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Abstract

This thesis presents a study on the application of spectral clustering and classification
techniques to metaproteomic abundance data. Metaproteomics is the study of the
proteins present in an ecosystem or community, and metaproteomic abundance data
refers to the measurement of the relative amounts of different proteins present in
a sample. The main objective of the thesis is to investigate the use of eigenvectors
and eigenvalues from metaproteomic abundance data and use them to implement
unsupervised and supervised learning algorithms. The study first demonstrates the
use of spectral clustering, a technique that uses graph Laplacian matrix to capture the
local structure of data, and then transforms it into a matrix of eigenvectors to identify
low-dimensional embeddings and for further clustering, on metaproteomic abundance
data. The second part of the thesis focuses on classification, where the eigenvalues
are consequently used to reduce features in metaproteomic abundance datasets and
then used as input to classification. The results show that spectral clustering can
outperform agglomerative clustering by improving cluster separation by over 50%,
and in terms of class separation. Furthermore, it was found that no transformation
provides the best cluster separation for spectral clustering when used as a dimension
reduction technique prior to clustering, whereas, the principal component analysis
provides better clustering results for hierarchical clustering. Additionally, the use of
eigenvectors prior to classification showed an increase of 2% in accuracy and 3% of
Matthew’s Correlation Coefficient.
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1. Introduction

1.1 Motivation

DNA Proteins Metabolites

Meta-omic

Metaproteomics MetabolomicsMetagenomics

mRNA

Metatranscriptomics

Figure 1.1: Classification of meta-omics. Proteomics and metaproteomics are derived
from meta-omics under the context of analysing proteins and their derivatives
[Hardouin et al., 2021].

The study of the total amount of genetic material (metagenomics), protein content
(metaproteomics), and metabolites (metabolomics) contained in a complex biological
sample is referred to as meta-omics (see Figure 1.1). It is a thorough method
of comprehending the makeup and usefulness of microbial communities, such as
those found in soil, water, the human gut, or other environments. The study of
all the genetic material (DNA) in a microbial population, whether it comes from a
recognized species or not, is known as metagenomics. This method can shed light on
the diversity, organization, and possible utility of microbial communities. It offers
details on the produced proteins and the tasks that they are carrying out. The
study of metatranscriptomics entails the examination of the entire collection of RNA
transcripts (transcriptomes) found in complicated biological samples like microbial
communities or environmental samples. This method offers details on the functional
actions and gene expression patterns of the organisms in the sample. The analysis of
all the small molecules (metabolites) produced by a microbial population is known
as metabolomics. It may reveal details about the biological processes and metabolic
processes taking place in the neighbourhood.

The abundance of proteins in a sample can provide valuable insights into samples
taken from patients. However, analyzing this data can become challenging due to the
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vast amount of metaproteins that are present in each sample being measured. This
project aims to investigate the use of eigenvalues in the group and classify patients
based on eigenvalues of metaproteomic abundance data.

Data in metaproteomics are highly interlinked, i.e. several metaproteins commonly
abundant for a set of patients and a massive set of metaproteins that could possibly
be found in the human body (>10,000 1 different types of proteins). However, the
choice of a data structure and/or a database system is often limited to two options -
relational, graph, key-value store, document store etc. Traditionally, relational data
structures are highly scalable and relatively easy to analyse. However, this comes
at the cost of low flexibility since relational data structures can only rely on foreign
keys to associate two tables. Graph data structures help to overcome this using the
node-edge schema (see Figure 2.3). This helps to upload data with a flexible schema
in the form of node attributes, edge weights etc as well as having the possibility
to form directed graphs. Additionally, the node-edge structure provides vivid data
visualisation, making it easier to interpret the results.

However, the challenge of analysing highly interlinked and high-dimensional (high
number of columns) metaproteomic abundance data is not completely overcome
by the flexible data schema provided by graphical data structures. It requires a
detailed analysis with specialized algorithms, e.g. dimension reduction techniques,
and clustering algorithms, that can discover hidden similarities and differences within
metaproteomic abundance data. Therefore, I have investigated a popular clustering
algorithm for graph data structure, spectral clustering.

Spectral clustering is a clustering technique that can group similar data points/
nodes/ rows together into clusters by constructing a similarity matrix of a graph,
transforming it into a matrix of eigenvectors, and using these eigenvectors as input to a
clustering algorithm.In this thesis, I have applied spectral clustering on metaproteomic
abundance data to cluster similar patients with a higher cluster separation achieved
than hierarchical clustering. Additionally, I exploited the eigendecomposition in
spectral clustering for classification and improved the prediction accuracy of classifying
different patients. To summarise, I have demonstrated the potential of eigenvalues
to extract relevant information from metaproteomic abundance data and improve
the grouping of patients using clustering algorithms, and further classify them using
machine learning algorithms. This is beneficial in providing a comprehensive overview
of the possible methods and best practices one might come across while investigating
metaproteomic data.

1.2 Research Scope
In this study, using metaproteomic abundance data from healthy and diseased
individuals that are suffering from inflammatory bowel diseases (IBD) and non-
alcoholic steatohepatitis (NASH), I contribute the following:

1. A detailed analysis of the implementation of two spectral clustering algorithms,
Ng-Jordan-Weiss (NJW) and Self-tuning (ST), on labelled metaproteomic abun-
dances to group control and diseased patients, with a focus on:

1Retrieved from https://www.mpg.de/11447687/W003 Biology medicine 054-059.pdf

https://www.mpg.de/11447687/W003_Biology_medicine_054-059.pdf
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(a) Data pre-processing and transformations: original, normalization and princi-
pal component analysis (PCA).

(b) Number of used eigenvectors: k and 2k, where k is the number of desired
clusters

2. A detailed analysis of a classification pipeline, where eigendecompositions (gener-
ation of eigenvalues and eigenvectors from the dataset) from spectral clustering
algorithms were used as data transformation for metaproteomic abundances, to
predict control and diseased patients. The following classifiers were used for this
investigation:

(a) Nearest Centroid Classifier (NC).

(b) k-nearest neighbour classifier (k-NN).

(c) Decision Tree (DT).

3. A method to combine metaproteomic abundance data from two separate use
cases i.e., separate datasets observing different sets of diseases, through the
intersection of common metaproteins (columns), to improve prediction quality
by achieving higher accuracy and Matthews Correlation Coefficient as compared
to the original datasets.

1.3 ResearchQuestions
Within the scope of the research, I have answered the following research questions in
this thesis:

Research Question 1: How well does spectral clustering group patients from
metaproteomic abundances, in terms of internal and external validation indices, in
comparison to hierarchical clustering?

To answer the first research question, I applied hierarchical and spectral clustering on
metaproteomic abundances and evaluated the resulting partitions, using internal and
external clustering evaluation indices. These helped to compare the chosen algorithms,
firstly on how well the resulting clusters or partitions are separated without (internal
indices) and with (external indices) the class labels being considered. While generally,
a high score of internal indices is proof of good partitioning, any improvement in
the separation of class labels by a clustering algorithm would also indicate that the
algorithm can capture the underlying structure as formed due to the class labels and
would be efficient pre-cursors to supervised learning.

Research Question 2: To what extent do data transformation techniques such
as normalization and PCA improve clustering performance for metaproteomic
abundances, in terms of internal and external validation indices?

To answer research question 2 I investigated several kinds of data transformations
whose goal is to reduce biases and computational expenses for running complex algo-
rithms. To find an optimal direction for finding the right type of data transformation
for metaproteomic abundance data, I applied normalization and PCA to compare the
performance of normalization and dimension reduction on the data. Most often it is
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quite useful to normalize the data to bring out hidden correlations and detect outliers
more efficiently. However, it is also interesting to know whether further reducing
the dimensions through PCA would contribute to improving cluster separation and
prediction quality.

Research Question 3: How much better accuracy and Matthews Correlation
Coefficient could be achieved over normalization, if eigendecomposition was applied
as a data transformation step, to predict patient labels from metaproteomic
abundances?

After having satisfactory cluster separation as well as class label separation through
spectral clustering, I used the eigendecomposition used in the self-tuning spectral
clustering algorithm as a data pre-processing step. Then I applied classic machine
learning algorithms (nearest centroid, k-nearest neighbour and decision tree algorithm)
to realize the potential of the eigendecomposition of metaproteomic abundances, and
to improve our quantitative and predictive analyses of such data.

Research Question 4: How much improvement could be achieved, in terms of
clustering and classification, if two metaproteomic abundances datasets were
combined into one?

And finally, I investigated whether it is an efficient method to combine metaproteomic
abundance data from two separate use cases into one and implement classification
algorithms. To verify this, I have measured the silhouette coefficient, adjusted rand
index, accuracy and MCC values for all 9 labels in the combined dataset 3. However,
it could be possible that any improvement can only be noticed for the control label,
which was present for both datasets 1 and 2. As a result, I have also measured
the precision and recall for only the control label, after performing classification on
dataset 3.

In the following chapter 2, I have provided background on the following topics:

1. Metaproteomics.

2. Graph Data and Database, and Graph Laplacian.

3. Data Transformation: Normalization, Eigendecomposition and Principal Com-
ponent Analysis (PCA).

4. Unsupervised Learning: Spectral Clustering.

5. Supervised Learning: Nearest Centroid, k-Nearest Neighbour and Decision Tree
Classifiers.

Then in chapter 3, I have discussed similar research that has helped shape my
own methodology, which I have elaborated in chapter 4. Next in chapter 5, I have
presented and discussed the results of my research as well as concluded with the
scope for future research.



2. Background

In this section, I have provided a detailed overview of the following topics: metapro-
teomics, graph, clustering and classification, to help understand the key aspects of
the methodology for this research.

2.1 Metaproteomics
Proteins are one of the primary building blocks of all life on earth and play a crucial
role in several biological functions and processes. Proteins can be broken down
into amino acids and peptides serve as an intermediate component and a primary
derivative in the process of extracting amino acids from proteins. Changes in the
abundance levels, structure, or function of proteins can indicate the presence of a
disease. Proteomics is the study of the complete set of proteins, called the proteome,
that is expressed by a cell, tissue, organism, or biological sample.

Large-scale investigations of biological molecules—such as genes, proteins, metabo-
lites, and other biomolecules—and their interactions with one another are referred to
as ”omic” research. The use of high-throughput technologies to analyze and interpret
massive amounts of data in order to provide researchers with a thorough knowledge
of biological systems is referred to as an ”omics” study. Genomic, transcriptomic,
proteomic and metabolomic investigations are a few examples of omics research.
Each of these omics strategies concentrates on a distinct class of biological molecules
and offers a unique viewpoint on the biological system under investigation.

Metaproteomics focuses on the study of all proteins present in a complex mixture
of biological samples, e.g., soil, water, and gut contents. It helps to understand the
functional roles and interactions of expressed proteins within a complex community,
providing insights into the metabolic and ecological processes that occur within
a given ecosystem. Metaproteomics differs from traditional proteomics in that it
focuses on the total protein complement of a sample, rather than the study of a single
organism or defined set of proteins. The data generated by metaproteomics can
provide valuable information for fields such as environmental science, microbiology,
and biotechnology. In metaproteomics, primary derivatives are the proteins that



6 2. Background

are identified directly from the mass spectrometry data or other techniques used to
analyze the metaproteins, which are groups of functionally similar proteins. These
proteins are typically identified through a process of peptide sequencing, in which the
peptides generated by the digestion of the metaproteins are identified and assembled
into complete protein sequences. A general workflow of metaproteomic protein
identification using mass spectrometry is shown in figure 2.1.

 Trypsin
 digestion Sample  protein

 extraction Proteins Peptides

 LC-MS/MS analysis Data analysis of
identified proteins

Figure 2.1: General workflow for metaproteomic analysis using mass spectrometry
[Gil, 2017]

Once the primary derived proteins are identified, researchers may perform further
analyses, such as functional annotation or network analysis, to gain insights into
the metabolic activities and interactions of the microorganisms in the community.
Additionally, researchers may perform validation studies to confirm the identity and
function of the primary derived proteins, which may involve additional experiments
such as Western blotting or enzyme assays. The data collection for metaproteomics
involves the following steps as discussed by Ngom et al. [2019] (see figure 2.1):

1. Sample collection from the soil, water, human gut etc.

2. DNA extraction from sample to determine microbial community composition.

3. Proteins extraction and purification through methods such as boiling, detergent
treatment or mechanical lysis.

4. Peptide extraction from proteins using enzymes.

5. Separation of peptides using methods such as chromatography prior to techniques
such as 2D gel electrophoresis, mass spectrometry (MS) or liquid chromatography-
MS (LC-MS).

6. Protein identification through comparison of sequences in a database.

Metaproteomic analysis has been potentially useful to identify biomarkers of diseases.
Additionally, metaproteomics can also aid in identifying proteins that are essential
for the survival of specific microbial species. This information can be used to develop
targeted therapies that disrupt the function of these proteins and inhibit the growth
or activity of specific microorganisms. For example, gut microbiome analysis has
been used to identify patients with disease as well as potential drug targets in the gut
microbiome for the treatment of inflammatory bowel disease or other gastrointestinal
disorders [Ngom et al., 2019].

While dealing with metaproteomic data, there could be two terms potentially acting as
a major source of confusion for non-domain specialists: spectrum from spectrometry
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and spectral from spectral clustering. Spectrum refers to the collection of values
representing a signal or data point as a function of frequency, and especially in
the context of mass spectrometry, the term refers to the collection of peaks that
represent the abundance of different peptides in the sample being examined. Spectral
on the other hand refers to being related to the spectrum, and in the context of
spectral clustering, it refers to the algorithm operating on the similarity matrix
derived from spectral decomposition. Examples of work done in the context of mass
spectrometry spectrum include MetaLab [Cheng et al., 2017] and msCRUSH [Wang
et al., 2018]. MetaLab is a pipeline for protein identification, quantification and
taxonomic profiling based on peaks observed in mass spectrometry data. msCRUSH
is a software, compiled in C++, where a locality-sensitive hashing technique is used
for clustering spectrum and consequently, peptide identification. Such work is not to
be confused with spectral clustering on abundance data (related work discussed in
section 3), where clustering is applied after the proteins/peptides have been identified
for grouping similar proteins, and not during the identification process.

2.1.1 Biomarker discovery for IBD and NAFLD

Inflammatory bowel disease (IBD) [Zhang and Li, 2014] and nonalcoholic fatty liver
disease (NAFLD) [Neuschwander-Tetri, 2017] are two chronic inflammatory conditions
that affect the gastrointestinal tract and liver, respectively. IBD is an umbrella term
and contains diseases under the heading of e.g., Crohn’s Disease (CD) and Ulcerative
Colitis (UC). In the research by Lehmann et al. [2019], two forms of Ulcerative
Colitis patients were observed - ulcerative colitis in the active stage (UCa) and
remission stage (UCr). Patients with IBD also have an increased risk of developing
benign and/or malignant tumours such as Colon Adenoma (CA) and/or Gastric
Carcinoma (GCA), respectively [Lehmann et al., 2019]. Metaproteomic analysis of
stool samples from IBD patients has identified a number of potential biomarkers,
including proteins involved in inflammation, immune response, and intestinal barrier
function. These biomarkers have the potential to aid in the diagnosis, prognosis, and
monitoring of IBD, as well as in the development of new therapeutics. [Lehmann
et al., 2019] also observed whether a chronic condition known as Irritable Bowel
Syndrome (IBS), characterized by recurrent abdominal pain, could be distinguished
through metaproteomic of faecal samples from patients with the above diseases.

NAFLD, similarly consists of diseases like nonalcoholic steatohepatitis (NASH)
and hepatocellular carcinoma (HCC). Non-alcoholic steatohepatitis (NASH) is a
chronic liver disease that is associated with obesity, insulin resistance, and metabolic
syndrome. It may develop into cirrhosis, severe fibrosis, or even hepatocellular
carcinoma. (HCC). To increase survival rates for NASH patients, early detection of
HCC is essential, but existing diagnostic techniques are insufficient. Metaproteomic
analysis can be used as a powerful tool for biomarker discovery in these diseases,
as it allows for the identification and quantification of the complete set of proteins
expressed by the microorganisms in the gut or liver. Metaproteomic analysis of liver
biopsies, serum and/or faecal samples from NAFLD patients have identified a range
of potential biomarkers, including proteins involved in lipid metabolism, oxidative
stress, and inflammation. These biomarkers may aid in the diagnosis and monitoring
of NASH and HCC, as well as in the development of new therapies.
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2.2 Graph

Patient 1
MP 1: 35
MP 2: 80
Disease: IBD

Patient 2
MP 1: 40
MP 2: 200
Disease: IBD

Patient 3
MP 1: 35
MP 2: 150
Disease: IBD

70
70

70
120

50 130
58

Patient 4
MP 1: 70
MP 2: 20
Disease: NAFLD

Patient 5
MP 1: 120
MP 2: 50
Disease: NAFLD

Nodes

Edges

170

Figure 2.2: Example of a full-connected, weighted, undirected and homogeneous
graph containing patient nodes, with metaprotein abundances and labels as node
attributes. The edge weights are Euclidean distances for each pair of nodes.

2.2.1 Graph Data Model
A graph (figure 2.2), often represented by, G = (V,E), where V denote vertices
(nodes/data points) and E define edges (relationships). It is based on graph theory in
discrete mathematics and has proven to be useful in the domains of database design,
software engineering, circuit designing, network designing and visual interfaces. In
addition, it has inspired the conceptualization of several database models e.g., graph
database, XML as well as data structures e.g., trees and linked lists. Graph nodes
can contain node attributes comparable to column/feature values in relational tables.

A graph can be undirected, as well as directed meaning the edges contain directional
relationships. However, for spectral clustering, edges should be undirected, since the
similarity matrix required for clustering should be symmetric which is not the case
for directed graphs. Additionally, edges in graphs for spectral clustering contain edge
weights that denote the similarity between the connected nodes. Relational tables
can be represented as graph nodes as depicted in the figure 2.3 below:

MP1 MP2 MP3 MP4 Label
P1 v1 v2 v3 v4 D1
P2 v5 v6 v7 v8 D1
P3 v9 v10 v11 v12 D2

w2
w1P1 P2

w3
P3

columns

rows

nodes

edge weights

Figure 2.3: Relational and graphical representation of metaproteomic abundance
data. The columns in the relational table are represented as node attributes (not
shown) in the graph. The edge weights represent the similarity between the nodes,
often generated by calculating the distance between rows based on column values.

To create a graph one would first require to calculate the similarity, adjacency
or distance between each pair of rows/samples/measurements and construct an
adjacency matrix. An adjacency matrix is most often used in the context of nodes,
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especially graph nodes. If two nodes are connected, the adjacency is 1, otherwise
0. However, the diagonal of the adjacency matrix contains a piece of different
information, which is whether the corresponding node has a self-loop. A self-loop is
only present in directed graphs, and hence, for undirected graphs, the diagonal value
would always be 0 in an adjacency matrix.

distance P1 P2 P3

P1 0 d1 d2

P2 d1 0 d3

P3 d2 d3 0

similarity P1 P2 P3

P1 1 s1 s2

P2 s1 1 s3

P3 s2 s3 1

adjacency P1 P2 P3

P1 0 a1 a2

P2 a1 0 a3

P3 a2 a3 0

a b c

Figure 2.4: a) Distance matrix represents distance/dissimilarity values, with 0
representing maximum similarity b) Similarity (Affinity) matrix represents similarity
values, with 1 representing maximum similarity. c)Adjacency matrix represents
adjacency between two nodes and is mostly used in the context of a graph.

Similarity measures such as cosine similarity and the Jaccard coefficient are also used
to create graphs. Higher the proximity, the lesser the value of similarity between two
nodes. Note that there is a difference between forming a distance, similarity/affinity
and adjacency matrix as shown in figure 2.4. However, distance measures such as
euclidean distance, manhattan distance can be manipulated to calculate the similarity
between two nodes/rows/samples, as the similarity is the inverse of the distance.

Edist(a,b) = ||a− b|| (2.1)

where Edist = Euclidean distance.

Ideally the diagonal of a similarity matrix contains the maximum similarity between
two nodes, which is 1. In the context of spectral clustering and graph nodes, however,
the diagonal of a similarity matrix contains the degree of a node, which is the number
of edges connected to the corresponding node. The similarity values between two
nodes are used to create the similarity graph for all the nodes in a given dataset.
There could be three types of similarity graphs that could be created from tabular
data as discussed by von Luxburg [2007] (see figure 2.5):

1. ϵ-neighbourhood graphs are generated by connecting data points with similarity
above a certain threshold ϵ.

2. k-neighbourhood graphs are generated using the k-nearest neighbour algorithm.
It can be either unweighted or weighted.

• Mutual k-nn graphs are an improvement over k-neighbourhood, where, for
any pair of samples, the k-neighbours criteria is checked for both points,
should an edge be formed amongst them.

3. Fully connected (complete) graphs are generated using similarity functions
to calculate similarity (edge weights) between each pair of nodes. In a fully
connected graph, there are edges between every pair of nodes present in the
graph.
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Figure 2.5: Types of similarity graphs as discussed by von Luxburg [von Luxburg,
2007] (Figure is borrowed.)

In the context of this thesis, two types of graphs were used: k-neighbourhood
graphs from the default implementation of the python package, and fully-connected
graphs as generated by the NJW and Self-tuning spectral clustering algorithms.
While fully-connected graphs have a higher space complexity, the larger amount of
stored information for each pair of nodes also provides better scope to analyse more
accurately. However, for datasets with a high number of columns, this also increases
the computational expensiveness in terms of time.

2.2.2 Graph Laplacian

Graph laplacian is a mathematical tool, mostly used in spectral graph theory,
represented as a matrix which encodes relationships between nodes in a graph. It can
be derived from the adjacency matrix of a graph, as well as the similarity (affinity)
matrix. There are several types of Laplacian matrix that can be generated from a
given graph [von Luxburg, 2007] [Filippone et al., 2008]:

• Unnormalized Graph Laplacian Matrix L

• Normalized Graph Laplacian Matrices:

– Symmetric, Lsym = D-1/2LD-1/2

– Random Walk, Lrw = D-1L

• Generalized Graph Laplacian Matrix, LG = D-1L = Lrw

• Relaxed Laplacian, Lρ = L - ρD

where D = Diagonal Matrix, and A = Adjacency Matrix or Affinity Matrix
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One of the most useful properties of a graph laplacian is the ability to derive
eigenvectors and eigenvalues from it, which can be further exploited by dimension-
reduction techniques or clustering algorithms. In the context of spectral clustering,
all of the above graph laplacian could be used.

2.2.3 Graph Database Model

Year

1980

1990

2000

Database ModelsGraph 
Theory

Relational

Hierarchical

Network

Semantic

Graph

Multidimensional

Object Oriented

XML

1970

Semistructured

Deductive

Figure 2.6: Evolution of database models. Solid arrows denote the influence of graph
theory while dotted arrows represent the influence of one database model on another
[Angles and Gutierrez, 2008].

Graph databases provide an optimized environment to implement and analyse using
graph data structures. In addition, to the flexibility of schema, graph databases
are horizontally scalable. Horizontal scaling, also known as scaling out, is a way
to improve the performance and capacity of a system by distributing the workload
across multiple machines rather than relying on a single machine. Horizontal scaling
can be achieved in various ways:

• Sharding involves dividing the database into smaller subsets or shards, which
are distributed across multiple servers.

• Replication involves creating copies of the database on multiple servers, which
can improve fault tolerance and availability.

• Partitioning involves dividing the data into smaller partitions, which can be
stored and processed separately by different servers.

.
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Graph database models are a product of graph theory (figure 2.6), providing users
with the ability to store and query graph data, examples including Neo4j, Tiger
Graph etc. One major difference between relational and graph databases is that
relational databases comply with ACID which is an acronym for atomicity, consistency,
isolation, and durability. On the other hand, most often graph databases comply with
BASE which is an acronym for basic availability, soft-state and eventual consistency.
However, on some occasions, graph databases can be both ACID and BASE compliant
which is the case for Neo4j. A comparative analysis of the graph databases against
the relational databases is shown in the table 2.1.

Table 2.1: Graph vs Relational Database [Vicknair et al., 2010] [Khan et al., 2019]

Relational Graph
Transaction Model ACID BASE
Query Language SQL Cypher, GQL, SPARQL etc.

Scalability vertical horizontal
Integrity Constraints yes yes

Flexibility less mutable schema easily mutable schema

Additionally, the high flexibility in data schema allows for better representation of
highly interlinked data making it a more efficient choice to analyse omic data. There
also exists a variety of query languages that are available for various graph databases,
with each database allowing for one or a subset of the languages made available.
Similar to relational databases, graph databases contain integrity constraints, which
ensure data quality and prevent errors, inconsistencies, and data corruption.

2.3 Data Transformation: Normalization, Eigendecom-
position and PCA

Data transformations are vital pre-processing techniques in the field of data analysis
and machine learning to reduce complexity and capture underlying relationships
between features. In the following table 2.2, I have compared three popular data
transformation techniques, that I have also used in the experiments of this research.

2.3.1 Normalization

Normalization is a data transformation technique that is used to scale data so
that it falls within a certain range or has a certain distribution. It is possible to
normalize data using a number of techniques, such as min-max normalization, z-
score normalization, and log normalization. To make sure that data from various
sources can be compared and analyzed in a meaningful manner, normalization is
frequently used. I have used the min-max normalization method for both clustering
and classification tasks. This method scales the values of a column between 0 and 1
using the formula in equation 2.2.

Scaled V alue =
V alue−Min V alue

Max V alue−Min V alue
(2.2)
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Table 2.2: Comparison of normalization and PCA.

Description Advantage

Normalization

normalization columns

by scaling values

between 0 and 1

faster convergence

for predictive analytics

Eigendecomposition

lower dimensional

representations capturing

linear relationships

simplifies complexity

of multiple dimensions

Principal Component Analysis

lower dimensional

representations capturing

the maximum variance

simplifies complexity

of multiple dimensions

where Min Value and Max Value refer to the minimum and maximum value in a
column. This is useful in ensuring that algorithms treat the features on a similar
scale and thus improve performance (faster convergence).

2.3.2 Eigendecomposition
Eigendecomposition is a matrix factorization technique that breaks down a matrix into
its constituent parts, namely the eigenvectors and eigenvalues. Eigendecomposition
is often used in linear algebra and signal processing to analyze the properties of a
matrix, and it can be used to identify the most important features or dimensions in
a dataset.

There are two types of eigendecomposition available [Lewis, 2003]:

1. Symmetric eigendecomposition: Applied to symmetric matrices, in this case,
the eigenvectors are guaranteed to be orthogonal to each other, where the
original matrix is decomposed into a set of eigenvectors and a diagonal matrix
of eigenvalues.

2. Non-symmetric eigendecomposition: Applied to non-symmetric matrices, the
eigenvectors may not be orthogonal to each other. However, similar to symmetric,
the original matrix is decomposed into a set of eigenvectors and a diagonal matrix
of eigenvalues.

In the context of PCA and spectral clustering, symmetric eigendecomposition is
used.

2.3.3 Principal Component Analysis (PCA)
PCA is a data transformation technique that uses symmetric eigendecomposition
to reduce the dimensionality of a dataset. In PCA, the dataset is projected onto a
new set of orthogonal axes, called principal components, that capture the maximum
amount of variation in the data. This is achieved by calculating the covariance
eigenvectors of the covariance of the input features. This reduces the number of
variables in the dataset while retaining the most important information. The steps
for PCA are given in the algorithm 2.3.1



14 2. Background

Algorithm 2.3.1 Principal Component Analysis (PCA)[Smith, 2002]

1: Input: Dataset containing samples as rows and features as columns.
2: Center the data by subtracting the mean of each variable from each observation.
3: Compute the covariance matrix of the centred data.
4: Compute the eigenvectors and eigenvalues of the covariance matrix.
5: Sort the eigenvalues in decreasing order and sort the corresponding eigenvectors

accordingly.
6: Choose the number of principal components to retain based on the amount of

variance explained or some other criteria.
7: Project the original data onto the selected principal components.
8: Output: Projected data on the principal component axes.

2.4 Unsupervised learning: Clustering
Clustering is widely used in machine learning and data analysis to partition data
points into groups such that points within the same group are more similar to each
other than points in different groups. While primarily used in the field of biology
to classify species based on their similarities and differences, it was introduced
widely in statistics through algorithms such as ISODATA [Ball and Hall, 1965] and
Lloyd’s algorithm [Lloyd, 1982], both of which were primal versions of the famous
k-means algorithm. The k-means algorithm is a basic centroid-based clustering that
divides rows into equal partitions using the euclidean distance between each pair of
points. Centroid refers to the most average representative point for a set of points or
clusters and is calculated by averaging all the feature values for all rows/samples.
K-means clustering is used as the final step in spectral clustering algorithms to cluster
generated eigenvectors from graphs. The steps of k-means clustering are provided in
algorithm 2.4.1.

Algorithm 2.4.1 K-means Algorithm [MacQueen, 1965]

1: Input: Dataset containing samples rows and features as columns, and the number
of desired clusters k.

2: Initialize k centroids randomly.
3: Calculate the euclidean distance between each point and the initialized centroids.
4: Assign data points to the nearest centroid which are representative of their

respective cluster.
5: Recalculate centroids based on the assigned data points to each centroid/cluster.
6: Repeat steps 3, 4 and 5 until the centroids no longer change or a certain number

of iterations are completed.
7: Output: k partitions.

Applying k-means directly on metaproteomic abundance data would not produce
optimal results since k-means work best for normally distributed features while
abundance distributions are often skewed. Moreover, k-means is optimal for data
whose underlying structure can be efficiently represented by euclidean distance, which
is not the case for abundance data. However, eigenvectors can be well separated using
k-means since they are low-dimensional and are often fragmented in equal partitions.
The ideal clustering workflow ensures an optimal selection of algorithms based on the
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given datasets and evaluation of them using evaluation metrics. Generally speaking,
any cluster analysis method will contain the following steps:

1. Feature Selection or Extraction: Extraction distinguishable features (columns)
from the original set of variables, which aids in forming and interpreting distinct
clusters.

2. Clustering Algorithm Implementation: Implementation of algorithms, along
with necessary parameters and proximity measure selection such as distance
or similarity between two data points, is necessary to decide which algorithm
provides the best extraction of characteristics.

3. Cluster Validation: While different clustering algorithms may generate different
types of clusters for a given dataset, it is important to measure the quality of
clusters generated by the used algorithm. Clustering validation measures could
be classified into three categories [Brun et al., 2007]: external, internal and
relative indices.

4. Result Interpretation: Finally the results, with the interpretation by domain
experts, could be displayed with meaningful visualisation, for users to interpret.

Clustering algorithms can be broadly generalised into two types: partitional and
hierarchical clustering algorithms. Hierarchical clustering such as agglomerative
clustering (see algorithm 2.4.2), iteratively groups individual data points in a nested
structure, till all points belong to a single cluster. The results of hierarchical
clustering can be viewed on a dendrogram. In contrast to hierarchical clustering,
partitional clustering divides the data into predetermined groups of clusterse.g.,
K-means. Hierarchical clustering divides or merges data points recursively, till all
points belong to the same cluster (agglomerative) or each point is a singular cluster
(divisive). A detailed taxonomy of clustering algorithms is shown in figure 2.7.

Algorithm 2.4.2 Agglomerative Clustering Algorithm [Gower and Ross, 1969]

1: Input: Dataset containing samples rows and features as columns, and the number
of desired clusters k.

2: Initialize by considering each point as a separate cluster.
3: Calculate the pairwise similarity between each pair of clusters using a distance

metric such as Euclidean distance, cosine similarity etc.
4: Merge the two most similar clusters into a new cluster based on linkage criteria

such as single, complete, Ward’s linkage etc.
5: Repeat 3-4 until only one cluster remains, or define a stopping criterion based

on the number of desired output clusters k or any measure of clustering quality.
6: Output: k partitions.

Hard clustering is a type of partitional clustering, which requires the input of a
pre-determined set of clusters, and ensures that every data point belongs to a single
cluster only. Its prime competitor, fuzzy clustering, assigns the degree of membership
for each point to all possible clusters. K-means is a type of hard clustering, as well
as a squared-error minimization technique since it focuses on reducing the sum of
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Clustering Algorithms
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Figure 2.7: The roadmap to spectral clustering through clustering taxonomy
[Ezugwu et al., 2021] [Aggarwal and Wang, 2010].

squared errors while assigning every data point a cluster. There also exist density-
based clustering techniques such as DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) and OPTICS (Ordering Points To Identify the Clustering
Structure) which are good at detecting regions of high-density and low-density in
the given data and cluster accordingly. A detailed comparison of spectral clustering
algorithm against k-means, OPTICS, fuzzy c-means and single-linkage agglomerative
clustering is provided in table 2.3.

Table 2.3: Comparison of clustering algorithms Garima et al. [2015] Celebi [2014]
n = number of data points, N = number of links,
C = Number of link clusters, T = Number of iterations

Type of Clustering Parameters Complexity (Time) Pros Cons

Partitional
Hard

SSE

minimization

(k-means)

number of clusters
O(n2)

[Ahmed et al., 2020]

can efficiently

handle large

amount of data

cannot handle

non-circular

clusters

Density-based

(OPTICS)

minimum points

to form a cluster

O(n3)

[Ankerst et al., 1999]
can handle

arbitrary shapes

of data

computationally

expensive

Graph

(spectral)

number of clusters,

neighbourhood

graph

O(n3)

[Fujita, 2021]

Fuzzy

(fuzzy c-means)

fuzzifier (m)

membership

value (u)

O(NCT)

[Zhang and Shen, 2018]

data points

can belong to

multiple clusters

performance

depends on

initialization

Hierarchical
Agglomerative

(single-linkage)
linkage criterion

O(n3)

[Manning et al., 2019]

do not require

initialization

computationally

expensive

Graph clustering, which is a type of hard clustering algorithm, can be further
subdivided into two primary types as discussed by Aggarwal and Wang [2010]:
node and graph clustering algorithms. While node clustering has been explained
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as algorithms to cluster nodes within a single graph, its counterpart focuses on
algorithms to cluster nodes from several graphs.

2.4.1 Spectral Clustering Algorithms: NJW and Self-Tuning

Spectral 
Clustering

Graph

Table
group data points

validateneighbourhood
graph

adjacency and
degree matrix

laplacian
matrix

eigenvalues &
eigenvectors

group datapoints based on their
eigenvalues and eigenvectors

Basic
Clusteringdistance/similarity matrix

Figure 2.8: Step-wise comparison of spectral against basic clustering algorithms.

Spectral clustering, which is a type of node clustering technique, differs from regular
clustering through its use of the spectrum (eigenvalues) of a similarity matrix for
partitioning data points (see figure 2.8). This is achieved by computing the Laplacian
matrix from the adjacency and degree matrix. The generated Laplacian matrix is
then used to generate eigenvalues and eigenvectors, of which k largest eigenvectors are
selected to apply k-means clustering on, where k denotes the number of desired clusters
or partitions. By choosing the k largest eigenvectors, we reduce the dimensionality
of the data while retaining the most important information about the structure of
the data. This makes it easier to cluster the data points based on their similarity in
the low-dimensional space. In addition, choosing the k largest eigenvectors ensures
that the resulting clusters have a meaningful structure that reflects the underlying
geometry of the data. If we were to choose fewer eigenvectors, the clusters may not
be well-defined, while choosing more eigenvectors would result in overfitting and
reduced interpretability due to increased complexity.

Spectral clustering has gained the most popularity in terms of research and application
when it comes to clustering nodes within a graph. It is often used when the data
points cannot be easily separated by a linear boundary, and when there is a clear
underlying geometric structure to the data. Regular clustering algorithms such as
k-means, most often focus on minimizing the sum of squared distances between data
points in the same cluster. However, this approach often fails to handle non-convex
clusters which can be overcome through the use of spectral clustering. Several forms
of it are available, with new subtypes being constantly developed to be applied from
generic to specialized clustering applications. A comparison of spectral clustering
against other popular clustering algorithms is shown in table 2.3.

Partitioning a graph can be achieved through two methods solving the following
problems: the two-way ratio cut problem and the k-way ncut problem. The former
focuses on solving the two-way ratio cut problem and dividing the graph into just two
partitions. This is simple and fast, however, would not provide an optimal solution
for complex graphs. The solution to the k-way ncut ratio problem solves this by
partitioning the graph into k subsets, which is more computationally expensive.
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Algorithm 2.4.3 NJW Algorithm [Ng et al., 2001]

1: Input: Graph G, its normalized Laplacian matrix Lsym and the number of desired
clusters k.

2: Find k eigenvectors of the normalized Laplacian matrix L, arranging them in
matrix U’.

3: Generate matrix U by normalising each row of U’.
4: Apply k-means algorithm on matrix U and find k partitions.
5: Assign nodes to clusters if their eigenvalue belongs to the partition.
6: Output: k partitions.

The first-ever use of eigenvectors for clustering was observed in the EIGI algorithm
[Hagen and Kahng, 1992], where the authors explained the use of Fiedler eigenvec-
tors to propose a solution to find the lower bound the two-way ratio cut problem
[Nascimento and De Carvalho, 2011]. The Fiedler eigenvector is the eigenvector
corresponding to the second smallest eigenvalue of the Laplacian matrix of a graph.
This resulted in an algorithm which could divide the data points into 2 partitions.
The next major breakthrough in spectral clustering was proposed by Shi and Malik
[2000], where the authors proposed a solution to the k-way ncut problem and this
resulted in a spectral clustering algorithm which could provide k clusters instead of
just two. Later Andrew Ng, Michael Jordan, and Yair Weiss proposed an improved
solution (see algorithm 2.4.3) over Shi and Malik [Ng et al., 2001], where the algo-
rithm normalized the graph Laplacian before generating eigenvectors. All of these
algorithms use various functions to generate a similarity (affinity) score between
pairs of data points. The NJW algorithm achieves this using the following equation:

Aij = exp(−||si − sj||2/2σ2) (2.3)

where, Aij = affinity between points si and sj
and, ||si-sj|| = Euclidean distance between points si and sj

Equation 2.3 can be interpreted as the affinity of points si and sj, being calculated as
the Euclidean distance between points si and sj, scaled down by a factor σ. However,
this equation requires an optimal choice to be made for the values of σ to obtain good
clustering results. Soon after, Zelnik-manor and Perona [2004] presented the term
local scaling by introducing two scaling parameters in their equation and generate
affinity between data points as shown in the following:

Aij = exp(−||si − sj||2/2σiσj) (2.4)

The addition of another parameter seems to increase the complexity of the equation.
However, local scaling provides a method to automatically detect an optimal value
for σi by studying the local statistics of the neighbourhood of point si (or si). In
their research, they used the following equation to compute optimal σi (or σi):

σi = ||si − sK|| (2.5)

where sK = Kth neighbour point of si. While observing the effects on synthetic and
image data, Zelnik-manor and Perona [2004] used a value of K = 7.
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Table 2.4: Comparison of spectral clustering algorithms [Nascimento and De Car-
valho, 2011]

Complexity Laplacian Application

EIGI O(n2)
unnormalized

- load balancing

- general clusteringMELO O(n2d)

Anchor O(nmd) non-Laplacian - text and document categorization

Shi and Malik O(nmd)

normalized

- image segmentation

- dimension reduction

- general clustering

Ng-Jordan-Weiss O(nmd)

Self-tuning O(nmd)

It is evident from table 2.3 that spectral clustering is computationally expensive,
similar to hierarchical clustering. However, spectral clustering is highly effective
when handling complex metaproteomic data which most often contain a high number
of columns (metaproteins). In table 2.4, I have compared them against a few other
spectral clustering algorithms before discussing them in detail.

Although, during the conception of early algorithms like EIGI and MELO, spectral
clustering was mostly used for applications such as electrical load balancing and
general-purpose clustering. However, with the emergence of algorithms by Shi and
Malik [2000], Ng et al. [2001] and Zelnik-manor and Perona [2004], spectral clustering
became widely popular for image segmentation as well as a dimension reduction
technique, as shown in table 2.4.

2.4.2 Clustering Evaluation: Internal and External Indices
Clustering evaluation metrics are used to measure the quality of clusters and the
effectiveness of clustering algorithms. These metrics can be broadly classified into
three categories: internal, external and relative indices. Internal and external indices
can be regarded as statistical measures whereas relative indices are non-statistical.
Several internal, external and relative indices for clustering have been compiled and
compared in table 2.5.

Internal indices are used to evaluate the clustering results based on the characteristics
of the data itself e.g., , the similarity between data points. They don’t require
any external information, such as the true cluster labels, to evaluate the clustering
performance. Some commonly used internal indices are:

• Silhouette score measures how similar are points in the same cluster and how
different they are in neighbouring clusters Günter and Bunke [2003].

Silhouettei =
b(i)− a(i)

max{a(i), b(i)}
(2.6)

where a(i) = average intra-cluster distance between i and every other point in
the same cluster as i (separation),
and b(i) = the minimum average distance between i and every other point in a
different cluster than i (cohesion).
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• Davies-Bouldin index measures the average similarity between each cluster and
its most similar cluster, relative to the average dissimilarity between each cluster
and its most dissimilar cluster Davies and Bouldin [1979].

DB =
1

k

k∑
i=1

maxj ̸=i(Di,j) (2.7)

Di,j =
(d̄i + d̄j)

di,j
(2.8)

where, DB = Davies-Bouldin index, di and dj are the average distance between
each point in the ith, and the jth cluster respectively and di,j is the Euclidean
distance between the centroids of the ith and the jth cluster.

External indices require external information e.g., true cluster labels. Such metrics
compare the clustering results with the ground truth labels and are often used for
validation and comparison of various clustering algorithms e.g., :

• Adjusted rand index measures the similarity between the true labels and the
predicted labels. It is a weighted form of the rand index/statistics Halkidi and
Vazirgiannis [2001].

ARI =
RI − ExpectedRI

max(RI)− ExpectedRI
(2.9)

where ARI = Adjusted Rand Index, and RI = Rand Index

RI =
TP + TN

TP + FP + FN + TN
(2.10)

where TP = True Positive (same class and same cluster), FN = True Negative
(same class and different clusters), FP = False positive (different class and same
cluster), and TN = False Negative (different class and different clusters)

• Fowlkes-Mallows index measures the geometric mean of the precision and recall
2.5.2 of the predicted labels relative to the true label Halkidi and Vazirgiannis
[2001].

FMI =
TP√

(TP + FP ) ∗ (TP + FN)
(2.11)

where, FMI = Fowlkes-Mallows index

Relative indices are used mostly in the context of fuzzy clustering e.g., Figure of
Merit (FOM) stability and are out of scope for spectral clustering evaluation. A list
of possible clustering evaluation indices is categorized in table 2.5 with their types
and clustering types they are used for. In the following table 2.5, I have compiled
and compared several clustering evaluation metrics.
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Table 2.5: Clustering validation indices [Gan et al., 2007] [Brun et al., 2007].

Clustering validation indices

Statistical

External

indices

Dunn’s

indices

[Dunn, 1973]

Rand

statistic

[Halkidi et al., 2001]

Jaccard

coefficient

[Halkidi et al., 2001]

Folkes and

Mallow index

[Halkidi et al., 2001]

Hubert’s

T statistic

[Theodoridis and Koutroumbas, 1999]

Normalized

T statistic

[Halkidi et al., 2002]

Hierarchical

and Hard

(Partitional)

clustering

index

Internal

indices

Cophenetic correlation

coefficient [Farris, 1969]

Root- mean-

square

standard

deviation

[Sharma, 1996]

Davis-

Bouldin

index

[Davies and Bouldin, 1979]

SD

index

[Halkidi et al., 2000]

S Dbw

index

[Halkidi and Vazirgiannis, 2001]

Silhouette

index

[Günter and Bunke, 2003]

Root

Squared

index

[Sharma, 1996]

Calinski-

Harabasz

index

[Calinski and Harabasz, 1974]

Semi.

partial

R-squared

[Sharma, 1996]

Average

of

compactness

[Zäıt and Messatfa, 1997]

Distance

between

partitions

[De Mántaras, 1991]

Non-

statistical

Relative

indices

Figure of merit (FOM)

[Yeung et al., 2001]

Stability [Lange et al., 2002]

Partition

coefficient

index

[Bezdek, 1987]

Partition

entropy

index

[Bezdek, 1973]

Fukuyama-

Sugeno

index

[Fukuyama and Sugeno, 1989]

based on

fuzzy

similarity

[Jihong and Xuan, 2000]

Fuzzy

validity

criterion

[Xie and Beni, 1991]

Partition

separation

index

[Yang and Wu, 2001]

Fuzzy

clustering

index
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2.5 Supervised Learning: Classification
Supervised Learning Algorithms
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Figure 2.9: Taxonomy of classification algorithms [Nicolas, 2015].

Machine learning models for categorization tasks typically fall into two broad cate-
gories: discriminative and generative classifiers (see figure 2.9). They use different
approaches to the challenge of learning to classify incoming data. A discriminative
classifier immediately learns where one class ends and another begins without directly
modelling the underlying probability distributions of the input data. A generative
classifier simulates the combined probability distribution of the input characteristics
and the output variable. It gains the ability to affect the prior probability for each
class as well as the probability distribution of the input characteristics for each class.
The conditional probability of the output variable given the input features can then
be calculated using Bayes’ rule.

Generative supervised learning algorithms can be further categorized into sequence
generative models and random generative models, based on how they generate new
examples. Sequence generative models are used for tasks that involve generating
sequences of output labels, such as speech recognition, natural language processing,
and handwriting recognition. Examples include Hidden Markov Models (HMM),
Recurrent Neural Networks (RNN), and Conditional Random Fields (CRF). Random
generative models are used for tasks that involve generating new examples of input
features and output labels that are similar to those in the training data, but not
necessarily in a specific order or sequence. Examples include Gaussian Mixture
Models (GMM), Naive Bayes, and Generative Adversarial Networks (GAN).

Discriminative supervised learning algorithms can be further categorized into contin-
uous and discrete algorithms, based on the nature of the output labels. Continuous
discriminative algorithms are used for tasks that involve predicting continuous out-
put values. Examples include Linear Regression, Logistic Regression etc. Discrete
discriminative algorithms are used for tasks that involve predicting discrete output
labels, such as classification problems. Examples include Naive Bayes, k-Nearest
Neighbors (k-NN), Decision Trees, Random Forests, Gradient Boosted Trees, and
Neural Networks.

2.5.1 ClassificationAlgorithms: NearestCentroid, k-NearestNeigh-
bour and Decision Tree

In table 2.6, I have compared the three discrete discriminative classification algorithms
used in this research: nearest centroid, k-nearest neighbour (k-nn) and decision tree
algorithms, for further discussion.
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Table 2.6: Comparison of classifying algorithms [Alpaydin, 2020].

Type Effective on Complexity Noise Handling

Nearest Centroid Parametric small data
O(nd)

[Levner, 2005]
inferior

k-NN Non-parametric small data
O(nmd)

[Kuang and Zhao, 2009]
inferior

Decision Tree Non-parametric large data
O(nd*logn)

[Kuang and Zhao, 2009]
superior

A quite underrated and overlooked classifier is the nearest centroid algorithm (algo-
rithm 2.5.1) which classifies new data points based on their similarity to the centroid
of the same class in the training data. A centroid is the most average representative
for a given set of points or coordinates. In terms of data, the centroid is calculated
by summing all values for each individual feature and dividing by the number of
data points. In order to determine the centroid of every class, the algorithm averages
the feature values of all training examples in the class. A new point is then classified
by finding the closest centroid and assigning the corresponding class label.

Algorithm 2.5.1 Nearest Centroid Algorithm [Forgy, 1965]

1: Input: Dataset containing training samples as rows and features as columns, and
labels for each sample.

2: Training:
3: Calculate the centroid for each class as the mean vector of all training samples

for any given class.
4: Testing:
5: For each new sample, calculate the distance to all centroids.
6: Assign class label of the nearest centroid.
7: Repeat steps 5 and 6 for all samples in the test dataset.
8: Output: Predicted labels for test data.

The nearest centroid algorithm is fast and easy to implement however does not
perform well on high-dimensional data. Similar to k-means, the algorithm divides up
the training samples into equal-sized partitions which also makes it a bad choice for
data representing a non-equal-shaped distribution of class labels. However, when
it comes to the eigenvectors of any given data, logically nearest centroid classifier
should be efficient enough to partition the low-dimensional representation of the
original data. Being based on the concept of centroid, the nearest centroid classifier
assumes that training and testing data is normally distributed, which makes it a
parametric classifier.

k-NN (algorithm 2.5.2) has a similar approach to the nearest centroid and classifies
new data points based on the class labels of their nearest neighbour in the training
data. The value of k is a hyperparameter that is required to be specified before
training the algorithms. In order to categorize a new data point, the distance between
the new data point and all the other data points in the training set must first be
calculated. Then, k nearest neighbours must be chosen, and the label for the class
with the highest number of nearest neighbours is then assigned.
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Algorithm 2.5.2 k-Nearest Neighbour Algorithm [Cover and Hart, 1967]

1: Input: Dataset containing training samples as rows and features as columns,
labels for each sample and desired number of closest neighbours k.

2: Testing:
3: For each new sample, calculate the distance to all training samples.
4: Select k samples with the smallest distances to the test sample.
5: Assign label to test sample with the most frequent label among k selected samples.
6: Repeat steps 3, 4 and 5 for all samples in the test dataset.
7: Output: Predicted labels for test data.

k-NN is a lazy learning algorithm, meaning that it does not have a traditional
training phase like other classifiers. Instead, the training samples are simply stored
and then labels are assigned during the testing phase of the algorithm. Additionally,
k-NN is non-parametric, which means it does not assume any underlying probability
distribution of the data, making it adaptable to different types of data.

 < 50  > 50 

Metaprotein 1

 < 60  > 60 

Metaprotein 2Disease: IBD

Disease: NAFLD Disease: IBD

root node

leaf nodes

depth

branch

Figure 2.10: Components of a decision tree. The depth is 3 in this case.

The decision tree on the other hand builds a tree-like model of decisions and their
possible consequences. The internal nodes of the tree correspond to decisions based
on input features and the leaf nodes represent the class labels. When a new data
point is to be classified, the algorithm traverses the tree from the root node to the
leaf node based on its feature values.

k-NN and decision tree algorithms are non-parametric, meaning that they do not
make any assumption about the underlying distribution of the data. Contrarily,
the nearest centroid is parametric as it assumes data is normally distributed with
class-specific means. Another important consideration is the size of the dataset each
algorithm is effective on. k-NN and the nearest centroid is best suited for small
datasets and the former is faster in terms of speed of execution. A decision tree is
more effective on medium to large datasets. Furthermore, each algorithm handles
noise differently. Nearest centroid and k-nn are sensitive to noise in the data while
the decision tree can handle outliers effectively because the splitting criterion is not
based on specific values of individual data points. In figure 2.11, I have provided a
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Algorithm 2.5.3 Decision Tree Algorithm [Li et al., 1984] [Quinlan, 1986]

1: Input: Dataset containing training samples as rows and features as columns, and
labels for each sample.

2: Training:
3: Select the most informative feature or attribute for splitting the root node, using

a criterion such as information gain or the Gini index.
4: Partition training samples into subsets based on the selected feature, with each

subset corresponding to a child node of the root.
5: Repeat steps 3 and 4 for each child node till a stopping criterion is met or until

all samples in any leaf node belong to the same class.
6: Assign a class label to each leaf node based on the majority class of all the

samples in the child node.
7: Testing:
8: For each new sample, compare the value of the feature at each decision node and

follow the branch till a child node is reached.
9: Assign class label associated with leaf node reached.
10: Repeat steps 8 and 9 for all samples in the test dataset.
11: Output: Predicted labels for test data.

visualisation of how the decision boundaries differ across the three algorithms when
trained on the iris dataset in figure 2.11 2.

Figure 2.11: Decision boundaries after training on the iris dataset for
A)Nearest Centroid B) k-Nearest Neighbour C) Decision Tree (Borrowed figures)

The decision boundaries explicitly reflect one of the major differences between the
three classifiers. The nearest centroid classifier has straight linear decision boundaries
making it ideal for very simple datasets with labels separated at equal distances.
However, the k-nn has an adaptive non-linear decision boundary making it suitable
for more complex data types. On the other hand, the decision boundary of a decision
tree is a set of linear or axis-parallel decision rules that divide the feature space into
rectangular regions. The Decision Tree decision boundary is typically piece-wise
constant and can only take the form of rectangles, parallelograms, or hyperplanes.
A comparison between these types of classifiers implemented on metaproteomic

2Sources: http://stephanie-w.github.io/brainscribble/classification-algorithms-on-iris-dataset
.html
https://scikit-learn.org/0.17/auto examples/neighbors/plot nearest centroid.html

http://stephanie-w.github.io/brainscribble/classification-algorithms-on-iris-dataset.html
http://stephanie-w.github.io/brainscribble/classification-algorithms-on-iris-dataset.html
https://scikit-learn.org/0.17/auto_examples/neighbors/plot_nearest_centroid.html
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abundance would help us realize the optimal type of decision boundaries suitable
when dealing with such data against the eigenvectors of the abundances.

2.5.2 Classification Evaluation
After training a machine learning model on a classification task, evaluation metrics
assess the performance of the model. Therefore, unseen data (test data) are passed
to a machine learning model and the predicted labels are compared to the true labels.
The comparison of predicted labels against true labels leads to four different scenarios
that can be represented in a confusion matrix as shown in table 2.7.

Table 2.7: Confusion matrix for comparing predicted and actual labels.

Actual
True False

Predicted
True True Positive False Positive
False False Negative True Negative

Most classifier evaluation metrics could be derived from the corresponding confusion
matrix in order to evaluate and improve the performance of the model. Some popular
classifier evaluation metrics are discussed below [Chicco and Jurman, 2020]:

• Accuracy measures the proportion of correct predictions made by the model and
is one of the most widely used metrics for the evaluation of predictions.

Accuracy =
TP + TN

TP + FP + FN + TN
(2.12)

where TP = True Positive, TN = True Negative, FP = False positive, and FN
= False Negative.

• Precision (Positive Predictive Value) = TP/(TP+FP), measures the proportion
of true positive predictions out of all the positive predictions.

Precision =
TP

TP + FP
(2.13)

• Recall (True Positive Rate) measures the proportion of true negative predictions
out of all the actual positive instances.

Recall =
TP

TP + FN
(2.14)

• Matthews Correlation Coefficient (MCC) takes into account all four values in
the confusion matrix and is especially useful when there is a class imbalance in
the data.

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP ) ∗ (TP + FN) ∗ (TN + FP ) ∗ (TN + FN)
(2.15)

where TP = True Positive, TN = True Negative, FP = False positive, and FN
= False Negative.



3. Related Work

In this section, I discuss the related work regarding clustering applications in multi-
omics data, especially in metaproteomics. I have used the datasets from two of these
researches for implementing and evaluating spectral clustering and classification. In
the first section, I have discussed related work regarding the clustering of omics data.
And later, in the second section, I have mentioned related work in the context of
implementing spectral clustering on omics data.

Table 3.1: List of related work discussed in this section.

Description Type of Data Domain

Metaproteomics of

gut microbiome of

patients with IBD

[Lehmann et al., 2019]

Hierarchical clustering on

metaproteomic abundances.

Metaproteomic

abundance
metaproteomics

SpectralTAD

[Cresswell et al., 2020]

Clustering framework

that uses gaps between

consecutive eigen vectors.

Hi-C data of

genomes
genomics

Spectrum

[John et al., 2020]

Spectral clustering method

for complex omic data

Single- and

multi-omic data
omic

Metaproteomics of

gut microbiome of

patients with NAFLD

[Sydor et al., 2022]

Hierarchical clustering

and logistic regression on

metaproteomic abundances.

Metaproteomic

abundance
metaproteomics

There have been several applications of spectral clustering in various domains of
omics data analysis such as genomics and metaproteomics. In table 3.1, I have
compiled a list of literature, that has either used spectral clustering as part of the
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data processing pipeline or modified spectral clustering algorithm to make it a better
fit for their purpose.

3.1 Clustering of Omics Data

Research on the clustering of multi-omics data has increased significantly in recent
years. Organizing samples or features that display comparable trends across vari-
ous omics data types is the aim of clustering in this context. This can aid in the
identification of biologically pertinent groups that might be linked to particular
phenotypes or disease conditions. Researchers can find biomarkers that are differen-
tially expressed between groups by grouping samples based on their omics profiles.
These biomarkers can then be used to create diagnostic or prognostic tests or to find
possible therapeutic targets.

3.1.1 Metaproteomics of the gutmicrobiomeof patientswith IBD

In one such study by Lehmann et al. [2019], the gut microbiomes of patients with
Crohn’s disease (CD) and ulcerative colitis (UC), two inflammatory bowel diseases
(IBD) that impact the gastrointestinal tract, were compared. In the research, gut
microbiomes from 17 healthy controls, 11 CD patients, 14 UC patients, 13 Irritable
Bowel Syndrome (IBS) patients, 8 Colon Adenoma (CA) patients, and 8 Gastric
Carcinoma (GCA) patients were investigated. The samples’ proteins were identified
and measured using non-invasive LC-MS/MS, and variations in protein expression
between the three groups were found by analyzing the data. After protein identifica-
tion, hierarchical clustering was applied to the abundance values to group similar
patients and identify disease-specific metaprotein patterns.

As a result, healthy subjects were distinguished from patients with CD and UC
as well as from patients with GCA using cluster analysis and non-parametric test
(analysis of similarities). Furthermore, the results showed that the protein expression
profiles of patients with Crohn’s disease were considerably different. In particular,
they found that individuals with Crohn’s disease had a higher abundance of proteins
related to oxidative stress, immune response, and inflammation. In contrast to both
Crohn’s disease patients and healthy controls, they also discovered that ulcerative
colitis patients had greater levels of proteins involved in energy metabolism and
nutrient transport.

These findings suggest that metaproteomics can be a valuable tool for understanding
the complex interactions between the gut microbiome and the host in inflammatory
bowel diseases. By identifying the specific proteins that are dysregulated in these
diseases, researchers can develop targeted therapies These findings suggest that
metaproteomics can be a valuable tool for understanding the complex interactions
between the gut microbiome and the host in inflammatory bowel diseases. By
identifying the specific proteins that are dysregulated in these diseases, researchers
can develop targeted therapies to treat oxidative stress and inflammation, as possible
examples.
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3.1.2 Metaproteomic of the gutmicrobiomeof patientswithNAFLD

In another similar work on the human gut microbiome by Sydor et al. [2022], the gut
microbiomes of patients with non-alcoholic steatohepatitis (NASH) and hepatocellular
carcinoma (HCC) to identify potential biomarkers for NASH patients with and
without HCC. NASH and HCC are two non-alcoholic fatty liver diseases (NAFLD)
that impact the liver. The research, which aimed to identify diagnostic biomarkers,
included 19 healthy controls, 32 NASH patients, and 29 HCC patients. Hierarchical
clustering with Canberra distance was applied to metaproteomic abundance values
to group similar patients. Additional analysis was performed to identify differences
in the protein profiles between the two groups.

The researchers identified 155 differentially abundant proteins between NASH patients
with and without HCC. These proteins were engaged in a number of biological
processes, such as lipid metabolism, immune response, and inflammation. In earlier
research, several of these proteins were also linked to HCC, highlighting their potential
as biomarkers for early detection. Sydor et al. [Sydor et al., 2022] also suggest a
possible function of the gut microbiome in the development of HCC in NASH patients
due to an increased abundance of bacterial species in NASH patients with HCC.
However, the study could not identify any single bio-marker to separate NASH and
HCC. Nevertheless, the distinction between controls, NASH, and HCC could be
made with an accuracy of 86% using machine learning-based classification methods.

Overall, similar to the work described in the previous section, the research suggested
that metaproteomic analysis can enable early detection of NASH.

3.2 Spectral Clustering on Omics Data
The large dimensionality of multi-omics data presents itself as a difficulty in the
analysis of multi-omics data. Spectral clustering can overcome this problem by
reducing the dimensionality of multi-omics data while preserving the most important
information/features. Additionally, biomarkers linked to particular patient clusters
can be found using spectral clustering. These biomarkers can shed light on the
variations in biological processes between analyzed groups.

3.2.1 SpectralTAD

Chromatin conformation capture techniques 3 like Hi-C can identify discrete, self-
interacting genomic regions known as topologically associated domains (TADs).
SpectralTAD is a spectral clustering framework that utilizes the gap between consec-
utive eigenvectors for boundary identification of topologically associated domains
(TAD). By dividing genomic regions into functionally separate compartments and
by modifying the interactions between regulatory elements and their target genes,
TADs are thought to be essential for controlling gene expression.

3Chromatin conformation capture (3C) techniques are a family of molecular biology meth-
ods that are used to study the three-dimensional organization of the genome inside the
cell nucleus.https://epigenie.com/epigenetics-research-methods-and-technology/chromatin-analy
sis/chromatin-conformation-analysis-3c-techniques/

https://epigenie.com/epigenetics-research-methods-and-technology/chromatin-analysis/chromatin-conformation-analysis-3c-techniques/
https://epigenie.com/epigenetics-research-methods-and-technology/chromatin-analysis/chromatin-conformation-analysis-3c-techniques/
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In this research by Cresswell et al. [2020], a package called SpectralTAD was created
within the programming framework R, for Hi-C data. It can identify hierarchical,
biologically relevant TADs and has automatic parameter selection. In both simulated
and real-world situations, SpectralTAD outperforms four cutting-edge TAD analysers.
The research also showed that TAD boundaries, shared between various layers of
the TAD hierarchy, were more enriched in traditional boundary marks and more
conserved between different cell types and tissues. TADs that cannot be divided into
sub-TADs, however, exhibited less enrichment and conservation at their boundaries,
indicating a more dynamic function in genome regulation.

3.2.2 Spectrum

In this research by John et al. [2020], a new algorithm called ”Spectrum” is proposed
for clustering single and multi-omic data. Spectrum uses a self-tuning density-
aware kernel which is a type of kernel function that takes into account the density
distribution of data points when calculating similarity. In addition to noise reduction
and revealing the underlying structure of input data, Spectrum also consists of a
new method to find the optimal number of clusters k, by analysing the distribution
of eigenvectors. Spectrum has provided competitive results when tested on seven
different single and multi-omic datasets, outperforming several existing algorithms
e.g., both in terms of accuracy and speed.



4. Methodology

In this chapter, I will portray and discuss the data and methods used in this research
to compare clustering and classification tasks, executed on three datasets. The first
section describes each dataset used in detail. In the second section, I discuss the
data transformations used in the experiments. In the thrid and fourth sections, in
the last two sections, I have outlined the structure of the two experiments in detail.
And finally, in the last section, I have outlined the hardware and software details of
the experimental setup.

In figure 4.1, a brief overview of the thesis methodology has been outlined. It can be
segmented into four main parts:

• Data selection and pre-processing.

• Data transformation.

• Experiment 1: Comparison of clustering between agglomerative, different types
of spectral clustering: using k-nearest neighbour and complete graph (Ng-Jordan-
Weiss and self-tuning algorithm), for different datasets and for different transfor-
mations.

• Experiment 2: Comparison of classification between nearest centroid, k-nn and
decision tree classifiers, for different datasets and different transformations.

4.1 Data Selection and Pre-processing
In table 4.1, I have compared the used datasets and it is evident that the most
significant changes are observed in the number of metaproteins observed for each
dataset. Dataset 1 and dataset 2 have been derived from original research whereas
dataset 3 is a combination of both. All the data used in this research were metapro-
teomic abundance data from the human gut of diseased and control patients. In
the following, for each dataset, I have discussed the source research papers and the
pre-processing steps that I have applied for my experiments.
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Figure 4.1: Methodology for this research. Arrows represent the data flow. Blue
boxes denote events used for the clustering tasks and green boxes represent events
used for classification tasks only. MCC = Matthew’s Correlation Coefficient.

Table 4.1: Comparison of datasets used in this research. IBS = Inflammatory Bowel
Diseases, NAFLD = Non-Alcoholic Fatty Liver Diseases.

Data type
Source

research goal

No. of metaproteins No. of

patients

No. of

labelsactual selected

Dataset 1

[Lehmann et al., 2019]

gut

metaproteomic

abundance

discover

biomarkers of

IBS

2969 1752 76 7

Dataset 2

[Sydor et al., 2022]

gut

metaproteomic

abundance

discover

biomarkers of

NAFLD

42574 10 80 3

Dataset 3

(Datasets 1 + 2)

gut

metaproteomic

abundance

not

applicable
170 170 156 9
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4.1.1 Dataset 1: Metaproteomics of faecal samples of patientswith
Inflammatory Bowel Diseases.

This dataset was retrieved from a study regarding inflammatory bowel diseases
(IBD) where mass spectrometry (LC-MS/MS) was used to observe disease-specific
microbial and human proteins in faecal samples taken from patients. Using a
metaproteomic approach, this research examined the effect of the gut microbiome
on IBS diseases, especially Crohn’s Disease (CD) and Ulcerative Colitis (UC) and
identified several disease-specific marker proteins. Their work [Lehmann et al., 2019]
suggested that faecal metaproteomics is a helpful non-invasive tool for a more accurate
and straightforward diagnosis of both diseases, CD and UC.

Even though the focal diseases were CD and UC, in their originally observed data,
there are seven class labels: control, CD, IBS, Ulcerative colitis in remission (UCr),
active Ulcerative Colitis (UCa), Gastric Carcinoma (GCA) and Colon Adenoma (CA)
patients. A high number of observed metaproteins, in this case, is already a large
contributor to increasing computational complexity and time. As a result. for this
research, only human and microbial metaproteins were chosen for analyses, reducing
the number of columns from 2,969 to 1,752. This step also removed metaprotein
columns that had very low average abundance for each patient e.g. columns with
mostly zero values. As a result, in my thesis, 76 patients were observed in this
dataset for 1,752 metaproteomic abundances from samples consisting of 7 distinct
class labels.

Lehmann et al. [2019] performed hierarchical clustering on dataset 1, providing a
benchmark comparison only for the clustering results. In this thesis, I have performed
spectral clustering on this dataset to analyze which clustering methods perform better.
Furthermore, I have performed classification to compare the ability of eigen (k and
2k), normalization and no transformation, to predict the disease of patients from the
given metaproteomic abundances for each patient.

4.1.2 Dataset 2: DiscoveringBiomarkers forNon-Alcoholic Steato-
hepatitis Patients using Fecal Metaproteomics

This dataset was retrieved from a study regarding non-alcoholic fatty liver dis-
eases (NAFLD), where mass spectrometry (LC-MS/MS) was used to find diagnostic
biomarkers from metaprotein abundances observed in faecal samples, taken from
patients suffering from non-alcoholic steatohepatitis (NASH) or hepatocellular carci-
noma (HCC). To find diagnostic indicators, Sydor et al. [2022] examined the faecal
metaproteome of 19 healthy controls, 32 NASH patients, and 29 HCC patients. They
observed that NASH and HCC caused changes in the gut microbiome’s composition,
resulting in a rise in the inflammation of the gut. Their work also showed that
although a single biomarker was unable to differentiate between NASH and HCC,
however, machine learning-based classification algorithm (5-fold cross-validation
of Linear Discriminant Analysis, for 10,000 iterations) was able to do so with an
accuracy of 86% using several biomarkers, thus proving that faecal metaproteomics
offers early identification of NASH and HCC.

The original data of this research had an unusually high number of 42,574 metaproteins
that were observed. Furthermore, the data contained many metaproteins whose
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mean abundance for all the patients was mostly observed as 0 or significantly close to
0. As a result, to reduce computational expenses, only 10 metaproteins, which were
observed as potential biomarkers in the original research, were chosen for this thesis.
This made dataset 2 sufficiently less complex and less computationally expensive
to analyse and observe. As a result, in my thesis, 80 patients were analysed in this
dataset for 10 metaprotein abundances from samples consisting of 3 distinct class
labels: control, NASH and HCC.

Sydor et al. [2022] has used dataset 2 for both clustering and classification tasks in
the experiments of this research. In the original research, it has been used for both
clustering and classification tasks as well as providing benchmark comparisons for
both experimental results.

4.1.3 Dataset 3: Combining Dataset 1 and Dataset 2

Dataset 3 is a combination of datasets 1 and 2 which was created to investigate the
effect of merging patients of several diseases with respect to the common metapro-
teins, found in both sets of samples. Several metaproteins can be measured in all
patients because all humans share a set of metaproteins that are responsible for
similar biological processes. However, there can still appear large differences in
the metaproteome profile of different patients due to different living and health
conditions. One major issue when dealing with metaproteomic data arises from the
presence of several thousand metaproteins for a handful of patients. Both datasets
1 and 2 contain less than a hundred patients each, with several thousand observed
metaproteins for each of them. This results in a high number of features for clustering
and classification algorithms when it comes to grouping and predicting labels of
patients, respectively.

Dataset 1

76 patients (rows) *
2,969 metaproteins (columns)

7 class labels (C, CD, UCr, UCa,
GCA, CA and IBS)

Dataset 2

80 patients (rows) *
42,574 metaproteins (columns)

3 class labels (C, NASH, HCC)

Dataset 1

156 patients (rows) *
170 metaproteins (columns)

9 class labels (C, CD, UCr, UCa,
GCA, CA, IBS, NASH and HCC)

Union of
patients

76 ∪ 80
= 156

Intersection of
metaproteins

2969 ∩ 42574
= 170

Figure 4.2: Flowchart to elaborate the formation of dataset 3. Arrows represent
the data flow.

The following steps were taken to merge datasets 1 and 2 and create dataset 3 as
depicted in figure 4.2:

1. Intersection of columns (Finding common metaproteins): Of the 1,752 metapro-
teins found in dataset 1 and 12,649 in dataset 2, I found 170 metaproteins that
were common for all patients in both datasets 1 and 2.
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2. Union of rows (Adding both sets of patients): 76 patients in dataset 1 and
80 patients in dataset 2 were combined to create 156 patients in dataset 3, for
which the 170 common metaproteins were observed.

In addition to increasing the number of rows and contrary to decreasing the number
of columns in dataset 3, the number of class labels increased to 9. This is due to
the fact that of the 7 class labels in dataset 1 and 3 class labels in dataset 2, there
exists a common label between the two datasets: control patients. As a result, 156
patients were analysed in dataset 3 with 170 metaproteins and 9 distinct class labels:
control, CD, IBS, UCr, UCa, GCA, CA, NASH and HCC.

4.2 Data Transformation: Normalization, Eigendecom-
position and PCA

As explained in chapter 2, two transformation techniques were applied for the
clustering tasks:- normalization and principal component analysis (PCA) and two for
the classification tasks:- normalization and eigendecomposition (k and 2k). Original
data (no transformation) was kept as a control to compare with. After experiment 1
was performed, PCA seemed like a redundant step, as PCA has eigendecomposition
within itself. As a result, for classification tasks, PCA was not used, since two
eigendecompositions may possibly oversimplify important relationships between
features.

Additionally, in the second experiment, I checked the efficiency of the eigendecomposi-
tion, used in the NJW and self-tuning spectral clustering algorithms, for classification
tasks. To investigate this elaborately, I used k and 2k largest eigendecomposition
features for each dataset, where k represents the number of class labels in the dataset.
As a result, for dataset 1, the largest 3 and 6 eigendecomposition features were used
for this transformation. For dataset 2, the largest 7 and 14 eigendecomposition
features were used. And for dataset 3, the largest 9 and 18 eigendecomposition
features were used.

4.3 Experiment 1: Comparison of Clustering
Algorithm 4.3.1 intends to illustrate experiment 1, the goal of which was to compare
the quality of clustering, produced by the implemented algorithms. Having separate
lists for the 3 datasets, 3 data transformations (including no transformation) and
4 algorithms, I generated one set of clustering results for each combination and
evaluated the results. As a result, 36 clustering results were generated, and for each
2 evaluation metrics were measured: silhouette coefficient and adjusted rand index.

In this experiment, 3 clustering algorithms were compared: agglomerative and 3 types
of spectral clustering. For agglomerative (hierarchical) clustering, the python package
used is sklearn.cluster.AgglomerativeClustering(). The first type SC(package) uses
the python package sklearn.cluster.SpectralClustering(), which by default creates
a k-nn graph before performing eigendecomposition and k-means. The second and
third types of spectral clustering were generated using eigendecompositions of the
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Algorithm 4.3.1 Experiment 1

1: datasets = [dataset 1, dataset 2, dataset 3]
2: transformations = [original, normalized, PCA (2 components)]
3: algorithms = [agglomerative, spectral (k-nn), spectral (NJW), spectral (self-

tuning)]
4: for data ∈ datasets do:
5: for transform ∈ transformations do:
6: for algorithm ∈ algorithms do:
7: Perform clustering.
8: Measure silhouette coefficient.
9: Measure adjusted rand index.
10: end for
11: end for
12: end for

Ng-Jordan-Weiss algorithm and self-tuning algorithms respectively, which derive
the eigenvectors and eigenvalues from a fully connected graph. However, the NJW
algorithm requires a parameter input, σ, from the user to calculate edge weights to
represent the similarity between data points. This is solved by the self-tuning spectral
clustering algorithm which automatically derives an optimal value for the parameter
through local scaling. Both the NJW and self-tuning eigendecompositions were then
clustered using the k-means algorithm. The python codes for NJW and self-tuning
algorithms were derived from a blog by Sun [2020] where elaborate illustrations of
the algorithms were provided with examples.

For this research, I have used the silhouette index/score/coefficient as the internal
indices and the adjusted rand index as the external indices to evaluate spectral
clustering algorithms and their resulting partitions. The silhouette index helped to
comparatively evaluate spectral clustering algorithms based on the cluster separation
when represented in the eigenspace. On the other hand, the adjusted rand index was
helpful in realizing the efficiency of the eigenspace representation in capturing the
underlying structure of the data with respect to the class labels. This was important
to understand in order to apply the eigendecomposition as a pre-processing for
predictive analytics on metaproteomic abundance data. Overall, experiment 1 has
helped to compare clustering performance for the used transformation techniques,
between hierarchical and spectral clustering, as well as between using a k-nn graph
and a fully connected graph. The results would help identify optimal pathways while
applying spectral clustering to group patients from metaproteomic abundances.

4.4 Experiment 2: Comparison of Classification
Experiment 2 is divided into two parts, the larger part is described in algorithm 4.4.1,
where all three datasets are used. In the smaller subset of experiment 2 (algorithm
4.4.2), 5-fold cross-validation was applied to dataset 2, as was performed in the
original research, to compare with the benchmark values.

Algorithm 4.4.1 portrays experiment 2a, the goal of which was to compare the
quality of classification, produced by the algorithms - nearest centroid classifier, k-nn
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Algorithm 4.4.1 Experiment 2a

1: datasets = [dataset 1, dataset 2, dataset 3]
2: transformations = [original, normalized, eigen (k), eigen (2k)]
3: algorithms = [nearest centroid, k-nn, decision tree]
4: for data ∈ datasets do:
5: for transform ∈ transformations do:
6: for algorithm ∈ algorithms do:
7: Perform classification.
8: Measure accuracy for all labels.
9: Measure Matthews Correlation Coefficient for all labels.
10: Measure precision for label control.
11: Measre recall for label control.
12: end for
13: end for
14: end for

Algorithm 4.4.2 Experiment 2b (Benchmark comparison for Dataset 2.)

1: datasets = [dataset 2]
2: transformations = [original, normalized, eigen (k), eigen (2k)]
3: algorithms = [nearest centroid, k-nn, decision tree]
4: for data ∈ datasets do:
5: for transform ∈ transformations do:
6: for algorithm ∈ algorithms do:
7: Perform 5-fold cross-validation for 10,000 iterations.
8: Measure accuracy for all labels.
9: Measure Matthews Correlation Coefficient for all labels.
10: end for
11: end for
12: end for
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classifier and decision tree classifier. Having separate lists for the 3 datasets, 4 data
transformations (including no transformation) and 3 algorithms, I generated one set
of classification results for each combination of these lists and evaluated the results.
As a result, 36 sets of clustering results were generated, and for each 2 evaluation
metrics were measured: accuracy and Matthew’s correlation coefficient.

In this thesis, I have used discriminative and discrete classifiers since the labels for
patients in my metaproteomic abundances were discrete labels. However, simultane-
ously I wanted to check whether parametric and non-parametric classifiers would
exhibit differences in classifying eigen representation of metaproteomic abundance. I
have used accuracy and MCC to evaluate the quality of predictions by the classifiers
implemented on the eigendecomposition of the metaproteomic abundance data to
check prediction quality for all labels. Additionally, I checked the precision and recall
for the label ”control”, since these metrics provide improved interpretation of a single
label, whereas, accuracy and MCC provide better interpretation for all (several)
labels.

The four data transformations that were observed in this experiment were between
original (no transformation), normalized, eigendecomposition (k largest eigenvectors)
and eigendecomposition (2k largest eigenvectors), where k denotes the k-largest
eigenvectors used from self-tuning eigendecompositions. An overview of all the
clustering and classification algorithms used in both experiments is shown in table
4.2 with their corresponding python package that was used. The eigendecomposition
used in this case for classification tasks is the same eigendecomposition used in the
self-tuning algorithm as described by Sun [2020]. Eigen (k) and (2k) refers to k and
2k largest eigenvectors selected for analysis, where k denotes the number of class
labels for the given data (7 for dataset 1, 3 for dataset 2 and 9 for dataset 3).

Experiment 2 helped to understand the efficiency of using eigendecomposition tech-
niques, against no transformation (original) and normalization, as a pre-processing
step prior to predictive analytics of patients with metaprotein abundance data. It
was also verified whether increasing the number of k for k largest eigenvectors, had
any major influence on improving the performance of the classifier algorithms.

4.5 Hardware and Software
Hardware: All the experiments were implemented and executed on a personal laptop
with an Intel core i3 (7th generation) processor, 8 gigabytes of random access memory
(RAM) and 256 gigabytes of solid state drive.

Software: All the experiments were coded and implemented in Python version 3.10.
The codes were written and compiled inside a jupyter environment. Python packages
were used for the data pre-processing, transformation and experiments.

In table 4.2, I have listed all the python packages used for all the experiments along
with their corresponding package version to ensure reproducibility.
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Table 4.2: Overview of python packages and their versions used in the experiments.

Task Python package Package version

normalization transformation
sklearn.preprocessing.

MinMaxScaler()
scikit-learn 1.2.2

principal component

analysis (PCA)
transformation

sklearn.decomposition.

PCA(n components = 2)
scikit-learn 1.2.2

k-means clustering
sklearn.cluster.

KMeans(n clusters = 3)
scikit-learn 1.2.2

agglomerative clustering

sklearn.cluster.

AgglomerativeClustering

(n clusters = 3)

scikit-learn 1.2.2

spectral

(python package)
clustering

sklearn.cluster.

SpectralClustering

(n clusters = 3)

scikit-learn 1.2.2

spectral

(NJW)
clustering

NJW eigen

transform + k-means

scikit-learn 1.2.2

for k-means

spectral

(self-tuning)
clustering

self-tuning eigen

transform + k-means

scikit-learn 1.2.2

for k-means

nearest centroid classification
sklearn.neighbors.

NearestCentroid()
scikit-learn 1.2.2

k-nearest

neighbour
classification

sklearn.neighbors.

KNeighborsClassifier

(n neighbors = 5)

scikit-learn 1.2.2

decision tree classification c

sklearn.tree.

DecisionTreeClassifier

(criterion = ”gini”)

scikit-learn 1.2.2





5. Evaluation

In this chapter, I have evaluated the results of two experiments (see chapter 4),
on 3 different metaprotein datasets (IBD dataset, NASH dataset and combined
dataset) and several transformation techniques. In section 5.1, results for experiment
1 is depicted through bar plots of each execution, and box plots and mean values
summarising the results. The same have been depicted for experiment 2 in section
5.2. Afterwards, in section 5.3, I have compared the datasets, especially dataset
3 against datasets 1 and 2. Finally in section 5.4, I have answered the research
questions as proposed in chapter 1.

5.1 Experiment 1: Comparison of Clustering
In the first experiment, I investigated the influence of different transformations and
algorithms on the clustering of other metaproteomic datasets (Research Question 1
as in section 1.3). Furthermore, I analyzed whether combining two metaproteomic
datasets into a more extensive dataset might improve the performance of clustering
and classification. Therefore, I evaluated the resulting clusters on the silhouette
coefficient and adjusted rand index (see chapter 4). The following comparisons are
investigated in experiment 1:

• Normalization, and PCA as transformation technqiues prior to clustering in
comparison to no prior transformation (original dataset).

• Spectral clustering techniques against hierarchical clustering technique and
variations within spectral clustering techniques (different similarity graphs).

• Combining several metaproteomic abundance datasets to form a single dataset.

Dataset 1 (Inflammatory Bowel Diseases) - The silhouette coefficient and adjusted
rand index for each clustering result are displayed in bar plots in figure 5.1. Spectral
clustering (NJW) provided the highest silhouette coefficient for all the transforma-
tions, with the original (no transformation) outperforming other transformations.
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Figure 5.1: Bar plots comparing A) silhouette coefficient and B) adjusted rand
index for Dataset 1 subdivided into individual data transformations. Red dashed
lines represent the benchmark silhouette coefficient (0.17) and adjusted rand index
(0.31). SC = Spectral Clustering, NJW = Ng-Jordan-Weiss algorithm and ST =
Self-Tuning algorithm.

PCA transformation was effective for dataset 1, often outperforming normalization,
especially for adjusted rand index values. Benchmark silhouette coefficient (0.17)
was crossed by most except original and normalized transformation in agglomerative
and spectral clustering (package) of k-nn graph. Benchmark adjusted rand value
(0.31) was crossed only by PCA for agglomerative and spectral clustering (package).

Dataset 2 (Non-Alcoholic Fatty Liver Disease) - The silhouette coefficient and
adjusted rand index for each clustering result are displayed in bar plots in figure
5.2. Spectral clustering (NJW) provided the highest silhouette score for all the trans-
formations, with original (no transformation) outperforming other transformations.
PCA outperformed normalization in terms of silhouette coefficient, however, in terms
of adjusted rand index, normalization outperformed PCA for agglomerative and
spectral clustering (package). Benchmark silhouette coefficient (0.02) was crossed by
most except the original for spectral clustering (package). Benchmark adjusted rand
index (0.44) could not be crossed in any case. This could be due to the fact that
in the original research, Bray-Curtis dissimilarity was used as a proximity measure
between data points, which might be more efficient in portraying the underlying
structure of metaproteomic data, in the context of the class labels.

Dataset 3 (IBD and NAFLD) - The silhouette coefficient and adjusted rand index
for each clustering result are displayed in bar plots in figure 5.3. Spectral clustering
(NJW) provided the highest silhouette score for all the transformations, with normal-
ization slightly outperforming other transformations in this case. However, for other
algorithms, PCA mostly outperformed normalization in terms of silhouette scores as
well as in terms of adjusted rand index. Benchmark values are not available for this
dataset.
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Figure 5.2: Bar plots comparing A) silhouette coefficient and B) adjusted rand
index for Dataset 2 subdivided into individual data transformations. Red dashed
lines represent the benchmark silhouette coefficient (0.02) and adjusted rand index
(0.44). SC = Spectral Clustering, NJW = Ng-Jordan-Weiss algorithm and ST =
Self-Tuning algorithm.
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Figure 5.3: Bar plots comparing A) silhouette coefficient and B) adjusted rand
index for Dataset 3 subdivided into individual data transformations. No benchmark
values are available. SC = Spectral Clustering, NJW = Ng-Jordan-Weiss algorithm
and ST = Self-Tuning algorithm.

Mean values of silhouette coefficient and adjusted rand index are presented in table
5.1 and average distributions have been presented in box plots in figure 5.4. In terms
of data transformation, the original provided the best silhouette score for the NJW
algorithm. PCA provided the highest silhouette scores on several occasions due to
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the fact that PCA reduces the number of dimensions (2) and a lower dimensional
representation often results in a better silhouette score due to a reduction in noise
and redundancy [Karamizadeh et al., 2013]. Furthermore, considering the adjusted
rand index, PCA mostly outperformed the original data. Spectral clustering already
reduces the dimensionality of the data, i.e., a PCA is not necessary as a prior
transformation step. That is why no transformation performs better than PCA in
figure 5.1, 5.2 and 5.3. As a result, PCA was not observed for experiment 2.

In terms of comparing clustering algorithms, spectral clustering algorithms (NJW
and ST) outperforms hierarchical clustering in terms of cluster separation (silhouette
coefficient) with a fully-connected graph. However, for label separation (adjusted
rand index), agglomerative clustering performed similarly to spectral clustering.
When compared to benchmark values, both hierarchical and spectral clustering as a
whole, has provided improved performance in terms of silhouette coefficient, depicting
superior cluster separation. However, benchmark values were not met when compared
in terms of the adjusted rand index, especially for dataset 2. One reason for this
could be that the original research for dataset 2 used Canberra distance as a distance
measure, compared to the Euclidean distance used in this research.

Table 5.1: Mean silhouette and adjusted rand coefficients for all categories: datasets,
data transformations and clustering algorithms.

datasets data transformations clustering algorithms

d1 d2 d3 original
nomr-
arlized

pca
agglo-

merative
spectral
(package)

spectral
(NJW)

spectral
(ST)

silhouette 0.42 0.53 0.36 0.41 0.36 0.54 0.31 0.04 0.85 0.54
adjusted
rand
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Figure 5.4: Box plots comparing the accuracy and MCC for datasets(A,D), data
transformations (B,E) and classification algorithms (C,F).

Dataset 3 did not provide significant improvement for silhouette coefficients over
datasets 1 and 2. However, in terms of the adjusted rand index, it showed consistent
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improvement. To summarize, using spectral clustering (NJW) without transformation
showed the best performance in terms of silhouette coefficient and adjusted rand index
on metaproteomic abundance data. It could be argued that PCA is a useful step
when applying spectral clustering algorithms, however, comes with the redundancy
of two eigendecompositions to be applied.

To summarise, the following has been observed in experiment 1:

• The performance of the algorithms did not vary significantly in most cases, for
different algorithms, with PCA providing consistently good results. Original (no
transformation) performed better for spectral clustering (NJW).

• Spectral clustering with fully-connected graphs (NJW and self-tuning algorithms),
provides optimal performance for clustering with silhouette values reaching up
to an average of 0.85 (NJW) and 0.54 (self-tuning).

• Dataset 3 did not provide improved results for the silhouette coefficient, however,
significant improvement was observed in some cases, for the adjusted rand index,
compared to datasets 1 and 2.

5.2 Experiment 2: Comparison of Classification
In the second experiment, I investigated the influence of different transformations
and classifiers for predicting patient disease from metaproteomic abundance datasets.
Furthermore, I analyzed whether combining two metaproteomic datasets into a
more extensive dataset might improve the performance of classification. Therefore,
I evaluated the resulting predictions on the accuracy and Matthew’s Correlation
Coefficient (mcc) (see chapter 4). Furthermore, 5-fold cross-validation was performed
on dataset 2 for 10,000 iterations (figure 5.7), for appropriate comparison against the
source research, which implemented k-fold cross-validation as well for k = 5. The
following comparisons are investigated in experiment 1:

• Data transformation techniques - original, normalized, eigen (k) and eigen (2k),
prior to classification.

• Classifiers: nearest centroid, k-nearest neighbour and decision tree.

• Datasets especially dataset 3, and realize improvement of combining 1 and 2.

Dataset 1 (Inflammatory Bowel Diseases) - The accuracy and MCC values for each
clustering result are displayed in bar plots in figure 5.5. Eigen (k) transformation
consistently provided better accuracy (0.47) as well as mcc (0.37), especially for the
nearest centroid and decision tree classifier (same values for both). However, k-nn
classifiers provided better performance with normalized data. Eigen (2k) did not
provide any improvement over eigen (k) for this dataset.

Dataset 2 (Non-Alcoholic Fatty Liver Diseases) - The accuracy and Matthew’s
correlation coefficient (mcc) values for each clustering result are displayed in bar
plots in figure 5.6. Eigen (k) transformation on a decision tree classifier provided the
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Figure 5.5: Bar plots comparing A) accuracy and B) Matthew’s correlation coef-
ficient (mcc) for Dataset 1 subdivided into individual data transformations. No
benchmark values are available. nc = nearest centroid, knn = k-nearest neighbours
and dt = decision tree algorithms.

best accuracy (0.55). Eigen (2k) provided significant improvement over eigen (k) for
the nearest centroid classifier.
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Figure 5.6: Bar plots comparing A) accuracy and B) Matthew’s correlation co-
efficient (mcc) for Dataset 2 subdivided into individual data transformations.
Benchmark values for dataset 2 are compared in figure 5.7. nc = nearest centroid,
knn = k-nearest neighbours and dt = decision tree algorithms.

For benchmark comparison, with 5-fold cross-validation, bar plots are plotted in
figure 5.7. None of the classifiers could cross the benchmark accuracy of 0.86. This
could be due to the fact that the original research [Sydor et al., 2022] used Canberra
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Figure 5.7: Bar plots comparing A) accuracy and B) Matthew’s correlation coeffi-
cient (mcc) for Dataset 2 subdivided into individual data transformations. Red
dashed lines represent the benchmark accuracy (0.86). No benchmark mcc is available.
nc = nearest centroid, knn = k-nearest neighbours and dt = decision tree algorithms.

distance to calculate proximity between data points which might have contributed
to signifying the underlying structure of the class labels. However, in this case for
dataset 2, eigen (2k) provided consistently better accuracy (highest 0.64 for both
k-nn and decision tree) and MCC (highest 0.47 for both accuracy and mcc) over
other transformations.
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Figure 5.8: Bar plots comparing A) accuracy and B) Matthew’s correlation coeffi-
cient (mcc) for Dataset 3 subdivided into individual data transformations. Red
dashed line represents the benchmark accuracy (0.86). No benchmark mcc is available.
nc = nearest centroid, knn = k-nearest neighbours and dt = decision tree algorithms..
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Dataset 3 - The accuracy and Matthew’s correlation coefficient (mcc) values for each
clustering result are displayed in bar plots in figure 5.8. Original (no transformation)
on the decision tree classifier, provided the best accuracy (0.49) as well as mcc (0.38).
Normalization provided the second-best results for the nearest centroid classifers
(accuracy - 0.44 and MCC - 0.32). And eigen (2k) provided the best performance for
k-nn classifier (accuracy - 0.41 and MCC - 0.28).

In terms of data transformation, both eigendecompositions (eigen (k) and (2k))
proved to be highly efficient for classification tasks. However, when means and
medians are compared, eigendecompositions and normalization perform equally. Ad-
ditionally, choosing 2k largest eigenvectors during eigendecomposition as a precursor
to classification significantly improves accuracy and MCC over k largest eigenvectors.

Table 5.2: Mean accuracy and Matthew’s correlation coefficient (mcc) for all
categories: datasets, data transformations and clustering algorithms

datasets data transformations classifier

d1 d2 d3 original
norm-

arlized

eigen

(k)

eigen

(2k)

nearest

centroid
k-nn

decision

tree

acuuracy 0.43 0.48 0.37 0.44 0.46 0.46 0.48 0.44 0.45 0.48

MCC 0.32 0.28 0.25 0.29 0.29 0.29 0.32 0.28 0.29 0.32
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Figure 5.9: Box plots comparing the accuracy and MCC for datasets(A,D), data
transformations (B,E) and classification algorithms (C,F).

In terms of the performance of classification algorithms, all 3 algorithms - nearest
centroid, k-nn and decision tree, provided similar performance, both in terms of
accuracy and MCC. In fact, the decision tree performed slightly better with the
highest mean MCC of 0.44.

Comparing the datasets, dataset 3 could not outperform their source datasets 1
and 2. This could be potentially due to the larger number of labels present with a
high class imbalance. However, it could be possible that control patients could be
better analysed by combining metaproteins datasets. To investigate this further, I
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have plotted box plots (figure 5.10) to compare the precision and recall for the label
”control” over all 3 datasets in section 5.3

To summarise, the following has been observed in experiment 2:

• Eigen (k) decompositions performed consistently well for datasets 1 and 2.
Additionally, eigen (2k) provided a significant improvement over eigen (k) in the
benchmark comparison of dataset 2.

• All classification algorithms performed quite similarly with the decision tree
providing slightly better results with a mean accuracy of 0.48 and mean mcc of
0.32.

• Dataset 3 (mean accuracy - 0.37 and mean mcc - 0.25) did not provide any
improvement. However, it showed almost similar performance to dataset 1 (mean
accuracy - 0.43 and mean mcc - 0.32).

5.3 Comparison of datasets
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Figure 5.10: Box plots comparing the A) precision and B) recall. for the 3 datasets.

Dataset 3 provided a similar performance to the other datasets only during clustering
for adjusted rand index. It had lower silhouette coefficients for clustering, otherwise.
Additionally, it did not provide improvement of accuracy and mcc as well, in com-
parison to datasets 1 and 2. To check, whether it could at least provide improved
precision and recall for the label ”control” out of the 9 class labels that it contains, I
have compared them in figure 5.10.

In terms of precision, it provided higher mean precision than dataset 2 and a higher
precision was achieved over dataset 1 however slightly less than dataset 1. This shows
that a deeper investigation into how metaproteomic abundances could be merged
could have promising results on how to better distinguish between sick and controlled
patients. It could be possible that the reason why dataset 3 could not outperform
other datasets is the same reason why dataset 2 could not cross benchmark values
(apart from class imbalance): the selection of a better proximity measure. Euclidean
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distance performs better for data that has a low number of normally distributed
features. However, metaproteomic abundance data is high-dimensional and is often
not normally distributed.

5.4 Discussion of ResearchQuestions
In the following, I will answer the research questions as proposed in section 1.3.

Research Question 1: How well does spectral clustering group patients from
metaproteomic abundances, in terms of internal and external validation indices, in
comparison to hierarchical clustering?

Answer: Spectral clustering (NJW algorithm) provided sufficiently high performance,
in terms of clustering metaproteomic abundance data. It has outperformed hierarchi-
cal clustering (agglomerative) by an average silhouette coefficient of 0.54 (0.85 (NJW)
and 0.31 (agglomerative)). In terms of the adjusted rand index, it performed quite
similarly to the hierarchical (average of 0.15), with a slightly lower average value of
0.10. Spectral clustering (self-tuning), similarly outperformed hierarchical in terms of
the silhouette with an average increase of 0.23, and almost similar in terms of adjusted
rand index with an average of 0.03 lower than hierarchical. Spectral clustering with
k-nn graph (package) could not outperform hierarchical clustering, for k = 5. Overall,
it can be stated that spectral clustering algorithms, based on fully-connected graphs
can have improved cluster separation, without considering class labels, and almost
similar cluster separation considering class labels than hierarchical clustering.

Research Question 2: To what extent do data transformation techniques such
as normalization and PCA improve clustering performance for metaproteomic
abundances, in terms of internal and external validation indices?

Answer: PCA has outperformed normalization, in terms of both silhouette coefficient
and adjusted rand index, making it a suitable transformation technique to be applied
prior to clustering, especially agglomerative clustering, of metaproteomic abundance
data. It provided an average increase of 0.13 over the original data, in terms of
silhouette and an average increase of 0.09 in terms of adjusted rand index. However,
no transformation provided the best silhouette coefficient (0.97) in the best-case
scenario i.e. for spectral clustering (NJW algorithm) in most cases (negligibly
lower than normalization for dataset 3). Normalization, while providing an average
increase of 0.04 over original data in terms of adjusted rand index, provided an
average decrease of 0.05 in terms of silhouette. As a result, PCA is a very useful
data transformation technique to consider while clustering metaproteomic abundance
data.

Research Question 3: How much better accuracy and Matthews Correlation
Coefficient could be achieved over normalization, if eigendecomposition was applied
as a data transformation step, to predict patient labels from metaproteomic
abundances?

Answer: On average, eigendecomposition performed quite similarly when compared
to normalization, with eigen (2k) providing slightly better accuracy (average increase
of 0.02) and MCC (average increase of 0.03) over eigen (k). However, this depends on
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various characteristics of the dataset. For example, fewer class labels in a dataset can
lead to better performance (dataset 2). However, further investigation can provide
deeper insights how eigendecomposition could be optimised to provide even better
performance while handling a high number of class labels in the dataset.

Research Question 4: How much improvement could be achieved, in terms of
clustering and classification, if two metaproteomic abundances datasets were
combined into one?

Answer: No improvement of predictions was achieved either in terms of clustering and
classification when two metaproteomic abundance datasets were combined. However,
in the case of clustering, it could achieve a similar average adjusted rand index
score (0.15 for dataset 3 compared to 0.16 for dataset 1 and 0.06 for dataset 2),
depicting the need for further investigation in this arena. As a huge proportion of the
metaproteins could be found in samples from the same environment, e.g., human gut,
it would be quite useful to formulate a method to combine several metaproteomic
abundance datasets into one, for improved clustering and/or classification.





6. Conclusion

The aim of this study was to investigate the impact of spectral clustering on metapro-
teomic abundance data and to classify these data based on eigendecomposition. In
this section, we will discuss the implications of our findings and their significance in
the broader context of metaproteomics research.

Spectral clustering, widely popular in the domain of image segmentation, can be
efficient in grouping data points for numerical features. The ability to highlight
gaps between eigenvalues serves to make spectral clustering an efficient tool for
various tasks, e.g., image segmentation and metaproteomic abundance data. With a
growing number of research on omics data, especially with modern machine learning
algorithms, we can expect the following in the future:

• Improved protein identification.

• Increased understanding of microbial communities.

• Identification of several biomarkers of diseases.

• Development of new targeted therapies.

Old methods are often rediscovered with new capabilities and this thesis aimed to
achieve that for eigendecomposition. There have been a handful of research on the
application of spectral clustering on metaproteomic abundance data and the results
show it deserved a deeper investigation, to further improve its capabilities on very
large datasets to find similar data points.

This study also highlighted the importance of an appropriate data transformation
techniques and clustering algorithms for metaproteomic abundance data. It was found
that no transformation and PCA, combined with spectral clustering are possible
effective techniques for grouping patients, particularly when used with fully-connected
graphs. This is because spectral clustering can identify clusters with high intra-cluster
similarity and low inter-cluster similarity. It can sufficiently outperform hierarchical
clustering, which is still a popular choice in metaproteomic research.
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It was also found that different datasets have significantly different impacts on
clustering and classification performance, with an inverse proportionality observed
against the number of class labels present in the data. Although dataset 3 did not
sufficiently improve results, its formation could still be an essential method that
could be utilized to benchmark future studies on metaproteomic abundance data.
The combination process could be further improved and could prove useful in a
binary classification of diseased against control patients.

Focusing on classification, eigen (k) and eigen (2k) transformations proved to be
useful transformation techniques to improve accuracy and MCC. However, the choice
of classification algorithm needs to be considered for optimal output. Classifiers
providing a linear decision boundary, such as the nearest centroid classifier, seem
to perform better with eigendecomposition. k-nn and decision trees provided better
performance for both normalization and eigendecomposition confirming that the
label structure of metaproteomic abundances could be better sorted by non-linear
decision boundaries on the class label. However, on average, all classifiers performed
quite similarly, depicting the ease of analysis of eigenvalues and vectors by any given
algorithm.

In conclusion, the study provides important insights into the impact of spectral
clustering on metaproteomic abundance data and its classification based on eigende-
composition. I recommend using normalization as a data transformation technique
and spectral clustering, particularly with fully-connected graphs, for clustering
metaproteomic abundance data, as well as classification of eigen-transformed data.

6.1 Scope of Future Work
In retrospect of the key findings of this research, I recommend investigating the
following research areas, for further improvements in the clustering and classification
of metaproteomic abundance data:

1. Impact of applying other spectral clustering algorithms: There exists more
than 15 types of spectral clustering algorithms, 2 of which (Ng-Jordan-Weiss and
Self-tuning) were investigated in this research. It would be interesting to see if
several other spectral clustering algorithms would provide similar improvements
for clustering tasks.

2. Impact of different proximity measures on the performance of spectral cluster-
ing - Instead of using Euclidean distance as part of the equation to calculate
pairwise similarity/adjacency, other proximity measures could be investigated,
e.g., Bray-Curtis dissimilarity, cosine similarity.

3. Binary classification after combining several metaproteomic abundance datasets
- Several types of diseased patients could all be labelled the same as ”sick” and
the rest as ”control” and predictive analytics could be performed on the combined
dataset to identify biomarkers for healthy patients.

4. Impact of different other classifiers to predict patients from metaproteomic
abundance datasets: Apart from using nearest centroid, k-nn and decision
tree classifiers, the impact of using other advanced classifiers such as XGBoost,
Random Forest and Neural Networks could be investigated.
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5. Choice of k for k-largest eigenvectors - While in this research, in the context of
choosing the number of largest eigenvectors to analyse, I have only investigated
between eigen (k) and eigen (2k). It could be further investigated whether even a
larger number of k could potentially be useful to deal with the high-dimensionality
of metaproteomic abundance datasets.

6. Impact of ϵ-neighbourhood graphs - Most spectral clustering algorithms either
use a k-nn graph or a fully-connected graph. However, a new algorithm could
be generated to use a ϵ-neighbourhood graph (see section 2.2.1). This can help
to reduce the complexity in the similarity matrix of the data, since a similarity
value below a certain threshold, would be considered as 0 and would not affect
the calculations for ϵ-neighbourhood graph. The impact of different ϵ values, in
this case, could also be investigated.

In this regard, as an extension of this work, I have already compiled 15 spectral
clustering algorithms (including Ng-Jordan-Weiss and Self-tuning) and compared
them in detail for the purpose of publishing an exploratory survey paper on spectral
clustering algorithms. This would help researchers in any domain to be able to
know and compare all spectral clustering algorithms along with their specialized
applications, and to be used for various tasks and research. Furthermore, I am also
investigating whether clustering can be performed, generically for any data, on a
Microsoft Excel file. The possibility of this extends to the formulation of spectral
clustering algorithms, as well, on an Excel file. This would largely diminish the need
for understanding a programming language e.g., python, to be able to implement
clustering or spectral clustering algorithm, in addition to the steps of the algorithms
being more explainable in this format.
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