q3·i | Q3·i+2

5: end if

1.1.1 The PartConstraints(Q,partID,m) invokes the Algorithm Con-
straint[BUSHY](Q,i,precOrd) (see Line 11, Algorithm 3). Con-
straint[BUSHY](Q,i,precOrd) (see Algorithm 4) defines the con-
straint conditions applied to obtain intermediate subsets. Based on
the precOrd, we obtain the return value. Generally, the constraint
restricting bushy space are of the form (Qx � Qy | Qz), it implies that
when considering the intermediate join results containing table Qz in
ascending order of cardinality, table Qy must not appear before table
Qx [TK16] . Trummer assumes that constraints have been indexed
such that all constraints concerning a given set of tables can be re-
trieved efficiently [TK16]. The operator � is used to imply precedes
or equals to. If the value of precOrd is 0, then the constraint is Q3·i
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� Q3·i+1 | Q3·i+2, else the constraint is Q3·i+1 � Q3·i | Q3·i+2 (see Line
1-5, Algorithm 4). The example considered in the implementation
section does not have any constraint i.e (constr) i.e ∅.

Algorithm 5 AdmJoinResults(Q,C) [TK16]

1: // Returns all potential join results (table subsets
2: // of query Q) that comply with constraints C.
3: // Initialize result sets
4: R← {∅}
5: // Iterate over subsets of Q
6: for S ∈ Subsets(Q) do
7: // Extend join results using Cartesian product
8: R← R × ConstrainedPowerSet(S,C)
9: end for
10: return R

2. The next step in the worker algorithm (see Line 6, Algorithm 2) is to generate
the admissible table sets that can appear as join result within a query (q ∈ Q),
whose join order respects the constraints. In order to accomplish this step , we
use AdmJoinResults(Q,constr) (see Line 6, Algorithm (see Algorithm 2).
The result sets generated by the algorithm AdmJoinResults(Q,constr) have
been indexed by their cardinality, such that worker node can efficiently retrieve
the admissible sets over the join result cardinality k ∈ {2,.....,| Q |} (see Line
12 , Algorithm 2).

EXAMPLE : The AdmJoinResults(Q,C) is invoked using the input values
as AdmJoinResults(Q((A ./ B ./ C)), constr (∅) (see Algorithm 5). We
obtain the joinRes using AdmJoinResults algorithm (see Algorithm 5).

Algorithm 6 Subsets[BUSHY](Q) [TK16]

1: return {{Q3·i,Q3·i+1,Q3·i+2} | 0 ≤ i ≤ | Q | / 3 -1}

2.1 AdmJoinResults(Q,C) initializes the result set R to ∅ (see Line 4,
Algorithm 5) and then iterate over the subsets of the query(Q). The
subsets of the query(Q) is calculated using Subsets[BUSHY](Q) (see
Algorithm 6).

2.1.1 The algorithm Subsets[BUSHY](Q) returns the triples of consec-
utive tables in a query Q (see Algorithm 6).

EXAMPLE : The input value for Q is ((A ./ B ./ C)). The
algorithm Subsets[BUSHY](Q) returns one subset of consecutive
table triple i.e {ABC}. If there are more number of tables, then there
are more subsets.
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EXAMPLE : The AdmJoinResults(Q,C) is invoked using the input
values as AdmJoinResults(Q((A ./ B ./ C)), constr (∅). The result
set R is empty. We invoke Subsets[BUSHY](Q) using the input value for
the query i.e Subsets[BUSHY] Q((A ./ B ./ C)). The value returned is
{ABC}. The input for the query should be a multiple of 3 and we group
the subsets accordingly (see Line 1, Algorithm 6).

2.2 The second and final step for obtaining the join results is to iterate over
the subsets obtained using Subsets[BUSHY](Q) and extending the join
results using Cartesian product on ConstraintPowerSet[BUSHY](S,
C) (see Line 8, Algorithm 5).

2.2.1 The algorithm ConstraintPowerSet[BUSHY](S,C) returns the
part of power set S respecting the constraints C (see Algorithm 7).
The power set of of any set will be the set of all the subsets and empty
set. The power set Power(S) of the AdmJoinResults(Q,C) will
give the intermediate subsets based on the constraints obtained in
Constraint[Bushy](Q,i,precOrd).

EXAMPLE : The ConstraintPowerSet[BUSHY](S,C) is in-
voked with the input values as ConstraintPowerSet[BUSHY]
(S(A,B,C), C(∅). The subsets returned are {{ },{A,B},{A,C},{A,B,C},
{B,C}} (see Line 1, Algorithm 7).

Algorithm 7 ConstraintPowerSet[BUSHY](S,C) [TK16]

1: return Power(S) \ {{Qy,Qz} | (Qx � Qy | Qz) ∈ C}

EXAMPLE : The final result set obtained by extending join results
using Cartesian product in AdmJoinResults(Q,C) is {{ ∅, AB, A, B,
ABC, AC, BC, C}} (see Line 8, Algorithm 5). The joinres set consists
of {{ ∅, AB, A, B, ABC, AC, BC, C}} .

3. In the final step of worker algorithm (see Algorithm 2), we split every | q | =
k over the admissible join result (see Line 14, Algorithm 2) into two operands
by using TrySplits[BUSHY](q,constr,P) (see Line 17, Algorithm 2) and
then return the final result. The final result P is a vector storing optimal
query plans. P[Q] contains the optimal query plan for the given query(Q). We
initialize the vector P by adding the optimal plan for query (q ∈ Q). This is
done by scanning over q (see Line 8-10, Algorithm 2).

EXAMPLE : We iterate over the join results in the increasing order of car-
dinality starting from k value 2 to | Q | (see Line 8, Algorithm 2). The joinres
set when arranged in the increasing order of cardinality {{{∅,A,B,C},{AB,
BC, AC}, {ABC}}} . The values corresponding to the set in the increasing
cardinality is passed on to the TrySplits[BUSHY](Q,constr,P) (see Algo-
rithm 8).
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Algorithm 8 TrySplits[BUSHY](Q,U,C,P) [TK16]

1: // Try all splits of U ⊆ Q into two operands respecting
2: // constraints C, generate associated plans and prune.
3: // Determine admissible operands
4: A← {∅}
5: // Iterate over set of table triples
6: for T ∈ Subsets[BUSHY](Q) do
7: // Restrict triple to tables in join result
8: S← T ∩ U
9: // Form power set of remaining triples
10: S← Power(S)
11: // Take out sets violating constraints
12: S ← (S) \ {{Qy,Qz} | (Qx � Qy | Qz) ∈ C}
13: // Remove complement of inadmissible sets
14: S ← (S) \ {{Qx} | (Qx � Qy | Qz) ∈ C;Qy,Qz ∈ U}
15: // Extend admissible splits by Cartesian product
16: A← A × S
17: end for
18: // Full set and empty set do not qualify as operands
19: A← A\{∅, U}
20: // Iterate over admissible left operands
21: for L ∈ A do
22: // Generate plans associated with splits
23: p← Join(L,U \ L)
24: // Discard suboptimal plans
25: Prune(P,p)
26: end for
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3.1 The algorithm TrySplits[BUSHY](Q,U,C,P) (see Algorithm 8), gen-
erates all possible splits, from the subset of the query Q and obtain two
operands respecting the constraints C. Finally, the associated plans are
generated and pruned. The first step is to initiliase A with ∅ (see Line 4,
Algorithm 8).

EXAMPLE : The input value for Query Q is ((A ./ B ./ C)). The
input value for U is the value q (see Line 14, Algorithm 2) i.e AB from the
joinres arranged in the increasing order of cardinality {{{∅,A,B,C},{AB,
BC, AC}, {ABC}}}. AB is the first value starting with cardinality k =
2 (see Line 12-16, Algorithm 2). The input value for C is the constr i.e
(∅). The value of P is the best plan obtained by scanning the single table
(see Line 9, Algorithm 2). The value of P depends on the cost model
asssumed. The value of A is ∅ (see Line 4, Algorithm 8) .

3.2 We iterate over the set of table triples to obtain S (see Line 6-8, Algo-
rithm 8). We obtain the power set of S containing set of all subsets and
empty set (see Line 10, Algorithm 8). We check whether the obtained
value of S respects the given set of constraints (see Line 12, Algorithm 8),
if not remove it. We also get rid of the complement of inadmissible sets
(see Line 14, Algorithm 8) and extend the splits using Cartesian product
(see Line 16, Algorithm 8).

EXAMPLE : The value of T is ABC, the only subset we have from
the Query Q((A ./ B ./ C)). The value of U is AB. The value of S is
obtained by checking whether AB intersects ABC, if yes then add AB
to S (see Line 8, Algorithm 8). The power set of S contains {{}, A, B,
AB} (see Line 10, Algorithm 8). There are no values violating constraint
value, as there is no constraint applied on the tables. Therefore, no value
is removed from S (see Line 12, Algorithm 8). There are no complements
of inadmissible sets (see Line 14, Algorithm 8), so we obtain the value of
A as {{}, A, B, AB} (see Line 14, Algorithm 8).

3.3 The next step includes removal of empty and full set (see Line 19, Algo-
rithm 8). The remaining operand are passed one by one to generate the
plan associated with it (see Line 23, Algorithm 8). Finally, we obtain the
optimal plan (see Line 25, Algorithm 8).

EXAMPLE : The value of A according to (see Line 19, Algorithm 8)
is the set {A, B}. The value A is passed to obtain the value of p (see
Line 23, Algorithm 8). The plan p obtained is {({A}, {B}) for A and
({B}, {A})} for B as admissible left operands in the L set (see Line 21,
Algorithm 8).

EXAMPLE : After passing all the values from joinres arranged in the in-
creasing order of cardinality i.e {{{∅, A, B, C}, {AB, BC, AC}, {ABC}}} (see
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Line 14-17, Algorithm 2) . The final values obtained for the set {A,B} are
{({A}, {B}), ({B}, {A})}. The values obtained for the set {A,C} are {({A},
{C}), ({C}, {A})}. The values obtained for the set {B,C} are {({B}, {C}),
({C}, {B})}. The values obtained for the set {A, B, C} are {({A}, {B,C}),
({B}, {A,C}), ({C}, {A,B}), ({A,B}, {C}), ({A,C}, {B}), ({B,C}, {A})}.

3.3 Limitations of distributed DP variant proposed

by trummer

There are certain limitations in the distributed DP variant proposed by trummer .
They are as follows.

1. The constraint is defined on triples of query tables. Thus, the query tables
should be a multiple of 3.

2. The total number of partitions must be a power of 2.
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4. Evaluation

In this chapter, we present our insights on evaluating the distributed DP variant pro-
posed by trummer against sequential dynamic programming approaches DP(CCP),
DP(SUB) and parallel dynamic programming approaches DP(PDP), DP(PDP LINE
AR) and DP(DPE).

4.1 Evaluation Setup

In our evaluation, we consider the speedup of the distributed DP variant pro-
posed by trummer as DP(TRUMMER) along with sequential approaches (DP(CCP),
DP(SUB)) and other parallel approaches (DP(PDP), DP(PDP LINEAR), DP(DPE)).
We evaluate DP(TRUMMER) with the other approaches mentioned above with re-
spect to different query graph topologies (see Figure 2.10), different number of query
tables, different number of threads and different complexities of cost function. The
different query graphs topologies are linear, cycle, star and clique. The queries
provided during evaluation are created using specific query topology and specific
number of tables. We use different query topologies and different number of tables
to generate different queries randomly and furthur use them for optimization.

We consider the query tables from a minimum of 3 to maximum of 18. Since clique
queries are complex to optimize, we only use 15 tables to obtain reasonable runtime.
The query tables should be a multiple of 3 in the distributed DP variant proposed
by trummer. We consider the number of threads from a minimum of 1 to maximum
of 4. The thread number should be expressed as a power of 2 in the distributed
DP variant proposed by trummer. We consider the threads up to 4. We use simple
cost function and complex cost function. The simple cost function is based on the
the cardinality of operators [MN06]. The complex cost function is simulated by
adding a little overhead to the simple cost functions used. This process is done to
achieve different runtimes of the cost function [MS17]. To be sure of the results
obtained, we ran the optimization process for 10 times and used average to sum up
the results obtained during optimization. As an evaluation system, we used a system
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with the operating system fedora 29, Intel(R) Core(TM) i5 CPU 660(3.33GHz), 7.6
GB memory, 4 CPU’s, 2 cores which can run up-to 4 threads simultaneously. The
system considered will not support threads with value more than 4. We present the
evaluation results in the following sections.

4.2 Scalability Evaluation

Scalability is the system’s efficiency to increase the speedup as the number of pro-
cessors increase [GGK93]. A parallel system’s speedup is the ratio of sequential
execution time to parallel execution time [GGK93]. A parallel system has more
number of cores or processors to execute the program instructions simultaneously.
Under Scalability evaluation, we evaluated the distributed DP variant proposed by
trummer with varying number of threads. The number of threads should be a power
of 2, so we consider 1, 2 and 4 threads in particular.

4.2.1 Discussion

OBSERVATION : Let us consider the scalability results for linear (see Figure 4.2)
and cyclic (see Figure 4.1). The DP(TRUMMER) adapted to a centralized setting,
provides a speedup value of 1 for one thread and then it improves (thread=2) and
finally decreases(thread=4). Let us consider the scalability results for star (see Fig-
ure 4.4) and clique (see Figure 4.3). The speedup increases with the increasing
number of threads in clique topology. In star topology, the speedup when the value
of thread is 2 is more compared to the thread values 1 and 4. The speedup decreases
again (thread=4).

REASONING : The different query topologies play an important part in determin-
ing the results obtained in the evaluation. The search space of some query topologies
like linear are sparse [MN06]. DP(TRUMMER) enumerates the join pairs, which
can also include some unconnected pairs. Unconnected join pairs are the valid join
pairs not needed for the overall cost calculation in specific topology. Thus, they
create an overhead in the cost calculation. The merging of the unconnected join
pairs along with the fact that the constraints are less restrictive are responsible for
lower speedup in linear, cyclic and star topologies. The search space of clique is
dense [MN06]. Thus, the number of join pairs obtained according to the constraints
are relevant and the speedup increases for clique topology. In most of the cases,
the parallel DP variants produces better optimization results for clique queries con-
taining more number of tables [MS17]. Thus, we can conclude that accordingly
DP(TRUMMER) variant achieves better speedup for clique queries.

4.3 Approach Evaluation

Under Approach Evaluation, we evaluated the DP(TRUMMER) variant against
DP(CCP), DP(PDP), DP(PDP LINEAR), DP(DPE). The number of threads con-
sidered here is 4. We have obtained the results for clique queries using 15 tables,
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Figure 4.1: Scalability results for cyclic topology

Figure 4.2: Scalability results for linear topology

as they are difficult to optimize. For all other query types, we use 18 tables. We
obtained the results for both speedup (see Section 4.3.1). The absolute runtimes for
DP(TRUMMER) against different sequential and parallel dynamic programming
variants can be looked up in appendix section (see Section A.1).
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Figure 4.3: Scalability results for clique topology

Figure 4.4: Scalability results for star topology

4.3.1 Discussion

OBSERVATION : Let us consider the results for linear queries (see Figure 4.5)
with DP(TRUMMER) as the base, DP(PDP) achieves higher speedup compared
to other approaches. Let us consider the results for cyclic queries (see Figure 4.6),
DP(DPE) achieves higher speedup. Let us consider the results for star queries
(see Figure 4.7) and clique queries (see Figure 4.8) with DP(TRUMMER) as the
base, DP(DPE) has the highest speedup.
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REASONING : In linear topology, DP(PDP) performs well. The reason for this
can be attributed to the fact that DP(PDP)’s enumeration of join-pairs is based on
size-driven enumeration. Size-driven enumeration approaches perform well in sparse
search spaces similar to linear topology [MN06]. DP(CCP) performs well in all query
topologies, since the join pairs are enumerated based on the query graphs [MN06].
Thus, DP(CCP) does not produce unconnected pairs, invalid for different query
topologies. In clique queries, DP(CCP) does not perform well compared to other
parallel DP varainats, as there are enough number of join pairs to make use of the
parallel computation of DP variants. DP(SUB) and DP(TRUMMER) operate on
the same methodology of setting respective integer bits for the available tables before
optimization [TK16, VM96], so DP(SUB) do not perform well in linear and cyclic
queries. DP(SUB) achieves a better speedup in star topologies. We can also see
that DP(SUB) performs well with lesser number of tables in clique topology, but as
the number of tables increases DP variants take over sequential variants. DP(DPE)
performs well in cyclic, clique and star queries. DP(DPE) uses producer-consumer
model. There is a lot of communication between the producer and consumer during
the generation of join-pairs. Every calculation is sorted based on the dependency
i.e by grouping of large quantifier sets (partial order). Thus, we make better use
of parallelism and create dependency free entries. DP(PDP LINEAR) makes use
of the skip vector to reduce the overlapping pairs and thus achieve better speedup
with DP(TRUMMER) as the base approach.

4.4 Summary

We can summarize the results obtained and conclude that DP(TRUMMER) per-
forms better for clique queries, compared to other topologies. This is due to the fact
that query is complex and the constraints are more restrictive in dense search spaces
similar to clique topology [MN06]. We consider different sequential and parallel dy-
namic programming approaches for evaluation. DP(PDP) achieves higher speedup
in linear queries with respect to DP(TRUMMER) as the base approach and in all
other topologies DP(DPE) and DP(PDP LINEAR) achieves higher speedup. The
sequential variants provide better result for clique queries, when the number of tables
is less. As the number of tables increases in clique topology, parallel variants take
over sequential variants. We can conclude that in general, the dynamic program-
ming approach that gives best result depends on query graph topologies, number of
tables, parallelization overhead and efficient generation of valid join pairs.
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Figure 4.5: Approach results for linear topology with DP(TRUMMER) as the base
approach

Figure 4.6: Approach results for cyclic topology with DP(TRUMMER) as the base
approach
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Figure 4.7: Approach results for clique topology with DP(TRUMMER) as the base
approach

Figure 4.8: Approach results for star topology with DP(TRUMMER) as the base
approach
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5. Conclusion

Distributed DP variant is proposed by trummer for massive parallel query optimiza-
tion [TK16]. The algorithm follows a master and worker approach, where master
provides the query to worker and collect the cost of the evaluated join-order from
different workers to provide the final optimized or the best result. In this the-
sis, we adapt the distributed DP variant proposed by trummer to a centralized
system. The master provides the thread number along with the query to worker,
so that every worker can compute the cost for join-order in parallel. The low-
est cost is returned by the master. The distributed DP variant is proposed by
trummer (DP(TRUMMER)) in a centralized system is evaluated against parallel
dynamic programming approaches (DP(DPE), DP(PDP), DP(PDP LINEAR)) and
sequential approaches (DP(SUB), DP(CCP)). According to the evaluation results
(see Chapter 4), Trummer variant gives good results for clique queries, which are
considered to be complex because of their inherent structure. Based on the enu-
meration of all possible combinations, it is inefficient for other topologies. We can
conclude that in general, the dynamic programming approach that gives best result
depends on query graph topologies, number of tables, parallelization overhead and
efficient generation of valid join pairs.
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6. Future Work

According to the evaluation results, DP(DPE), DP(PDP) or DP(CCP) approach
performs better compared to DP(TRUMMER) ((see Chapter 4) and (see Section A.1)).
Since DP(DPE) makes better use of the parallelism by increasing the communica-
tion between the producer-consumer in the producer-consumer model used, it makes
us question whether the minimization of communication between the worker and
master yield an optimal result or not. DP(CCP) approach performs better by intro-
ducing the graphs and considering its complements during processing of the results.
It is said to be one of the reason, why it performs so good among sequential vari-
ants [MS17]. The the distributed DP variant proposed by trummer generates the
results based on the splits obtained with respect to the constraints calculated using
thread number and total number of threads [TK16]. We can further look into how
to incorporate the graphs and make distributed DP variant proposed by trummer
more efficient for different types of query graphs. The splits responsible for generat-
ing join pairs, generated using the distributed DP variant proposed by trummer is
evaluated to obtain the cost function, which takes more amount of CPU time. So,
we can also look into how to generate splits efficiently for a particular thread number
and total number of threads, which determines the partitionId and number of par-
titions, as the number of splits is only reduced by factor of 6 for every constraint
applied [TK16]. The constraint is calculated using thread number or partitionID
(see Chapter 3). We can also look into extending distributed DP variant proposed
by trummer to accomodate different number of query tables and threads. The cur-
rent implementation only works for the triples of query tables (multiple of 3) and
2thread number (thread number should be a power of 2).
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A. Appendix

A.1 Absolute runtimes

We evaluate the distributed dynamic programming variant proposed by trummer
(DP(TRUMMER)) against DP(CCP), DP(PDP), DP(PDP LINEAR), DP(DPE)
with respect to the runtime and the results obtained are as follows.

OBSERVATION : Let us consider the results for linear queries (see Figure A.1),
DP(PDP), DP(CCP) and DP(DPE) performs well compared to DP(SUB)
and DP(TRUMMER). Let us consider the results for cyclic queries (see Figure A.2),
DP(DPE) performs better than all approaches. Let us consider the results for
star queries (see Figure A.4) and clique queries (see Figure A.3), DP(DPE) and
DP(PDP LINEAR) has the least run-time and DP(TRUMMER) performs better
compared to cyclic and linear queries.

REASONING : DP(SUB) and DP(TRUMMER) operate on the same method-
ology of setting respective integer bits for the available tables before optimiza-
tion [TK16, VM96], so they do not perform well in linear queries. Based on the par-
allelism, initialization overhead and evaluation of invalid join pairs, DP(PDP) and
DP(TRUMMER) does not perform well compared to DP(DPE). DP(PDP) is based
on the size-driven apporach [HKL+08], so it performs well for linear queries [MN06].
DP(TRUMMER) is based on the subset-driven approach, so it performs well for
clique queries [MN06]. DP(DPE) performs well in clique and star queries due to
the proper use of parallelism. In the DP(DPE) approach, the parallelism is better
utilized by the producer consumer model, which is similar to master slave approach
except for the fact that producer is also involved in parsing the join pairs along
with consumer [MS17]. DP(PDP LINEAR) performs well in cyclic, clique and star
queries, as it uses skip vector and avoid overlapping quantifier sets [HKL+08].
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Figure A.1: Approach results for linear topology

Figure A.2: Approach results for cyclic topology
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Figure A.3: Approach results for clique topology

Figure A.4: Approach results for star topology
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