
FeatureIDE: Scalable Product Configuration
of Variable Systems

Juliana Alves Pereira,1 Sebastian Krieter,1 Jens Meinicke,1,2

Reimar Schröter,1 Gunter Saake,1 Thomas Leich2

1University of Magdeburg, Germany, 2METOP GmbH, Germany

Abstract. In the last decades, variability management for similar prod-
ucts is one of the main challenges in software systems. In this context,
feature models are used to describe the dependencies between reusable
common and variable artifacts, called features. However, for large fea-
ture models it is a complex task to find a valid feature combination as
product configuration. Our Eclipse plug-in FeatureIDE provides several
mechanisms, such as information hiding and decision propagation, which
support the configuration process to combine the reusable artifacts in
various manners. We illustrate the applications of these mechanisms from
a user’s point of view.
Demo Video. https://youtu.be/zM9K3wqUiVE

1 Introduction

Variable software systems are essential to fulfill the individual requirements of
several users. Such systems are commonly based on reusable but interdependent
artifacts represented by a set of features that can be combined to form custom
products [8]. Feature models are a common notation to define features and their
interdependencies [4]. As feature models specify the set of valid products (i.e. a
selection of features that fulfills all interdependencies), they form the basis of
the product configuration process.

In industry feature models often define several thousand features. Hence, it
is impractical for the user to keep track of all features and their dependencies
during the configuration process. On the one hand, it may be difficult for a user
to specify a valid configuration, especially since also features of no interest need
to fulfill their dependencies. On the other hand, the user can unintentionally
introduce conflicts by specifying mutually exclusive features. However, the user
can be guided to configure valid products using specialized tool support.

In this paper, we present the configuration support of our tool
FeatureIDE [5,9]. With a close connection to FeatureIDE’s feature-model ed-
itor, the configuration editor can provide several mechanisms that guide the user.
With automated decision propagation, we ensure that any partially configured
product is in accordance to the feature model so that the result only describes valid
combination of reusable artifacts. Furthermore, we help the user with information
hiding mechanisms that let them focus on the parts of the configuration that are
of interest. Finally, we present how we guide the user to a valid configuration.

Fig. 1. An overview of FeatureIDE’s configuration support: 1 feature model edi-
tor, 2 - 4 configuration editor (2 showing all features, 3 showing direct children,
4 finalizing configuration).

2 Preventing Conflicting Feature Combinations

Product configuration is a decision process to form a valid feature combination,
where the interdependencies of all features are considered [8]. Especially when
dealing with large feature models with complex feature dependencies, a configura-
tion process without tool support is an error-prone and tedious task. Completely
configuring products and checking validity afterwards is henceforth not advisable
as at least one feature dependency is probably violated.

To ease the configuration process, FeatureIDE provides an iterative strat-
egy, which only allows feature selections that comply with the feature model’s
dependencies. Thus, similar to the tools SPLOT [6] and fmp [1], FeatureIDE
prevents the user to introduce conflicts in their configuration. This functional
characteristic of FeatureIDE is based on two concepts: (a) a close coupling
between configurations and their feature models and (b) decision propagation.
Close Connection of Feature Models and Configurations. The feature
model and the configuration editor of FeatureIDE are closely connected and
influence each other. On the one hand, the configuration editor of FeatureIDE
uses the same hierarchical structure as the corresponding feature model. Fur-
thermore, the feature model influences configurations so that, for instance, a
renaming of a feature also renames the feature in each configuration. On the
other hand, each selection in a configuration forces a validity check considering
the corresponding feature model. In addition, all implied and excluded features
are automatically (de)selected and a change of their selection is forbidden. In
Figure 1. 1 - 2 , we depict this functionality for the product line EShop. In Fig-
ure 1. 1 , the dependencies of the feature model are hard to resolve. However, the

representation in the configuration editor (see Figure 1. 2) allows an iterative
selection of features according to the feature model.
Decision Propagation. Based on the close connection between feature models
and configurations, FeatureIDE’s configuration editor prevents conflicts in each
iteration of the configuration process using decision propagation. In detail, if a
(de)selection of a feature forces the (de)selection of another feature, FeatureIDE
automatically adopts the implied configuration changes. For instance, if we select
the feature Welcomemessage in the product line EShop (see Figure 1. 2), all
parent feature will be also selected.

3 Information Hiding

Configuring a product can be a difficult process as users usually do not know
all features and their dependencies, especially for large feature models [3]. Con-
sequently, showing all features (see in Figure 1. 2) is impractical as a user can
only focus on one part of the configuration at once. However, a user may already
know their features of interest. To ease the configuration process, we provide
information hiding mechanisms that focus the user’s view on the relevant config-
uration space. The user can select one of these mechanisms via the configuration
editor’s menu bar (see the blue rectangle in Figure 1. 3).
Focused View. FeatureIDE aims to focus on the part of the configuration
that is currently modified. Thus, it initially does not expand all features. When
the user selects a feature, they are probably interested in its sub-features (e.g.,
fine-grained features of the same area). We provide a specialized expand algo-
rithm that automatically expands and shows the sub-features after a feature
is selected. This behavior is exemplary illustrated in Figure 1. 3 . Initially, only
the feature Storefront is expanded. After the user selects the feature Homepage,
the expand algorithm shows the sub-features Staticcontent and Dynamiccontent.
With the focus on direct children only, we reduce the number of presented con-
figuration options significantly and present only features that are of interest at
the moment.
Finalize Partial Configurations. Decision propagation and specialized ex-
pand algorithms can only help to configure partial configurations. Still, a config-
uration needs to fulfill all dependencies defined in the feature model. Automatic
selection of features is an efficient way to create a valid configuration based on the
given partial configuration (e.g., the auto-completing mechanism presented by
SPLOT [6]). However, such algorithms arbitrarily select features without consid-
ering the user’s intentions. Thus, undesired features might be selected as well. In
order to address this challenge, the tools VISIT-FC [7] and FaMa [10] introduce
dependency visualization mechanisms to support the user in configuring prod-
ucts, but both tools present all features to the user. In contrast, FeatureIDE
provides a mechanism that guides the user to a valid configuration, reasoning
from a smaller number of features. Based on unsatisfied clauses of the feature
model’s CNF-representation [2], its mechanism shows the user which decisions are
necessary to finish the configuration process by highlighting the corresponding

features. As each clause needs to be satisfied, the user can focus on one clause at
a time. Thus, again the number of configuration options presented to the user
is reduced to a minimum. We exemplary show this behavior in Figure 1. 4 . As
shown, only the current open clause (displayed in the tooltip of Physicalgoods)
is expanded. The feature Producttype was automatically selected by decision
propagation. Thus, at least one of its children (highlighted with green) has to
be selected to satisfy the open clause. A deselection of a feature might also
satisfy a clause as shown in Figure 1. 3 with a blue highlighting of the feature
Homepage. After a clause is satisfied by the user’s (de)selection, the focus will
automatically change to the next unsatisfied clause. Using this mechanism, the
user can efficiently finish the configuration process and simultaneously prevent
undesired feature selections.

4 Conclusion

Feature models describe the dependencies between features in order to specify
valid product configurations. However, the actual process of configuring products
for large feature models is an error-prone and tedious task. In this paper, we
illustrate FeatureIDE’s facilities to support this process by providing advanced
configuration support, such as decision propagation and information hiding.
This approach ensures a valid and complete configuration while simultaneously
maintaining efficiency as the user can focus on their features of interest.

References

1. M. Antkiewicz and K. Czarnecki. FeaturePlugin: Feature Modeling Plug-In for
Eclipse. In Eclipse, pp. 67–72. ACM, 2004.

2. D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. A First Step Towards a
Framework for the Automated Analysis of Feature Models. In SPLC, pp. 39–47.
IEEE, 2006.

3. J. Bosch, R. Capilla, and R. Hilliard. Trends in Systems and Software Variability.
IEEE Software, (3):44–51, 2015.

4. K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-
90-TR-21, Software Engineering Institute, 1990.

5. J. Meinicke, T. Thüm, R. Schöter, S. Krieter, F. Benduhn, G. Saake, and T. Leich.
FeatureIDE: Taming the Preprocessor Wilderness. In ICSE. ACM, 2016. to appear.

6. M. Mendonça, M. Branco, and D. Cowan. S.P.L.O.T.: Software Product Lines
Online Tools. In OOPSLA, pp. 761–762. ACM, 2009.

7. D. Nestor, S. Thiel, G. Botterweck, C. Cawley, and P. Healy. Applying Visualisation
Techniques in Software Product Lines. In SoftVis, pp. 175–184. ACM, 2008.

8. K. Pohl, G. Böckle, and F. J. van der Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, 2005.

9. T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich. Fea-
tureIDE: An Extensible Framework for Feature-Oriented Software Development.
SCP, 79(0):70–85, 2014.

10. P. Trinidad, A. R. Cortés, D. Benavides, and S. Segura. Three-dimensional feature
diagrams visualization. In SPLC, pp. 295–302, 2008.

