FeaturelDE: Taming the Preprocessor Wilderness

Jens Meinicke,"? Thomas Thiim,®* Reimar Schréter,?
Sebastian Krieter,? Fabian Benduhn,? Gunter Saake,? Thomas Leich!
I METOP GmbH, Germany, 2 University of Magdeburg, Germany, 3 TU Braunschweig, Germany

ABSTRACT

Preprocessors are a common way to implement variability in
software. They are used in numerous software systems, such
as operating systems and databases. Due to the ability of
preprocessors to enable and disable code fragments, not all
parts of the program are active at the same time. Thus, pro-
grammers and tools need to handle the interactions resulting
from annotations in the program. With our Eclipse-based
tool FEATUREIDE, we provide tool support to tackle multiple
challenges with preprocessors, such as code comprehension,
feature traceability, separation of concerns, and program
analysis. With FEATUREIDE, instead of focusing on one
particular preprocessor, we provide tool support, which can
easily be adopted for further preprocessors. Currently, we
support development with CPP, ANTENNA, and MUNGE.

https://youtu.be/jVe7f32mLCQ

CCS Concepts

eSoftware and its engineering — Integrated and vi-
sual development environments;

Keywords

Preprocessor, Feature Traceability, Code Analysis

1. INTRODUCTION

Preprocessors are a powerful and widely used mechanism
to implement variability in software. Using preprocessor
directives (e.g., #ifdef FEATURE with the C preprocessor)
code can be marked and is only part of the compiled pro-
gram if the expression evaluates to true. Preprocessors are
an accepted method in industry, especially because of the
approach’s simplicity. However, preprocessors are known to
harm code comprehension due to the interleaving of source
code and comments (i.e., preprocessor directives), hinder fea-
ture traceability due to missing modularization, and challenge
existing program analyses as they are typically oblivious to
preprocessor directives [12].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

ICSE ’16 Companion, May 14-22, 2016, Austin, TX, USA

© 2016 ACM. ISBN 978-1-4503-4205-6/16/05. .. $15.00

DOL: http://dx.doi.org/10.1145/2889160.2889175

There have been several proposals to improve preprocessors
in the last years. On the one hand, concepts that replace the
annotative approach, such as preprocessing using abstract
syntax trees [8] or modularization of annotated code using
compositional approaches [7]. However, these all require
replacing existing preprocessors and have not been applied
in a large industrial setting. On the other hand, there are
prototypical analyses for existing preprocessors [14, 16] and
views on the system [6], which are not suitable for industrial-
strength development. To promote current research and
make it applicable for a wider audience, we integrated sev-
eral of these approaches into our tool FEATUREIDE [17]
in a user-friendly manner. FEATUREIDE is a variability
management tool that suits well for the integration of prepro-
cessors. It already supports domain modeling, configuration,
implementation and testing of configurable systems.
Contribution. Our tool support for preprocessors eases
their application in the following ways:

e Integrated development: We improve the usability of pre-
processors by integrating them into FEATUREIDE. There-
fore, we can reuse existing functionalities for feature mod-
eling and product configuration.

e Improvement of code quality: By combining annotated
source code with a feature model, we can provide special-
ized analyses that are aware of variability, such as detection
of invalid annotations and code metrics to identify possi-
ble code smells. Furthermore, we can reuse the existing
product derivation mechanism of FEATUREIDE to provide
automated product-based analyses for preprocessors, such
as compiler warnings and testing.

e Feature traceability: In annotated code, features are of-
ten scattered over multiple files. We reuse existing views
of FEATUREIDE, such as outline and collaboration view,
and adapt them to the needs of preprocessors. Further-
more, we integrate the concept of coloring features into
FEATUREIDE, to identify them in views and source code.

2. INTEGRATED DEVELOPMENT

Preprocessors come with several usability issues, especially
for program configuration. In this section, we show how
FEATUREIDE eases preprocessor usage by integrating them
into the process of feature-oriented software development [3].

At @ in Figure 1, we show our running example, a Java
program with preprocessor annotations. In our example,
we use the preprocessor Antenna, that comments out parts
that should not be compiled using //@ (shown in the source
code editor of the file Main.java at the Lines 7, 11, and 14).
At the left part of Figure 1, we show the standard explorer

[% Package Explorer &1 = 0O [J] Mainjava i3
= \-:-‘/| - 1 puoblic class Main -{

w £ HelloWorld

v g sre

v @it (default package) h
& Main.java o

= IRE Systemn Library [jre7]

//#if Hello

Mo W R

1o

w = configs

i HelloWorld.config 5
|e] OpenWaorld.config 10

~ [products @11 /8
(= 00001 1
(= 00002 @13
= D0D03 14 /7@ Ny
(== 00004 15 g if
(=~ 00005 16 System.out.print (" world!"):
v = 00006 17 //#endif
[¢] DOODG.config 18
@ Main.java 13

9 modelxml

public static void main(String[] args) {

= O |[¢] HelloWorld.config &2 = 0O 4§ HelloWorld g2 = 0
B valid, 3 possible configurations
~ [m] HelloWorid
[m] Helo HeloWorid
v [Attribute r
= 0] Closed & —0— 0
D Open Hello | | Aftribute | | Weorld
World P
/ ,
Closed | | Open
=
Legend:
= [] Mandatory
Opticnal
A Aternative
Abstract
Concrete
< >

Configuration | Advanced Cenfiguration | Source Feature Diagram | Feature Order | Source

Figure 1: Integration of preprocessors in the process of feature-oriented software development with Fea-
tureIDE. 1: Program implementation and automated preprocessing. 2: Product configuration using a config-
uration editor. 3: Domain analysis and modelling with a feature model.

view that depicts the project structure. To reuse Eclipse
functionalities, such as automated and incremental compi-
lation, FEATUREIDE projects extend conventional Eclipse
projects. Thus, the source files are automatically compiled
after they are changed by the preprocessor. Furthermore,
program execution can be done as usual.

The example program is a configurable application that
prints different kinds of hello-world messages. Configuring
the program without tool support is difficult and imprac-
tical. The programmer needs to be aware of features and
their relations. Furthermore, build files need to be adjusted
and configured manually. To ease the configuration process,
required features can be selected at FEATUREIDE’s config-
uration editor (2). The result is a configuration that is used
as input for the preprocessor.

Features can depend on each other. For example, the fea-
tures Open and Closed cannot be selected together as they ex-
clude each other. To define such dependencies, FEATUREIDE
provides an editor to create feature models (3). In the exam-
ple feature model, the feature Hello is mandatory, World is
optional, and Open and Closed exclude each other. These
dependencies are used to ensure correct selections of features
in the configuration editor, and implications are used to au-
tomatically propagate feature selections (e.g., if the feature
Closed is selected, the parent feature Attribute is selected as
well, and the feature Closed is deselected).

With the integration of preprocessors into FEATUREIDE
we ease their usage. Thus, a programmer can concentrate on
implementing the software instead of handling the prepro-
cessor. Currently, we provide support for the preprocessors
CPP, Antenna,' and Munge.?

3. IMPROVEMENT OF CODE QUALITY

Ensuring good code quality is difficult, especially in con-
figurable software, as defects may only appear in certain
products. In FEATUREIDE, we provide several analyses that
improve code quality of preprocessor-annotated code with
support for consistency checking, product-based analyses,
and analysis of annotation usage to detect code smells.

"http://antenna.sourceforge.net
Zhttps:/ /github.com /sonatype/munge-maven-plugin

Consistency Checking. A first step to improve code qual-
ity is to ensure a consistent mapping between annotations
and the feature model. Such inconsistencies either cause
code to be dead (i.e., never included in any configuration) or
annotations are defined redundantly. FEATUREIDE therefore
provides two types of checks. First, a check whether the fea-
tures used in annotations are defined, and second, whether
the combination of features in ifdef-expression is consistent
to the dependencies in the feature model.

Inconsistencies can be caused by incomplete renaming. See
that the feature Closed is typed incorrectly in the source code
(Line 13). To prevent inconsistencies, FEATUREIDE checks
for all annotations whether their features are defined in the
feature model. FEATUREIDE also checks whether each con-
crete feature (i.e., features that should have implementations
artifacts [18]) is used in at least one preprocessor annotation
to detect unused features. FEATUREIDE marks the defect
in Line 13 with an error marker as this annotation causes
the following code to be dead. To avoid inconsistencies in
advance, FEATUREIDE provides automated refactoring for
renaming using the feature model editor. Thus, when a fea-
ture is renamed, all occurrences of the feature in annotations
are renamed as well. For additional support to prevent wrong
usage of features in annotations, FEATUREIDE provides a
content assist where the features can be selected.

Further inconsistencies are caused by invalid combinations
of features in annotations. Such inconsistencies cause code
to be dead or always included what makes the annotation
redundant. In Figure 1, we show examples for both cases.
In Line 4, the annotation uses the feature Hello. Since this
feature is a core feature (i.e., included in any configuration),
the expression Hello is always true. In this case the anno-
tation should be removed. The next inconsistency is caused
by the else-expression in Line 6. As Hello is always true,
the else-branch can never be active. Thus, the corresponding
code is never active in any configuration. FEATUREIDE pro-
vides similar analyses for nested annotations and reasoning
about more complicated expressions.

Product-Based Analyses. In FEATUREIDE we pro-
vide automated product-based analyses that support gen-
eration of products as defects may only appear in certain
products. In product-based analyses one configuration is

Iy Project Explorer &3 = g = = O ¥ HeloWord-A.. &3 = O |J] Mainjava 3 = O
v [HelloWorld-Antenna 1 package featureide; 4
v [sre 2 public class Main {
v Ea [featureide HelloWorkd : . : : : 5
3 Main.java 1 4 P ic static void main(String[] args
1 [T Main == ublic stat a (String[]) A
- Hjﬂ]]]]]]lﬂfaatureide.utils p . 5 System.out.print ("Hello");
¥ " - L
(3 [T titjava pi o 6 //#if World
= JRE System Library [jre7] 'x':"\ .
(== configs / . f f/@ . -
.] /f#endi
£ delxml Closed | | Open E—
T modelxm 10 //#if Closed
. X 11 fE System.out.print (" closed"):;
W4 Collaboration Diagram 3 . A Q;gh = B8 :
LA 2 2 12 //#endif
featureide/Main java featureide/utils/Utll java 13 Syvstem.out.print (" woxrld!™);
| B OpenWworid | Feature Diagram

Closed if World
i Open v [m] HeloWorld
 Closed [w[Fisi
W Attribute
Open if Worid # if Open u [Ciosed
#Open
i Closed L] Open
World
| Word | if World
Open
if Closed

Configuration

|c] OpenWorld.co... 22 = O ; '

.

14 /f#endif

wvalid, 3 possible configurations 1

3 FeaturelDE Outline 53 = O g% Outline 2 = O

SHCYR I T
v @ featureide/Main.java & featureide
ef main(String[]) : void w @b Main
w if World ef main(String[]) : void

if Open
if Closed

= B N

Figure 2: Improved feature traceability using specialized views, FeatureIDE outline and collaboration view,

and colors to easily identify features.

analyzed at-a-time using common single-system analyses.
FEATUREIDE provides several strategies for product-based
analysis: All configurations, T-Wise configurations that
cover all interactions among T features [1], and all man-
ually defined configurations. To analyze these configurations
FEATUREIDE generates the products according to the spec-
ified strategy in a separate folder using the preprocessor (see
the folder "products” in the package explore in Figure 1).
Then, FEATUREIDE compiles the product and applies the
compiler errors and warnings to the preprocessed code. In the
example of Figure 1, the preprocessed file Main.java in the
folder 00006 contains a defect, because a semicolon is missing
(see Line 11). As the compiled file in the folder 00006 is not
the file of the source folder, FEATUREIDE propagates the
error marker to the original file. Currently, we only integrate
analyses provided by the Java compiler. However, because
product generation and error propagation is a general ap-
proach, further analyses can be integrated with minor effort.

Dynamic analyses, such as unit testing, are often only
applied to one single product as testing and reconfiguring the
system are time consuming. In FEATUREIDE, we extended
the automated program derivation to support unit testing
(currently for JUnit). To identify the failing configurations,
FEATUREIDE shows a hierarchical structure in the JUnit
view that shows failed tests for each configuration.

A more sophisticated way to analyze a product line is
variability-aware analysis. Such analyses are able to effi-
ciently check all configurations of the product line [16]. The
FEATUREIDE extension for the C preprocessor, Colligens [13],
supports such analysis using TypeChef [9], a variability-aware
type checker.

Code Metrics. Code metrics are useful to detect probably
error prone code. In FEATUREIDE, we integrated several
statistics on ifdef-usage presented in a statistics view. First,
the number of ifdefs per file indicates files that are highly

affected by variability. Second, the nesting depth of ifdef
directives indicates complicated code due to interactions of
multiple directives what makes the code harder to under-
stand. Third, we measure the number of involved features in
directives. A high number of features indicates also a high
feature interaction. We currently integrated these three met-
rics as they are intuitive and useful. There exist more metrics
on preprocessor usage that might be included in future [11].

4. FEATURE TRACEABILITY

The ability to identify features defined in the feature model,
at code level is called feature traceability [2, 4, 5]. Preproces-
sor annotations may clearly specify certain features; however,
as a feature may be scattered over multiple files, specialized
traceability support is required [7]. To provide support for
feature traceability, we adopted research results from virtual
separation of concerns [8], code comprehension through back-
ground colors [5, 8], and collaborations from feature-oriented
programming [3, 15]. First, we show how views can help to
understand variability of the program. Second, we present
how features can be mapped to colors to identify them in
the program. We present our support for feature traceability
based on the example program shown in Figure 2.
Specialized Views. The FEATUREIDE outline shown
Figure 2 at (1), is an extension of the existing outline known
from Eclipse. An outline usually shows the fields and methods
of a source file. In addition, FEATUREIDE also shows the
variability of those. The FEATUREIDE outline shows the
ifdefs in which the elements exist and additionally the ifdefs
inside each method. Thus, the FEATUREIDE outline is a
compressed view on the variability of the file.

To get an overview on the variability of the whole program,
FEATUREIDE provides a collaboration diagram shown at (2)
in Figure 2. The diagram is a table where the files are shown
as columns and each line represents a feature. The entries at

the intersection show whether a file has implementations for
a feature. For additional information, we show the nesting
of the corresponding ifdef. Since the diagram grows with the
number of features and files in the program, it can be filtered
by the features and files of interest.

FeaturelDE is capable of creating variability-aware source-
code documentation for annotated Java applications [10].
By using an extended Javadoc syntax, developers are able
to generate documentation for individual products, single
features, and meta documentation for the entire product line.
Colors. The identification of certain features using colors
has been shown to be intuitive and useful [5]. Thereby, a fea-
ture corresponds to a color. As the feature model is used to
define the features of the program, we use the feature model
editor to apply colors to features, shown in Figure 2. These
colors are then applied to several parts of FEATUREIDE:
the FEATUREIDE outline, the collaboration view, and the
configuration editor.

To easily find files that implement a certain feature, we
extended the project explorer with color support, shown at
(3 in Figure 2. In the box before the names we show which
colors are used in the files. For example, if we are only inter-
ested in the feature Closed, annotated with green, we see that
it only appears in the file Main.java. This functionality is
applied to packages as well. The box for each package shows
all colors of features that are implemented in the package
and all sub-packages.

To ease the identification of features and their relations
at source level, FEATUREIDE provides highlighting via back-
ground colors, shown in the editor at (4) in Figure 2. Code
that belongs to a certain feature is highlighted with the
corresponding color (e.g., code that belongs to Closed is
highlighted with green). As the annotations for Open and
Closed are nested in the ifdef of World, we show this relation
by nesting also the background colors.

S. CONCLUSION

Tool support in form of IDEs is crucial for efficient devel-
opment of software. Preprocessors create several challenges,
such as usability, code quality, program analysis, and fea-
ture traceability. With FEATUREIDE, we support integrated
development with preprocessors. We directly integrate the
preprocessors CPP, Antenna, and Munge. With a direct
connection to a feature model, features and their depen-
dencies can be designed. Additionally, we support several
analyses, such as consistency checking of annotations and
product-based checks. Finally, we provide support for fea-
ture traceability using several specialized views and colors
to identify features. With our complete integration we ease
the use of preprocessors with a general approach that can
be used in research and practice.

ACKNOWLEDGMENTS. This work is partially funded
by the BMBF grant (011S14017A, 011S14017B).

6. REFERENCES

[1] M. Al-Hajjaji, T. Thiim, J. Meinicke, M. Lochau, and
G. Saake. Similarity-Based Prioritization in Software
Product-Line Testing. In SPLC, pp. 197-206. ACM,
2014.

[2] G. Antoniol, E. Merlo, Y.-G. Guéhéneuc, and
H. Sahraoui. On Feature Traceability in Object
Oriented Programs. In TEFSE, pp. 73-78. ACM, 2005.

3]

[4]

[5

[6

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

S. Apel, D. Batory, C. Késtner, and G. Saake.
Feature-Oriented Software Product Lines: Concepts and
Implementation. Springer, 2013.

K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
ACM/Addison-Wesley, 2000.

J. Feigenspan, C. Késtner, S. Apel, J. Liebig,

M. Schulze, R. Dachselt, M. Papendieck, T. Leich, and
G. Saake. Do Background Colors Improve Program
Comprehension in the #Ifdef Hell? EMSE,
18(4):699-745, 2013.

J. Feigenspan, M. Schulze, M. Papendieck, C. Késtner,
R. Dachselt, V. Képpen, and M. Frisch. Using
Background Colors to Support Program
Comprehension in Software Product Lines. In FASE,
pp. 66-75. IET, 2011.

C. Késtner and S. Apel. Integrating Compositional and
Annotative Approaches for Product Line Engineering.
In McGPLE, pp. 35-40. Department of Informatics and
Mathematics, University of Passau, 2008.

C. Késtner and S. Apel. Virtual Separation of Concerns
— A Second Chance for Preprocessors. JOT, 8(6):59-78,
20009.

C. Késtner, P. G. Giarrusso, T. Rendel, S. Erdweg,

K. Ostermann, and T. Berger. Variability-Aware
Parsing in the Presence of Lexical Macros and
Conditional Compilation. In OOPSLA, pp. 805-824.
ACM, 2011.

S. Krieter, R. Schroter, W. Fenske, and G. Saake.
Use-Case-Specific Source-Code Documentation for
Feature-Oriented Programming. In VaMoS, pp.
27:27-27:34. ACM, 2015.

J. Liebig, S. Apel, C. Lengauer, C. Késtner, and

M. Schulze. An Analysis of the Variability in Forty
Preprocessor-Based Software Product Lines. In ICSE,
pp. 105-114. IEEE, 2010.

F. Medeiros, C. Késtner, M. Ribeiro, S. Nadi, and

R. Gheyi. The Love/Hate Relationship with The C
Preprocessor: An Interview Study. In ECOOP, pp.
495-518. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2015.

F. Medeiros, T. Lima, F. Dalton, M. Ribeiro, R. Gheyi,
and B. Fonseca. Colligens: A Tool to Support the
Development of Preprocessor-based Software Product
Lines in C. In CBSOFT, 2013.

J. Meinicke, T. Thiim, R. Schréter, F. Benduhn, and
G. Saake. An Overview on Analysis Tools for Software
Product Lines. In SPLat, pp. 94-101. ACM, 2014.

C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In ECOOP, pp. 419-443. Springer,
1997.

T. Thiim, S. Apel, C. Késtner, I. Schaefer, and

G. Saake. A Classification and Survey of Analysis
Strategies for Software Product Lines. CSUR,
47(1):6:1-6:45, 2014.

T. Thiim, C. Késtner, F. Benduhn, J. Meinicke,

G. Saake, and T. Leich. FeatureIDE: An Extensible
Framework for Feature-Oriented Software Development.
SCP, 79(0):70-85, 2014.

T. Thiim, C. Késtner, S. Erdweg, and N. Siegmund.
Abstract Features in Feature Modeling. In SPLC, pp.
191-200. IEEE, 2011.

