Vertical Vectorized Hashing for Faster Group-By
Aggregation

Spoorthi Nijalingappa*

Bala Gurumurthy*

David Broneske' Gunter Saake*

* University of Magdeburg, Magdeburg, Germany, firstname.lastname @ovgu.de
fGerman Center for Higher Education Research and Science Studies, Hannover, Germany, broneske @dzhw.eu

Abstract—Group-By is a commonly explored database opera-
tor, constantly optimized for better response time. Though multi-
ple strategies are available, its response time heavily depends on
the operator’s implementation on the underlying device. Hence,
in this work, we investigate code optimization for group-by
aggregation, specifically in modern CPUs. Recent advancements
in modern CPUs support large register sizes with wide SIMD
lanes suitable for vectorized execution. Therefore, we utilize these
registers to implement a vectorized hash-based aggregation to
accelerate the group-by operator. In this work, we investigate
vertical vectorization —- insert/probe multiple keys at a time
— across various hashing techniques. Our evaluation measures
the impact of the load factor, and collisions over the execution
in our approach, followed by performance comparison against
scalar and horizontal vectorized hashing (a single key is probed
in multiple locations at once). Our results show that, although
by using SIMD gather and scatter primitives, reaching the
theoretical maximum is hard, our approach has up to 10X speed-
up in an AVX-512 system (16 vector lanes) compared to scalar
execution for various dataset distributions.

Index Terms—SIMD Acceleration, CPU-accelerated DBMS,
Vertical vectorization, Hardware-sensitive operators

I. INTRODUCTION

Current generation CPUs come with capabilities such as
pipelining, branch prediction, hardware threads, and SIMD
registers. In 2008, Intel introduced a new set of high-
performance SIMD instructions se — Advanced Vector Ex-
tensions (AVX) — with wider SIMD registers for CPUs. Sub-
sequently, several studies have investigated SIMD acceleration
for accelerating database operations [1]-[3]]. These studies
range from exploring SIMD acceleration of complete DBMS
operators to exploring individual database operators such as
selection, join, aggregation, grouped aggregation, etc. [4]—[6].
However, there are other variants of these operations yet to be
realized in SIMD. In this work, we explore one such operator—
group-by aggregation.

Group-by aggregation is a critical operator in a query
processing pipeline, as it potentially stalls the execution of sub-
sequent operations until all aggregates are generated. Hence,
it is important to accelerate the operator using SIMD, as it
can improve the overall query execution. Commonly, group-
by aggregation is realized using hashing [7]]. Hashing is used to

This work was partially funded by the DFG (grant no.: SA 465/51-1 and
SA 465/50-1.)

Uhttps://www.intel.com/content/www/us/en/architecture-and- technology/
avx-512-overview.html

partition input keys into buckets, while directly aggregating the
payload of the keys. However, hashing is prone to collisions
— occurs when two keys are hashed into the same bucket —
and is resolved differently based on the underlying hashing
technique. Usually, a hashing technique takes time to resolve a
collision, which adds to the overall execution time. Hence, we
focus on developing appropriate SIMD-accelerated alternatives
for these hashing techniques to resolve collisions faster.

Specifically, we consider the three hashing techniques: lin-
ear probing [8]], 2-choice hashing [9]], and cuckoo hashing [|10]]
for processing a group-by input. Here, both linear probing
and double hashing resolve their collisions identifying a new
location for the incoming key, whereas cuckoo hashing finds
a new location for the previously present key in the current
slot.

Vectorizing group-by operator poses two main challenges:
1) local conflicts, which occur when identical keys are in the
input vector. 2) global conflicts, where two distinct keys are
hashed to an identical hash table slot. To resolve these, we
develop a five-phase general approach, that works for all hash-
ing techniques. Furthermore, since each individual technique
is different, we also develop vectorized implementations for
these techniques.

We resolve the local conflicts using scalar linear probing
to insert the keys into the SIMD vector. In the case of global
conflicts, we use an in-built conflict detection intrinsic to mark
the conflicting keys and insert them accordingly. In summary,
we examine the efficiency of using AVX-512 for hash-based
grouped aggregation and explore the different performance
impacts. Overall, we contribute:

« We explore AVX-512 acceleration of three different hash-
ing techniques to support group-by aggregation.

e We compare the performance of our vertical vectorization
with scalar and horizontal vectorized [11] execution.

The remaining paper is structured as follows: in Section
we review the working of the different hashing techniques.
Next, in Section we extend these hashing techniques with
AVX-512 vectorization specifically for group-by aggregation.
We evaluate these techniques in Section and compare
their performance with other approaches. Next, we list the
related work in Section [V] Finally, we conclude our work in
Section [V1l

https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html

II. HASHING TECHNIQUES — A PRIMER

Group-by aggregation or grouped aggregation commonly
uses hashing to identify groups in the input, these groups
are then aggregated. Additionally, certain aggregations — such
as sum, count, max, or min — are done in sifu as soon as
the target bucket is identified. In such cases, the bottleneck
occurs whenever there is a collision of input. These collisions
are resolved by identifying an alternative bucket location for
a key based on the hashing technique used. In this section, we
give an overview of the common hashing techniques used.

A. Linear Probing [S]

Linear probing is the simplest open addressing techniqueﬂ
It resolves a collision by traversing the hash table linearly until
an empty slot is found.

K1 K2 K3 K4 K5 K6

Fig. 1: Example of linear probing

In Figure [I] we show an example of a partially filled linear
probing hash table. In this case, K7 is hashed into a slot that
is already filled; therefore, the table is probed linearly until
the next available empty location is found.

Insertion: For insertion, the input key is first hashed using
a hash function, and the corresponding bucket position is
determined. If the bucket is free, the key is directly inserted.
In case the bucket is full, the hash code is incremented until
it finds an available bucket in the hash table.

Probing: Probing also follows the same routine as insertion.
Here, the input is hashed and if the key is not present in the
bucket, the hash key is incremented until the key is found
in the target bucket. In case an empty location is identified
while traversing, the key is not available in the hash table.
Thus, linear probing is a simple but penalty-prone hashing
technique. To overcome the penalty of probing the hash table,
an alternative strategy is followed in 2-choice hashing.

B. 2-Choice Hashing [9]

2-choice hashing utilizes randomization in the "power of 2
choices" [[12]]. Here, instead of identifying a single target slot,
we get two alternative slots using two different hash functions.
The key is then placed in the favorable slot out of the two.

Insertion: Insertion in 2-choice hashing is similar as liner
probing. However, we search for a target slot by alternating
between both the target slots from the hash functions. For
example, in Figure 2] the key K8 gets two slots: 3 and 6.
As slot 3 is occupied, the key is inserted in Slot 6 (green
dotted arrow). Such insertion reduces the overall insertion time
considerably compared to linear probing.

2Instead of chaining keys on the same bucket, an alternative bucket is found
within the hash table

Probing: Again, similar to linear probing, the search for an
existing key also probes from the target slot(s). Here, the slots
are alternatively probed until we identify the key or an empty
location from both target locations.

K1 K2 K3 K4 K5 K6

Fig. 2: Example of 2-choice hashing

C. Cuckoo Hashing [|10]

The final hashing technique we consider for AVX-512
acceleration is cuckoo hashinﬁ which uses several hash tables
and hash functions. Unlike previous techniques, in case of a
collision, the technique inserts the current key into its target
location while evicting the key currently present. The evicted
key is stored in an alternative location in another hash table.

K1 K2 K3 K4 K5 K6 | HT-1
K7¥W \7HF2(X)7

\
K8 K9 | K10 n HT-2
0 1 2 3 4 5 6 7

Fig. 3: Example of cuckoo hashing

Insertion: As mentioned, collision results in an eviction of
the value currently in the slot. For example, in Figure [3| we
see the key K7 is given the location 3 in hash table HT-1,
where K3 is already present. Here K3 is evicted, replacing it
with K7 in the table, while K3 is stored in the alternative table
HT?2 (marked in red).

Probing: Though insertion is complicated, probing is
straightforward. Probing has constant lookup time (O(1)). The
key is present in one of the slots given by the hash functions
of the two tables.

Insertion Cycle: One drawback of the technique is the
possibility of insertion cycles. This occurs when keys are
swapped across tables, forming a closed eviction loop. In such
cases, the tables are erased, and the keys are re-hashed with
a different setup.

So far, we have seen the different hashing techniques used
in computing the group-by aggregates. Further, we see that
the bottleneck is in searching for an alternative location in the
table. Hence, optimizing the hash probe leads to better perfor-
mance. In the next section, we propose such an optimization
using SIMD for a faster probe.

III. VERTICAL VECTORIZED HASHING

Vertical vectorization improves execution time by inserting
multiple input keys at a time. However, vertical vectorization
also comes up with two significant challenges: 1) duplicates

3The name for this hashing technique comes from the behavior of the
cuckoo bird, where the hatchling pushes other eggs out of the nest as soon
as it hatches

in the input vector, and 2) identical slots for two keys in the
input vector. Additionally, we need a tailor-made vectorized
execution flow depending on the hashing technique in hand.
In this section, we show the ways to handle the above-
mentioned challenges and develop a general workflow for
vertical vectorization. Later in the section, we show the SIMD
vectorization of different hashing techniques.

A. General Workflow - Reducing Conflict on Key Insertion

As described in the previous sections, hashing techniques
resolve conflicts that arise when two unique keys are inserted
in a single location. In addition to this, a vectorized hashing
technique must also resolve the collision that arises from
inserting two duplicates of a single key. Such collisions are
possible as we aim to insert a vector of input in an instant. To
overcome these collisions across different hashing techniques,
we develop a general workflow that can be extended with
any hashing technique.

Foremost, we must resolve the conflicts from duplicates
in the input before filling the input vector. To this end, we
use scalar linear probing, where duplicates are pre-aggregated
within the input vector itself. Next, for resolving collision from
two different keys, we insert one of the keys while marking
the other as collision. The marked keys are retained in the
input vector and are inserted in the following iterations. We
combine these two workarounds into a generic execution flow,
which is itself split into five phases: load, hash, lookup, store,
and carry. The overall execution flow across the five phases
is given in Figure 4] Each of the individual phases is detailed
below.

le—y
Hash Table
Em) t\ (,—
Al | Al | § o
|£l> H(x) |:> Gather Compare; = Aggregate
H ‘ H ‘ Store Phase
Load Phase Hash Phase Lookup Phase j

Carry Phase I=
Update Offset
Invalidate Lanes

Fig. 4: General workflow

Load Phase: The Load phase is common for all hashing
techniques. It is responsible for handling collisions from
duplicate keys. As mentioned earlier, we use simple linear
probing to populate the input vector. The input key is hashed
(we use murmur3 hashing function) with vector width as the
hash table size. Whenever a duplicate is encountered, we
simply update its partial aggregate. As soon as the whole
input is populated, we move to the hash phase.

Hash phase: In the hash phase, we execute a vectorized
hash function over the input vector to identify the keys’

corresponding buckets. Once the slots are identified, we do
a lookup to see if the keys are already present. Depending
on the hashing technique considered, there can be more than
one hash function present in this phase.

Lookup phase: In the lookup phase, we compare the
input keys with the ones in their corresponding slots. Again,
depending on the hashing technique considered, we will have
to lookup and gather keys from more than one hash table
slot. Once the keys are gathered, there are three possible
outcomes: 1) the target slot can be empty, in which case the
key can be inserted here, 2) the input key is already present
leading to updating the aggregate, and 3) a different key is
present resulting in a collision. Based on the outcome of this
phase, we go to the store/carry phase.

Store phase: This phase is called when their keys are
ready to be inserted. In the store phase, we insert keys in
empty slots as well as aggregate the ones whose keys are
already present.

Carry phase: In this phase, alternative locations are
identified for conflicting keys. Except for cuckoo hashing,
the other techniques identify alternative slot IDs. For cuckoo
hashing, we swap the input keys with the ones present in the
slot.

We go through these phases until all inputs are inserted
into the hash table. Now, we explain in detail the vectorized
execution of the hashing techniques.

B. Table Structure

For better SIMD probing and cache locality, we first modify
the hash table structure for the hashing techniques (based on
existing work [[11]]). In the case of linear probing and 2-choice
hashing, the table is searched sequentially. Hence, it benefits
the techniques to keep the hashed keys together, enabling faster
probing. So, we devise the table to be a Structure of Array
(SoA), with one array for the keys and another for payloads
(cf. Figure [5}a).

Table 1

Keys | Key | Key Keys | Key | Key |Payload |Payload |Payload

Buckst Table 2

Payload | Payload | Payload Bucket

(a) Linear probing and 2-choice
hashing

(b) Cuckoo hashing

Fig. 5: Hash table structure

Next, cuckoo hashing probes a key across multiple hash
tables. Depending on the availability of the key, its corre-
sponding payload is also updated. Hence, in this case, we
devise the hash table to be an Array of Structures (AoS) with
keys and payloads packed together (cf. Figure [5}b). This way,

when swapping keys, we can easily access the corresponding
payload.

C. Vectorized Linear Probing

We incorporate AVX-512 to enable faster comparison of
input vector keys with keys in the target slots. The overall
execution of our AVX-512 linear probing is given in Figure [
The execution starts with hashing the input vector (with only
distinct keys) to identify their target slots. Next, these slot
values within the values are gathered using AVX’s gather
function. We compare these gathered values, once with the
zero vector and once with the input vector. With the former,
we can identify empty locations, and with the latter, whether
keys are already present in the hash table.

Input

m AVX-512 Mul HAVX-EHZ Gather}ii
AVX-512
Compare

Hash table

AVX-512
Compare

Mask: Mask

Compare Compare

Zero vector Input vector

AVX-512 lane Update input
conflict H keys Aggregate

Fig. 6: AVX-512-accelerated linear probing

Mark key for
insertion

Key insert: The keys with zero in their hash table slots are
then compared for any lane conflict. This checks for conflict in
the target slots for two independent keys. In case of conflict,
we mark one of the keys to be inserted while the other is
marked as a collision. Based on this, we insert the keys and
update the input vector. The slots for the remaining keys are
updated, restarting the process.

Payload update: The keys that are already present in the
table are simply aggregated of their payload values. Once the
payload is updated, the corresponding input keys are removed
from the input vector. We repeat the execution with new slots
for the remaining keys until all the keys in the vector are
updated.

D. 2-Choice Hashing

Since 2-choice hashing is an extension to linear probing, we
have the same execution flow as in Figure [f] However, in addi-
tion to the single hash function with AVX gather, we execute
it twice — once per hash function. The remaining execution
flow is the same as above for insertion and aggregation.

E. Cuckoo Hashing

Unlike the previous techniques, cuckoo hashing evicts keys
already present in the hash table. In the case of vectorized
execution, the insertion and probing follow the same as the
previous approach. However, the conflicting keys are for-
warded to the insertion loop.

Payload update: The aggregation of keys is the same as
the one from linear probing. In this case, we compare the
gathered keys with our input keys from HT-1 and update
the ones already present in them. Next, we remove the ones

Input

‘ AVX Gather }4—{ AVX Mul AVX Mul H AVX Gather

.| AVX SWAP AVX SWAP .

o

Keys in vector
e :

Hash Table 1

Zero vector—>»{ AVX Compare AVX Compare

Fig. 7: AVX-512 accelerated cuckoo hashing—Insert loop

Hash Table 2
Zero vector

already inserted and compare the ones remaining with the keys
gathered from HT-2.

Key insert: Once the keys’ payload is updated, we enter
the insertion cycle. The overall flow of the insertion loop is
given in Figure [/} As shown, the keys are hashed and the
corresponding keys are gathered. These keys are swapped with
input and compared with a zero vector. In case the values after
the swap are empty (mask is returned as 65535), we stop the
execution. Else, we switch to the next hash table with these
keys as new input. We repeat the insertion by alternating the
hash tables until all the keys are inserted.

IV. EVALUATION

In this section, we evaluate the hashing techniques to
understand the impact of vectorization. Using the optimal load
factor for the different hashing techniques, we measure the per-
formance of vectorization across various data distributions and
compare it against the scalar and horizontal vectorized [11]]
execution.

Experimental Setup

Our experiments are run on an Intel® Xeon® Gold 5220R
CPU @ 2.20GHz running Ubuntu LTS 18.04. Our hashing
techniques are implemented in C++ E] with AVX-512 SIMD
extensions. It is compiled using GCC version 10.1 with nec-
essary optimization flags (-O3 -mcmodel=medium -mavx512f
-mavx512cd -mavx512bw). We use Mumur3 as the main hash
function across all hashing techniques.

We consider integer input arrays with sizes ranging from 5
million to 50 million, incremented in steps of 5 million. All
our experiments are run for 20 iterations and their execution
time are averaged. Furthermore, we also experiment with
three data distributions: Dense unique random, sequential,
and uniform random to study the impact of data ordering.
These are generated based on techniques mentioned in [13]].
Finally, even though we use count as our aggregate function,
other aggregation functions like min, max, and sum will also
have similar performance impacts.

A. Impact of Load Factor

Load faCtOIE] is a critical parameter of the hash table that
heavily influences the number of collisions. The parameter

4Complete code is available in |https:/github.com/spoorthin/
Vertical- Vectoriztion- of-GroupBy- Aggregation- Hashing
“the ratio of keys to the number of hash table slots.

https://github.com/spoorthin/Vertical-Vectoriztion-of-GroupBy-Aggregation-Hashing
https://github.com/spoorthin/Vertical-Vectoriztion-of-GroupBy-Aggregation-Hashing

is critical in fine-tuning the trade-off between time & space
utilized while hashing. Hence, we experiment with different
load factors to identify one value where time and space
complexity for hashing technique is at a minimum. In this
experiment, we insert a uniform random dataset with 50M
keys, while varying the hash table size according to the given
load factor. The results are plotted in Figure [8]

E 0.4 | |

5 107041 A
=

Fj 1070.5 -]
8 —_— 1T

[}j 1070.6 I I I [

| |
092 094 0.96 0.98 1
Load factor

0.9

—— Linear probing
—— Cuckoo hashing

2-choice hashing

Fig. 8: Impact of load factor

As we see in the figure, the load factor has a varying
performance impact and execution profile with the underlying
hashing technique. Linear probing’s execution time increases
with the load factor, dropping to around 0.98. In the case
of 2-choice hashing, we see that the optimal load factor is
0.97 for 2-choice hashing. Finally, cuckoo hashing has an
optimal load factor of 0.98. Overall, we see that even with
quite a high load factor, we get competing performance with
all hash tables. We believe such behavior is due to optimal
caching. A collision in the 1.0 load factor leads to a lot of
random memory accesses, resulting in many cache misses.
However, around 0.97 or 0.98 load factors, the likelihood of
accessing the target slot is comparatively better. Additionally,
pre-fetching also helps that the target slot is already present
in the cache lines. Hence, we use these load factor values to
explore the performance of hashing techniques with varying
data distributions.

B. Impact of Data Distribution

In this section, we compare the performance of our vertical
vectorized execution with horizontal & scalar execution with
varying data distributions and data sizes. Depending on the
data size and the optimal load factor for the hashing techniques
(identified from the above section), we create the hash tables.
The comparison results for different hashing techniques are
given in Figure O] As expected, the execution time grows
linearly with more data, except for the unique random dis-
tribution where it is nearly constant. Such behavior across all
hashing techniques is due to the compatibility of the random-
ization function and our hashing function, resulting in fewer
collisions. This distribution simulates the best-case scenario,
with sequential distribution representing the worst-case, while
uniform random represents the scenario in between. Also, the
results show horizontal vectorization is on average 3x faster
than scalar execution. This can be attributed to only one key

being inserted at any given instant. Below is the discussion on
the behavior of individual hashing techniques.
Linear probing: Linear probing is 13x faster than scalar and
horizontal execution for dense unique and random distribution,
and 9x faster for sequential. With dense unique, being the best-
case distribution, the speed-up nearly matches the size of the
vector width. However, we cannot reach peak performance due
to two pitfalls: 1) scalar input load incurs overhead and 2) the
data access time for gather & scatter functions.
2-choice hashing: Similar to the case of linear probing, 2-
choice hashing also has a similar performance profile across
different distributions. This is reflected in the speed-up gain
across the distributions. We see an increase in speed-up
(up to 10x) for sequential distribution, which is due to the
exploitation of alternative slots for each key in the hash table.
Cuckoo hashing: Cuckoo hashing is the fastest among the
chosen ones across all execution modes. However, the speed-
up gain is sub-optimal when compared with the other two.
Such behavior is due to the constant swap and replace of
values within the hash table. As mentioned in linear probing,
the gather & scatter functions increase execution time with
each memory access, and hence they cause the decline in
performance. Still, we see up to 10x performance gain com-
pared to scalar and nearly 8x speed-up compared to horizontal
vectorized execution. Overall, we see improvement in speed
using vertical vectorization. We reach an average performance
of more than 8x across the techniques than other counterparts.
Analyzing speed-up: The previous section showed varying
speed-ups for our vectorized approach. Here, we detail the
rationale behind these speed-up ranges. The box plot in
Figure [I0] details the speed-up across the data distributions
for different hashing techniques. The dotted line in the figure
marks the maximum speed-up of 16x, as we can insert 16 keys

at a time.)
As we see, the maxi-

20 mum gain across all hash-
Vector width | ing techniques is around

S e 15x. They don’t reach
@ E the theoretical maximum,
& 10 ﬁl mainly due to the penalty
5 ‘ ‘ ‘ of loading the input vector.

Furthermore, each gather
and scatter operation also
incurs latency (of around
30 clock cycles?).

When investigating indi-
vidual hashing techniques,
we see that linear probing and 2-choice hashing have high
variability of speed-up. This shows that they are influenced
by the underlying input distribution. However, cuckoo hashing
has less impact on data distribution. However, the speed-
up gain is sub-optimal. Since cuckoo hashing suffers from
multiple swaps, it has poor speed-up gain compared to other
techniques.

Fig. 10: Speed-up across differ-
ent hashing techniques

Shttps://www.intel.com/content/www/us/en/docs/intrinsics- guide/index.
html#techs=AVX_512&ig_expand=4005

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#techs=AVX_512&ig_expand=4005
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#techs=AVX_512&ig_expand=4005

i) Linear probing - Dense unique random

10°

5M 10M I15M 20M 25M 30M 35M 40M 45M
Data size

ii) Linear probing - Sequential

SM 10M 15M 20M 25M 30M 35M 40

Data size

L
M 45M

iii) Linear probing - Uniform random

5M 10M 15M 20M 25M 30M 35M 40M 45M
Data size

—~ | —] —_~ F I | —_~ [B
- " | e n . "o
8 g n " n n—N—n_nn] 8 r noon n—0—0 i 8 e n-n n—0 o]
< . : C e n—" E e 0k o
Q r b Q F m B Q F . B
g [b § N] g (S]
3= 3= = oL |
9 q0-1 | . o 107 E o 100F €
(5] - B Q = B Q r B
= £ N X F B < C B
H oo ¢ ¢ ¢ ¢ ¢ ¢ ¢ 1 M L T Y R R N NN N B H L E S R R B B B
SM 10M 15M 20M 25M 30M 35M 40M 45M 5M 10M 15M 20M 25M 30M 35M 40M 45M 5M 10M 15M 20M 25M 30M 35M 40M 45M
Data size Data size Data size
iv) 2 choice - Dense unique random v) 2 choice - Sequential vi) 2 choice - Uniform random
—~ [| \ I I I I I I —~ F T T T T T I T I — F 9
Q o—o—O—0—n—0—0—0—10n 3 . " g N) []
o Q r = 1 Q 1
2] 122] 1l ey | v 10" El
~ 5 ~ 10" ¢ E| - E E|
10705 |- | £] El E B
o o F m E o 5 1
£ £ 1 £ | 1
3= 3= S ol |
Q 107! | - o 100 El o 100 F E|
[] E B Q - =
* < F 9 » r 1
H A S D R M L T R N N B R R M L B
SM 10M 15M 20M 25M 30M 35M 40M 45M SM 10M 15M 20M 25M 30M 35M 40M 45M SM 10M 15M 20M 25M 30M 35M 40M 45M
Data size Data size Data size
vii) Cuckoo hashing - Dense unique random viii) Cuckoo hashing - Sequential ix) Cuckoo hashing - Uniform random
6\ .\ a a \. .\ a a a \. ,a F T T T T T T T * | 6\ T T T T T T ﬁ
5] 5] r " B 1 53 1L . |
[%5) _os | N [Z TS i - v 10" E e El
~ 10 ~ E E| ~ = = E|
o o F » E Q r]
£ £ Fow 3 E [= 4/'/././0]
3] 3= =N i
o 107! . o 10° E o 107F E
Q Q E B Q - |
= e 6 6 o o o o ° = r g = r]
o8} ? | [[| | | | | o8 S | | | | | | | | o8} C | | | | | | | | |

‘+ Vertical vectorization —=— Scalar execution

Horizontal vectorization ‘

Fig. 9: Performance of SIMD accelerated hashing across data distributions

V. RELATED WORK

In this section, we review work with SIMD for aggregation,
hashing techniques, and hardware-related optimizations for
SIMD.

In [4], the authors have implemented vertical vectorization
for linear probing hashing along with other DB operators.
Unlike their software-based collision detection statement, we
use Intel’s instruction set Conflict Detection (AVX-512CD)
allowing the vectorization of loops with possible address
conflicts. Unlike their work, we have an additional load phase
where we pre-aggregate the input keys to avoid conflict from
equal keys.

A similar vertical vectorization of linear probing with a new
AVX-512 instruction set has been attempted in [[14]. Unlike
this work, we use a fixed vector lane to store the duplicate
keys and process them in a single iteration saving more time.
Jiang et al. [15] developed a hash-based grouped aggregation
that addresses SIMD vector conflicts. However, they focus
on chained hashing whereas we focus on open-addressing
techniques. Such similar realizations are also present in [[16],
[17].

Behrens et al. [18] use OpenCL for data-parallel hashing.
They also split their execution into multiple phases. Unlike
their work, we make our approach generic to fit multiple
hashing techniques. Other than these, SIMD has been used for
other database operations as well. Lang et al. [6] explore SIMD
on complete query pipelines. Zhou et al. [19] accelerated

operations like scans, index search, and nested loop joins.
[20] proposes a SIMD sorting called Aligned-Access sort (AA-
sort). Our implementation can work with these operations in
a query pipeline enabling faster query execution.

VI. CONCLUSION

Vectorization in modern CPUs increases the performance
of existing applications many-fold. Hence, it is a suitable
code-optimization strategy for developing efficient database
operators. In this work, we focus on developing an efficient
hash-based group-by operator. We architect the operator using
a five-phase workflow, which can support various hashing
techniques. We further use this workflow to implement three
AVX-512-accelerated hashing techniques. Our experiments
show that vectorization enables speed-ups between 10x and
13x the scalar execution depending on the underlying data
distribution. Our experiments also show that the techniques
suffer penalties in populating the input vector as well as
while accessing multiple memory locations in an instant. As
future work, other hashing techniques like hopscotch hashing
can be extended. Furthermore, we comprehensive study of
various vectorized hashing techniques could be also studied
to understand the overall impact of vectorization.

ACKNOWLEDGMENT

This work was partially funded by the DFG (grant no.: SA
465/51-2).

[1]

[2

—

[3]

[7]
[8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

REFERENCES

K. A. Ross, “Efficient hash probes on modern processors,” in 2007 IEEE
23rd International Conference on Data Engineering. 1EEE, 2006, pp.
1297-1301.

D. Broneske, S. Bre3, M. Heimel, and G. Saake, “Toward hardware-
sensitive database operations.” in EDBT, 2014, pp. 229-234.

L.-C. Schulz, D. Broneske, and G. Saake, “An eight-dimensional
systematic evaluation of optimized search algorithms on modern
processors,” Proc. VLDB Endow., vol. 11, no. 11, p. 1550-1562, jul
2018. [Online]. Available: https://doi.org/10.14778/3236187.3236205
O. Polychroniou, A. Raghavan, and K. A. Ross, “Rethinking SIMD
vectorization for in-memory databases,” in Proceedings of the ACM
SIGMOD. ACM, 2015, pp. 1493-1508.

D. Broneske, A. Meister, and G. Saake, ‘“Hardware-sensitive scan
operator variants for compiled selection pipelines,” in Proceedings of
BTW, 2017, pp. 403-412.

H. Lang, L. Passing, A. Kipf, P. A. Boncz, T. Neumann, and A. Kemper,
“Make the most out of your SIMD investments: counter control flow
divergence in compiled query pipelines,” Proceedings of VLDB, pp. 757—
774, 2020.

A. Sharma and H. Zeller, “Hash-based database grouping system and
method,” in Google Patents, April 1996.

D. E. Knuth, “Linear probing and graphs,” Algorithmica, pp. 561-568,
1998.

Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal, “Balanced alloca-
tions,” in Proceedings of ACM STOC, 1994, pp. 593-602.

R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of Algorithms, pp.
122-144, 2004.

B. Gurumurthy, D. Broneske, M. Pinnecke, G. Campero, and G. Saake,
“SIMD vectorized hashing for grouped aggregation,” in Proceedings of
ADBIS. Springer, 2018, pp. 113-126.

A. Georgakopoulos, J. Haslegrave, T. Sauerwald, and J. Sylvester, “The
power of two choices for random walks,” CoRR, 2019.

J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger,
“Quickly generating billion-record synthetic databases,” in Proceedings
of ACM SIGMOD, 1994, pp. 243-252.

J. Pietrzyk, A. Ungethiim, D. Habich, and W. Lehner, “Fighting the
duplicates in hashing: Conflict detection-aware vectorization of linear
probing,” in Proceedings of BTW, 2019, pp. 35-53.

P. Jiang and G. Agrawal, “Efficient SIMD and MIMD parallelization of
hash-based aggregation by conflict mitigation,” in Proceedings of ICS,
2017, pp. 24:1-24:11.

O. Polychroniou and K. A. Ross, “Vip: A simd vectorized analytical
query engine,” The VLDB Journal, vol. 29, no. 6, pp. 1243-1261, 2020.
Z. Fang, B. Zheng, and C. Weng, “Interleaved multi-vectorizing,”
Proceedings of the VLDB Endowment, vol. 13, no. 3, pp. 226-238, 2019.
T. Behrens, V. Rosenfeld, J. Traub, S. Bre3, and V. Markl, “Efficient
SIMD vectorization for hashing in opencl,” in Proceedings of EDBT,
2018, pp. 489-492.

J. Zhou and K. A. Ross, “Implementing database operations using SIMD
instructions,” in Proceedings of ACM SIGMOD, 2002, pp. 145-156.
H. Inoue, T. Moriyama, H. Komatsu, and T. Nakatani, “AA-sort: A
new parallel sorting algorithm for multi-core SIMD processors,” in
Proceesings of PACT, 2007, pp. 189-198.

https://doi.org/10.14778/3236187.3236205

	Introduction
	Hashing Techniques — A Primer
	Linear Probing knuth1998linear
	2-Choice Hashing azar1994balanced
	Cuckoo Hashing pagh2004cuckoo

	Vertical Vectorized Hashing
	General Workflow - Reducing Conflict on Key Insertion
	Table Structure
	Vectorized Linear Probing
	2-Choice Hashing
	Cuckoo Hashing

	Evaluation
	Impact of Load Factor
	Impact of Data Distribution

	Related work
	Conclusion
	References

