
On Essential Configuration Complexity:
Measuring Interactions in Highly-Configurable Systems

Jens Meinicke,1,2 Chu-Pan Wong,2 Christian Kästner,2 Thomas Thüm,3 Gunter Saake1

1University of Magdeburg, Germany, 2Carnegie Mellon University, USA, 3TU Braunschweig, Germany

ABSTRACT
Quality assurance for highly-configurable systems is chal-
lenging due to the exponentially growing configuration space.
Interactions among multiple options can lead to surprising be-
haviors, bugs, and security vulnerabilities. Analyzing all con-
figurations systematically might be possible though if most
options do not interact or interactions follow specific patterns
that can be exploited by analysis tools. To better understand
interactions in practice, we analyze program traces to char-
acterize and identify where interactions occur on control flow
and data. To this end, we developed a dynamic analysis for
Java based on variability-aware execution and monitor exe-
cutions of multiple small to medium-sized programs. We find
that the essential configuration complexity of these programs
is indeed much lower than the combinatorial explosion of
the configuration space indicates. However, we also discover
that the interaction characteristics that allow scalable and
complete analyses are more nuanced than what is exploited
by existing state-of-the-art quality assurance strategies.

CCS Concepts: Software and its engineering → Feature
interaction; Reusability;

Keywords: Feature Interaction, Configurable Software,
Variability-Aware Execution

1. INTRODUCTION
Highly-configurable systems challenge program analyses and
quality assurance. Fault detection through testing becomes
problematic as the additional dimension of configurability has
to be considered: A test case that succeeds in many config-
urations may fail in others when configuration options inter-
act [26,28,42]. Configuration faults are common in practice,
but identifying interactions is difficult and challenging as the
configuration space grows up to exponentially with the num-
ber of options [1,26,28,42,48,67]. Unanticipated interactions
can have consequences ranging from surprising behavior to se-
curity vulnerabilities and safety issues [27,52]. In practice, the
configuration space is rarely analyzed systematically: ad-hoc

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE’16, September 03-07, 2016, Singapore, Singapore
c© 2016 ACM. ISBN 978-1-4503-3845-5/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2970276.2970322

testing of few or only one configuration is still common and
testing of other configurations is often left to users [19,28,48];
at best, combinatorial interaction testing is used to check for
interactions among pairs of options [53]. As a consequence,
configuration faults are often only discovered by users [28,48].

Despite their exponential growth, there is hope for sys-
tematic or even complete analysis of configuration spaces.
Investigations of bug reports have shown that most config-
uration faults are caused by interactions among only few
options [1,17,21,26,42,47,53], and several analysis tools have
successfully demonstrated exploitable redundancies among
configurations to share commonalities while analyzing many
configurations at once [5,11,13,34,37,39,43,51,61]. Our goal
is to identify whether interactions occurring during program
execution have characteristics that allow a complete analysis
of the configuration space despite exponential surface com-
plexity. In contrast to prior work that focused primarily on
interaction faults (observable incorrect behavior) reported
in practice (biased toward more popular configurations),
we investigate all interactions in data and control flow to
measure what we call essential configuration complexity: the
configuration-related differences in an execution that actually
need to be explored given an optimal execution strategy.

We designed a dynamic analysis tool, called VarexJ, that
executes all configurations simultaneously and allows us to
inspect differences in data and control flow at runtime. In
particular, we use the tool to quantify the effort required for
analyzing all interactions assuming (near-)optimal sharing.
Analyzing executions of several medium-sized configurable
Java applications, including Jetty and Checkstyle, we find
that essential configuration complexity is indeed low enough
to make a configuration-complete analysis feasible, but we
also find that some common and important characteristics
of interactions are not exploited by state-of-the-art analysis
tools. We show that the driver for the complexity is not
how many options interact, but how they interact on data.
Our results help to understand the important characteris-
tics for building efficient analyses for complete configuration
spaces, and our dynamic analysis can help developers to un-
derstand how options interact within their system, possibly
guiding their implementation toward reduced configuration
complexity that is easier to understand and assure.

Overall, we contribute the following: (1) We implement a
dynamic analysis for Java that tracks interactions on data
and control flow during executing. (2) We develop three mea-
sures that characterize essential configuration complexity,
measuring how options interact within an execution. (3) We
design five benchmarks to study how state-of-the-art analysis
approaches exploit interaction characteristics in exponential

1 boolean STATISTICS, SMILEY, WEATHER,
2 FAHRENHEIT, SECURE_LOGIN;
3 void createHtml() {
4 String c = wpGetContent();
5 if (SMILEY)
6 c = c.replace(":]", getSmiley(":]"));
7 if (WEATHER) {
8 String weather = getWeather();
9 c = c.replace("[:weather:]", weather);

10 }
11 String head = initHeader();
12 print("<html><head>" + head + "</head><body>");
13 if (STATISTICS) {
14 long time = getCurrentTime();
15 printStatistics(time);
16 }
17 print("<div>" + c + "</div>");
18 String foot = wpGenFooter();
19 print("<hr/>" + foot + "</body></html>");
20 }
21 String getWeather() {
22 float temparature = getCelsius();
23 if (FAHRENHEIT)
24 return (temparature * 1.8 + 32) + "◦F";
25 return temparature + "◦C";
26 }

4 3 2 1 0 1 2 3 4

4

5

6

7

8

22

23

24

25

8

9

11

12

13

14

15

17

18

19

Line Number

c = "It is [:weather:]"

true:c = wpGetContent()

c = Choice(α, "It is [:weather<img..>",
 "It is [:weather:]")

¬α

SMILEY = Choice(α, true, false)
WEATHER = Choice(β, true, false)
FAHRENHEIT = Choice(ɣ, true, false)
STATISTICS = Choice(δ, true, false)
SECURE_LOGIN = Choice(ε, true, false)

α: c = c.replace(":] ",<img..>)

true: if (SMILEY)

true: if (WHEATHER)

β: weather = getWeather()

weather = Choice(ɣ, "77°F", "25°C")

c = Chioce(α, "It is [:weather<img..>",
 Choice(β, Choice(ɣ, "It is 77°F", "It is 25°C"),
 "It is [:weather:]"))

β: c = c.replace("[:weather:]“, weather) ¬β

head = "Hello World"

true:print("<htmt>.."+head+"..<body>")

true: initHeader()

Figure 1: Feature interactions modeled after WorldPress. Example source (left), a measurement of feature interactions
(middle), and the start of a corresponding variability-aware execution trace (right); descriptions at arrows display the
executed statement with the corresponding context, boxes show changes on the state.

configuration spaces, exposing why certain approaches do
not scale for certain kinds of interactions. (4) We measure
the configuration complexity for medium-sized systems, find-
ing that essential configuration complexity is low enough
to enable configuration-complete analyses. (5) We discuss
common characteristics of interactions, providing more nu-
anced variants of current assumptions, which can, among
others, encourage more efficient analyses for configuration
spaces. The tool and further information can be found on
our website http://meinicke.github.io/VarexJ/.

2. FEATURE INTERACTIONS
A feature interaction describes the situation in which fea-
tures modify or influence another feature in describing or
generating the system’s overall behavior [15, 68], typically
observable when the combined behavior of two features dif-
fers from the individual behaviors of both features [18, 52].
For example, one feature can interfere with or overwrite the
effects of another feature. When both features are developed
independently, it can be difficult to predict such interactions.
The concept of feature interactions has gained attention in
90s when studied in the context of telecommunication sys-
tems [18]. In general, a feature interaction is a failure of
compositionality, in the sense that the developers of features
did not anticipate the interaction when combining them.

Feature interactions are a common problem in software
systems with configuration options and systems that are
composed of different modules (e.g., plugins, components);
they can lead to often behavior, bugs, and security vulnera-
bilities [1, 26, 42, 51–53]. In the remainder of the paper, we
refer to features, optional modules, and options in a software
system uniformly as configuration options and refer to a
specific combination of those as a configuration. Interactions
may occur only in specific configurations and are thus diffi-
cult to detect: A product working fine in one configuration

may exhibit unexpected behavior when changing an unre-
lated option or installing a new plugin. The exponentially
growing configuration space challenges quality assurance. At
the same time, isolating options to prevent interactions is
often not possible, because some options are designed to
interact (e.g., intentionally exchanging specific kinds of data
among plugins or apps). The challenge is to allow intended
interactions, but prevent or detect accidental ones.

As example of interactions among multiple options consider
the code excerpt in Figure 1, modeled after the WordPress
blogging software that is extensible by thousands of indepen-
dently developed plugins. Options weather and fahrenheit
interact purposefully to show the weather information in
desired format. However, options smiley and weather can
interact on the blog post’s content in unintended ways,
such that the smiley code breaks weather ’s expansion of
a ‘[:weather:]’ tag, rewriting it into ‘[:weather,’.

There are different definitions of what constitutes an inter-
action, depending on what characteristics can be observed. In-
teraction faults tend to refer to issues in which we can observe
a fault (e.g., a crash) in an execution if and only if options
are combined in specific ways [1, 26,53]. For the purpose of
our discussion, we understand as an interaction any trace or
state difference in the program that depends on two or more
options, even if it does not result in a crash or even observable
behavior. For instance, in our WordPress example, whether
and how statistics are printed depends only on option statis-
tics (not an interaction), but the value of c depends on smi-
ley, weather, and fahrenheit (data interaction) and whether
Line 24 is executed depends on both weather and fahrenheit
(control-flow interaction). We consider interactions at the low
level of data and control flow, because they are measurable
even without a specification of intended behavior. With the
degree of an interaction, we refer to the number of options
involved in the interaction; typically, interactions of higher
degree occur in fewer configurations and are harder to detect.

Our goal is to understand which interactions exist at all
in software systems to inform the demands on quality assur-
ance and specification techniques that can be used to detect
interactions and to distinguish expected behavior from faults.

Surface vs. Essential Configuration Complexity. On
the surface, analyzing the entire configuration space seems
unrealistic because it grows exponentially with the number
of configuration options. A brute-force approach executing
each configuration separately is conceptually configuration
complete. That is, it explores all variations, but it is only
feasible in practice for the smallest configuration spaces.

Fortunately, the amount of variability that actually in-
duces differences and interactions in the execution may be
small enough to handle with a suitable analysis strategy. We
distinguish between surface configuration complexity (expo-
nential explosion with the number of options in the system)
and essential configuration complexity describing the actual
differences caused by options and their interactions.1 For
instance, in our example only three of five options affect the
blog post content and no option ever affects the header.

We aim to capture essential configuration complexity with
a configuration-complete dynamic analysis that allows us to
analyze which options really interact and how. In addition,
we look for common characteristics of interactions that can
be exploited by quality assurance strategies and developers.

Quality Assurance for Large Configuration Spaces.
Several quality-assurance strategies have been developed for
detecting interactions in large configuration spaces [19,61].
We focus on execution-level approaches that can assure a spe-
cific execution with given inputs over many configurations—
for example, checking whether a test case for an option’s
behavior, such as replacing smilies by images, passes inde-
pendently of other options.

State-of-the-art quality assurance strategies for large con-
figuration spaces typically use one of two strategies to scale:
• Sampling-based strategies execute the program only

in selected configurations and are thus not configu-
ration complete. That is, they may miss interactions.
Systematic sampling strategies, such as combinato-
rial interaction testing, can explore all interactions
up to a given degree, but may miss interactions with
a higher degree [53]. Their underlying assumption is
that the essential complexity is much lower than the
surface complexity in that most configuration options
are orthogonal and most interactions are of a low de-
gree [1, 17,21,26,42,47,53].
• Sharing-based strategies exploit lower essential complex-

ity more directly through the observation that many
executions in different configurations are similar or even
identical. They attempt to reduce redundancies by shar-
ing part of the execution. In the simplest case, identify-
ing that an option is not used (e.g., option secure login
in our example), a configuration with and without that
option will have identical traces [37,39]. More sophis-
ticated approaches often build on top of heavy-weight
infrastructures such as model checkers and may share a
prefix of the execution and fork it only once a computa-

1Our notion of surface and essential configuration complexity
is inspired by Brook’s discussion of accidental and essential
complexity in software engineering [14], in which essential
complexity describes the unavoidable complexity of the prob-
lem overshadowed by accidental complexity from suboptimal
languages, tools, and processes.

tion depends on variability, possibly even joining again
to share subsequent executions [5,51,55,57]. Sharing-
based strategies tend to reduce unnecessary surface com-
plexity, often while remaining configuration complete.

The effectiveness of both sampling-based and sharing-based
strategies depend on the essential configuration complexity as
well as the effectiveness of the sampling and sharing mecha-
nisms. Different approaches exploit different characteristics of
interactions, but there is little knowledge of actual character-
istics. The prevalence of low-degree interactions is supported
by observations of reported interaction faults [1,17,21,26,42,
47,53], but such results are potentially biased, because faults
in more popular configurations are more likely to be reported.
In addition, incomplete sampling-based strategies are more
readily available in practice and may primarily find faults
supporting their assumptions of low interaction degrees. Re-
dundancy during execution has been successfully exploited by
several approaches [37–39,63], but scalability has been limited
and it is unclear whether that is due to the essential configu-
ration complexity or insufficient exploitation of redundancies.

3. MEASURING CONFIG. COMPLEXITY
To assess configuration complexity and find interaction char-
acteristics, we need a way to identify interactions in a software
system’s execution. Using a brute-force approach, we could
attempt to record traces (and state) of the system in all
configurations [70] and subsequently compare traces [31,65]
to assign differences to options or interactions, but scalability
concerns would restrict us to systems with only few options.
Similarly, a sampling strategy is not suitable, because we
might not find rare high-degree interactions that could be
part of the essential configuration complexity. Instead, we de-
signed a dynamic analysis that tracks all interactions during
an execution using a sharing-based strategy.

Our dynamic analysis coordinates the execution of all
configurations, which allows us to observe which statements
and values actually differ among configurations during the
execution. Our analysis aggressively exploits sharing, but
has a high constant overhead and high engineering costs
(modifying an interpreter to track state and control flow
of multiple configurations at once; giving up features, such
as just-in-time compilation). Ideally, our results can inform
the design of future tools that can exploit the important
characteristics of interactions in a simpler and faster way.

Our dynamic analysis is built on the idea of variability-
aware execution [6,36,51]. Specifically, we have implemented
VarexJ [49], a variability-aware interpreter for Java Byte-
code and instrumented it to record interactions. In the fol-
lowing, we discuss how variability-aware execution works and
how we use it to assess essential configuration complexity.

3.1 Variability-Aware Execution
A variability-aware interpreter aims to maximally share re-
dundant executions using conditional values and variability
contexts, at the cost of additional overhead for each compu-
tation [36,49,51]. A conditional value is a multi-value that
may have different concrete values in different partial con-
figuration spaces [25,64]. A variability context is a formula
that describes a partial configuration space. Let us illustrate
conditional values by example:
• Choice(α, x, y) is the representation of two alternative

concrete values: x for all configurations in variability
context α, and y for all others.
• Choice(α, x, Choice(β, x, y)) = Choice(α∨β, x, y) illus-

trates how choices can be nested to represent more than
two alternative values, and how they can be compressed
to store only distinct values.

To compute with conditional values, we have to apply op-
erations to all alternative values. That is, we need to consider
all valid combinations of values (i.e., the cross product in
the worst case). For example, we compute the sum of two
conditional values and compress the result as follows:

Choice(α, 0, 1) + Choice(β, 0, 1)
= Choice(α,Choice(β, 0, 1), Choice(β, 1, 2))
= Choice(α ∧ β, 0, Choice(α ∨ β, 1, 2))

Some computations may be performed only within selected
configurations. To this end, a variability-aware interpreter
keeps track of the variability context in which each instruction
is executed (similar to path conditions in symbolic execution).

The interpreter keeps track of all data using conditional
values, which enables a fine-grained representation of shared
data. If, for example, the value of a field differs among con-
figurations, the values are stored as a choice in the field, but
other fields of the same object are shared for the entire config-
uration space. Instead of splitting the entire heap, variations
are stored locally. When computing with data, we only have
to compute with distinct values of all inputs, of which there
are typically much fewer than configurations in the configu-
ration space. Furthermore, the compact representation using
variability contexts in choices provides us with a way to track
where options interact.

Note how options occur only in variability contexts of
choices, but all values are concrete. In contrast to symbolic
execution, symbolic configuration decisions do not intermix
with concrete values. Hence, all computations are performed
with concrete values. This separation of concrete and sym-
bolic values enables computations without the undecidability
issues from abstractions in symbolic execution, therefore we
rely on variability-aware execution in our study.

We illustrate how a variability-aware interpreter executes
all program configurations of our example with the partial
trace in Figure 1 (right). The five configuration options
are initialized to both true and false with a condition.
Subsequently, the statement in Line 4 is executed once for
all configurations (context true). The if statement splits the
execution, such that Line 6 is executed in a restricted context
(α for smiley), creating a choice in the heap for variable c.
After the if block, the statements can be shared again for
all configurations. In Line 8, the method getWeather is
called, returning a choice depending on the option fahrenheit.
Variability-aware execution only needs to invoke the method
once, returning a choice as result. By applying the calculated
weather to c, the string replacement needs to be performed
four times, creating a choice that depends on three options
with four distinct values. Finally, the code from Line 11 can
be shared again for all configurations, until code depends on
conditional data again, as in Line 14 and 17, respectively.

A variability-aware interpreter maximizes sharing of redun-
dant calculations in two ways: First, variability-aware exe-
cution moves on from one instruction to the next instruction
sequentially only when every possible concrete value has been
computed for the corresponding configuration space. In other
words, variability-aware execution achieves instruction-level
sharing among control flows of all possible configurations.
Second, the difference between program states is represented
compactly using choices, such that small differences in local
variables or heap objects can be represented without splitting

the entire program state. In this way, a variability-aware in-
terpreter achieves fine-grained sharing among all executions.

Implementation. We implemented our variability-aware
interpreter VarexJ on top of JavaPathfinder’s [30] inter-
preter for Java Bytecode. To implement variability-aware
execution, we modified all bytecode instructions to handle
conditional data, we extended all shared data structures
(e.g., the heap, the method frame) to store choices, and we
implemented a specialized scheduling mechanism.

Those changes and the fact that VarexJ itself is written
in Java creates a high runtime overhead for each instruction
(a constant slowdown compared to a JVM of a factor 50–250
in our experience). As we build on top of JavaPathfinder,
we inherit the same limitations, such as incomplete support
for native methods and limited support for concurrency. This
overhead and these limitations might forbid using VarexJ
for practical testing, but it is acceptable for our explorations
of configuration complexity. The advantage of extending an
interpreter is that we can monitor each Java Bytecode in-
struction to observe interactions during runtime. To ensure
the correctness of the implementation, we compared the exe-
cuted instructions to the execution of all single configurations
for several of our subject systems (cf. Section 5).

More detailed descriptions of variability-aware execution
and our implementation can be found in the first author’s
master’s thesis [49] and on our website.

3.2 Measuring with VarexJ
Sharing executions and compactly representing data differ-
ences, our dynamic analysis can directly collect data about
interactions. Our execution overapproximates essential inter-
action complexity where sharing is suboptimal. Technically,
we instrumented the execution of each Java bytecode in-
struction to collect data on interactions to measure three
metrics: the control-flow interaction degree, the data interac-
tion degree, and the interaction overhead. We exemplify the
measurements for our running example in Figure 1 (center).

With control-flow interaction degree, we measure configura-
tion complexity on the control flow by assessing how many op-
tions need to be selected or deselected to execute the instruc-
tion at this point of the trace. The degree increases at control
flow decisions that depend on a configuration option; in our
example, the instruction in Line 24 is executed with context
weather∧fahrenheit, thus this instruction’s control-flow inter-
action degree is two. As our analysis already tracks the vari-
ability context during execution, we merely need to log the
number of options in the context for each executed instruction.
In our plots, we visualize the control-flow interaction degree
as a red line along the trace. A high value indicates part of
an execution that is only triggered in few configurations.

With data interaction degree, we measure configuration
complexity on data by assessing on how many options the
resulting value of an instruction depends. Considering vari-
ability, an instruction may need to be computed with alter-
native values and the result of the instruction may depend
on one or multiple options, of which we report the number
of distinct options affecting the value. For example, the ex-
pression computing c in Line 9 results in four alternative
values depending on three different options, resulting in a
data interaction degree of three. We measure the degree by
inspecting the result of every instruction during execution
and plot it as a green bar along the trace. A high value indi-
cates that some different results from a computation might
be observable in few specific configurations only.

Finally, with interaction overhead, we measure the effort
required to execute an instruction considering data variability
in the instruction’s inputs. If all inputs of an instruction have
the same value in all configurations, we need to execute the
instruction only once (baseline overhead 1). If one input has
n alternative values in different configurations, we need to
execute the instruction n times (overhead n). For instructions
with multiple inputs (e.g., addition or method invocation), we
need to consider all combinations of alternatives of all inputs
(worst case overhead n×m for an instruction with two inputs
with n and m alternatives respectively). In contrast to inter-
action degree measures, interaction overhead assesses the es-
sential computational effort from alternative values, not how
many options are involved. For example, in Line 9 the two val-
ues of weather are combined with the two values of c (over-
head 4). We compute the interaction overhead by inspecting
the variability in all inputs of each instruction and plot it as
blue bars along the trace. The interaction overhead is useful to
compare essential complexity to the effort for executing a sin-
gle configuration; comparing the aggregated overhead of all in-
structions with those of a single execution allows us to assess
how many additional instructions have been executed and
how many instructions need to be repeated due to variability.

All three measures assess different aspects of configuration
complexity. The interaction degree measures characterize
interactions in control flow and data, whereas interaction
overhead approximates the effort required for a configuration-
complete analysis considering maximal sharing. The trace for
our example in Figure 1 illustrates how the measures peak
every time data from interactions is created or accessed.

4. INTERACTION BENCHMARKS
After introducing how we measure configuration complexity
technically, we illustrate how certain kinds of interactions
affect essential configuration complexity with a series of
benchmarks. The benchmarks provide a sanity check for
our measures of configuration complexity before we collect
and interpret the measures on real-world systems. Addition-
ally, they allow us to study how well existing sharing-based
analysis tools exploit redundancies and which interaction
characteristics they exploit. This enables us later to extrapo-
late which analysis strategies can cope with characteristics
found in real-world software systems.

We designed five benchmarks shown in Table 1 that each
exhibit different interaction characteristics in a short execu-
tion. In the second column, we plot the measured configu-
ration complexity. Additionally, we compare execution time,
executed instructions, and memory consumption of five state-
of-the-art analysis tools: SPLat [39], JPF-Core [30], JPF-
BDD [63], JPF-SE [2], and VarexJ. We do not evaluate
sampling-based strategies, as our benchmarks are specifically
designed to produce high-degree interactions. Specifically,
we address the following research question: RQ 1: What
are the effects of different kinds of interactions on
the scalability and performance of state-of-the-art
execution mechanisms?

4.1 Experimental Setup
Evaluated Analysis Tools. We compare five state-of-the-
art analysis tools that have been designed to efficiently exe-
cute a program over configuration spaces by fighting surface
complexity through different kinds of sharing. Some of these
tools have been designed originally for different purposes,

such as model checking safety properties [2], but they have
been suggested also for analyzing interactions or testing
highly-configurable systems. We selected tools that repre-
sent different analysis and sharing strategies: identifying
unnecessary options, software model checking, and symbolic
execution. In addition, we use the uninstrumented version of
our variability-aware interpreter VarexJ as a representative
for variability-aware execution. The tools are comparable in
the sense that they all target Java and are mostly based on
the same infrastructure, namely JavaPathfinder [30].

JPF-Core (JavaPathfinder) is a model checker for Java
Bytecode that handles bytecode instructions as transitions
between states [30]. JPF-Core can be used to split execution
paths for boolean options and explore all possible paths. If
all values of fields and variables are equivalent, JPF-Core
can join separated paths and share subsequent executions.
JPF-BDD extends JPF-Core by separating tracking of

boolean options [63]. By taking options out of the state,
states can be merged if they differ only by options, increasing
the chance for joining, and thus sharing.

JPF-SE is a symbolic extension of JavaPathfinder [2],
designed for test generation. If a variable is assigned with a
symbolic value, the search tree splits, but due to challenges
in matching symbolic states, states are never merged.

Finally, SPLat instruments a program to dynamically
detect which configuration options are used in an execu-
tion [39]. It reexecutes the program until all combinations of
used options are explored. Although SPLat does not share
any actual executions, it can narrow down the configuration
space if only a subset of configurations have an effect on
the execution trace (e.g., for unit tests). As the tool is not
publicly available, we reimplemented it for Java.

Benchmarks and Metrics. We design five small bench-
mark programs characterizing favorable and critical cases
for interactions among configuration options. We show all
benchmarks in Table 1 and explain them and their rationale
together with the results. All benchmarks are reduced to
distill the interaction effect in a very concise setting. Each
benchmark can be scaled in the number of involved config-
uration options, such that we can observe scalability with
regard to the exponentially growing surface configuration
complexity. We plot the complexity measures for an execution
with 10 options to illustrate the general trend.

For each tool, we report the performance measures time,
instructions, and memory consumptions for executing the
benchmark with different numbers of options (0 to 100). We
measured them all using internal metrics of JavaPathfinder
and built a separate harness for SPLat. As we face an ex-
ponential problem, we terminate executions that exceed two
minutes. To reduce measurement bias, we report the average
of three runs.

4.2 Sharing Potential
For each benchmark, we discuss the interaction characteristic
it simulates, reasons for the configuration complexity, and
the performance measures indicating which tools scale.

B1: Explosion. We start with the worst case of interactions
in which all options interact on the same value and yield a dif-
ferent result in every configuration. In such case, every exhaus-
tive technique needs to track an exponential number of alter-
native values. As visible from the complexity measures, early
and some later instructions (e.g., if statements) in the bench-
mark are affected by fewer configurations and can be shared.

Table 1: Benchmarks to simulate different kinds of interactions (left). The diagrams in the second column illustrate
interactions for each program measured using variability-aware execution. The three diagrams on the right show the
performance results for time, executed instructions and memory consumptions for five analysis tools.

Performance Measures

Benchmark Complexity Measures Time in seconds Instructions in 1,000 Memory in MB

B
1
:
E
x
p
lo

s
io

n

boolean O1, O2, ...
void method() {

int i = 1;
if (O1)

i += 2;
if (O2)

i += 4;
...

}
200

0

200

400

600 Interaction Degree,
Data
Interaction
Overhead
Interaction Degree,
Control Flow

10 0

20

40

60

80

100

120
JPF-Core

JPF-BDD

JPF-SE

SPLat

VarexJ

0

5

10

15

20

0

200

400

600

800

B
2
:
D
e
e
p

N
e
s
t
in

g boolean O1, O2, ...
void method() {

int i = 1;
if (O1) {

i += 2;
if (O2) {

i += 4;
...

}}}
10

5

0

5

10

0

1

2

0

1

2

3

0

10

20

30

40

50

B
3
:
D
is
t
in

c
t
V
a
lu

e
s boolean O1, O2, ...

void method() {
int i = 0;
if (O1)

i++;
if (O2)

i++;
...

}
10

5

0

5

10

0

5

10

15

20

0

5

10

15

20

0

100

200

300

400

500

600

B
4
:
S
e
p
a
r
a
t
e

V
a
lu

e
s

boolean O1, O2, ...
int i1, i2, ...
void method() {

if (O1)
i1 = 1;

if (O2)
i2 = 1;

...
}

2

1

0

1

2

0

5

10

15

20

0

5

10

15

20

0

200

400

600

800

B
5
:
N

o
D
a
t
a

In
t
.

boolean O1, O2, ...
void method() {

if (O1)
print("");

if (O2)
print("");

...
}

2

1

0

1

2

0

5

10

15

20

0 50 100
Options

0

5

10

15

20

0 50 100
Options

0

50

100

150

200

250

300

0 50 100
Options

However, no tool can be expected to scale as they all face es-
sential configuration complexity growing exponentially with
the number of options as visible in all performance measures.
If these kinds of interactions are common in practice, there
would be little hope for configuration-complete analyses.

B2: Deep Nesting. Next, we explore the effect of dependen-
cies among options, leading to a lower essential configuration
complexity with a linear number of distinct execution traces.
Whereas B1 had independent decisions for each option, re-
sulting in 2n execution traces, B2 models nested decisions,
resulting in n+1 execution traces for n options. The complex-
ity measure shows the linear increase in overhead as additions
are performed on values with increasingly many alternative
values. Also the interaction degree measures grow linear as
more and more options need to be selected. Again, we can
see that several instructions that do not manipulate variable

i could be shared. Our performance measures show that this
kind of interaction is well supported by all approaches. As all
tools only split lazily where necessary, there are nearly linear
increases with more options in all performance measures. Sim-
pler tools outperform tools with higher constant overhead,
as exploiting additional sharing has only marginal effects.

B3: Distinct Values. Sharing becomes feasible if interac-
tions on a variable produce a small number of distinct values.
In benchmark B3, each option increases a value by 1, result-
ing in n+ 1 distinct values for n options. Therefore, essential
configuration complexity grows linearly with the number
of configurations. Our performance measurements indicate
that JPF-Core and JPF-SE require exponential effort as
they need to split the execution on every if statement but
cannot join them again; JPF-SE never joins and JPF-Core
cannot join as the values representing the options have dif-

ferent values in different states. Without data sharing, also
SPLat requires exponential effort because all options have
an independent effect on the execution trace. JPF-BDD and
VarexJ both track the n+ 1 distinct values separately from
the variations in configuration options, which enables them
to perform closer to the linear growing essential configuration
complexity. VarexJ executes fewer instructions and requires
less memory than JPF-BDD by exploiting additional shar-
ing, which however has no benefits for the execution time
due to the additional overhead.

B4: Interactions on Separate Values. If options affect
disjoint parts of the state, essential configuration complexity
can be very low. Benchmark B4 exhibits an interaction in
which each option affects a different variable, without any
data interaction. Despite an exponential number of execu-
tion traces and distinct states, each variable has only two
alternative values (0 and 1) and, as such, the essential configu-
ration complexity is low. As the performance measures show,
JPF-Core, JPF-SE, JPF-BDD, and SPLat all require ex-
ponential effort, as they do not exploit sharing for this interac-
tion characteristic. All approaches split on each if-statement
and none can join the states again. Even JPF-BDD cannot
join, as non-option values differ across configurations. Only
VarexJ approaches the low essential complexity.

B5: No Interactions on Data. Finally, we eliminate all
data interactions, such that only control-flow interactions
remain (i.e., an exponential number of different execution
traces, all with the same states). Essential configuration
complexity is low as in B4. JPF-BDD and VarexJ both
execute each instruction on a single state without interaction
overhead, as all variability of options is handled separately. In
contrast, SPLat still needs to explore all execution traces and
JPF-Core and JPF-SE track different configuration values
as part of their split state, resulting in exponential behavior.

Lessons Learned. Even when essential configuration com-
plexity is low, missing to exploit suitable forms of sharing
for certain characteristics of interactions can result in expo-
nential execution efforts. A program with negligible essential
complexity (e.g., without any data interaction, as in B4) can
cause exponential behavior in state-of-the-art approaches.
Finding such kind of interaction characteristics in real-world
programs would be a great opportunity for quality assurance,
as it indicates a high potential for configuration-complete
analysis with sharing-based approaches.

5. REAL-WORLD INTERACTIONS
To assess essential configuration complexity of executions
in real-world software, we applied variability-aware execu-
tion to eight configurable systems shown in Table 2. We
selected four configurable medium-sized systems from differ-
ent domains, the http server Jetty 7, the in-memory database
Prevayler, the static analysis tool Checkstyle, and the aca-
demic evaluation framework for database index structures
QuEval [56]. In addition, we included systems previously
used as benchmarks in research on configurable systems: The
systems MinePump [41], E-Mail [29], and Elevator [54] are
small academic Java programs that were designed with many
interacting options; GPL [45] is a small-scale configurable
graph library often used for evaluations in the product-line
community. All these systems are executable with VarexJ.

To investigate interactions in configurable systems, we pose
the following research question: RQ 2: What is the essen-
tial configuration complexity of real-world software?

Table 2: Subject systems analyzed for configuration
complexity and their sizes in lines of code, number
of options and configurations; number of instructions
executed with VarexJ, the aggregated interaction over-
head (

∑
IO), the average number of instructions for

single configurations (µInst.), and lower bound for line
coverage reached with the sample method.

System LOC Opt. Conf. Inst.VA
∑

IO µInst. Cov.

Jetty 7 145,421 7 128 12M 12M 12M 16%
Checkstyle 14,950 141 >2135 407M 421M 198M 37%
Prevayler 8,975 8 256 28M 29M 15M 7%
QuEval 3,109 20 680 81M 94M 1M 45%
Elevator 730 6 20 89k 100k 29k 81%
GPL 662 15 146 17M 17M 9M 86%
E-Mail 644 9 40 48k 55k 16k 96%
MinePump 296 6 64 14k 16k 14k 84%

Particularly, we are interested in whether our measures for
configuration complexity confirm current assumptions based
on error reports and program outputs [1,26,42] or whether
they provide additional insights.

Experimental Setup. We execute all subject systems over
all configurations with VarexJ. For each system, we measure
configuration complexity for a fixed standard input: a sample
input distributed with QuEval, a source file with 474 lines
for Checkstyle, and a sample application provided with Pre-
vayler. For Jetty, we deploy a web application that is capable
of serving static content as well as running simple servlets.
As the traces often contain several million instructions, we
aggregate (max) subsequent instructions in our plots. We
share the evaluation setup together with our implementation.

Interactions in Real-World Software. We show five
representative traces in Figure 2; the remaining traces can be
found on our website. In all systems, we can observe a small
average interaction overhead throughout most of the trace
and usually small interaction degrees (i.e., most instructions
can be shared in large configuration spaces). The traces also
show that options do not interact increasingly across the
entire executions. Some individual results are noteworthy:

First, the Elevator system was specifically designed to
exhibit many interactions [54]. Its trace shows that several
interactions on data cause an interaction overhead of up to
12. However, most instructions in the trace have an overhead
of at most two. Many instructions are executed in restricted
contexts though, requiring up to five options.

Second, GPL is a common system for evaluations in the
product-line community, including prior studies of sharing
and verification [5, 38]. The system has only some minor
interactions with an interaction overhead of mostly two and
a interaction degrees of mostly one option. Options do not
interact at all for most parts of the trace. However, at the end
of the execution up to eight options interact on the same data.

Third, we observed the strongest data interactions in
QuEval. QuEval implements several database index struc-
tures which can be customized with several options, signifi-
cantly changing the behavior of the entire system. The trace
shows that there are long sequences with similar overhead in
the execution. This is caused by separate processing of each
index structure. Some values interact strongly causing an
overhead of 100 (among 680 configurations). However, the
trace still shows that high interaction degrees are rare, and
many instructions can be shared after and between them.
In QuEval, there are multiple interactions that cause high

5

0

5

10

15

(a) Elevator

9

6

3

0

3

6

(b) GPL

25

0

25

50

75

100

(c) QuEval

3

0

3

6

9

(d) Prevayler

50
25
0
25
50
75

100

(e) Checkstyle

Figure 2: Traces and interaction overhead of variability-aware execution for larger software. Each bar represents the
highest value per 1,000 instructions (per 10 for Elevator).

interaction degrees on data and control flow. Especially, in
the last part of the execution, data interactions similar to
benchmark B1 can be observed for a subset of the options.

Fourth, Checkstyle is a good example for a trace with
particularly few interactions. The system implements many
optional and independent checks that are not supposed to
interact. However, the trace shows that there are still high
degree interactions in Checkstyle, mostly caused by optional
caching, resulting in a similar behavior as in the benchmark
B3 in a subset of the trace. Also in Jetty (trace not shown),
we similarly observe that most options have only minimal in-
fluences on the trace; we found no interactions on data at all.

Throughout all systems, we observe essential configuration
complexity that is far lower than surface complexity may
indicate. The amount of essential configuration complexity
differs by system though from almost negligible (Checkstyle,
Jetty, GPL), to medium (Elevator, Prevayler), to significant
(QuEval). Comparing the aggregated interaction overhead
with the average number of instructions executed without
variability shown in Table 2 (cf. Sec. 3.2), we can see that
a system executing close to essential configuration complex-
ity would usually only have to execute 1 – 4 times more
instructions than an average execution of a single configu-
ration. Only QuEval had a significant interaction overhead
compared to an average execution of individual configura-
tions, but that can be explained largely by executions for
alternative options. In general, the overhead is much lower
than the overhead of factor 20 to 2135 a brute-force approach
would require and could potentially even beat some sampling
strategies that reexecute each sampled configuration.

In its current form, due to the high overhead per instruc-
tion, VarexJ cannot achieve this speedup compared to a
standard JVM.2 However, our results indicate that essential

2When compared to executing a single configuration with
VarexJ’s own interpreter, we observe performance overheads
between 1.0x (Jetty) and 9.7x (GPL) for most systems and
190x for QuEval, in line with the measured interaction over-

complexity is low and there is hope for the community to
develop efficient configuration-complete analysis techniques.

Threats to Validity. Concrete results from our measure-
ments should be generalized only carefully; our focus is on
establishing metrics for configuration complexity, not on prov-
ing characteristics of programs in general practice. External
validity is limited by the number and size of our subject
systems. As described, we selected the small programs rep-
resenting critical and paradigmatic cases, whereas we used
convenience sampling for the medium-sized systems, primar-
ily due to current technical limitations of our interpreter
and the high engineering effort to execute further and larger
systems. Our subject systems are diverse, but their charac-
teristics may not generalize for other systems.

As described, we executed each system with only one input.
Thus, we potentially miss interactions that occur only with
other inputs. Nonetheless, we execute each program’s main
method with a representative input, which in each system
covers all configuration options and a large amount of its
code as the measured line coverage in Table 2 indicates.

To interpret our results, it is important to remember,
as discussed in Sec. 2, that we define interactions as any
differences during the execution triggered by options, not
just externally visible differences or defects. This decision is
deliberate to study interactions and execution methods in
general, independent of defects they may cause.

6. DISCUSSION: CHARACTERISTICS OF
INTERACTIONS

In Section 4, we have shown that despite exponential sur-
face complexity many kinds of interactions actually have
low essential complexity, which can be exploited by suitable
sharing-based analyses. In Section 5, we have subsequently
shown that also real-world systems typically have a much
lower essential complexity than it may appear on the surface.

head. Detailed performance measurements are outside the
scope of this paper, but can be found on our website.

However, we have also seen that interactions in real-world
systems have characteristics that are more nuanced than ex-
pected by existing approaches. Therefore, we conclude with
a discussion of observed characteristics that may inform the
design of future analysis approaches and may also be informa-
tive for developers concerned about interactions in their code.

We identify three main characteristics that are exploited
(though not always explicitly) by existing analyses: irrelevant
variability, orthogonal variability, and local variability.

Irrelevant variability. Some options may not have any
effect on an execution at all. Even when a program has
a large configuration space, some executions, such as test
cases, may not even read certain configuration options. If
no configuration of an execution ever reads a configuration
option, we call such execution unaffected by the option
(e.g., option secure login in our example of Figure 1). In
addition, some options may never be read unless another
option is (de)activated, in which the first option depends
on the second (e.g., fahrenheit depends on weather in our
example). In both cases, the number of distinct executions
is smaller than the exponential surface complexity indicates.

All sharing-based approaches exploit irrelevant variability,
as shown with benchmark B2. Although, irrelevant variabil-
ity was attributed with significant speedups for test cases in
prior work [37,39], none of our real-world executions benefited
from unaffected variability without rewriting the system to
initialize options lazily (all options were always read and ini-
tialized). Dependencies reduced the search space, but never
close to essential configuration complexity.

Orthogonal Variability. Many options may not interact
with each other. Although potentially every option could
interact with every other option, resulting in exponential
surface complexity, a common assumption is that most op-
tions do not interact. We say two options are orthogonal
if combining both options does not yield any new behavior
that could not be explained by either option alone. Some
options may be strictly orthogonal and not interact with
any other option (e.g., option statistics is strictly orthogonal
to all other options in our example), but it is more common to
assume low interaction degrees where each change can be
explained by the interaction of at most two or three options
(e.g., options smiley, weather, and fahrenheit all interact on
the blog post, but not with any other options).

The effectiveness of sampling strategies typically hinges on
low interaction degrees (see Sec. 2), whereas most existing
sharing-based approaches are rather inefficient in exploiting
orthogonality, especially when options affect data, as appar-
ent from benchmarks B4 and B5. Our real-world executions
confirm that many options are orthogonal, but also show
that one should not rely on low interaction degrees alone: We
found high interaction degrees (e.g., 40 in Checkstyle) in most
systems, but also found that those involve some options while
others remain mostly orthogonal. We argue that rare high
interaction degrees is a more accurate characterization of
interactions in real-world systems, encouraging research into
configuration-complete analyses.

Local variability. An option may affect control flow and
data during an execution, but its effects might not spread
across the entire execution trace, resulting in much lower
essential configuration complexity than surface complexity.
With locality, we might need to invest more effort to execute
part of the trace repeatedly for different configurations, but
we can share effort in other parts. In our example, option

Table 3: Interaction characteristics exploited by different
analysis approaches. : exploited, : partially exploited.

U
n
a
ff

e
c
te

d

D
e
p

e
n
d
in

g

S
tric

tly
O

rth
o
g
o
n
a
l

L
o
w

In
te

ra
c
tio

n
D

.

H
ig

h
In

te
ra

c
tio

n
D

.

P
re

fi
x

S
h
a
rin

g

S
tric

tly
L

o
c
a
l

S
c
a
tte

re
d

L
o
c
a
l

E
n
g
.

&
R

u
n
tim

e
O

v
.

Combinatorial testing very low

SPLat low

JPF high

JPF-SE very high

JPF-BDD high

VarexJ very high

statistics produces additional output, but does not affect
earlier or subsequent instructions, neither through control
flow nor through data in stack or heap.

Many sharing-based approaches exploit locality by sharing
executions before the option’s effect, and possibly also after
(see Sec. 4). Existing sharing-based approaches differ in what
forms of locality can be exploited though. Many approaches
can share a common prefix of the execution trace (prefix
sharing) and split late on the first instruction depending on
an option. Some approaches can join after local instructions,
if those instructions do not affect the state as option statis-
tics in our example and in benchmark B5 (strictly local).
Interactions that affect some state, that is, however, not read
again subsequently (see benchmark B4) are rarely supported.

A much more common pattern in the observed real-world
executions is what we call scattered local: Options affect
the trace locally and cause some changes to the program’s
state, but many subsequent instructions can be shared before
that changed state is accessed again. In our example, multiple
options affect the value of c, but subsequent instructions can
be shared until c is read again at the end of the method.
This is an effect, which we observed as gaps between peaks
in the measures of our benchmarks and the real world execu-
tions. In all cases, we see strong evidence of locality in that
essential configuration complexity always returns to lower
values after peaks.

Outlook. We observed that essential configuration complex-
ity is often low and exploiting irrelevant variability, orthogo-
nal variability, and local variability is a promising avenue to
scale analysis approaches. However, we also found that sup-
porting the more nuanced characteristics of rare high interac-
tion degrees and scattered local effects are essential for scaling
sharing-based approaches to large configuration spaces.

We summarize which properties are supported by each of
the discussed tools in Table 3. Currently, the tools that exploit
more characteristics are also based on a more heavy-weight
infrastructure (i.e., higher engineering effort for the analysis
and higher runtime effort to execute individual instructions).
We hope that our analysis infrastructure helps to identify
a sweet spot for exploiting the most relevant interaction
characteristics, without the overhead of our current dynamic
analysis implementation in VarexJ.

In several traces, we measured interactions of which not all
might be intended. We conjecture that our dynamic analysis
might be useful for developers to understand the sources of in-
teractions and to build maintainable and assurable software.

7. RELATED WORK
Characteristics of Interactions. Despite much research
on highly-configurable systems, the nature of configuration-
related interactions is not well understood, especially at the
code level. In studying bug reports, many studies found
that the majority of reported configuration-related bugs are
caused by individual options or interactions among only few
options with only few defects at higher degrees [1,17,21,26,42,
47, 53]; but none of these studies is based on a configuration-
complete analysis. Manual search for feature interactions
in requirements in telecommunications and electronic mail
has focused primarily on pairwise interactions [29,40]. The
few studies that systematically analyzed entire configuration
spaces found also interactions among more options, such as a
linker fault in Busybox that involved 11 options [35]. Where
prior work primarily focused on the degree of interaction
faults, we define and monitor measures for interaction degrees
and interaction overhead to assess configuration complexity
of both data and control flow interactions.

Closest to our analysis of interactions at the execution level,
Reisner et al. used symbolic execution to explore different
paths of test cases in three C programs (9–14KLOC, 13–30
options) and found interactions among 7 of 30 options in one
system [55]. Executing configurations separately, they mea-
sured the effect of interactions on control flow only (with the
goal of increasing test coverage), whereas we specifically moni-
tor the effect of interactions on data to measure configuration
complexity (to assess whether a configuration-complete ap-
proach is feasible), especially regarding the different notions
of local variability, e.g., using benchmarks B3–B5 and the
complexity measure of interaction overhead.

Analyses for Configurable Systems. As already dis-
cussed in Sec. 2, analysis strategies for configuration spaces
are usually based on sampling or sharing. Combinatorial
interaction testing is a state-of-the-art sampling strategy to
guarantee coverage of all combinations among τ configuration
options [17, 21, 53]. Researchers have explored many other
sampling strategies for configuration spaces, using machine
learning [58] or optimizing code coverage [60], that all exploit
similar assumptions of irrelevant or orthogonal variability.

The software-product-line community has extensively in-
vestigated strategies to analyze large configuration spaces
through sharing [61]. Although the sharing techniques differ
in details, they often follow similar ideas of analyzing the
entire system at once, splitting where necessary and joining
at fine granularity. Many techniques have been explored for
efficient representation and reasoning about (partial) config-
uration spaces [25,50,64]. Our dynamic analysis, based on
variability-aware execution, adopts many of those insights
from static analyses to dynamic execution of programs.

Several researchers have recently explored forms of
variability-aware execution that aggressively exploit sharing
during the execution of alternatives of a program, partic-
ularly exploiting locality of options in control flow and data
by storing variations locally with choices. Variability-aware
interpreters for the While language [36] and a subset of
PHP [51] have demonstrated significant possible speedups
over a brute-force approach. Kim’s shared execution,
also based on JavaPathfinder, exploits sharing within
functions, though not across function boundaries, evaluated
on small-scale Java programs [38]. Austin and collaborators
have explored the same concepts for JavaScript and a subset
of Python, framed in the context of secure information flow
analysis [6, 7]. Our dynamic analysis in VarexJ is built on

the same ideas and is the first variability-aware interpreter
that supports a full mainstream programming language and
can analyze existing programs of significant size.

Some researchers have additionally explored static strate-
gies to identify the scope of options and other changes as
well as their potential interactions, based on slicing or data-
flow analysis [3, 12, 44]. While such analyses can identify
potential interactions without the need of specific inputs,
static analyses are conservative and tend to significantly over
approximate potential interactions. Instead of detecting in-
teractions, some approaches aim to identify the cause of a
configuration fault once it occurs [66, 69] or automatically
resolve interactions with a default strategy [10, 33]. Such
approaches are orthogonal to our analysis.

Analyses Beyond Configurable Systems. Addressing
exponentially growing search spaces through some form of
sharing is common for analyses in many domains. For ex-
ample, even in finite models, the search space in model
checking often exceeds the available memory, known as the
state-space-explosion problem [8,9]. Symbolic model checking
approaches increase sharing by representing states more com-
pactly with symbolic techniques [16, 20]. Other techniques
have been explored to further reduce redundancies in state
representations, such as separation of frequently changing
values [4, 63], and compact encoding and manipulation of
multiple states [22,57]. Our results can indicate the expected
effectiveness of each sharing strategy when applied to con-
figuration spaces, based on the expected characteristics of
interactions, as discussed in Sec. 4 and 6.

Our dynamic analysis monitors differences among multiple
executions similar to concepts of multi execution [23, 24].
Most multi-execution approaches execute variants separately
and use external synchronization mechanisms [32,46], though
some approaches explicitly share redundancies, but only for
a small number of variants (usually two) [59,62]. In contrast,
we explicitly monitor interactions among multiple options in
an exponential configuration space.

8. CONCLUSION
Undesired interactions challenge quality assurance for highly-
configurable software, as they are typically unknown and can
result in faults and security vulnerabilities. Their detection is
a challenge as the configuration space of such systems grows
up to exponentially in the number of configuration options.
Existing analyses try to scale with assumptions about interac-
tions. However, whether these assumptions are valid and how
much we can speed up analyses in future is not well under-
stood. With VarexJ, we implemented a dynamic analysis for
Java to quantify different characteristics of interactions with
benchmarks and to analyze real-world programs. We found
that essential configuration complexity induced by real-world
interactions is usually low, making configuration-complete
analyses feasible. Based on our insights, we discussed typical
characteristics of interactions, which can be exploited by fu-
ture approaches for quality assurance of configurable systems.

9. ACKNOWLEDGMENTS
This work has been supported in part by the BMBF grant
(01IS14017A, 01IS14017B), the NSF awards 1318808 and
1552944, the Science of Security Lablet (H9823014C0140),
AFRL and DARPA (FA8750-16-2-0042), and the U.S. De-
partment of Defense through the SERC (H9823008D0171).

10. REFERENCES
[1] I. Abal, C. Brabrand, and A. Wasowski. 42 Variability

Bugs in the Linux Kernel: A Qualitative Analysis. In
ASE, pages 421–432. ACM, 2014.

[2] S. Anand, C. S. Păsăreanu, and W. Visser. JPF-SE: A
Symbolic Execution Extension to Java Pathfinder. In
TACAS, pages 134–138. Springer, 2007.

[3] F. Angerer, A. Grimmer, H. Prähofer, and
P. Grünbacher. Configuration-Aware Change Impact
Analysis. In ASE, pages 385–395. IEEE, 2015.

[4] S. Apel, D. Beyer, K. Friedberger, F. Raimondi, and
A. von Rhein. Domain Types: Abstract-Domain
Selection Based on Variable Usage. In HVC, pages
262–278. Springer, 2013.

[5] S. Apel, A. von Rhein, P. Wendler, A. Größlinger, and
D. Beyer. Strategies for Product-Line Verification: Case
Studies and Experiments. In ICSE, pages 482–491.
IEEE, 2013.

[6] T. H. Austin and C. Flanagan. Multiple Facets for
Dynamic Information Flow. In POPL, pages 165–178.
ACM, 2012.

[7] T. H. Austin, J. Yang, C. Flanagan, and
A. Solar-Lezama. Faceted Execution of Policy-Agnostic
Programs. In PLAS, pages 15–26. ACM, 2013.

[8] T. Ball, V. Levin, and S. K. Rajamani. A Decade of
Software Model Checking with SLAM. Comm. ACM,
54(7):68–76, 2011.

[9] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar.
The Software Model Checker Blast: Applications to
Software Engineering. STTT, 9(5):505–525, 2007.

[10] C. Bocovich and J. M. Atlee. Variable-Specific
Resolutions for Feature Interactions. In FSE, pages
553–563. ACM, 2014.

[11] E. Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand,
P. Borba, and M. Mezini. SPLLIFT: Statically
Analyzing Software Product Lines in Minutes Instead
of Years. In PLDI, pages 355–364. ACM, 2013.

[12] M. Böhme, B. C. d. S. Oliveira, and A. Roychoudhury.
Regression Tests to Expose Change Interaction Errors.
In ESEC/FSE, pages 334–344. ACM, 2013.

[13] C. Brabrand, M. Ribeiro, T. Tolêdo, and P. Borba.
Intraprocedural Dataflow Analysis for Software
Product Lines. In AOSD, pages 13–24. ACM, 2012.

[14] F. P. Brooks. No Silver Bullet: Essence and Accidents
of Software Engineering. Computer, 20(4):10–19, 1987.

[15] G. Bruns. Foundations for Features. In Feature
Interactions in Telecommunications and Software
Systems VIII, pages 3–11. IOS Press, 2005.

[16] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and L.-J. Hwang. Symbolic Model Checking: 1020

States and Beyond. In LICS, pages 428–439. IEEE,
1990.

[17] I. Cabral, M. B. Cohen, and G. Rothermel. Improving
the Testing and Testability of Software Product Lines.
In SPLC, pages 241–255. Springer, 2010.

[18] M. Calder, M. Kolberg, E. H. Magill, and
S. Reiff-Marganiec. Feature Interaction: A Critical
Review and Considered Forecast. Computer Networks,
41(1):115–141, 2003.

[19] I. D. Carmo Machado, J. D. McGregor, Y. a. C.
Cavalcanti, and E. S. De Almeida. On Strategies for
Testing Software Product Lines: A Systematic
Literature Review. IST, 56(10):1183–1199, 2014.

[20] A. Classen, P. Heymans, P.-Y. Schobbens, and
A. Legay. Symbolic Model Checking of Software
Product Lines. In ICSE, pages 321–330. ACM, 2011.

[21] M. B. Cohen, M. B. Dwyer, and J. Shi. Interaction
Testing of Highly-Configurable Systems in the Presence
of Constraints. In ISSTA, pages 129–139. ACM, 2007.

[22] M. d’Amorim, S. Lauterburg, and D. Marinov. Delta
Execution for Efficient State-Space Exploration of
Object-Oriented Programs. TSE, 34(5):597–613, 2008.

[23] W. De Groef, D. Devriese, N. Nikiforakis, and
F. Piessens. FlowFox: A Web Browser with Flexible
and Precise Information Flow Control. In CCS, pages
748–759. ACM, 2012.

[24] D. Devriese and F. Piessens. Noninterference Through
Secure Multi-Execution. In SP, pages 109–124. IEEE,
2010.

[25] M. Erwig and E. Walkingshaw. The Choice Calculus: A
Representation for Software Variation. TOSEM,
21(1):6:1–6:27, 2011.

[26] B. J. Garvin and M. B. Cohen. Feature Interaction
Faults Revisited: An Exploratory Study. In ISSRE,
pages 90–99. IEEE, 2011.

[27] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai,
D. Boneh, and V. Shmatikov. The Most Dangerous
Code in the World: Validating SSL Certificates in
Non-Browser Software. In CCS, pages 38–49. ACM,
2012.

[28] M. Greiler, A. v. Deursen, and M.-A. Storey. Test
Confessions: A Study of Testing Practices for Plug-in
Systems. In ICSE, pages 244–254. IEEE, 2012.

[29] R. J. Hall. Fundamental Nonmodularity in Electronic
Mail. ASE, 12(1):41–79, 2005.

[30] K. Havelund and T. Pressburger. Model Checking Java
Programs Using Java PathFinder. STTT, 2(4):366–381,
2000.

[31] K. J. Hoffman, P. Eugster, and S. Jagannathan.
Semantics-aware trace analysis. In PLDI, pages
453–464. ACM, 2009.

[32] P. Hosek and C. Cadar. VARAN the Unbelievable: An
Efficient N-version Execution Framework. In ASPLOS,
pages 339–353, 2015.

[33] M. Jackson and P. Zave. Distributed Feature
Composition: A Virtual Architecture for
Telecommunications Services. TSE, 24(10):831, 1998.

[34] C. Kästner, S. Apel, T. Thüm, and G. Saake. Type
Checking Annotation-Based Product Lines. TOSEM,
21(3):14:1–14:39, 2012.

[35] C. Kästner, K. Ostermann, and S. Erdweg. A
Variability-Aware Module System. In OOPSLA, pages
773–792. ACM, 2012.

[36] C. Kästner, A. von Rhein, S. Erdweg, J. Pusch,
S. Apel, T. Rendel, and K. Ostermann. Toward
Variability-Aware Testing. In FOSD, pages 1–8. ACM,
2012.

[37] C. H. P. Kim, D. Batory, and S. Khurshid. Reducing
Combinatorics in Testing Product Lines. In AOSD,
pages 57—68. ACM, 2011.

[38] C. H. P. Kim, S. Khurshid, and D. Batory. Shared
Execution for Efficiently Testing Product Lines. In
ISSRE, pages 221–230. IEEE, 2012.

[39] C. H. P. Kim, D. Marinov, S. Khurshid, D. Batory,
S. Souto, P. Barros, and M. d’Amorim. SPLat:

Lightweight Dynamic Analysis for Reducing
Combinatorics in Testing Configurable Systems. In
ESEC/FSE, pages 257–267. ACM, 2013.

[40] M. Kolberg, E. Magill, D. Marples, and S. Reiff.
Feature Interactions in Telecommunication Systems VI,
chapter Results of the Second Feature Interaction
Contest, pages 311–325. IOS Press, 2000.

[41] J. Kramer, J. Magee, M. Sloman, and A. Lister.
CONIC: An Integrated Approach to Distributed
Computer Control Systems. IEE Proc. Computers and
Digital Techniques, 130(1):1–, 1983.

[42] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software
Fault Interactions and Implications for Software
Testing. TSE, 30:418–421, 2004.

[43] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre,
and C. Lengauer. Scalable Analysis of Variable
Software. In ESEC/FSE, pages 81–91. ACM, 2013.

[44] M. Lillack, C. Kästner, and E. Bodden. Tracking
Load-Time Configuration Options. In ASE, pages
445–456. ACM, 2014.

[45] R. E. Lopez-Herrejon and D. Batory. A Standard
Problem for Evaluating Product-Line Methodologies.
In GCSE, pages 10–24. Springer, 2001.

[46] M. Maurer and D. Brumley. Tachyon: Tandem
Execution for Efficient Live Patch Testing. In USENIX
Security Symposium, pages 617–630, 2012.

[47] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and
S. Apel. A Comparison of 10 Sampling Algorithms for
Configurable Systems. In ICSE, pages 664–675. ACM,
2016.

[48] F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi, and
R. Gheyi. The Love/Hate Relationship with the C
Preprocessor: An Interview Study. In ECOOP,
volume 37 of LIPIcs, pages 495–518. Schloss
Dagstuhl–LZI, 2015.

[49] J. Meinicke. VarexJ: A Variability-Aware Interpreter
for Java Applications. Master’s thesis, University of
Magdeburg, 2014.

[50] M. Mendonça, A. W ↪asowski, and K. Czarnecki.
SAT-Based Analysis of Feature Models is Easy. In
SPLC, pages 231–240. Software Engineering Institute,
2009.

[51] H. V. Nguyen, C. Kästner, and T. N. Nguyen.
Exploring Variability-Aware Execution for Testing
Plugin-Based Web Applications. In ICSE, pages
907–918. ACM, 2014.

[52] A. Nhlabatsi, R. Laney, and B. Nuseibeh. Feature
Interaction: The Security Threat from within Software
Systems. Progress in Informatics, pages 75–89, 2008.

[53] C. Nie and H. Leung. A Survey of Combinatorial
Testing. CSUR, 43(2):11:1–11:29, 2011.

[54] M. Plath and M. Ryan. Feature Integration Using a
Feature Construct. SCP, 41(1):53–84, 2001.

[55] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and
A. Porter. Using Symbolic Evaluation to Understand

Behavior in Configurable Software Systems. In ICSE,
pages 445–454. ACM, 2010.

[56] M. Schäler, A. Grebhahn, R. Schröter, S. Schulze,
V. Köppen, and G. Saake. QuEval: Beyond
High-Dimensional Indexing à la Carte. In VLDB, pages
1654–1665. VLDB Endowment, 2013.

[57] K. Sen, G. Necula, L. Gong, and W. Choi. MultiSE:
Multi-Path Symbolic Execution Using Value
Summaries. In FSE, pages 842–853. ACM, 2015.

[58] C. Song, A. Porter, and J. S. Foster. iTree: Efficiently
Discovering High-Coverage Configurations Using
Interaction Trees. SE, 40(3):251–265, 2014.

[59] W. N. Sumner, T. Bao, X. Zhang, and S. Prabhakar.
Coalescing Executions for Fast Uncertainty Analysis. In
ICSE, pages 581–590. ACM, 2011.

[60] R. Tartler, C. Dietrich, J. Sincero,
W. Schröder-Preikschat, and D. Lohmann. Static
Analysis of Variability in System Software: The
90,000# Ifdefs Issue. In Proc. USENIX, pages 421–432,
2014.

[61] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and
G. Saake. A Classification and Survey of Analysis
Strategies for Software Product Lines. CSUR,
47(1):6:1–6:45, 2014.

[62] J. Tucek, W. Xiong, and Y. Zhou. Efficient Online
Validation with Delta Execution. SIGARCH,
37(1):193–204, 2009.

[63] A. von Rhein, S. Apel, and F. Raimondi. Introducing
Binary Decision Diagrams in the Explicit-State
Verification of Java Code. In JPF Workshop, 2011.

[64] E. Walkingshaw, C. Kästner, M. Erwig, S. Apel, and
E. Bodden. Variational Data Structures: Exploring
Tradeoffs in Computing with Variability. In Onward!,
pages 213–226. ACM, 2014.

[65] B. Xin, W. N. Sumner, and X. Zhang. Efficient
Program Execution Indexing. In PLDI, pages 238–248.
ACM, 2008.

[66] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng,
D. Yuan, Y. Zhou, and S. Pasupathy. Do Not Blame
Users for Misconfigurations. In Proc. Symposium on
Operating Systems Principles, pages 244–259. ACM,
2013.

[67] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N.
Bairavasundaram, and S. Pasupathy. An Empirical
Study on Configuration Errors in Commercial and
Open Source Systems. In SOSP, pages 159–172. ACM,
2011.

[68] P. Zave. Software Requirements and Design: The Work
of Michael Jackson, chapter Modularity in Distributed
Feature Composition, pages 267–290. Good Friends
Publishing Company, 2009.

[69] S. Zhang and M. D. Ernst. Automated Diagnosis of
Software Configuration Errors. In ICSE, pages 312–321.
IEEE, 2013.

[70] X. Zhang and R. Gupta. Whole Execution Traces and
Their Applications. ACM Trans. Archit. Code Optim.,
2(3):301–334, 2005.

