
Cost-Aware Query Optimization during Cloud-Based

Complex Event Processing

Andreas Meister, Sebastian Breß, Gunter Saake

firstname.lastname@ovgu.de

University of Magdeburg, Germany

Abstract: Complex Event Processing describes the problem of timely and continuous
processing of event streams. The load of Complex Event Processing systems can vary
(e.g., event rates). Static resource provision leads to higher monetary costs because
enough resources have to be provided to efficiently handle peak loads. Therefore, most
of the time the resources will not be fully utilized.

One way to achieve scalable processing and elastical resource allocation fitting
varying requirements is to use Cloud Computing. Properties of Cloud Computing
are the pay-as-you-go-payment model and high availability. These properties can be
used in Complex Event Processing systems to minimize the monetary costs of systems
while satisfying Service Level Agreements. Complex Event Processing systems must
continuously optimize the event processing to adapt to varying loads without violation
of Service Level Agreements. To guarantee efficiency, the optimization cost must be
considered, leading to cost savings without violating the Service Level Agreements.

In this work, we discuss factors, which should be considered during the optimization
of cloud-based Complex Event Processing systems that use the pause-train-resume
strategy to migrate operators. Furthermore, we propose heuristics to estimate the cost
of these factors. In our experiments, the cost could be decreased by 15 % by using
a cost-aware optimizer. This proofs that the costs of cloud-based Complex Event
Processing systems can be further decreased if optimization is cost-aware.

1 Introduction

Complex Event Processing (CEP), the problem of timely and continuous processing of

event streams, becomes increasingly important (e.g., in stock markets [BDG07] or financial

applications [ScZ05]). The different application fields have in common that the system

loads vary during runtime. Additionally, certain characteristics agreed in Service Level

Agreements (SLAs) must be guaranteed (e.g., event processing time). CEP systems can

use Cloud Computing to provide resources elastically (e.g., adding or removing additional

nodes) to adapt to changing workloads and to save resources (and hence, money) in case

of low system load. Based on the pay-as-you-go-payment of Cloud Computing, elastical

resource provision leads to reduced costs, because only the needed amount of resources

will be provided. To minimize system costs, a continuous optimization is needed to adapt

the CEP system to the current requirements. During the optimization, it might be necessary

to migrate operators form over- or underloaded nodes to other nodes of the system.

Problem statement. Operator migration can lead to additional costs. Therefore, the

query optimizer should be cost-aware, meaning that the optimizer should consider the cost

705



and effects of operator migrations during optimization. In this paper we investigate the

following research question:

How much can we decrease the overall cost of a cloud-based CEP system using

a cost-aware query optimizer considering the cost of the query optimization?

In this paper, we contribute an overview of effects of operator migrations and identify

factors usable to calculate the effects. Furthermore, we present cost models for the effects

of operator migrations in the used CEP systems. To evaluate the cost models, an existing

optimization framework [Rö12] will be extended by integrating the cost models into the

optimization process. Our experiments show that we can save up to 15% monetary costs

while increasing robustness of CEP systems w.r.t. Service Level Agreements (SLAs).

The remainder of this work is structured as follows. In Section 2, we briefly describe the

background information. We specify our cost models to estimate the effects of operator

migrations in Section 3. In Section 4, we discuss our evaluation. We provide an overview

of related work in Section 5. In Section 6, we present a conclusion and future work.

2 Background

In this section, we will provide an overview of cloud-based CEP, efficient CEP query

optimization, and the process of an operator migration.

2.1 Cloud-based Complex Event Processing

CEP describes the problem of timely, continuous processing of event streams [Luc01]. Goal

of CEP is to gain additional information based on single events by searching for known or

unknown patterns in event streams. The gained information are used for decision making

or starting of new processes (e.g., locking of a credit card by a detected fraud).

The processing of events is based on defined queries. In the context of CEP systems, a

query processes events until it is stopped by the system. Therefore, the query execution time

is potentially unbounded. Since queries in CEP systems are long running, the probability

that the requirements change are high (e.g., event rate of streams, etc.) [MSHR02].

Systems that use a static resource provision cannot adapt to changes in the workload, which

can lead to under- or overutilization of the system. Overutilization leads to higher query

execution times and may lead to inaccurate results, if not all events of the event streams can

be processed (load shedding). Underutilization leads to inefficient resource usage, because

not all available resources are fully occupied, leading to an increased end user fee.

Typically an elastic resource provision (e.g., Cloud Computing) can be used to solve

the problem of over- and underutilizations and to minimize system costs. Using Cloud

Computing, resources can be automatically added or removed during the runtime of the

system. Since in cloud-based CEP systems resources are charged according to the usage,

the efficient resource usage can lead to lower overall monetary costs and hence, lower costs

for the end user. The system has to adapt the usage of the resources according to the current

requirements of the system to minimize the overall cost.

In order to minimize the cost of the system an efficient optimization is needed to adapt the

resources to current requirements of the CEP system while avoiding SLAS violations.

706



Old computing node New computing node

Stop 

event 

processing

Stateful operator

Extract

 operator 

state

Operator 

state

Transfer 

operator 

state

Stateless operator Recreate 

operator 

state

Extract 

processing 

information

Operator 

state

Start 

event 

processing

Delete 

existing 

operator

Create 

new 

operator
Stateful operator

Stateless 

operator

Transfer 

processing 

information

Processing 

information

Processing 

information

Figure 1: Migration process for stateful and stateless operators

2.2 Efficient query optimization for Complex Event Processing

The goal of query optimization is to ensure the efficiency of query processing. In cloud-

based CEP systems, one essential part of the query optimization is the operator placement.

The operator placement determines a assignment of existing operators to computing nodes

based on the current placement and requirements of the operators (e.g., CPU load).

Since the effects of an optimization can lead to increased costs [BB05] (e.g., additional

resource consumption or SLA violations), several aspects must be considered in order to

provide an efficient CEP optimizer besides the efficient determination of a new placement:

the estimated cost of an optimization, the point in time, when we start the optimization, and

the time duration between optimizations.

Cost estimation. In order to provide a cost-aware optimization, an approach is needed that

estimates the cost of an optimization. To guarantee the accuracy of the estimation,

the cost calculation must consider the properties of the query processing and the

operator migration of the used CEP system.

Optimization start time. The optimization causes additional resource consumption. Re-

spectively, the optimization should only be triggered, if the system properties or

workload have changed, and the query processing must be adapted to improve the

overall efficiency of the system. An approach is needed to estimate, when the query

optimization should be started.

Duration between optimizations. Since the optimization cost must be amortized during

the runtime, the cost considerations of an optimization should include the duration of

the optimized query execution. We cannot consider the remaining execution time,

but the time to the next optimization, because the query execution time is potentially

unbounded.

There are already suitable approaches to identify a point in time to start the optimiza-

tion [KD98] and to determine the time duration between optimizations [JHJ+10]. Therefore,

we focus on the cost estimation of operator migrations in the remainder of this paper.

2.3 Migration process

To remove underutilized nodes or use added nodes to release overloaded nodes, operators

must be migrated between nodes. The decision which operators should be migrated will

707



be decided by the optimization framework. Hereby, the optimization framework has to

determine three factors: (1) a node, from which an operator will be migrated, (2) the

operator, which will be migrated, and (3) the target node, where the operator will be

migrated to. The process of the operator migration depends on the used system. The

considered cloud-based CEP system uses the pause-drain-resume strategy [ZRH04]. Based

on the operator type, different steps must be performed to migrate an operator (see Figure

1). The operators can be divided into two groups: stateless and stateful operators. For

stateless operators, the following steps must be performed: First, the event processing

must be stopped. Second, the processing information has to be extracted and transferred.

Third, the existing operator must be deleted on the old node and the new operator must be

initialized on the new node. Finally, the event processing must be restarted.

For stateful operators, the state of an operator must be moved additionally. The state of

an operator consists of one to n sliding windows based on the number of input streams.

Since not all events of an unlimited event stream can be stored, only a selection of the event

stream will be stored in a sliding window. The selection is based on a maximal storing time

or a maximal number of events.

To migrate the state of an operator, the state must be extracted, transferred and recreated.

We illustrate this in Figure 1. To extract the state, the events stored in sliding windows must

be read and stored in a transfer format. The recreation of the state requires the processing

of all events stored in the extracted sliding windows.

Notably, the described process is based on the used cloud-based CEP system and can vary

in other systems. However, in all elastic CEP systems, an operator migration has to be

performed, and hence, the basic problem remains the same.

3 Cost-estimation of operator migrations

To estimate the cost of operator migrations during query optimization, several different

aspects must be considered. In this section, we describe what effects the operator migration

has and specify corresponding cost-models.

3.1 Effects of operator migrations

In order to determine possible effects and costs of the query optimization, we conducted

a literature review. To the best of our knowledge, there exists no work in the context of

cloud-based CEP about an optimizer that is aware of the optimization cost itself. Since

the application field of operator migration in cloud-based CEP systems is similar to virtual

machine migration, we adapt existing approaches (see section 5) and apply them for cloud-

based CEP systems. We identified three effects of an operator migration in the used CEP

system:

Resource consumption. In cloud-based CEP systems, the cost calculation is based on the

resource consumption. The operator migration consumes additional resources in

order to transfer the operator information, leading to a higher fee for the end-user.

708



Lost revenue. During the operator migration the event processing must be stopped. Since

stopping event processing means that no service can be provided to the costumer,

potential revenues are decreased.

Penalty charge. In systems with SLAs, different quality features can be agreed on with

the customer (e.g., event processing time). These quality features can be violated

during an operator migration because event processing is paused. Therefore, the

operator migration may cause additional penalty charges.

The operator migration also influences other aspects, such as the user satisfaction. Since

these effects cannot be calculated, they are omitted. In the following sections, we will

describe how the different effects of operator migrations can be estimated.

3.2 Resource consumption

The operator movement consumes different kinds of resources. Relevant resources in CEP

systems are used CPU time, memory capacity, and network bandwidth capacity. To simplify

the following considerations, we do not consider the consumed resources, but the resulting

costs. Since the costs of different resources can vary, different constants are used to estimate

the cost of the CPU time (mccpu), memory capacity (mcmem) and network bandwidth

capacity (mcnet). For stateful operators, the resource consumption for the migration of the

state must also be considered. The resource consumption of a state migration is depending

on the state size ws and differs from the resource consumption of the migration of the

processing information. Therefore, other constants (sccpu, scmem, scnet) must be used

to estimate the cost for the resource consumption. Since more than one operator can be

migrated in one optimization step, the overall cost for the resource consumption mcd is

calculated as sum of all operator migrations:

mcd =

n
∑

i=1

(mccpu,i + mcmem,i + mcnet,i) (1)

+

m
∑

j=1

[mccpu,j + mcmem,j + mcnet,j + wsj · (sccpu + scmem + scnet)]

3.3 Duration of an operator migration

We consider mainly two aspects, to estimate the time of an operator migration mto. First,

the time to migrate the processing information mtoc (e.g., select or join conditions). Second,

the time to migrate the operator state. Since the steps and therefore the time for transferring

the processing information is identical for each operator type, we will use a time constant.

The time to migrate the state is mainly based on the state size ws, the time to extract and

recreate the state st, and the available network bandwidth bw.

mto = mtoc + ws · st +
ws

bw
(2)

Since the operators cannot be migrated in parallel due to limitations of the used cloud-based

CEP system, the time of migrating all operators of a query, is the sum of all migrated

709



no delay

mtq
mtmd

x

SLA violation

processing delay d(x) SLA-processing time threshold

Figure 2: Processing delay d(x) based on the x-th processed event and query migration

time mtq considering the SLAs mtmd.

operators (mto,1, ...,mto,n). Since the used system is a distributed system and only one

operator at a time can be migrated, an additional delay mtd should be considered.

mtq =
n

∑

i=1

(mto,i + mtd,i) (3)

The delay is the time of all operator migrations before the considered operator. Therefore,

the delay depends on the order of the operator migration. Since the order cannot be

determined in the real system, the worst case will be used for all operators. The worst case

for an operator is to be migrated last. In this case, the delay is the sum of the migration time

of all other operators of the same node.

mtd =
k

∑

i=1

mtoc,k (4)

3.4 Lost revenues and penalty charges

In contrast to a revenue loss, penalty charges can also occur without an optimization (e.g.,

if a host is overloaded). For this work, we consider only penalty charges caused by the

optimization. Lost revenues and penalty charges are both caused by the stop of event

processing during the operator migration.

The stop of event processing introduces an additional delay during event processing. The

delay is caused by the events stored during the stop of event processing. The storing of

events is necessary to guarantee an accurate and correct result of the query processing. In

order to avoid the dropping of events (load shedding), enough capacity must be provided

to store events. For simplicity, we assume that enough capacity will be provided, and no

events must be dropped. Otherwise, the dropping of events must also be considered in the

effects of an optimization (e.g., example through a penalty fee for every dropped event).

The number of stored events can be calculated by the event rate of the streams er and the

time for the operator migration of the corresponding query mtq . The behavior of the delay

is shown in Figure 2. We assume that after the optimization the delay is decreasing, because

enough resources can be provided in a cloud-based CEP system. If enough resources are

provided, no node is overloaded. Therefore, more events can be processed than arriving in

the system. The processing time of the stored events depends on the processing time of the

operators. The delay depends on the order of arrival, because the events will be processed

according to that order. The maximal delay is the query migration time mtq. From this

delay, the time of arrival must be subtracted by the event rate and the position of the input

stream, er · x. Since arriving events are processed in FIFO style, the processing time of

710



preceding events have to be added., pt · (x − 1). The delay of the x-th event can therefore

calculated by:

d(x) = mtq −
1

er
· x + pt · (x − 1) (5)

The maximal delay mtmd of the events without penalty charges is the difference of the

maximal processing time lt agreed with the customer and the current query latency ql.

mtmd = lt − ql (6)

Combining equation 5 and 6 leads to:

mtmd = mtq −
1

er
· x + pt · (x − 1) (7)

This equation can be rearranged to calculate the number of events which have to arrive in

order to guarantee that the system response time is smaller than the maximal delay mtmd:

x =
mtmd − mtq + pt

−
1

er
+ pt

(8)

The number of events can be used to calculate the SLAs-violation time mtv based on the

event rate:

mtv =
x

er
(9)

Inserting equation 8 and rearranging leads to the following equation, which computes the

SLA violation time depending on all major factors:

mtv =
mtmd − mtq + pt

er ·
(

−
1

er
+ pt

) (10)

In general, the processing time between operators differ. A higher event processing time

of operators will lead to a higher delay. Since only the maximal delay is of interest, the

operator with the maximal processing time will be used to calculate mtv .

The cost of lost revenues and penalties can be calculated as follows:

mci =

{

mtv · mcp if mtv > mtq

mtq · mcp otherwise
(11)

In case no latency threshold is defined or violated, only the lost revenues during the query

migration is considered. Otherwise, the additional time of SLAs-violation is considered.

Hereby, mcp can be a fixed price or a percentage of the cost of the affected query.

The interesting effect is that the system can dynamically decide to violate SLAs or allocate

additional resources depending on the caused costs. The overall migration cost considered

by the optimization should include the cost for the consumed resources mcd, the penalty

charges, and the lost revenues. Since the cost should be amortized during runtime, the ratio

between the estimated costs and periods between the optimizations should be considered

during the optimization.

711



4 Evaluation

In order to answer our research question – how much can we decrease the overall cost

of a cloud-based CEP system using a cost-aware query optimizer considering the cost

of the query optimization – described in the previous sections, we conducted a series of

experiments. Hereby, we examined different scenarios with different requirements (query

patterns and event rates) based on a real application scenario.

4.1 Experiment Design

There are three different scenarios based on different combination of query patterns and

event rates:

• Scenario 1: query pattern: linear, event rate: variable

• Scenario 2: query pattern: real, event rate: fixed

• Scenario 3: query pattern: real, event rate: variable

Since for all queries the same structure (event source, selection, aggregation, and event

sink) is used, the load of the system is based on query count. In the linear query pattern, the

query count is continuously increased from 1 to a maximum of 33 queries. After reaching

the maximum of queries, the query count is constant. In contrast, the real query pattern

dynamically changes the query count from 1 to 33 queries. Similar to the query pattern, the

event rates can either be fixed (500 events
s

) or variable (100-1000 events
s

). The used events,

the real query pattern, and the variable event rates are based on information extracted from

the Frankfurt stock exchange market representing real work loads.

In every scenario, five different optimization strategies are evaluated:

• Baseline: Optimum

Considers migration cost: no

• Variant 1: Number of considered system states: one

Considers migration cost: no

• Variant 1+: Number of considered system states: one

Considers migration cost: yes

• Variant 2: Number of considered system states: many

Considers migration cost: no

• Variant 2+: Number of considered system states: many

Considers migration cost: yes

Since the optimization strategies are not the main focus of this work, we refer the interested

reader to Rödiger et al. [Rö12].

To have a baseline of the optimization, the search space of the optimization is restricted to a

small search space where an optimal solution can be efficiently determined. Hereby, the

baseline solution just considers the cost of the current system and the optimized systems

ignoring the migration cost. The difference between Baseline and Variant 1 is that Variant 1

uses Recursive Random Search [Rö12] to improve the efficiency of the system. In contrast,

Variant 2 analyses several past system states. Variant 1 and Variant 2 were both adapted to

consider the operator migration cost (+) using our described cost model (see Section 3).

712



Baseline Variant 1 Variant 1+ Variant 2 Variant 2+

0

1

2

3

4

Scenario 1

C
o

st
s
[e

]

0

1

2

3

4

Scenario 2

C
o

st
s
[e

]

0

1

2

3

4

Scenario 3

C
o

st
s
[e

]

Figure 3: Experiment costs

4.2 Measurement

The experiments were performed on one computing node for measurement and optimization

(Intel Core i7 870, 16 GB memory) and four virtual machines (AMD Opteron 6128 HE, 4

GB memory) for the event processing.

Since the load of the system cannot be recreated exactly, and the migration of operators is

based on heuristic approaches, a variability of different runs with the same configuration

(combination of scenario and optimization strategy) exists. Therefore, every configuration

of each experiment is conducted five times. All results for the same configuration are

aggregated using the average.

Hereby, the costs and time for the processing of a certain amount of events are measured.

The costs are calculated based on the number of used nodes used in fixed time windows.

The number of considered time windows ntw is determined by the execution time of the

experiment et and the duration of a time dtw

ntw =
et

dtw
(12)

For every time window the maximum number of used nodes mn will be determined and

charged according to the used pricing model [Mey12] and costs for one node during the

time window nc, independent of the real usage of the nodes in the time window.

costs =

ntw
∑

i=0

(nci · mni) (13)

The cost calculation is based on commercial cost models (e.g, Amazon E21).

4.3 Evaluation Results

The costs (see Equation 13) for the different scenarios are displayed in Figure 3. In Scenario

1, compared to the baseline, the experiment costs can be reduced if the cost for the operator

migration is considered during the optimization. The experiment cost were reduced by

2 % (Variant 2+) to 11 % (Variant 1+). When the different variants with and without the

considerations of the migration costs are compared, the consideration of migration costs

reduces the costs by 11 % (Variant 1) to 15 % (Variant 2).

In Scenario 2, compared to the baseline, the experiment cost can be reduced if the cost

for the operator migration is considered during the optimization. The experiment cost

1http://aws.amazon.com/ec2

713



were reduced by 8 % (Variant 2+) to 11 % (Variant 1+). When the different variants with

and without the considerations of the migration costs are compared, the consideration of

migration costs reduces the costs by 2 % (Variant 2) to 8 % (Variant 1). Different to the

other experiments, variant 2+ only achieves a similar result compared to the baseline in

Scenario 3. For variant 1+ the experiment cost were reduced by 10 % compared to the

baseline. When the different variants with and without the considerations of the migration

costs are compared, the consideration of migration costs reduces the experiments costs by

2 % (Variant 2) to 8 % (Variant 1).

4.4 Discussion

The results of the different experiments show that the monetary costs of the system can be

reduced up to 15% if the cost of the optimization is considered during the optimization.

The main reason for this is that the number of operator migration is reduced. Hereby,

operation migrations are prevented if the gain of efficiency is used up by the cost of the

migration. An operator migration will therefore only be executed if it is necessary, for

example if a host is overloaded, or if the gain in efficiency exceeds the migration costs.

Since the operator migrations are restricted to beneficial migrations, the system needs less

time to adapt the query processing. The faster adaption of the query processing leads to an

improved efficiency of the overall system resulting in lower monetary cost. The costs of the

baseline compared to Variant 1 is unexpected. Normally, the baseline should have better

costs in all experiments. Since in two experiments, Variant 1 is better than the Baseline, it

seems that the number of experiments is too low to void the effects of the described variety

of workload. A gain of 15% is here substantial, because of the potential unbounded runtime

of CEP queries. Also the consideration of SLAs during the optimization is leading to a

robust optimization, which reduces the probability of SLA violations.

5 Related work

Migration Cost. In the field of virtual machine migration, several relevant effects of

a migration were identified. To guarantee the efficiency of the system, the migration

itself must be efficient [GSF11]. In the field of virtual machine migration for exam-

ple the energy [Str12], bandwidth [ASR+10], and memory consumption [WZ11] are

relevant. Furthermore, response time [QZW+12], migration costs [SSSS10], and lost

revenues [ZZSB13] should be considered.

Since the requirements of virtual machine migration and operator movement in cloud-based

CEP systems differs, the existing approaches must be adopted.

For example, the resource consumption differs. In the context of operator movements in

CEP systems normally only CPU, main memory, and network traffic are relevant, while the

used disk space is negligible. This does not hold in the context of virtual machine migration,

where the migration of the disk is the main problem. Also the energy consumption is not

relevant in this work, because cloud providers only charge for the used/ reserved amount of

CPU, memory, and disk capacity and not for the consumed energy.

Response time, migration cost, and lost revenues are examples for aspects, which hold for

both application fields, operator movement in CEP systems and virtual machine migration.

714



Elastic CEP. Several different approaches exists to provide elasticity for CEP. Hereby,

different levels of elasticity can be differentiate. Elasticity can be provided on operator,

query, or engine level [Hei11]. By providing elasticity on operator level, instances of an

operator process can be added or removed [SAG+09]. If this approach is transferred to

the query level, whole queries or subqueries can be replicated and performed in paral-

lel [GJPPMV10]. If statefull operators are processed in parallel, the different instances

have to synchronize the global state of the operator leading to an communication overhead.

This communication overhead is restricting the system parallelism. Stateless operators can

be easily parallized, since no synchronization is needed. If elasticity is provided on engine

level, new computing nodes can be added or removed during runtime to migrate existing

or execute new operator processes [SHLD11]. A combination of the different levels of

elasticity is possible. Nevertheless, no approach is known to estimate operator migration

costs or to include operator migration costs of CEP systems into the query optimization.

Operator migration. Our work considers operator migration processes based on the

pause-drain-resume-strategy [ZRH04]. There exists also other strategies to migrate oper-

ators. For example, new operator processes can be initiated, and executed in parallel to

the old operator processes until all needed information (e.g., operator state) from the new

and the old operator process match [WB10]. Although the stated considerations must be

adapted if another migration strategy is used, the general problem that operator migrations

create costs and influence the efficiency of the system still exists. Therefore, the operator

migration costs should considered during optimization whatever migration strategy is used.

6 Conclusion

In this paper, we investigated the research problem of cost-aware optimization in cloud-

based CEP-systems. We identified factors (e.g., resource consumption) that need to be

considered in the optimization process. Based on a cloud-based CEP prototype, cost

models are presented estimating the identified factors. To provide a proof of concept, three

experiments were conducted based on workloads of a real application scenario of a stock

exchange. The results of the experiment show that the monetary costs of the system can be

decreased by up to 15 %, when migration costs are considered during optimization.

In future work, a comprehensive statistical analysis is needed to assess the presented cost

models conclusively. Since operator migrations do not only influence the efficiency of the

system but also other factors (e.g., average query latency), further examinations are needed

studying the influence of a cost-aware optimization of the query processing.

References

[ASR+10] Sherif Akoush, Ripduman Sohan, Andrew Rice, Andrew W. Moore, and Andy Hopper.
Predicting the Performance of Virtual Machine Migration. MASCOTS, pages 37–46.
IEEE, 2010.

[BB05] Shivnath Babu and Pedro Bizarro. Adaptive Query Processing in the Looking Glass.
CIDR, pages 238–249, 2005.

715



[BDG07] Alistair Barros, Gero Decker, and Alexander Grosskopf. Complex Events in Business
Processes. In BIS, volume 4439 of LNCS, pages 29–40. Springer, 2007.

[GJPPMV10] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, and P. Valduriez. StreamCloud: A
Large Scale Data Streaming System. ICDCS, pages 126–137. IEEE, 2010.

[GSF11] Pablo Graubner, Matthias Schmidt, and Bernd Freisleben. Energy-Efficient Manage-
ment of Virtual Machines in Eucalyptus. IEEE CLOUD, pages 243–250, 2011.

[Hei11] Thomas Heinze. Elastic Complex Event Processing. MDS, pages 4:1–4:6. ACM,
2011.

[JHJ+10] Gueyoung Jung, Matti A. Hiltunen, Kaustubh R. Joshi, Richard D. Schlichting, and
Calton Pu. Mistral: Dynamically Managing Power, Performance, and Adaptation Cost
in Cloud Infrastructures. ICDCS, pages 62–73. IEEE, 2010.

[KD98] Navin Kabra and David J. DeWitt. Efficient Mid-Query Re-Optimization of Sub-
Optimal Query Execution Plans. SIGMOD Rec., 27(2):106–117, 1998.

[Luc01] David C. Luckham. The Power of Events: An Introduction to Complex Event Process-
ing in Distributed Enterprise Systems. Addison-Wesley, 2001.

[Mey12] Patrick Meyer. Spezifizierung, Visualisierung und Bewertung von Eigenschaften
monetärer Kosten für Complex Event Processing in der Cloud. Master thesis, Technical
University Munich, 2012.

[MSHR02] Samuel Madden, Mehul Shah, Joseph M. Hellerstein, and Vijayshankar Raman.
Continuously Adaptive Continuous Queries over Streams. SIGMOD, pages 49–60.
ACM, 2002.

[QZW+12] Xiulei Qin, Wenbo Zhang, Wei Wang, Jun Wei, Xin Zhao, and Tao Huang. Optimizing
Data Migration for Cloud-Based Key-Value Stores. CIKM, pages 2204–2208. ACM,
2012.

[Rö12] Lars Rödiger. Kosteneffizientes Cloud-basiertes Complex Event Processing. Diploma
thesis, Technical University Dresden, 2012.

[SAG+09] S. Schneider, H. Andrade, B. Gedik, A. Biem, and Kun-Lung Wu. Elastic Scaling of
Data Parallel Operators in Stream Processing. IPDPS, pages 1–12. IEEE, 2009.

[ScZ05] Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. The 8 Requirements of
Real-Time Stream Processing. SIGMOD Rec., 34(4):42–47, 2005.

[SHLD11] B. Satzger, W. Hummer, P. Leitner, and S. Dustdar. Esc: Towards an Elastic Stream
Computing Platform for the Cloud. IEEE CLOUD, pages 348–355, 2011.

[SSSS10] Upendra Sharma, Prashant Shenoy, Sambit Sahu, and Anees Shaikh. Kingfisher: A
System for Elastic Cost-aware Provisioning in the Cloud. Technical Report UM-CS-
2010-005, University of Massachusetts Amherst, 2010.

[Str12] Anja Strunk. Costs of Virtual Machine Live Migration: A Survey. IEEE SERVICES,
pages 323–329, 2012.

[WB10] B. Wolf and I. Behrens. On-the-Fly Adaptation of Data Stream Queries. ISORC,
pages 175–179. IEEE, 2010.

[WZ11] Yangyang Wu and Ming Zhao. Performance Modeling of Virtual Machine Live
Migration. IEEE CLOUD, pages 492–499, 2011.

[ZRH04] Yali Zhu, Elke A. Rundensteiner, and George T. Heineman. Dynamic Plan Migration
for Continuous Queries over Data Streams. SIGMOD, pages 431–442. ACM, 2004.

[ZZSB13] Mohamed Faten Zhani, Qi Zhang, Gwendal Simon, and Raouf Boutaba. Dynamic
Migration-Aware Virtual Data Center Embedding for Clouds. IEEE IM, 2013.

716


