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Abstract
Graph data models enable efficient storage, visualization, and analysis of highly interlinked data, by providing the benefits 
of horizontal scalability and high query performance. Clustering techniques, such as K-means, hierarchical clustering, 
are highly beneficial tools in data mining and machine learning to find meaningful similarities and differences between 
data points. Recent developments in graph data models, as well as clustering algorithms for graph data, have shown 
promising results in image segmentation, gene data analysis, etc. This has been primarily achieved through research and 
development of algorithms in the field of spectral theory, leading to the conception of spectral clustering algorithms. 
Spectral clustering algorithms have been one of the most effective in grouping similar data points in graph data models. 
In this paper, we have compiled 16 spectral clustering algorithms and compared their computational complexities, after 
an overview of graph data models and graph database models. Furthermore, we provided a broad taxonomy to classify 
most existing clustering algorithms and discussed the taxonomy in detail.

Keywords Graph data · Clustering · Laplacian · Spectral

1 Introduction

Graph data models are useful to store, process and analyse highly interlinked data [1]. This is achieved through the use of 
graph theory to store data in the form of nodes and edges [2]. With the recent rise in the popularity of graph databases, 
which rely on graph data models to store and query data, there is a growing need to incorporate state-of-the-art learning 
algorithms to analyse data in graph data models. This incorporation enables the extraction of meaningful information 
that might otherwise be hidden when analysed in a tabular structure. Employing unsupervised and supervised learning 
techniques is highly effective for analysing data across several domains, e.g. to study social networks [3], physical systems 
[4], proteomics knowledge graphs [5], etc [6].

One of the most commonly used unsupervised learning algorithms is clustering, which is widely used by data analysts 
and domain experts to group similar instances and explore hidden structures in a wide spectrum of fields, ranging from 
engineering, computer science and medical sciences to social sciences and economics as well [2]. The challenges and 
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opportunities of graph data have led to the development of specialized clustering algorithms designed specifically for 
graph data. These algorithms include spectral clustering which often outperforms basic clustering algorithms such as 
K-means, hierarchical, etc. [9].

The popularity of graph data is on the rise with the development of graph database management systems, e.g. Allegro-
Graph, ArangoDB, InfiniteGraph, Neo4J [10]. The flexibility of the graph data structures allows novel possibilities for data 
exploration, and consequently, knowledge discovery. As a result, clustering algorithms designed for graph data models, 
e.g. spectral clustering algorithms, are gaining momentum along with the applications of graph data and databases.

A popular class of clustering algorithms, designed specifically for graph data models, is known as spectral clustering. 
Spectral clustering utilizes eigendecomposition to represent and group data into clusters [11], and its conceptualization 
dates back to 1973 [12]. This survey analyses popular spectral clustering algorithms, which have been widely discussed in 
the scientific community due to their high efficiency in applications such as image segmentation, analysing patterns in 
gene expression data or proteomics data. We initially provide a roadmap (see Fig. 1) to navigate through the clustering 
paradigm till spectral clustering is reached, upon which we elaborate on 16 primary spectral clustering algorithms and 
conclude with a comparison of their complexities and applications. Since several variations of these algorithms were 
developed, we will concentrate on discussing most of them extensively in a single survey.

In this paper, we have provided a comprehensive overview of the following topics:

• Background: Graph theory, database models, and cluster analysis (Sect. 3)
• Types of clustering algorithms (Sect. 3.3)
• Clustering graph data: Graph and node clustering (Sect. 4.1 and 4.2)
• Spectral clustering algorithms (Sect. 4.3)

1.1  Related work

There are several clustering techniques and comprehensive analyses of clustering algorithms for e.g., clustering algo-
rithms in general by Ezugwu et al. [7], clustering algorithms for graph data by Aggarwal et al. [8], spectral clustering 
algorithms by Nascimento et al. [11] and Verma et al. [13]. The conception of new spectral clustering algorithms is more 
suited for specific tasks rather than generic data. Karim et al. [14] have demonstrated in their survey on deep learning-
based clustering approaches their usefulness in the field of bioinformatics. Another similar work by Qi et al. [15] has 
surveyed various clustering and classification methods specifically for single-cell RNA-sequencing data. Several recent 
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developments in the domain of spectral clustering require an elaborate survey of significant techniques and a roadmap 
to trace the development of the use of eigenvectors for clustering.

2  Definitions and notations

Graph: A graph is represented by, G = (V,E), where V denotes a set of nodes (vertices) and E denotes a set of edges (rela-
tionships) between the nodes. Edges can be weighted or unweighted. Edges should be undirected for spectral cluster-
ing algorithms (von Luxburg [9]). There are three different methods to transform data points into a similarity graph, for 
spectral clustering [9] as shown in Fig. 2:

• Fully connected graph [16, 17]: Any data points with positive adjacency values can be connected to form a graph 
which is only useful when the similarity function itself can model local neighbourhoods, e.g.: 

where Aij is the affinity between si and sj; si − sj is the distance between si and sj; σ is the scaling parameter
• �-neighbourhood graph [18]: Data points are connected based on a threshold, � . Edges with weights lower than the 

� are discarded to form a �-neighbourhood graph from a fully-connected graph.
• k-neighbourhood graph [19]: Formed using the k-nearest neighbour algorithm resulting in either k-nearest neigh-

bour or mutual k-nearest neighbour graph, depending on how the vertices were connected. k denotes the minimum 
number of points required to define a local neighbourhood.

Proximity measure: Measure of distance, similarity, dissimilarity and/or adjacency between vertices/nodes/data points 
derived from their attributes. Clustering algorithms always require calculating proximity measures, among the given data 
points, as their primary step. Popular examples (Mehta et al. [20]) in the context of clustering can be broadly categorized 
into two types: metric and non-metric (see Table 1). Metric proximity measures satisfy properties such as non-negativity, 
symmetry, and triangle inequality. On the other hand, non-metric proximity measures may violate symmetry and/or 
triangle inequality.

Distance matrix: Square matrix (refer Fig. 3a) representing the distance between data points based on a distance 
measure, e.g. Euclidean, Manhattan, etc. The diagonal values are 0 which signifies the lowest possible distance value.

Similarity matrix: Square matrix (refer Fig. 3b) representing the similarity between data points based on a similarity 
measure, e.g. Dice, Cosine, etc. Diagonal value 1 represents the highest possible similarity value. However, the diagonal 
of a square matrix containing dissimilarity between data points may contain 0 as the lowest possible dissimilarity value.

Adjacency (affinity) matrix: Square matrix (refer Fig. 3c) representing the adjacency (also affinity or node similarity) 
between points/nodes in a graph, G (Hogben [29]). It can be of two types—unweighted and weighted.

For weighted adjacency matrix: A = [ �ij ], where, �ij is an edge of graph, G
For unweighted adjacency matrix: A = [ �ij ], where, �ij = 1 if {i,j} is an edge of graph, G and �ij = 0 otherwise.
Diagonal (degree) matrix: Square matrix containing the degree of each node in its diagonal (Hogben [29]) which 

represents the number of edges, connected to each node in the graph.

(1)Aij = exp(−||si − sj||
2∕2�2)
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D = diag(degG1,...,degGn), where, n = number of nodes/data points and, deg = degree of a node (number of edges 
connected to a node).

Laplacian matrix: Spectral clustering algorithms require adjacency and degree matrix to create the Laplacian matrix 
of the input graph which acts as a primary input to most. Commonly used types in spectral clustering [9, 30] are:

• Unnormalized, L = D − A
• Normalized:

– Symmetric, L sym = D−1∕2LD−1∕2

– Random Walk, L rw = D−1L

• Relaxed, L 
�
 = L − 

�
D

  where D = Diagonal and A = Adjacency matrix, and � = relaxation parameter.

Table 1  A generic overview of 
popular proximity measures 
used in clustering

n = data set size, xi , yi = vectors with i elements, p = scaling factor, V = covariance matrix, E = cross-corre-
lation, � = standard deviation, N(x)/N(y) = set of vertices that form the “neighbourhood” of a single vertex 
x/y, ∩ = set intersections, ∪ = set union, A = ground-truth, B = predicted label, C ij  = sum of lesser values for 
species found in sites i and j, S i  = sum of species found at site i, S j  = sum of species found at site j

Proximity Type Equation

Euclidean distance [21] Metric
�

∑n

i=1
(xi − yi)

2

Manhattan distance [21] Metric ∑n

i=0
�
�xi − yi

�
�

Minkowski distance [22] Non-metric �∑n

i=1
�
�xi − yi

�
�
p� 1

p

Chebyshev distance [23] Metric maxi=1,2,…n
|
|xi − yi

|
|

Mahalanobis distance [22] Metric
√
(xi − yi)

T V−1(xi − yi)

Hamming distance [22] Non-metric ∑n

i=0
�
�xi − yi

�
�

Canberra distance [23] Metric ∑n

i=1

�xi−yi�
�xi�+�yi�

Pearson correlation [24] Non-metric E(xy)∕�x�y

Jaccard coefficient [25] Metric |N(x)∩N(y)|

|N(x)∪N(y)|

Dice coefficient [26] Non-metric 2|A∩B|

|A|+|B|

Cosine similarity [27] Non-metric x⃗ .⃗y

|⃗x|+|⃗y|

Bray–Curtis dissimilarity [28] Non-metric 1 − (2 * Cij)/(S i+S j)
Kullback–Leibler divergence [22] Non-metric ∑n

i=1
xi × log

2

�
xi

yi

�

similarity/
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Fig. 3  Matrix representation of a distance, b similarity (affinity) and c adjacency matrices for nodes N1, N2 and N3
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3  Background

3.1  Graph theory

Graph theory is a branch of discrete mathematics that deals with the study of mathematical structures to model 
entities and relationships between them, in the form of nodes/vertices and relations/edges, respectively. It has 
been discussed by Pal Singh et al. [31], along with its wide spectrum of applications in database design, software 
engineering, circuit designing, network designing, and visual interfaces. Graph theory influenced the conception of 
several database models, such as semantic, object-oriented, graph, and XML, as shown in Fig. 4. Some popular data 
structures influenced by graph theory are trees, linked lists, etc. that can be used to model graphs.

3.2  Graph database models

Graph databases primarily provide storage and querying of data stored in graph data models. Additionally, available 
plug-ins [32] can provide features such as conceptual visualization, e.g. Neo4j bloom [33], data analytics, e.g. Graph 
Data Science library [34], Decision Tree Plug-in [35]. Hence the full potential of graph data models could be realized on 
a Graph Database Management System such as Neo4j [36], AllegroGraph [10]. Chad et al. [36] have evaluated Neo4j, 

Fig. 4  Evolution of database 
models. Arrows denote 
influence—dotted arrows rep-
resent the influence of graph 
theory on various database 
models [32]
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Table 2  Graph vs relational 
database models [36, 37]

Relational Graph

Transaction model ACID BASE (Neo4j complies ACID as well)
Query language SQL Cypher, Gremlin, SPARQL, GQL
Scalability Vertical Horizontal
Integrity constraints Yes Yes
Flexibility Less mutable schema Easily mutable schema
Support High Inferior
Ease of programming Easy Difficult
Security Extensive for ACL-based Only at application level
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a Graph Database Management System, against Relational Database Management System as shown in Table 2. The 
flexibility of data schema in a graph database represents the added benefit over a relational database. Regarding 
scalability, it could be argued that relational databases perform better regarding data distribution across several 
machines, as discussed by Pokorny [1]. However, scalability on large datasets is not an issue for graph databases [1].

3.3  Cluster analysis

Clustering (cluster analysis), is a process of grouping data into distinct classes so that objects with similar attributes and/
or characteristics are grouped in the same class/clusters [7]. It is classified as an unsupervised learning algorithm where 
the goal is to find meaningful patterns from underlying unlabeled data [38].

Traditional clustering algorithms such as K-means, DBSCAN, and agglomerative clustering, suffer when dealing with 
high-dimensional data since most often Euclidean distance alone is used as the distance/proximity measure between 
data points which fails at accurately portraying the relative positions of data points at high dimensions [39]. Spectral clus-
tering algorithms overcome this (graphs are non-Euclidean data structures [40]) through the calculation of eigenvalues 
and eigenvectors from Euclidean distances of the graph Laplacian matrix to partition the graph in the eigenspace [8].

Clustering algorithms could be broadly generalized into two categories: partitional and hierarchical clustering (Celebi 
et al. [41]). The former partitions data points according to a pre-defined number of groups, while the latter hierarchi-
cally assigns data points as groups of subgroups, until all points belong to one cluster (bottom-up) or individual clusters 
(top-down). A brief comparison between partitional and hierarchical clustering algorithms is provided in Table 3. While 
hierarchical clustering is generously illustrative to have an elaborate overview of the cluster formation, which acts as 
a huge advantage to realize the similarity between data points in sub-clusters, it comes at the cost of higher time and 
space complexity (Garima et al. [42]) than partitional clustering.

Sum of squares of error (SSE) minimization: The most commonly used partitional clustering technique, K-means, opti-
mizes SSE of clusters, while Ezugwu et al. [7] also labels it as a hard clustering technique. It has the advantage of being 
easily implemented on large datasets at a considerably low run time. The results are easily interpretable, which benefits 
the user in having a general overview of the data and possible clusters.

Fuzzy: Fuzzy clustering involves assigning the degree of membership, for each data point to more than one cluster, 
e.g. fuzzy c-means algorithm [48].

Mixture resolving: Mixture resolving methods, according to Grira et al. [49], assume that data points belong to one of 
several distributions. Expectation maximization (EM) is an iterative approach that aims to find the maximum likelihood 
estimates of the parameters [50] and is used in this case for parameter estimation.

Hard clustering: Hard clustering, e.g. K-means, groups data into prespecified k non-overlapping groups, without a 
hierarchy [7].

• Density-based clustering algorithms such as DBSCAN (Ester et al. [51]), OPTICS (Ankerst et al. [44]), DENCLUE (Hin-
neburg et al. [52]) provide better performance than K-means by handling arbitrary shapes and detecting outliers.

• Subspace clustering algorithms can be categorized into top-down and bottom-up algorithms. PART (Cao et al. [53]) 
and PROCLUS (Aggarwal et al. [54]) are top-down algorithms, in which the whole set of dimensions is used to find an 
initial grouping, and the subspaces of each cluster are assessed. On the other hand CLIQUE (Agrawal et al. [55]), and 
MAFIA (Nagesh et al. [56]) are bottom-up subspace algorithms, in which first dense areas in low-dimensional spaces 
are identified, then by combining them, clusters are created (Gan et al. [57]).

• In model-based clustering such as COOLCAT (Barbará et al. [58]) and STUCCO (Bay et al. [59]), it is presupposed that 
the data are produced by a combination of probability distributions, each of which components represents a distinct 
cluster (Gan et al. [57]).

• Search-based algorithms such as Genetic Algorithms (Holland et al. [60]), Al-Sultan’s Method (Barbara et al. [58]) work 
towards globally optimal clustering to fit the data. Compare to, for example, fuzzy clustering, search-based algorithms 
do not stop at a local optimum partition (Gan et al. [57]).

• Other algorithms inside the class of hard clustering are termed Miscellaneous Algorithms. Examples include (Gan 
et al. [57]) Time Series Clustering Algorithms in which data is usually classified into two categories—much individual 
time series and a single time series; Streaming Algorithms—tremendous amounts of data, including network data, 
temperature data, and satellite imagery data; Transaction Data Clustering Algorithms—for transaction data (market 
basket data) etc.
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• Graph clustering is another type of hard clustering, tailored to cluster data stored in graph data structures (Nascimento 
et al. [11]). Algorithms of graph clustering can be broadly classified into two categories—graph and node clustering 
algorithms.

4  Clustering graph data: graph and node clustering algorithms

4.1  Graph clustering algorithms

Graph clustering algorithms are concerned with clustering several graphs rather than one, each with a set of nodes and 
edges, based on their underlying structure, and could be discussed either in the context of graph data as well as semi-
structured data, e.g. XML data. Some popular approaches in this regard are:

• Structural distance-based approach, e.g. XClust (Lee et al. [61]).
• Structural summary-based approach (Dalamagas et al. [62]).
• The XProj approach (Aggarwal et al. [63]).

The use of eigenvectors to represent and cluster data points or graph nodes was made popular by the conception of 
spectral clustering, which is a form of a node clustering algorithm.

4.2  Node clustering algorithms

Node clustering algorithms use a distance function to measure proximity between data points or nodes, of a multi-
dimensional dataset (Aggarwal et al. [8]). The desired goal is to partition the graph by minimizing the weights of the 
edges across the partition.

Minimum cut: Given a graph, G = (V,E) with vertex (node) set V and edge (relation) set E, the minimum-cut algorithm 
tries to identify the smallest sum of edge weights that need to be removed to separate the graph V into two disconnected 
components for binary graph partitioning [64]. It has a complexity of O(n2 ), where n is the number of nodes (Karger [65]).

Ratio cut: Ratio cut is a measure of the quality of a partition. It is the ratio of the total edge weights between the 
clusters to the total edge weights within the clusters. The objective in ratio cut is to find a partition that minimizes this 
ratio, indicating a good separation of clusters. Ratio cut is often employed in the context of spectral clustering, especially 
for binary partitioning [66].

Multi-way graph partitioning: Multi-way graph partitioning is an NP-Hard problem, where the goal is to partition 
the set of vertices into k (greater than 2) clusters so that the weights of edges whose ends are in different partitions are 
minimized (Kernighan et al. [67]). The time complexity in this case increases exponentially with the value of k. A variation 
of this heuristic approach has been discussed by Fjällström [68].

Network-structure index: In this technique, the graph is partitioned into zones through a competitive flooding 
algorithm achieved through labelling seeds by zone identification, i.e. randomly selecting unlabeled neighbours and 
adding a label that matches its current value. The process repeats until all nodes are labelled [69].

Fig. 5  Step-wise comparison 
of spectral algorithms against 
basic clustering algorithms. 
Dashed lines represent paths 
for spectral clustering while 
undashed lines represent 
paths for basic clusterings, 
such as K-means
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Table 4  Comparison of spectral clustering algorithms discussed in this survey

n = number of nodes, d = number eigenvectors used, b = max
1⩽i⩽ndi , k = number of partitions (clusters), K = number of nearest representa-

tives, p = number of representatives, t = Number of iterations, v = number of views, E = number of non-zero edges in coarsened Adjacency 
matrix, T = time of quantum state, � = relative error

Algorithm Computational complexity Laplacian Application

EIGI [75]
KP [78]
MELO [79]
Hierarchical [90]

O(n2 ) [11, 99, 100]
O(n(bk2+ bklog(n))) [11]
O(n2d ) [11]
O(n3 ) [90]

Un-normalized Load balancing [101]
Parallel computing [102]
VLSI design [103]
General clustering [104]

Anchor [89]
SpectralNet [91]

O(n3 ) [13]
< O(n3 ) [94]

Non-Laplacian
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Fig. 6  Range of computa-
tional complexity of spectral 
clustering algorithms. Black 
line represents O(n), blue line 
represents O(n2 ) and red rep-
resents the highest possible 
complexity of O(n3 ). Values in 
the y-axis (number of compu-
tations) have raised to 1 * e6
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Girvan–Newman algorithm: A divisive clustering algorithm based on the concept of edge betweenness centrality 
(Girvan et al. [70]) which is the number of shortest paths passing through the endpoints of the edge. The algorithm 
starts with calculating edge betweenness for every edge in the graph, then removes the edge with the highest edge 
betweenness and calculates edge betweenness for the remaining edges. The process repeats until all edges are removed 
(Despalatović et al. [71]).

Determining quasi-cliques: While most partitioning algorithms try to minimize edge density, this technique focuses 
on maximizing edge density within a partition. To elaborate, a clique is a graph where all pairs of nodes have an edge 
between them and a quasi-clique is defined by imposing a lower bound on the degree of each vertex in the given set 
of nodes (Abello et al. [72]).

Min-hash approach: Min-hash approach attempts to define a node’s outlinks (hyperlinks) as sets, i.e. two nodes are 
considered similar, if they share many outlinks [73]. The jaccard coefficient is used to represent the similarity between 
two nodes (Baharav et al. [74]).

4.3  Spectral clustering algorithms

Spectral clustering use eigenvalues and eigenvectors to represent clusters, as a set of vertices (nodes), derived from 
the node adjacency matrix of a graph [8]. These algorithms can provide lower/upper bounds for minimization/maxi-
mization of graph partitioning problems [11]. In the following, we discuss popular spectral clustering algorithms, 
along with their steps and complexity. In Fig. 5, we compare the steps of spectral clustering algorithms compared 
to a basic clustering algorithm, such as K-means. The steps are often repeated iteratively to reduce the value of a 
chosen cost function (SSE in K-means clustering). Spectral clustering algorithms have the additional steps of creating 
the Laplacian matrix and deriving eigenvectors and eigenvalues from it, which is why they have high computational 
costs, similar to hierarchical clustering (Table 3).

Algorithm 4.3.1  EIGI algo-
rithm [75]

1: Input: Graph G, its Laplacian matrix L and
threshold r.

2: Calculate the second smallest set of eigenval-
ues and corresponding eigenvectors of L, using
the Lanczos Algorithm.

3: Compare the second set of eigenvalues to
threshold r and assign it to one of two clusters.

4: Output: Resulting partition.

Algorithm 4.3.2  KP Algorithm 
[78]

1: Input: Graph G, its Laplacian matrix L and
the number of desired clusters k.

2: Find k eigenvectors of Laplacian, L and
arrange them in matrix U.

3: Select k nodes to represent each k prototype
4: Calibrate k prototypes, iteratively, by calcu-

lating average and posterior selection to the
closest node.

5: Verify whether cosine k prototypes with the
connected points are higher than π/8 and
reassign to larger cosine if so.

6: For all unallocated nodes, find the largest
weight cut when compared to existing clusters,
and assign them to clusters

7: Output: k partitions.
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4.3.1  EIGI algorithm

The EIGI algorithm (see Algorithm 4.3.1) is based on the linear ordering of the Fiedler eigenvectors, performed using 
the Lanczos algorithm [11]. The eigenvector corresponding to the second smallest eigenvalue of a graph Laplacian 
matrix is usually referred to as the Fiedler vector, as defined by Doshi et al. [76]. The Lanczos method is an algorithm 
which is used to find a few extreme eigenvalues of a large symmetric matrix along with the associated eigenvectors 
(Parlett et al. [77]).

The Lanczos algorithm has a complexity of O(nk), where n = number of nodes and k = number of Lanczos iterations. 
As Nascimento [11] states, EIGI has the same computational complexity as the Lanczos algorithm, which would be 
O(n2 ) in the worst-case scenario, if k = n.

4.3.2  KP algorithm

The KP algorithm (Nascimento et al. [11])—defined from its k-way partitioning—intends to calculate how close nodes 
are by observing cosine similarities between pairs of rows from the eigenmatrix U (see Algorithm 4.3.2).

Algorithm 4.3.3  MELO algo-
rithm [79]

1: Input: Graph G, its Laplacian matrix L, the
number of desired clusters k and the number
of eigenvectors to be used d.

2: Construct matrix of scaled eigenvectors.
3: Perform linear ordering on the eigenvectors.
4: Find the final k-way partition using linear

ordering.
5: Output: k partitions.

Algorithm 4.3.4  SM algorithm 
[80]

1: Input: Graph G, its normalized Laplacian
matrix Lsym and the number of desired clus-
ters k.

2: Find k eigenvectors of the generalised eigen-
system [81] and arrange them in matrix U.

3: Apply K-means algorithm on matrix U and
find k partitions.

4: Assign nodes to clusters if their eigenvalue
belongs to the partition.

5: Output: k partitions.

Algorithm 4.3.5  MS algorithm 
[82]

1: Input: Graph G, its normalized Laplacian
matrix Lrw and the number of desired clusters
k.

2: Find the k largest eigenvalues and eigenvec-
tors of the generalized eigensystem [81] and
arrange them in matrix U.

3: Apply K-means algorithm on matrix U in k-
dimensional space

4: Assign nodes to clusters if their eigenvalue
belongs to the partition.

5: Output: k partitions.
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4.3.3  Multiple Eigenvector linear orderings (MELO) algorithm

MELO algorithm (see Algorithm 4.3.3), is a greedy approach proposed by Alpert et al. [79], which partitions data into k 
segments using a dynamic programming procedure.

4.3.4  Shi and Malik (SM/KNSC) algorithm

A popular algorithm, Shi and Malik [80] (refer Algorithm 4.3.4) applied K-means algorithm on the eigenmatrix, where 
each row of the matrix is treated as a single object from the dataset.

4.3.5  Meila‑Shi (MS/multicut) algorithm

Proposed by Meila and Shi [82] (refer Algorithm 4.3.5) the algorithm clusters a matrix of k largest eigenvalues. In this 
case, the normalized graph is formed through random walks.

Algorithm 4.3.6  NJW algo-
rithm [17]

1: Input: Graph G, its normalized Laplacian
matrix Lsym and the number of desired clus-
ters k.

2: Find k eigenvectors of the normalized Lapla-
cian matrix L, arranging them in matrix U’.

3: Generate matrix U by normalising each row of
U’.

4: Apply K-means algorithm on matrix U and
find k partitions.

5: Assign nodes to clusters if their eigenvalue
belongs to the partition.

6: Output: k partitions.

Algorithm 4.3.7  KVV algo-
rithm [83]

1: Input: Graph G and the number of desired
clusters k.

2: Find k eigenvectors of the generalised eigen-
system [81], arranging them in matrix U.

3: Find k partitions using Cheeger Conductance.
4: Assign nodes to clusters if their eigenvalue

belongs to the partition.
5: Output: k partitions.

Algorithm 4.3.8  Self-tuning 
spectral clustering algorithm 
[85]

1: Input: Graph G, its normalized Laplacian
matrix Lsym calculated from optimal σ for
every pair of nodes and desired number of
clusters, k.

2: Find k eigenvectors of the normalized Lapla-
cian matrix L, arranging them in matrix U’.

3: Generate matrix U by normalising each row of
U’.

4: Apply K-means algorithm on matrix U and
find k partitions.

5: Assign nodes to clusters if their eigenvalue
belongs to the partition.

6: Output: k partitions.
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4.3.6  Ng–Jordan–Weiss (NJW/KNSC1) algorithm

The Ng–Jordan–Weiss algorithm proposed by Ng et al. [17] (refer Algorithm 4.3.6) is another improvement over the 
SM algorithm, given that the NJW algorithm applies K-means algorithm on a renormalized Laplacian matrix repre-
senting the dataset.

4.3.7  Kannan, Vempala and Vetta (KVV) algorithm

The KVV algorithm is an improvement over the SM algorithm with the KVV algorithm using Cheeger conductance for 
partitioning. Calculating the Cheeger conductance is beneficial in the context of graph partitioning and clustering 
because it provides a quantitative measure of the quality of a graph cut [84]. In order to find the Cheeger conduct-
ance or conductance of a cluster, the set of vertices is weighted to reflect their importance (Kannan et al. [83]).

4.3.8  Self‑tuning spectral clustering algorithm

Most algorithms till now require the scaling parameter to be stated explicitly by the user, derived through domain knowl-
edge, trial and error, or optimally found through several runs. To find the optimal  hyperparameter value for scaling, for 
a given graph, Zelnik-Manor et al. [85] introduced a method to analyse the local scaling parameter � for each data point. 
The self-tuning algorithm performs a similar eigendecomposition to NJW resulting in a worst possible complexity of O(n3)

4.3.9  Co‑trained multi‑view spectral clustering algorithm

Multi-view data refers to data that is generated from different sources or observed from different perspectives (data 
pre-processing and/or analysis methods). As Yang et al. discussed [87], multi-view data refers to data objects that can 
be viewed from different angles or measured using different instruments, resulting in multiple views of the same data. 
Each individual view, in this case, has the possibility to lead to distinct knowledge discovery. These algorithms can be 
classified into five categories [87]:

• Co-training algorithms bootstrap clustering of the different views, either by using the prior or by gaining knowledge 
from one another.

• Multi-kernel learning predefine and combine kernels corresponding to each view, either linearly or non-linearly.
• Multi-view graph clustering fuses graphs from all views to a single graph and then implements graph-cut (e.g. node 

clustering) algorithms.
– Multi-view spectral clustering

• Multi-view subspace clustering algorithms learn unified feature representations from all feature subspaces of all views.

Algorithm 4.3.9  Co-trained 
multi-view spectral clustering 
algorithm [86]

1: Input: Graph G, Laplacian matrices, e.g. L1

and L2 for two views (derived from similarity
matrices S1 and S2), and the number of desired
clusters k.

2: Get discriminative eigenvectors in each view
U1 and U2.

3: Cluster U1 and modify graph in view 2 and
vice versa

4: Go to step 1 and repeat for a number of
iterations.

5: Output: k partitions.
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• Multi-task multi-view clustering uses tasks to assess views and extracts inter-task knowledge to exploit multi-task 
and multi-view relationships.

In Algorithm 4.3.9, Kumar et al. [86] merge the co-training and the multi-view graph clustering as a novel approach to 
the problem of multi-view spectral clustering.

Algorithm 4.3.10  Constrained 
spectral clustering algorithm 
[88]

1: Input: Graph G, its (Normalized) Laplacian
matrix Lsym, threshold β, number of desired
clusters K.

2: Calculate normalized constraint matrix Q
3: Find the largest eigenvalue (λmax) of Q
4: if β � λK-1.vol then
5: Return empty set of cluster assignment

indicator u∗

6: else
7: Solve the generalized eigenvalue system;
8: Remove eigenvectors associated with neg-

ative eigenvalues and normalize the rest by, v
← v

‖v‖
√
vol;

9: V∗ ← argminV∈ RN×(K − 1) trace (VT LV),
where the columns of V are a subset of the
feasible eigenvectors generated in step 8;

10: u∗ ←− K-means(D- 12V∗, K);
11: end if
12: Output: Cluster assignment indicator u∗, k

partitions.

Algorithm 4.3.11  Anchor 
algorithm [89]

1: Input: Graph G and the number of desired
clusters k.

2: Choose anchors at random, set k’ = 1 and k”
= 0 and assign final anchors as the farthest
points from initially chosen points.

3: Construct clusters associated with anchors, xk
4: Test if xk has enough points, specified through

threshold parameter.
5: Set k’ = k’ + 1. Choose xk to be the farthest

from all other existing anchors
6: If k’ − k” < k, go to step 3
7: Output: k partitions.

Algorithm 4.3.12  Hierarchical 
spectral clustering algorithm 
[90]

1: Input:Graph G, its Laplacian matrix L, num-
ber of desired clusters k, indicated number of
eigenvectors α.

2: Find the largest eigenvectors of L and pro-
duce the normalized feature vector space
T=(t1,...,tn)

3: for i ∈ 1, 2, . . . , n do
4: yi = (t1,i, t2,i, . . . , tα,i)
5: end for
6: Find k clusters by using a hierarchical algo-

rithm with input yi.
7: Output: k partitions.
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4.3.10  Constrained spectral clustering algorithm

Constrained spectral clustering [88] (refer Algorithm 4.3.10) is a method of encoding many constraints into an algorithm 
such as K-means or hierarchical clustering. It uses the graph Laplacian and Eigenspace to explicitly encode ML (Must 
Link) and CL (Cannot Link) constraints to optimize the objective function for better results.

4.3.11  Anchor algorithm

Anchors hierarchy is a method of structuring data of generating nodes suited to the given task [89] (refer Algo-
rithm 4.3.11). This concept has been used to define anchors for the anchor algorithm.

4.3.12  Hierarchical spectral clustering algorithm

HSC (Hierarchical based Spectral Clustering) [90] (refer Algorithm 4.3.12) is a novel clustering algorithm that combines 
spectral clustering with hierarchical methods to cluster datasets in convex and non-convex spaces more efficiently and 
accurately. It obviates the disadvantage of traditional spectral clustering by not using misleading information from noisy 
neighbouring data points, thus avoiding local optimum traps.

Algorithm 4.3.13  Spectral 
clustering using deep neural 
networks algorithm [91]

1: Input: Graph G from unlabelled data X ⊆
Rd, loss of similarity LSpectralNet(θ), Siamese
net Lsiamese [92], number of desired clusters k
and batch size m.

2: Construct a training set of positive and nega-
tive pairs and train a Siamese network.

3: Randomly initialize the network weights θ
4: while LSpectralNet(θ) not converged do:
5: Orthogonalization:

a: Sample a random minibatch X of size m
b: Forward propagate X and compute inputs
to orthogonalization layer Y’
c: Compute the Cholesky factorization LLT =
Y’TY’
d: Set the weights of the orthogonalisation
laser to be

√
m(L-1)T

6: Gradient Step:
a: Sample a random minibatch x1,....,xm
b: Compute the m×m affinity matrix W using
the Siamese net
c: Forward propagate x1.....,xm to get y1,.....,
ym
d: Compute the loss
e: Use the gradient of LSpectralNet(θ) to tune
all Fθ weights, except for the output layer

7: end while
8: Output: Embeddings y1,.....,yn, yi ∈ Rk,

cluster assignments c1, ....cn, ci ∈ 1, . . . k
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Algorithm 4.3.14  Ultra-
scalable spectral clustering 
algorithm [93]

1: Input: Dataset X = x1, x2, . . . , xN
2: Hybrid Representative Selection:

a: Random sample of a set of p’ candidate
representatives such that p < p’ � N.
b: p’ candidates, we perform the K-means
method to obtain p clusters and exploit the p
cluster centres as the set of representatives.
c: Denote R = r1, r2, . . . , rp

3: Fast Approximation Method of K-
Nearest Representatives:
Find the k-nearest representatives in order
to construct a sparse affinity submatrix B
that can be interpreted as a bipartite graph
between objects and their respective G={X,
R, B}

4: Transfer Cut Utilisation:
Apply the transfer cut method on the bipar-
tite graph in order to partition it into multiple
parts or “clusters” based on similarity metrics
such as Euclidean distance or cosine similarity

5: Output: k partitions.

Algorithm 4.3.15  Spectral 
clustering with graph neural 
network for graph pooling 
[94]

1: Input: Graph G, its normalized Laplacian
matrix, Lsym.

2: Node Representation: Use graph neural
network (GNN) to compute node representa-
tions of Lsym as matrix, X.

3: Cluster Assignment: Use a multi-layer per-
ception (MLP), with softmax activation to
compute a soft cluster assignment as a matrix,
S. This matrix represents the likelihood of
nodes belonging to the different clusters.

4: Optimization: Optimize the parameters of
GNN and MLP by minimizing an unsuper-
vised loss function, Lu = Lc + Lo which
approximates the relaxed formulation of the
mincut problem.
a: Lc is the cut loss term that evaluates the
mincut based on the soft cluster assignment
matrix S.
b: Lo is the orthogonality loss term that
encourages cluster assignments to be orthogo-
nal and clusters to be of similar size.

5: Optimization: Train the GNN and MLP
jointly on the defined loss function, Lu using
optimization techniques.

6: Pooling and Graph Coarsening: Use the
soft cluster assignment matrix, S to per-
form pooling (downsampling) and generate
a coarsened (reduced) version of the graph
(MinCutPool layer).

7: Hierarchical Coarsening: Repeat steps 2 -
6 to obtain multiple layers of clustering

8: Output: k partitions.
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4.3.13  Spectral clustering using deep neural networks algorithm

Spectral clustering using deep neural networks [91] (refer Algorithm 4.3.13) is a technique that uses deep neural networks 
to cluster data points into groups. It overcomes the limitations of scalability and generalization by training a network, 
called SpectralNet, which learns an embedding map from input data points to their associated graph Laplacian matrix 
and then clusters them.

4.3.14  Ultra‑scalable spectral clustering algorithm

Ultra-scalable spectral clustering (U-SPEC) [93] (refer Algorithm 4.3.14) is an efficient algorithm for partitioning large datasets 
into clusters. It has nearly linear time and space complexity, allowing it to robustly and efficiently process 10-million-level 
nonlinearly separable data sets on a PC with 64 GB memory.

4.3.15  Spectral clustering with graph neural network for graph pooling

The algorithm (refer algorithm 4.3.15) employs Graph Neural Networks (GNNs) for spectral clustering, introducing a Min-
CutPool layer to coarsen the graph representation hierarchically. It utilizes a multi-layer perceptron (MLP) to compute soft 
cluster assignments based on node features, optimizing an unsupervised loss that balances cut loss and orthogonality loss. 
Through iterative pooling, the algorithm generates a hierarchy of coarsened graph representations, capturing diverse scales 
of structural information. End-to-end training ensures jointly optimized GNN and MLP parameters, demonstrating effective-
ness in various tasks by avoiding degenerate solutions and handling imbalanced clusters.

4.3.16  Quantum spectral clustering algorithm

Of the several implementations of quantum spectral clustering algorithms [96–98], Kerenidis et al. [95] implemented a 
method for to group data with non-convex or nested structures. This method derives the normalized incidence matrix of a 
graph from the adjacency matrix to to calculate the Laplacian from. As a result the data is projected in a low-dimensional 
space where clustering can be done more efficiently and quickly than traditional methods using the spectral properties of 
the Laplacian matrix.

5  Discussion

5.1  Computational complexity of spectral clustering algorithms

Spectral clustering, at its worst, would provide a computational complexity of O(n3 ) to calculate the eigenvectors and 
eigenvalues from the adjacency matrix. This is similar to hierarchical clustering and some density-based approaches, 
e.g. OPTICS (Tables 3 and 4). However, spectral techniques benefit from the Laplacian representation of the data, which 
helps identify local neighbourhoods using eigenvectors. The least computationally expensive is the EIGI algorithm which 
employs the ratio cut solution to partition a graph into two clusters with a computational complexity of O(n2 ). The general 
range of the computational expenses of spectral clustering algorithms has been plotted in the Fig. 6.

Algorithm 4.3.16  Quantum 
spectral clustering [95]

1: Input: Graph G, its normalized Laplacian L
and the number of desired clusters, k.

2: Calculate L projected on its k lowest eigenvec-
tors, projected normalized Laplacian L̃(k).

3: Quantum clustering in the spectral space.
4: Output: k partitions.
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The fast accelerating computational complexity against the increasing number of nodes and samples is one of 
the primary, if not the main, drawbacks of employing spectral clustering on large datasets. Scalability issues have 
been the key driving factor to investigate improved methods which lowers the the expense of spectral clustering 
algorithms down to O(n2 ) or even O(n) [94].

The space (memory) complexity of spectral clustering algorithms are O(n2 ), at its worst, to store the square adja-
cency matrix and perform further calculations within the same memory storage. When compared with other clustering 
algorithms, spectral clustering algorithms are as computationally expensive as the agglomerative clustering algorithm. 
However, with spectral clustering, the benefits further outweigh the expenses as we get a representation of the data 
points in the eigenspace which can be used for other tasks than spectral clustering e.g. visualization.

5.2  Applications of spectral clustering algorithms

The primary strength of spectral clustering lies in partitioning a graph containing nodes, whether this graph is created 
from pixel data of an image, vectors generated from texts or documents or abundance data of proteins in samples. In 
Table 4, a comprehensive overview of the applications of different spectral clustering algorithms is provided. We can also 
observe a correlation between the type of laplacian matrix used and the application areas in this case.

The initial spectral clustering algorithms, where the unnormalized Laplacian matrices were used to generate eigen-
values and eigenvectors, mainly were used for tasks such as parallel computing, sparse matrix partitioning, electronic 
chip design (VLSI—Very Large Scale Integration). The introduction of the normalized Laplacian, in algorithms such as 
the SM, NJW, and self-tuning proved successful in image segmentation and general-purpose data analysis [108]. Some 
algorithms have been designed to handle very specific tasks such as the Anchor algorithm is used for text and document 
categorization. Additionally, there has been progress in the application of spectral clustering in several other domains 
such as protein abundance, gene expression, and social network analysis. Such progress deserves attention to motivate 
further research in graph data and spectral clustering.

5.3  Future research scope

As discussed in the previous section, scalability is still a major challenge that faces spectral clustering and as a result is 
one of the the major scope of improvement in the domain of graph clustering. While parallelization of calculations using 
GPUs are already created huge positive differences along with substantial decrease in computational complexity of algo-
rithms, one issue that still persists is the recalculation of all intermediate steps when new data points are introduced for 
clustering on an existing model. Spectral clustering using deep neural networks and graph neural networks overcome 
this issue and possibly there could be solutions which uses simpler models than neural networks to solve this issue.

Another promising direction of improvement could be heterogeneous node clustering. While it is quite straightfor-
ward to create similarity graphs from homogeneous node attributes or features, it is quite challenging to create similar-
ity graphs from heterogeneous set of nodes containing varying node attributes or features. This could be addressed by 
improved methods of meta-path selection, cross-domain generalization techniques and incorporating external informa-
tion for heterogeneous set of nodes.
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