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Abstract

The digitization of healthcare has led to a proliferation of electronic health records, pro-
viding valuable data for machine learning algorithms(e.g., graph neural networks) to make
accurate predictions about patients’ outcomes(e.g., mortality prediction). This thesis in-
vestigates different aspects of representation learning on electronic health records using a
graph neural network and provides new insights into the area of graph modelling, feature
ablation, and helps to understand the effect of bias in the graph structure. It also evalu-
ates the model’s underlying predictors with well-established statistical models (SAPS-II
& SAPS-III) for predicting the mortality of the patients diagnosed with sepsis using the
MIMIC-III dataset. The experimentation shows that the lab and vital signs features
used in predicting mortality in SAPS-II and SAPS-III are ranked in the top 90 percentile
amongst the predictors of mortality in the used heterogeneous Graph Attention Net-
work (GAT) model. Experimentation with different graph representations(different ways
of representing data in nodes and edges in a heterogeneous graph) shows their advantages
and disadvantages. However, in terms of area under receiver operating characteristics
curve (Area under the receiver operating curves (AUROC)), different representations
performed similarly well. The general way of modelling time-dependent measurements
with multiple edges without any aggregation or transformation of edge data had no bias
but performed worse in GPU utilization and memory usage. Different ways of encoding
the categorical and text data also had an impact on the model’s performance, wherein
the encoding of such data with a clinical text pre-trained UMLSBert model had better
performance than the label or one-hot encoding. Furthermore, the GAT model is tested
by introducing an additionally highly biased relationship (similar demography). It was
seen that the model’s attention mechanism corrected such a nature of bias. Finally, the
experiments showed that drugs were the best predictors of mortality among labs, vitals,
or diagnoses.

keywords: Digitization, healthcare, Electronic health records, machine learning, mortal-
ity prediction, graph neural networks, Sepsis
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1 Introduction

Digitization has a significant impact on the present-day world, transforming many aspects
of society and the way we live and work. The healthcare domain is also undergoing
transformations due to ongoing digitization. The digitization of medical health records
(e.g., diagnoses, medications, notes, procedures, laboratory events, etc.) into Electronic
Health Records (Electronic health record (EHR)) is one of the many areas of the healthcare
domain that has the potential to revolutionize the healthcare sector. It improves patient
care [KKC+15]; provides analysis of disease evolution [PWH15]; embeds performance
measures in clinical practices; identifies patients for clinical trials [EJCH05], and assesses
new treatments to gauge their success.

Most often EHRs are stored in relational databases, as they are mature and well un-
derstood technology[MQX14]. However, many studies ([EL14] [GBR21] [MQX14]) have
shown different benefits of using non-relational databases for storing highly connected
EHRs. NoSQL stores are a varied family of technologies classified into four primary
models or varieties based on their data model: key-value stores, column-value stores, doc-
ument stores and graph stores [DCL18], [Cat11]. A graph is a type of data structure with
nodes (also referred to as "vertices") & edges (also referred to as "links"), wherein these
nodes and edges can contain features [W+01]. A graph database can contain single, or
multitudes of such graphs [RWE15]. A systematic literature review by [SDKGG20] shows
the increasing trend of representing the EHRs in graph structure and further investigates
promising areas.

A single interaction of a patient with the healthcare system produces a ton of data with
many relationships. The Figure 1.1 illustrates the interaction schema of a patient. Each
node in the schema is again associated with features. E.g., a patient node contains age,
gender, ethnicity, etc., and each patient can have multiple encounters (e.g. each pa-
tient can be connected to multiple admissions in a hospital) with the healthcare system,
portraying a highly connected, complex graph structure. Furthermore, graphs have a
flexible structure, and thus the relationship with existing nodes can be extended to new
nodes [W+01]. For instance, the drug nodes in the EHR graph can be linked to the
proteins they target for finding a new drug (for a given protein target) or finding new
targets for a given drug or for finding interactions resulting in adverse side effects when
taking multiple drugs. Graphs are ubiquitous and have a wide range of applications,
not just in bio-medical sciences but also in other domains such as electrical engineering,
mathematics, computation networks, neurosciences, and many more[Pir07]. One disad-
vantage of graphs is that they are inherently complex for the existing machine learning
algorithms to exploit the rich information between the nodes as relationships. Current
machine learning algorithms work very well with a fixed structure, such as that found
in text or images but cannot process graphs. The process of representing or encoding
the graph structure so that machine learning algorithms can easily exploit them is called
graph representation learning. Graph representation learning has several applications in

9



Figure 1.1: Patient & Health Care system Interaction

bio-medicine such as drug discovery, gene function prediction, pathway analysis, cancer
research, drug repositioning and medical imaging analysis [YYHK22]. One of such many
applications of applying representation learning to EHRs is mortality prediction [LMD15]
[CMH+16].

The goal of this thesis is directed towards the mortality prediction of patients who have
been diagnosed with sepsis through the use of graph representation learning. Keeping this
goal in mind, the subsequent sections are structured as follows:

• Section 1.1 begins with the motivation & reasons behind the goal of the thesis.

• Section 1.2 highlights the main contributions of this research.

• Section 1.3 concludes this chapter by outlining the structure of subsequent sections.

1.1 Motivation

The massive digitization of data in all facets of life generates data at a pace that was
never experienced before. The healthcare domain generates an especially large amount of
data. As per the report published by Seagate[RRG18] shown in figure 1.2 it estimates a
36% annual growth rate of data in the healthcare domain by 2025, which is the highest
amongst the prominent domains.

Digitizing the data has many advantages like easy accessibility, preservation, searchabil-
ity, disaster recovery, reduced carbon footprint and many more [SFED+12]. The chart 1.3
illustrates the factors influencing the acceptance of digitization in the healthcare domain.

10
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Figure 1.2: Data growth rate in different domains [RRG18]

A McKinsey study along with the German Managed Care Association (BMC)[HBM19]
suggests that 26 digital solutions (such as Medical chatbots, Chronic disease management
tools, disease prevention tools, Hospital logistics robots, Clinicians’ virtual assistants and
many more) as shown in figure 1.4 can deliver up to EUR 36 Billion in savings. Although
this digitization opens up many potential research areas in the biomedical domain, it also
poses serious problems for storing and analysing this complex data. Traditionally, rela-
tional databases are used for storing the data because of their popularity. However, with
the recent advent of NoSQL stores, the popular trend has started shifting towards this
technology, especially for graph databases, which is explained in depth in the background
section 2.4. Graph stores are one of the NoSQL stores and their flexible structure makes
them versatile. After modelling & storing the data in the graph stores, the next important
task becomes analysing it. There are many real-world applications of graphs in the fields
of social networks [LC13], computer vision traffic prediction [LYH+20], protein-interaction
networks [VFMV03], bioinformatics [LCS+06], the World Wide Web, and several other
applications [KW16]. One of many such applications in the domain of health care is mor-
tality prediction [ABEDMB17] [PPC+15]. The idea of mortality prediction is important
because it helps

• in assessing the severity of illness

• in adjudicating the value of novel treatments [AAK+21]

• in intervening of health care policies. [FLNG+20]

• in reducing the massive burden of care.

• in enabling the provision of appropriate and timely medical services. [ERESA+20]

This thesis primarily focuses on the mortality prediction 2.2 of patients using graph rep-
resentation learning on EHRs. However, the concept and methodology introduced in
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this work can also be applied to any other targeted medical condition with appropriate
pre-processing.

Figure 1.3: Factors influencing acceptance of digitization in healthcare [Alh]

1.2 Main Contributions

The main contributions of this thesis involves investigation of different aspects of repre-
sentation learning on electronic health records using a graph neural network and pro-
vides new insights into the area of graph modelling, feature ablation, and helps to
understand the effect of bias in the graph structure. It also evaluates and ranks the
model’s underlying predictors with that of well established statistical model’s predictors,
showing that the model learns on significant predictors. The feature ablation exper-
iments on textual data also showed the effect of different encoding techniques on the
model.

1.3 Thesis Structure

The rest of the thesis is structured as follows:

• The Chapter 2, gives a deeper understanding of Sepsis, Mortality prediction, graphs
& its types, popularity of graph databases, the existing prediction models, repre-
sentation learning, graph features and state-of-the-art algorithms in graph machine
learning which further reinforces & provides clarity on the research goals.
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Figure 1.4: Digital solutions [HBM19]

• Chapter 3, reviews existing research in the area of mortality prediction in both
traditional machine learning and graph neural network domains.

• Chapter 4, explains briefly about the dataset, an alternative synthetic dataset and
provides a complete overview of the database.

• Chapter 5 formulates the goals of this thesis. Specific Research questions are de-
fined, and the design pipeline is explained, including data pre-processing and model
implementation.

• In Chapter 6, the essential elements of the experimental setup, such as the graph
machine learning model that is used, hyper-parameter of the algorithms, metric used
for evaluation, programming frameworks and hardware details that could provide
the same results are documented.

• Chapter 7 provides the results of different experiments and evaluates them.

• Finally, Chapter 8 concludes this thesis and outlines some intriguing directions for
future research.
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2 Background

This chapter presents the background knowledge of this thesis, providing an overview of
the essential topics covered in our work. This chapter aims to guide the reader towards
a solid foundational understanding of our research area. This chapter is structured as
follows:

• In Section 2.1, the focus is on Sepsis as a life-threatening condition, its causes, signs
& symptoms, who are at risk and a few statistics about this condition.

• Section 2.2 defines what mortality prediction is, why it is important & what are the
existing methodologies in this area.

• In sections 2.3, 2.3.3, 2.5 graph structures, different machine learning tasks on
graphs, their challenges are discussed and move on to understand the represen-
tation learning on the graphical structure which is the main area of interest in this
thesis.

• To predict mortality we use digitized clinical data (EHR). These can be stored in
different databases. In the Section 2.4, I introduce the SQL & NoSql database and
how graph databases spar against RDBMS, especially in the bio-medical domain.

• In Section 2.7, an in-depth discussion about Graph neural networks (GNN) is given,
specifically about Graph convolutional network (GCN), GraphSAGE and Graph
attention networks (GAT) as these are most widely used in the graph machine
learning domain.

2.1 Sepsis [LM07] 1

Sepsis or septicemia, or blood poisoning, is a life-threatening condition caused by the
body’s ferocious reaction to an infection. The onset of Sepsis occurs when an already
present infection sets off a cascade of damaging events throughout the body. Sepsis is
typically caused by infections in the lungs, urinary tract, skin, or digestive tract. Sepsis
is a potentially fatal condition that causes fast tissue damage, organ failure, and death if
the infection is left untreated.

2.1.1 What causes Sepsis? 1

Infections are a forefront cause of this condition. If these infections are left untreated,
then they can cause Sepsis. Bacterial infections cause most cases of Sepsis, but viral
infections such as COVID-19 or Influenza can cause sepsis.

1https://www.cdc.gov/sepsis/what-is-sepsis.html
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2.1.2 What are the signs & symptoms of Sepsis? [LM07] 2

A person with this condition can have one or more of the following conditions:

• High heart rate or weak pulse

• Fever, Shivering or feeling very cold

• Confusion or disorientation

• Shortness of breath

• Extreme pain or discomfort

• Clammy or sweaty skin

Note: A medical assessment by a healthcare professional is required to confirm
Sepsis.

2.1.3 Who is at risk? 2

All are prone to Sepsis, but certain groups are at a higher risk of contraction:

• Adults 65 years or older

• Individuals with weak immunity

• Individuals with an underlying chronic condition such as diabetes, lung disease,
cancer and kidney disease.

• Infants.

• Individuals who already survived Sepsis

2.1.4 Statistical facts about Sepsis 2

According to the CDC (Center for Disease Control & Prevention), in a typical year, at
least 1.7 million adults develop Sepsis in the US alone. Of those, 350,000 die during their
hospitalization or are discharged to hospice. 1 in 3 patients who die in hospitals in the
US has Sepsis. Sepsis, or the infection causing Sepsis, starts before the patient goes to
the hospital in about 87% of cases.

2https://www.cdc.gov/sepsis/what-is-sepsis.html
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2.2 Mortality Prediction

Mortality prediction estimates the probability of an individual’s death within a specified
time frame. It is often used in healthcare settings to help determine the likelihood of a
patient’s survival and guide treatment decisions. It is based on various factors, including
the patient’s demographic data (gender, age, ethnicity, socio-economic status) [PJA+21],
medical history, current health status, and the severity and type of the illness or injury
they are experiencing. Predictive models may be used to analyze this information and
generate a prediction of the patient’s likelihood of survival.

Mortality prediction can be helpful for healthcare providers in several ways. For example,
it can help providers identify patients at high risk of death which may benefit from more
aggressive treatment. It can also help providers identify patients with a better prognosis
which may be candidate patients for less intensive treatment. However, estimates of
mortality risk are derived from evaluating aggregated data from vast & diverse groups of
patients. This means that their validity in the context of each patient encounter cannot be
guaranteed. Personal mortality risk estimation, which is addressed in detail in [[LMD15],
[LM17]], can help address this deficiency, but this is beyond the scope of the current
investigation. It is important to note that the accuracy of predictions depends on the
quality of the data used and the complexity of the prediction model. As such, mortality
predictions should be used as one factor among many in treatment or decision-making
rather than being used in isolation.

There are many different approaches to predicting mortality, and the state-of-the-art
models can vary depending on the specific context and goals of the prediction. Some
common approaches to mortality prediction include:

• Statistical models: These models use statistical techniques, such as regression analy-
sis or survival analysis, to predict the likelihood of death based on various predictors,
such as age, gender, medical history, and current health status.

• Machine learning models: These models employ algorithms to discover data patterns
and generate predictions based on those patterns. They can be trained on large
datasets of patient data and can be more accurate than statistical models in some
cases.

• Clinical prediction models: Clinicians develop these models based on clinical ex-
perience and expert judgment rather than statistical analysis. They may include
a combination of clinical factors, such as vital signs and lab values, to predict a
patient’s likelihood of survival.

• Risk scores: These models use a specific set of risk factors, such as age, comorbidities,
and severity of illness, to assign a score that reflects the patient’s risk of death.
Higher scores are associated with a higher risk of death.

The performance of each model depends on various factors involved in prediction’s unique
context and objectives. Before implementing a prediction model in practice, it is essential
to verify it to guarantee that it is accurate and dependable.

Severity of Illness (SOI) is a generic measure that provides a patient’s discourse from nor-
mal physiological behaviour. It categorizes medical conditions as mild, moderate, major,
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or critical. This measure offers a framework for analyzing hospital resource usage or setting
patient care standards. Several such measures have been implemented in the Intensive
care unit (ICU) to forecast different outcomes. These scores are one of the ways of pre-
dicting mortality in critically ill patients. There are many different scoring systems used
to predict the outcome of critically ill patients, such as the Simplified Acute Physiology
Score (SAPS) [LGLS93], the Sequential Organ Failure Assessment (SOFA) [VMT+96],
the Mortality Probability Model (MPM) [LTK+93], the APACHE scores [KDWZ85], and
many more.

Typically, these models are evaluated using a metric known as Area Under Receiver Op-
erating Characteristics (AUROC), representing the degree of separability for a binary
classification. Its value is between 0 and 1, where 1 represents perfect classification be-
tween true & false classes and 0 means the complete opposite. Generally, the value is
between 0.5-1, where 0.5 means that the model has randomly predicted the true & false
classes.

Although AUROC is typically between 0.8-0.9 for the above-discussed models, different
approaches, mainly in the area of machine learning & deep learning, are being explored
to further improve predictive power by capitalizing on the increased completeness and
expressivity of contemporary EHR’s. For example, finding and using data from compa-
rable patients at a granular level (i.e., a rich set of clinical variables recorded in high
temporal resolution) might lead to constructing a tailored prediction model for any given
patient.

2.2.1 SAPS-II

The Simplified Acute Physiology Score version 2 (SAPS II) [LGLS93] is a risk prediction
model used to predict critically ill patients’ mortality. It is a statistical model that is based
on a combination of patient characteristics and medical history.

it is based on a logistic regression model, a statistical method used to predict the prob-
ability of a binary outcome (such as mortality). It models the relationship between the
predictor variables (such as age, underlying medical conditions, and physiological mea-
surements) and the outcome (mortality) as a logistic curve. It estimates the probability
of the outcome for a given set of predictor variables.

It was developed to provide a standardized method for predicting the mortality of criti-
cally ill patients, and it has been widely used in intensive care units (ICUs) around the
world. It is designed to easily calculate and provide a reliable mortality prediction based
on a relatively small number of predictor variables. It is often used with other risk pre-
diction models to provide a more accurate prediction of patient outcomes. The complete
breakdown of the scores is explained in the table 2.1 The in-hospital mortality is the
calculated as follows In-hospital mortality, % = ex

1+ex

where x = 7.7631 + 0.0737 * (SAPS II Score) + 0.9971 * [ ln(SAPS II Score + 1)
]
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Variable Description Reference range Points

Age, years

<40 0
40-59 7
60-69 12
70-74 15
75-79 16
80 18

Heart rate
Worst value in 24 hours; if patient has had both cardiac arrest
(11 points) and extreme tachycardia (7 points), assign 11 points

<40 11
40-69 2
70-119 0
120-159 4
160 7

Systolic BP, mm Hg Worst value in 24 hours

<70 13
70-99 5
100-199 0
200 2

Temperature 39ºC (102.2ºF) Highest temperature in 24 hours
No 0
Yes 3

GCS Lowest value in 24 hours; if patient is sedated, use estimated GCS before sedation

14-15 0
11-13 5
9-10 7
6-8 13
<6 26

PaO/FiO,
if on mechanical ventilation or CPAP

Lowest value in 24 hours; if patient was extubated <24 hours ago,
use lowest value while on mechanical ventilation

<100 mm Hg/% (13.3 kPa/%) 11
100-199 mm Hg/% (13.3-26.5 kPa/%) 9
200 mm Hg/% (26.6 kPa/%) 6
Not on mechanical ventilation or
CPAP within the last 24 hours

0

BUN, mg/dL (serum urea, mmol/L) Highest value in 24 hours
BUN <28 or urea <10 0
BUN 28-83 or urea 10-29.6 6
BUN 84 or urea 30 10

Urine output, mL/day
If patient in ICU <24 hours, calculate for 24 hours
(e.g. if 1 L in 8 hours, then mark 3 L in 24 hours)

<500 11
500-999 4
1,000 0

Sodium, mEq/L or mmol/L Worst value in 24 hours
<125 5
125-144 0
145 1

Potassium, mEq/L Worst value in 24 hours
<3.0 3
3.0-4.9 0
5.0 3

Bicarbonate, mEq/L Lowest value in 24 hours
<15 6
15-19 3
20 0

Bilirubin Highest value in 24 hours
<4.0 mg/dL (<68.4 µmol/L) 0
4.0-5.9 mg/dL (68.4-102.5 µmol/L) 4
6.0 mg/dL (102.6 µmol/L) 9

WBC, x 103/mm3 Worst value in 24 hours
<1.0 12
1.0-19.9 0
20.0 3

Chronic disease

None 0
Metastatic cancer 9
Hematologic malignancy 10
AIDS 17

Type of admission
Scheduled surgical = surgery scheduled 24 hours in advance
Medical = no surgery within one week of admission
Unscheduled surgical = surgery scheduled 24 hours in advance

Scheduled surgical 0
Medical 6
Unscheduled surgical 8

Table 2.1: SAPS II scoring Sheet [LGLS93]
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2.2.2 SAPS-III

The Simplified Acute Physiology Score III (SAPS-III) [MMA+05] is a scoring system
used to assess disease severity and forecast mortality risk in critically ill patients. It is
a weighted scoring system that combines physiological and demographic characteristics
to produce scores ranging from 0 to 163. The severity of the patient’s sickness and
anticipated mortality risk is proportional to the score. The SAPS-III score is derived
from a combination of the variables in the table 2.2. The score is widely utilised in ICUs
and other critical care settings to assess the severity of illness, forecast mortality risk and
monitor the response to treatment. It is a popular and a well-validated instrument for risk
assessment and benchmarking patient outcomes in intensive care units. The in-hospital
mortality for this score is formulated as In-hospital mortality, % = ex

1+ex

where x = 32.6659 + ln(SAPS-3 score + 20.5958) * 7.3068

2.3 Graphs

Graphs are ubiquitous (e.g., transportation network, power grid, supply chain network);
the definitions of real-world objects frequently depend on how they link to other enti-
ties(e.g., In a transportation network, cities act as entities and they are linked using
highways). A graph is a natural representation of a collection of entities and their rela-
tionships. Before getting into machine learning on graphs, let us first understand what
graphs are. Graphs in mathematics are also called as ’Networks’, and graph theory is
a branch of mathematics that deals with the study of graphs. Graphs consist of nodes
(also referred to as vertices) and edges (also referred to as links), the nodes are connected
using the edges. A graph G can be described as G = (V(x),E(y)) (V : Nodes, E : Edges,
x: Node features, y: Edge features). Figure 2.1 represents the nodes and edges on an
undirected example graph.

[Nyk]

Figure 2.1: Example of an Undirected graph

2.3.1 Types of Graphs

Graph can model different characteristics with nodes and edges. Different graphs or net-
works are utilized to model these properties as shown in Figure 2.2. Graphs can be either
un-directed (two-way relationship between two nodes) or directed ( one-way relationship
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Variable Description Reference range Points

ICU admission Every patient gets an offset of 16 points for
being admitted (to avoid negative SAPS 3 scores)

16

Age, years

<40 0
40-59 5
60-69 9
70-74 13
75-79 15
80 18

Comorbidities Chemotherapy, immunosuppression, radiotherapy, steroid treatment

Cancer therapy 3
ChronicHF (NYHA IV) 6
Haematological cancer 6
Cirrhosis 8
AIDS 8
Metastatic cancer 11

Length of stay before ICU admission, day
<14 0
14-27 6
28 7

Intrahospital location before ICU admission
Emergency room 5
Other ICU 7
Other ward 8

Use of major therapeutic options before ICU admission Not all variables collected were included in the final data model,
please see original article in “Evidence” for further information.

Vasoactive drugs 3
Other/none 0

Planned or unplanned ICU admission Planned 0
Unplanned 3

Reason(s) for ICU admission

If both reasons are present, only the worse value (-4) is scored Cardiovascular: rhythm disturbances -5
Neurologic: seizures -4
Cardiovascular: hypovolemic hemorrhagic shock,
hypovolemic non-hemorrhagic shock

3

Digestive: acute, abdomen, other 3
Neurologic: coma, stupor, obtunded patient,
vigilance disturbances, confusion, agitation, delirium

4

Cardiovascular: septic shock 5
Cardiovascular: anaphylactic shock,
mixed and undefined shock

5

Hepatic: liver failure 6
Neurologic: focal neurologic deficit 7
Digestive: severe pancreatitis 9
Neurologic: intracranial mass effect 10
Other 0

Surgical status at ICU admission
Sceduled surgery 0
No surgery 5
Emergency surgery 6

Anatomical site of surgery Not all variables collected were included in the final data model,
please see original article in “Evidence” for further information.

Transplant surgery -11
Trauma surgery -8
Cardiac surgery: CABG without valvular repair -6
Other surgery 0
Neurosurgery: cerebrovascular accident 5

Acute infection at ICU admission Not all variables collected were included in the final data model,
please see original article in “Evidence” for further information.

Nosocomial 4
Respiratory 5
Other/none 0

Glasgow Coma Scale/Score Lowest within 1 hr of ICU admission

3-4 15
5 10
6 7.5
7-12 2
13 1

Total bilirubin, mg/dL (µmol/L) Highest within 1 hr of ICU admission
<2 mg/dL (<34.2 µmol/L) 1
2-5.9 mg/dL (34.2-102.5 µmol/L) 4
6 mg/dL (102.6 µmol/L) 5

Body temperature, °C (°F) Highest within 1 hr of ICU admission <35 °C (<95 °F) 7.5
35 °C (95 °F) 1

Creatinine, mg/dL (µmol/L) Highest within 1 hr of ICU admission

(3-4 µmol/L) 15
(5 µmol/L) 10
(6 µmol/L) 7.5
<1.2 mg/dL (<106.1 µmol/L) 1
1.2-1.9 mg/dL (106.1-176.7 µmol/L) 2
2-3.4 mg/dL (176.8-309.3 µmol/L) 7
3.5 mg/dL (309.4 µmol/L) 8

Heart rate, beats/min Highest within 1 hr of ICU admission
<120 1
120-159 5
160 7

Leukocytes, G/L Highest within 1 hr of ICU admission <15 1
15 2

pH Lowest within 1 hr of ICU admission 7.25 3
>7.25 1

Platelets, G/L Lowest within 1 hr of ICU admission

<20 13
20-49 8
50-99 5
100 1

Systolic blood pressure, mm Hg Lowest within 1 hr of ICU admission

<40 12
40-69 8
70-119 3
120 1

Oxygenation PaO2, FiO2 refer to arterial oxygen pressure (lowest),
Inspiratory oxygen concentration MV

PaO2/FiO2<100 and MV 11
PaO2/FiO2100 and MV 7
PaO2<60 and no MV 5
PaO260 and no MV 1

Table 2.2: SAPS-III Scoring Sheet [MMA+05]
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indicated by the direction of the edge). Similarly, weighted graphs can have a weight as-
sociated with an edge, indicating the importance between two nodes. A graph consisting
of single types of nodes and edges, is homogeneous, and the ones consisting of different
node types or different edge types are heterogeneous [WJS+19]. For E.g., in metabolic
networks, nodes represent different enzymes, and there exist different enzyme interac-
tions between them. Similarly, in protein-metabolites network there exists different node
types (proteins and metabolites) which interact with each other. Understanding different
types of graphs in "Graph theory" helps us come up with the choice of representation
for a specific domain. Although in some domains, the representation is unique & unam-
biguous, it could be ambiguous in others. The study’s success depends on the choice of
graph representation. Since graphs are a natural way of representing information, they
have the same underlying schema (i.e nodes, edges, node features and edge features),
so a single machine-learning algorithm developed for graph structure should be able to
solve any network with some adaption for dealing with homogeneous and heterogeneous
graphs.

Figure 2.2: Types of Graphs [Nyk]

2.3.2 Types of tasks on graphs

Generally, there are three different types of prediction tasks on graphs, Node-level tasks,
Edge-level tasks and Graph-level tasks reference to figure 2.3

Figure 2.3: Tasks in Graphs 3

3http://web.stanford.edu/class/cs224w/slides/02-tradition-ml.pdf
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Node level tasks

Figure 2.4: Node Classification 4

Predicting a node’s label in a graph is the focus of node-level tasks. Consider a semi-
supervised task as shown in Figure 2.4 wherein few labels of the node are provided (col-
ored), with the task here to classify or predict labels of other nodes(denoted with gray
color) using a learning algorithm.

Edge level task

The task is to predict new links based on existing links or to classify the edge types.
The former task is called link prediction, while the latter is known as edge classifica-
tion. Consider a social network as shown in Figure 2.5 wherein users (A,B,C,D,E,F,G)
are friends(black edges) with other users or they follow(blue edges) other users. The link
prediction task predicts if there exists any link between users, whereas the edge classi-
fication predicts or classifies the edge existence, then what is the type of it (Friend or
follower)

Figure 2.5: Edge level Task

4http://web.stanford.edu/class/cs224w/slides/02-tradition-ml.pdf
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Figure 2.6: Network vs Fixed structures5

Graph level task

Graph-level tasks focus mainly on graph generation (e.g., generating new molecules that
are similar to a given set of training molecules in a molecular graph), graph comple-
tion(e.g., predicting missing edges in a protein-protein interaction networks) or finding
topologically similar subgraphs (e.g., for community detection by discovering similar co-
horts). The goal here is to featurize the entire graph.

2.3.3 Challenges with graphs

Graphs are non-Euclidean data structures. This means that they do not have a fixed
structure, like words in a sentence, or pixels in an image 2.6 making them complex for
processing in an elegant way. Also they do not have any inherent node ordering and are
extremely sparse. Recent state-of-the-art deep learning algorithms work exceptionally well
on fixed structures but do not support graph structures. The representation learning on
graphs discussed later in this research is focused chiefly on generalizing graph structures
to a structure that advanced deep learning architectures can leverage . To summarize,
the main computation challenges of graph structures are:

• Lack of consistency in structure (No fixed structure)

• Node order equivariance (No inherent ordering amongst nodes)

• Graphs are huge and extremely sparse

In general, graphs are represented in two ways:

• Adjacency matrix: For an undirected graph 2.7, an adjacency matrix Table 2.3 rep-
resents the connection between any two vertices (vi, vj), a presence of a connection
is labelled as "1" otherwise it is "0". In a weighted graph a connection is represented
by the respective edge weight. An undirected graph forms a symmetric matrix, and
a directed graph an asymmetrical matrix.

– Advantages: Easy to implement
Edge retrieval & update takes O(1), as it can be accessed directly using the
indices of the two nodes representing the edge.

5http://web.stanford.edu/class/cs224w/slides/02-tradition-ml.pdf
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Figure 2.7: Undirected graph

A B C D E
A 0 1 1 0 0
B 1 0 1 1 0
C 1 1 0 1 1
D 0 1 1 0 1
E 0 0 1 1 0

Table 2.3: Adjacency Matrix

Queries like whether there is an edge between vi, vj are efficient and can be
done in O(1).

– Disadvantages: Space inefficient consumes O(V2)

• Adjacency list is an array of lists wherein each entry is the list of adjacent vertices of
vi, and the array’s length is the total number of vertices in the graph. The Figure 2.8
shows the adjacency list for the undirected graph Table 2.7

– Advantages: Space complexity is O(|V|+|E|)
Adding a new node is faster

– Disadvantages: Queries of edge retrieval & manipulation require O(V).

Figure 2.8: Adjacency list

For anyone with a basic understanding of neural networks, the idea of joining feature ma-
trices with the adjacency matrix as described in figure 2.9 and feeding it to a neural net-
work might look like a good solution, but it has two issues, as discussed in the main chal-
lenges. First the number of parameters will be really large (O(|V|)) and secondly Node or-
der will change the predicted output (Node order equivariance)

2.4 Graph Databases

Although relational and non-relational databases have their own benefits, EHRs have
traditionally been stored in relational databases such as MySQL or PostgreSQL because

6http://web.stanford.edu/class/cs224w/slides/06-GNN1.pdf
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Figure 2.9: Feeding Adjacency matrix with features to MLP 6

the data with established relationships fit easily into these databases [SN20]. In contrast,
graph databases (NoSQL) are relegated to the analysis of social networks or traffic net-
works as they are highly connected and place a higher emphasis on relationships. The
notion of relationship in relational databases is different from that of graph databases. In
relational databases, the relationship is focused on the columns of the tables, whereas in
the latter, it is between the data points themselves. A case study conducted by Jessica
et al [SN20]. on the MIMIC-III dataset to show if Neo4j a graph database can replace
PostgreSQL in health care, shows that although Neo4j is time intensive to implement, its
cypher queries are less complex and have faster run-time for the comparable queries in
PostgreSQL which can be inferred from the experiment shown in Figure 2.10. The study
concludes that PostgreSQL is an adequate database, but Neo4j can be considered a viable
solution for storing and analyzing healthcare data.

Figure 2.10: Example comparison of command complexity and execution time in Post-
greSQL (SQL) and Neo4j (Cypher)

NOS: nitric oxide synthase
[SN20]
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According to DB-engines, which ranks the databases using the following criteria:

• The number of times the database has been cited on websites is determined by the
number of search engine results.

• The number of searches in Google Trends indicates broad interest in the system.

• Technical discussions about system-related questions and the number of interested
users on Stack Exchange are used for trends.

• The number of job postings that mention the database system is taken from Indeed
and Simply Hired job platforms.

• The number of profiles in professional networks that mention the system. DB-
Engines makes use of LinkedIn.

• For social network relevance The number of Twitter tweets that mention the system
is counted by DB-Engines.

2.11 shows that the popularity of graph databases has drastically increased in the past
decade, which implies that more and more applications are using Graph databases and
making machine learning on graphs an important area of research.

Figure 2.11: Database ranking based on popularity

2.5 Representation Learning

Any traditional machine learning task follows a certain process depicted in figure 2.12.
The raw data is preprocessed, then features are extracted & selected as per the domain-
specific question and passed down to a downstream machine learning algorithm. The
process of feature extraction and selection is referred to as feature engineering. Feature
engineering is an expensive & time-consuming process which requires domain expertise.
Also, these features determine how good our predictions can be. Fortunately, as dis-
cussed in the 2.3.1, graphs share the same underlying schema for any type of data.The
notion of automating the process of feature engineering is known as Representation learn-
ing.
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Figure 2.12: ML Pipeline

The structure and position of a node in the network can be characterized using specific
measures like Node degree, Node centrality, clustering coefficients and Graphlet degree
vector [Ham20]. These are sub-classified into importance-based 2.5.1 and structure-based
algorithms 2.5.2. These are considered traditional approaches for analyzing graphs as
they are easy to use and understand and are based on statistics. However, the downside
is that they are time-consuming & expensive.

2.5.1 Importance-based

Importance-based algorithms captures the importance of the node in the network. These
are useful for predicting influential nodes in the network; for example, predicting celebrity
users in social networks.

Node degree

Degree kv Counts the number of neighbouring nodes in an undirected graphs. In directed
graphs, we count the edges coming in and going out of the node of interest and term them
as in-degree and out-degree respectively. For example in the ,Figure 2.13 the node degree
for the node kD is 4 as there are four undirected edges through it. The drawback of Node
degree as a feature is that it treats all the neighbouring nodes equally, but in reality,
different neighbouring nodes might have different importance with which they contribute
to the node of interest.
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Figure 2.13: Node Degree 7

Node Centrality

Since Node degree does not capture node importance in a network, we move to centrality
measures which can capture this importance. There is a multitude of ways to model the
importance of a node:

• Eigenvector centrality: A node v is important if it is surrounded by important
neighbouring nodes.

Cv = 1
λ

∑
uϵN(v)

Cu,

where λ is the normalization constant (e.g., it will be the largest Eigenvalue of A),
Cv eigenvector centrality of node v, N is the neighbourhood.

• Betweenness centrality: The node’s importance is decided if it lies on many shortest
paths between other nodes.

cv =
∑

s ̸=v ̸=t

shortest path between s and t that contains v
shortest path between s and t

Figure 2.14: Example for Betweenness Centrality 7

• Closeness centrality: It calculates the shortest path lengths to every other node in
the network.

cv = 1∑
u̸=v Shortest path length between u & v

7http://web.stanford.edu/class/cs224w/slides/02-tradition-ml.pdf
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Figure 2.15: Example Closeness Centrality 8

• PageRank: it uses the number of incoming connections and the importance of the
source nodes to figure out how important each node is in a graph. The underlying
assumption is that a node (like a web page) is only as important as the nodes that
link to it. Mathematically, PageRank is calculated as follows:

PR(A) = (1− d) + d(PR(T1)
C(T1)

+ ... + PR(Tn)
C(Tn) )

9 where A is a node (e.g., a web page) and pages T1 to Tn point to it, C(T1) is
defined as the number of outgoing links from that page, d is a damping factor set
between (0-1) default is 0.85. The algorithm has a few special cases which need to
be considered.

– If there are no relationships between pages inside a group, the group is classified
as a spider trap wherein a group of pages point only to each other and assign
high rank to those pages

– When a network of pages forms an endless loop, the rank sink can arise.

– Dead-ends arise when a page has no incoming relationships.

Changing the damping factor can assist with all of the aforementioned problems.
It can be viewed as the likelihood of a web surfer sometimes jumping to a random
page and not getting caught in sinks.

There are other centrality measures such as Bonacich centrality, distance weighted
reach and many more 10.

2.5.2 Structure Based Importance

It captures the topological properties of the local neighbourhood around a node and
are useful in predicting the role played by a particular node in the graph(e.g., predicting
protein functionality in a protein-protein interaction graph).

• Clustering Coefficient: It is a measure of how connected node v’s neighbouring nodes
are. It is defined as :

ev = number of edges among neighbouring nodes
kv/2 ϵ[0, 1]

8http://web.stanford.edu/class/cs224w/slides/02-tradition-ml.pdf
9https://neo4j.com/docs/graph-data-science/current/algorithms/page-rank/

10https://bookdown.org/markhoff/social_network_analysis/centrality.html#distance-weighted-reach
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Figure 2.16: Example Clustering coefficient 11

Clustering coefficients count the number of triangles in a graph. This is important
in social networks because it helps recommend friends (e.g., new friendships between
friends of someone).

Figure 2.17: Example of Counting triangles 9

• Graphlet Degree Vector (GDV): It is a count vector of graphlets rooted at a given
node. Graphlets are small non-isomorphic subgraphs that define the structure
around a node in the network. The concept of graphlets is a generalization of
counting triangles, as discussed in the above method. Two graphs (G, H) are said
to be isomorphic G ∼= E if there exists a bijection

ϕ : V (G)− > V (H)

such that
u, vϵE(G)

if and only if
ϕ(u)ϕ(v)ϵE(H)

where V is Vertex, E is an edge, and ϕ is a function that maps the Graph G & H.
2.18 depicts the graphlets. A graph with just two nodes can form a single graph, and
the node can occupy either one of the positions as the graph is symmetric, whereas
for the graph with three nodes, there exists two different representations (G1 & G2),
and the node in G1 can occupy the positions 1,2, but in G2 it can occupy either of
the three positions. Similarly, for a graph with five nodes, there exist 73 different
graphlets.

11http://web.stanford.edu/class/cs224w/slides/02-tradition-ml.pdf
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Figure 2.18: Graphlets for 5 node [Prž07]

2.6 Random Walk

The strategy of random walks can be compared to strolling. Select a node at random
and, with some probability, move to the next node and repeat this for a fixed number of
steps.

Figure 2.19: Knowledge Graph and Random walk sequence

The random walk sequence generated can be understood in fig 2.19. In the first sequence,
the walk starts at node A and randomly walks through nodes C, F, and G, whereas in
the second sequence, it starts at F and walks through G, E, and D. The walk length is
4.
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2.6.1 Deep Walk

Figure 2.20: Encoding nodes to embedding space 12

Transferring the graph structure into a numerical representation as shown in Figure 2.20
that can be fed into conventional machine learning methods is a significant challenge
when working with graphs. The random walk strategy discussed forms the basis for the
deep walk [PARS14] and node2Vec [GL16], In DeepWalk, the word2vec strategy is used
to learn the node representations in a graph by treating each node as a "word" and each
random walk as a "sentence". The word2vec algorithm is then applied to the sequences of
nodes generated by the random walks in order to learn embeddings for each node.. Here
is a quick explanation of the word2Vec model.

2.6.2 Node2Vec

This node embedding generation model is very much influenced by the Deep walk method.
The main difference here is the strategy used for generating the random walks. In the
case of the deep walk, it is random, but in the case of Node2Vec, It introduces a bias in
sampling the next node in the walk denoted by α which is controlled by two parameters, p
and q, that decide the likelihood of immediately revisiting a node in the walk (p) and the
likelihood of moving away from a node (q). These parameters allow for the exploration
of the local and global neighborhood of a node, respectively. Although the easiest way to
sample the next node would be to go through static edge weights, this does not account
for the graph structure. Thus, BFS & DFS are used as they account for graph structure
and homophily.

In Node2Vec, the probabilities of moving from one node to another are calculated as
follows:

P (ci = x|ci−1 = v) =


πvx

Z
, if (v, x)ϵE

0, otherwise

12http://web.stanford.edu/class/cs224w/slides/03-nodeemb.pdf
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Figure 2.21: BFS and DFS search
strategies from node
u (k = 3) [GL16]

Figure 2.22: Illustration of the random walk pro-
cedure in node2vec. The walk just
transitioned from t to v and is now
evaluating it is next step out of
node v. Edge labels indicate search
biases [GL16]

where u is source node, ci denotes ith node in the walk, l is random walk fixed length, vx
is the unnormalized transition probability between nodes v and x, Z is the normalizing
constant and E denotes all edges.

The transitioning probabilty πvx on edges(v,x) from v is calculated as

πvx = αpq(t, x) · wvx

where

αpq(t, x) =


1
p
, ifdtx = 0
1, ifdtx = 1

1
q
, ifdtx = 2

In the case of DeepWalk & Node2Vec, structural information provided in graphs may
be encoded to describe the relations between entities and provide more potential insights
beneath the data [ZTXM19]. However, graphs, along with the structural information, can
contain attributes such as textual data and image data on the nodes and edges (a compli-
cated structure) [BLM+06], thus makes it more challenging to get a fundamental under-
standing of the information underlying the graphs. Although the structural complexity
of this issue is tackled by the above-discussed embedding approaches, which include the
learning of graph representations in a low-dimensional Euclidean space [ZTXM19]. When
the low-dimensional representations are learnt, it is possible to quickly solve various graph-
related tasks, such as the traditional node classification and link prediction [GL16]. De-
spite these advantages, embedding approaches suffer from a number of drawbacks due to
the shallow learning mechanisms. For example, these methods might not able to capture
more complex and nuanced relationships between nodes in the graph. For example, if the
graph has a hierarchical structure, or if there are multiple types of relationships between
nodes, shallow encoding may not be able to fully capture these relationships, resulting in
suboptimal node embeddings [PARS14].

In many areas of computer vision and natural language processing, Deep Learning archi-
tectures outperform traditional machine learning methods [GDDM14]. The following sec-
tion discusses the usage of deep learning architectures in the context of graphs.
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2.7 Graph Neural Networks (GNN’s)

Many of the graph neural network architectures are highly influenced by the existing
state-of-the-art architectures in the areas of Natural Language Processing (NLP) (at-
tention mechanism) & Image recognition such as Convolutional Neural Network (CNN).
The idea is to use the power of these well-established models in the context of graphs.
All the models discussed in this section follow a message passing step and aggregation
step on a computation graph. A computation graph of a node is defined by its local
neighbourhood.

Figure 2.23: Computation Graph 13

The design space or general framework of GNN’s consists of five components as shown in
Figure 2.25

• Message: It is a vector of features which are present on nodes and edges. In the
context of EHR’s, it can be demographic data (e.g.,age, gender, ethnicity) on the
patient node or laboratory values on the edge connecting Admissions and Labs.
Message computation can be mathematically defined as follows:

m (l)
u = MSG(l)

h
(l-1)
u


where h (l-1)

u is the representation of the node at layer (l− 1), MSG is the message
transformation function and m

(l)
u is the transformed message of node at layer l.

• Aggregation: It is the process of aggregating all the features (Messages) passed by
neighbouring nodes with the target node. It can be mathematically formulated as
follows:

h
(l)
v = AGG(l)

m
(l)
u , uϵN(v)




where AGG can be an order invariant aggregation such as sum, mean, or max. h
(l)
v is

the aggregated node representation of of node v. The message passing & aggregation
13http://web.stanford.edu/class/cs224w/slides/07-GNN2.pdf
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together form a single GNN layer. The Figure 2.24 shows all the possible components
a typical GNN layer (GAT) consists of

Figure 2.24: Suggested GNN layer 14

• Layer Connectivity: it refers to stacking multiple GNN layers together to get the
information from further away. it can be stacked sequentially or with skip connection
or with any other strategy.

• Graph augmentation: It refers to the process of modifying the graph structure, or
node /edge features, in order to improve the performance of the model. For e.g.,
extracting a relevant sub-graph from the original graph for the task at hand or
generating new data samples by randomly traversing the graph (random walk) etc.

• Learning objective: An objective function is defined to train a GNN. This objective
depends on the graph task (Node level, edge level or graph level). The GNN model
learns the weight by minimizing the loss function.

14http://web.stanford.edu/class/cs224w/slides/07-GNN2.pdf
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Figure 2.25: General Framework of GNN 15

In this way, every node can have its own computation graph.

2.7.1 Graph Convolutional Network

Graph convolutional networks are one variant of GNN’s, which are conceptually based on
the convolutional neural networks which are used widely in the field of image recognition.
In CNN’s, the input image is processed in a sliding window fashion using a collection of
filters (also known as kernels or weights). Each filter recognizes a certain aspect of the
image, such as borders, corners, or textures. A series of feature maps, which are produced
by the convolutional layer, are then processed by further layers to extract higher-level
information. [GDDM14]. Further, pooling layers are added, which are designed to make
the network more resilient to minute changes in the input image by reducing the dimen-
sionality of the feature maps. The network is made more computationally efficient by
pooling layers. [ZTXM19]. However, graphs have a non-Euclidean structure, thus con-
volutions and filtering operations performed on graphs do not provide results as clear as
those performed on images [ZTXM19].
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Figure 2.26: Image Convolution vs Graph convolution [WPC+20]

In the spatial domain (node domain), a graph convolution is a collection of neighbour-
hood node representations 2.26. A Graph Convolutional Network (GCN) follow a neural
network architecture that has proven exceptional performance in a large variety of tasks
and applications [ZTXM19]. These networks have a high expressive ability to understand
graph representations and are able to learn them quickly [ZTXM19]. GCNs may use
convolutional analysis to make use of the graph structure and collect information about
nodes from the surrounding neighbourhoods [ZTXM19].
The main goal of this network is to figure out how features on a graph G= (V, E) work
[KW16]. It takes the following inputs [KW16]: (A). a feature description "xi" for every
node "i", that is collected into a feature matrix ’X’ of the form ’N(number of nodes) X
D(number of input features)’. (B). a matrix-based representation of the network struc-
ture, typically in the form of an adjacency matrix ’A’. This results in a node-level output
of a ’N X F’ feature matrix ’Z’ (where ’F’ is how many output features there are for each
node) [KW16]. Then, each layer of the neural network may be represented by a non-linear
function as below [KW16].

H(l+1) = f(H(l), A)

, where H(0) = X and H(L) = Z, L is number of layers. To better understand GCNs,
consider a simple layer-wise propagation rule as an example.

f(H(l), A) = σ(AH(l)W (l))

, W (l) W is a weight matrix for the neural network layer (l), and σ(X) is a non-linear acti-
vation function (e.g., sigmoid or softmax function). However, there are a few shortcomings
to this straightforward model [KW16].

• When multiplying with A, all feature vectors of all neighbouring nodes are added
together for each node, with the exception of the node itself. By adopting self-
looping graphs (adding an identity matrix to A), this can be neutralized. It is
needed because the node itself might have its own features.

• The fact that A is often not normalized means that multiplying by A will radically
alter the scale of the feature vectors. To over come this disadvantage, A is normal-
ized in the following form D(−1)A (Average of neighboring node features), D is the
diagonal node degree matrix and D(−1/2)AD(−1/2) (Symmetric Normalization).

By combining these two normalizations, the new propagation rule is formed as below
[KW16].

F (H(l), A) = σ(D̂(−1/2)ÂD̂(−1/2))H(l)W (l)
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, Â = A + I, where I is the identity matrix and D̂ is the diagonal node degree matrix of
Â.

On a network graph dataset from Zachary’s Karate Club, the performance of the above-
mentioned GCN model is as follows.

Figure 2.27: Karate club graph, colours denote communities obtained via modularity-
based clustering [PARS14]

Consider a 3-layer GCN with weights that are initialized randomly. Before training the
weights, we only add the identity matrix with no node features (X=I) and the graph’s
adjacency matrix to the model[KW16]. Now that it has three layers, the 3-layer GCN
effectively convolves each node’s 3rd-order neighbourhood during the forward pass. This
node’s embedding created by the model closely mimics the graph’s community structure
as sown below [KW16].

Figure 2.28: GCN embedding (with random weights) for nodes in the karate club net-
work. [KW16]
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2.7.2 Graph SAGE [HYL17a]

The embedding methods (DeepWalk, Node2Vec & GCN) are transductive in nature, which
means that re-training the entire graph is necessary to generate the embedding of any
new node added to the existing graph. However, re-training the entire graph is com-
putationally expensive; thus, the idea behind GraphSAGE allows us to generate these
embeddings efficiently. This implies it is efficient because it leverages node features and
generalises them to unseen nodes. Unlike GCN where embeddings for each node are
learnt, in GraphSAGE, a function is learnt which, if provided with the feature matrix &
adjacency matrix, will return the embeddings of the node as explained in the Algorithm
2

The Application of GraphSAGE can be widely found in Social networks & Biological
networks where the graphs are dynamic and large. As seen from the 2.29, GraphSAGE
learns a set of Aggregator functions which aggregates the feature information from the
node’s neighbourhood for different hops such that it can be generalized to unseen nodes
(inductive). The Aggregator functions provides the inductive capability of this model. An
ideal aggregator function that ensures that the model can be trained and applied to an
unordered node neighbourhood needs to be symmetric (order invariant) and, simultane-
ously, trainable to preserve the structural information of the graph, such as node degrees
and edge weights.

Figure 2.29: Visual illustration of the GraphSAGE sample and aggregate approach.
[HYL17a]

2.7.3 Graph Attention Network

GAT is one of the popular variants of GNN’s which uses an attention mechanism [VSP+17]
which is widely used in NLP. In GCN, during message aggregation, all the local neigh-
bours of the target node are treated equally. Mathematically, GCN convolution operation
produces a normalized sum of neighbours as follows:

h
(l+1)
i = σ

 ∑
jϵN(i)

1
cij

W (l)h
(l)
j
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Algorithm 1: GraphSAGE embedding generation (i.e., forward propagation) algo-
rithm [HYL17a]
Input: Graph G(V, E); input features xv, ∀vϵV ; depth K; weight matrices Wk,

∀kϵ1, ..., K; non-linearity σ; differentiable aggregator functions
AGGREGATEk, ∀kϵ1, ..., K; neighborhood function N : v → 2V

Output: Vector representations zv for all vϵV
1 h0

v ← xv,∀vϵV ;
2 for k = 1...K do
3 for vϵV do
4 hk

N (v) ← AGGREGATEk(hk
u − 1,∀uϵN(v))

hk
v ← σ(W k · CONCAT (hk

v − 1, hk
N (v))

5 end
6 hk

v ← hk
v/ ∥ hk

v ∥2, ∀vϵV

7 end
8 zv ← hk

v ,∀vϵV

where N(i) is the set of 1-hop neighbours, cij =
√
|N(i)|

√
|N(j)| is a graph structure based

normalized constant, σ is an activation function in case of GCN it is a ReLu (rectified
linear unit) and Wl is the shared learnable weight matrix.

This statically normalized convolution operation is replaced by an attention weight ma-
trix using the graph attention mechanism; this helps the model to assign importance to
neighbour nodes while aggregation ( figure 2.31 ). In order to calculate node j’s impor-
tance on node i an additional attention layer is used, which can be separated into four
parts as shown in figure 2.30:

Figure 2.30: Attention Layer [VCC+17]

• Simple linear transformation: The node features of i,j are transformed to higher level
features by applying a linear transformation parameterized with a weight matrix W.

z
(l)
i = W (l)h

(l)
i (1)
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• Attention Coefficients: The transformed higher-level features (zi, zj) are passed as
inputs to the neural network to compute the attention coefficients(unnormalized) α.
The transformed features in (1) are first concatenated, then a dot product between
this concatenation and the learnable weight vector is carried out, and finally, a
LeakyReLu activation is carried out.

e
(l)
ij = LeakyReLu

(
a(l)T

(
z
(l)
i ||z

(l)
j
))

(2)

• Softmax: A softmax function is applied to normalize the attention scores carried
out in (2) across all the nodes.

α
(l)
ij =

exp(e(l)
ij )∑

kϵN(i) exp(e(l)
ik )

(3)

• Aggregation: Finally, in the aggregation step, the embeddings are aggregated as
follows:

h
(l+1)
i = σ

( ∑
jϵN(i)

α
(l)
ij z

(l)
j

)
(4)

GAT employs multi-head attention as shown in figure 2.32 to increase the model’s
capabilities and steady the learning procedure. Here, K separate attention processes
carry out the transformation defined by Equation (4), with the resulting outputs
being integrated by either averaging or by concatenation as defined.

Average : h
(l+1)
i = σ

(
1
K

∑K
k=1

∑
jϵN(i) αk

ijW
kh(l)j

)

Concatenation: h(l+1)i = ||k = 1Kσ
(∑

j ∈ N (i)αk
ijW

kh
(l)
j

)
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Figure 2.31: GCN vs GAT 16

Figure 2.32: Multi Head Attention [VCC+17]

2.7.4 Challenges of Graph Neural Networks

GNN’s are considered as the state of the art algorithms with many advantages over
the random walk-based approaches or the traditional features extraction method, as
these algorithms incorporate the features present on the nodes & edges and can pro-
cess large and complex graphs. Algorithms, such as GraphSAGE, are also inductive.
Nevertheless, there are also a few downsides to this algorithm. As deep neural net-
works are used in this algorithm, it is hard to interpret the underlying working of the
model [ZTLT21]. They also run into the risk of over-smoothing, under-reaching, and
16https://dsgiitr.com/blogs/gat/
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over-squashing [CLL+20][AY20]. Another issue with Graph neural networks is that node
features are mandatory.

2.8 Text Encoding

Encoding is needed in machine learning because many machine learning algorithms re-
quire numerical input Categorical variables can contain text values which cannot be used
directly. Encoding converts these categorical values into numerical values that the algo-
rithm can use.

Encoding also helps to handle the high cardinality of categorical variables, a situation
where a categorical variable has many distinct categories.

Another important reason is that encoding can improve the performance of the model by
creating new features that capture the relationship between the categorical variables and
the target variable. For example, target encoding will capture the relationship between
the categorical and target variables.

In summary, encoding is a necessary step in preparing the data for machine learning algo-
rithms; it allows the algorithm to understand the categorical data, helps handle high cardi-
nality, and creates new features that improve the model’s performance.

There are multiple ways in which categorical values can be encoded into numerical values.
Below are some encodings which are used in this research:

• Label encoding is done by assigning a unique integer value to each unique cat-
egory in the variable. For example, if a variable has the categories "red", "green",
and "blue", label encoding would assign the values 0, 1, and 2 to these categories,
respectively.

– Advantages of Label Encoding: Simple and easy to implement.
Takes up less memory
Can be useful in ordinal categorical variables.

– Disadvantages of Label Encoding: Assumes an ordinal relationship between
categories, which may not be the case.
May not be suitable for non-ordinal categorical variables.

• One-hot encoding is done by creating a new binary column for each unique cat-
egory in the variable. Each row in the dataset will have a "1" in the column cor-
responding to the category it belongs to and a "0" in all other new columns. For
example, if a variable has the categories "red", "green", and "blue", one-hot encoding
would create three new binary columns: "is_red", "is_green", and "is_blue". The
original data will be replaced with a vector [1,0,0].

– Advantages of One-Hot Encoding: Creates binary columns for each category,
so the categories are not ordinally related.
Can be useful for non-ordinal categorical variables.
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– Disadvantages of One-Hot Encoding: Increases dimensionality and memory
usage, especially if there are many categories.
Can lead to sparse data, which can be a problem for some algorithms.

• Frequency encoding is done by replacing the categories in the variable with the
frequency or count of that category in the dataset. For example, if a variable has
the categories "red", "green", and "blue", and the frequency count of these categories
in the dataset are 10, 15 and 20, respectively, frequency encoding would replace the
category "red" with 10, category "green" with 15 and category "blue" with 20. This
method is proper when the categories are ordinal, and the categories with higher
frequency are More important.

– Advantages of Frequency Encoding:

It can be useful when the categorical variable has a natural order based on the
frequency of the values.
It can be useful for handling categorical variables with a large number of cat-
egories.
It can be useful for handling categorical variables with rare categories.

– Disadvantages of Frequency Encoding:

It can lead to information loss if the categorical variable does not have a nat-
ural order based on the frequency of the values.
It can lead to incorrect assumptions about the relationship between the fre-
quency and the target variable.
It can be sensitive to the sample size and distribution, and the frequency of a
category can be affected by the size of the dataset.

• UMLS-BERT (Unified Medical Language System - Bidirectional Encoder
Representations from Transformers) [MWK+20] it is based on the BERT
model, which uses a transformer-based architecture and is trained using masked
language modelling. Large datasets of medical text, including electronic health
records, clinical notes, and biomedical literature, were used to train this model. It
is specifically designed to capture the complex and domain-specific language used
in the medical field and has been fine-tuned on a large dataset of medical text. It is
used for medical concept extraction, medical entity recognition, and relation extrac-
tion and has achieved state-of-the-art results on several benchmarks. UMLS-BERT
is a powerful tool for natural language processing in the medical domain, and has
the potential to significantly improve the efficiency and accuracy of tasks such as
medical record analysis and clinical decision support.

– Advantages of UMLS-BERT:

It is pre-trained on a large corpus of medical text, making it well-suited for
natural language processing tasks in the medical domain.
It can improve the performance of downstream tasks such as named entity
recognition, relation extraction, and question answering in the medical domain.
It may be fine-tuned on a particular task or dataset with minimum data, hence
eliminating the requirement for vast volumes of task-specific labeled data.
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– Disadvantages of UMLS-BERT:

It may not be appropriate for tasks outside the medical domain.
It may not be suitable for tasks that require a deep understanding of medical
concepts, as it is only pre-trained on a general medical corpus.
It’s a large model, so it may be computationally expensive to use and fine-tune.
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3 Related Work

In this chapter, related work concerning the main research questions is discussed as fol-
lows.

• In Section 3.1, research conducted in the area of sepsis mortality prediction using
traditional machine learning algorithms are discussed.

• In Section 3.2, the deep graph neural network architecture in the areas of the biomed-
ical domain using homogeneous and heterogeneous graphs are discussed.

3.1 Traditional machine learning approaches for mortality
prediction

There have been many studies in the area of mortality prediction for patients diag-
nosed with sepsis using traditional machine learning approaches such as random for-
est [TPV+16], Support Vector Machines (SVM) [RLRS+11], Extreme Gradient Boost-
ing (XGBoost) [HLH+20]. These studies mostly focus on how machine learning models
can continuously improve their performance with more data and can find non-linear re-
lationships in the data. The studies also showed how flexible these models are and that
they require less feature engineering than statistical models such as SAPS-II, SAPS-III,
APACHE-II, SOFA and many more.

A study was conducted by Nianzong Hou et al. [HLH+20] on the MIMIC-III dataset for
sepsis mortality prediction, which shows the comparison between three different models,
namely SAPS-II, logistic regression and XGBoost. A total of 4559 patients who were
diagnosed with "Sepsis", "Severe Sepsis", and "Septic shock" were included, of which 3670
survived, and 889 died. The models were evaluated on AUROC metric and showed
a predictive power with AUROC of 0.819(95% Confidence Interval (CI) 0.800–0.838))
for SAPS-II, 0.797% (95% CI 0.781–0.813) for logistic regression, and 0.857% (95% CI
0.839–0.876) for XGBoost. Furthermore, they showed that urine output, lactate, BUN,
sysbp, INR, age, cancer, SpO2, sodium, AG, and creatinine acted as the top 11 features
in XGBoost model prediction.

Research conducted on Early hospital mortality prediction using vital signals by Sadeghi
et al. [SBR18] using the MIMIC-III dataset showed the use of patients’ Electrocardiogram
(ECG) signals as input features. It was done because laboratory results of some tests
require more time to be processed.

Several statistical measures such as (min, max, mean, mode) of signal-based features are
passed to eight different classifiers (decision tree, linear discriminant, logistic regression,
SVM, random forest, boosted trees, Gaussian SVM, and K-nearest neighbourhood (KNN).
Figure 3.1 shows how well the models performed on these features.
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Figure 3.1: Classification results for mortality [SBR18]

3.2 Graph Neural Network approaches in the bio-medical
domain

Graph neural networks gained popularity in recent years with the advent of deep learn-
ing, rapidly increasing computation power and the availability of large graph datasets
[WPC+20]. As explained in the background section 2.7, there are different advancements
of graph neural networks such as GCN [KW16], SAmple and aggreGatE (SAGE)[HYL17a],
and GAT[VCC+17]. There are many applications of Graph neural networks in the areas of
bio-medicine [[ZCH+20], [JWH+21], [HYL17b]], especially in the area of mortality predic-
tion [RTV+21], [WHA+21] with both homogeneous and heterogeneous graphs.

Some of the early works in the area of graph neural networks, such as GCN’s, concentrate
only on homogeneous graphs and do not consider the impact of different node types and
edge types. More recent research studies have tried different approaches to handle the
heterogeneity of the data.

The heterogeneous graph attention network (HAN) proposed by Wang, Xiao et al. [WJS+19]
is based on GAT explained in the background section 2.7 to support the heterogeneous
graphs. It is built on hierarchical attention, which includes "attention" at both node and
semantic levels. The semantic-level attention is able to learn the relevance of various
meta-paths. A meta-path can be understood as a specific relationship between nodes. In
contrast, node-level attention focuses on learning the importance between a node and its
neighbours based on meta-paths.

The Figure 3.2 shows a heterogeneous graph example for a movie dataset 3 with three dif-
ferent node types namely movie, actor and director and two different edge types, "ACTS"
& "DIRECTS" between actor - movie and director - movie, respectively. In the IMDB
dataset, movie-actor-movie or movie-director-movie acts as meta-paths.

The Figure 3.3 explains the complete architecture of the model wherein all node types are
projected into unified feature space and weights of meta-path for node pairs are learnt via
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Figure 3.2: Heterogeneous graph example (IMDB) [WJS+19]

node-level attention. Then joint learns the weights of each meta-paths with the semantic-
specific node embeddings via semantic-level attention, and finally, the loss is calculated,
and weights are adjusted using backpropagation.

Figure 3.3: HAN architecture [WJS+19]

This model, along with two different variations HANsem (eliminates semantic-level at-
tention and assigns similar significance to each meta-paths),HANnd(eliminates node-level
attention and assigns similar significance to each neighbour) was evaluated on Macro-F1
metric with different heterogeneous graphs datasets such as Database Systems and logic
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programming (DBLP) 1, Association for Computing Machinery (ACM) 2, Internet Movie
Database (IMDB) 3 and found to outperform some benchmarking models such as Deep-
walk (Macro F1: 84.17%), metapath2Vec (Macro F1: 73.8%), GCN (Macro F1: 88.29%),
and GAT (Macro F1: 87.33%).

A research study on Heterogeneous Similarity Graph Neural Network on Electronic Health
Records by Zheng Liu et al. [LLP+20] using MIMIC-III dataset converts the heterogeneous
graphs to similarity subgraphs which are homogeneous using meta-paths. Then these
subgraphs are fed as input to the graph neural network (GCN & GAT). The HAN model
discussed above acts as a baseline for this model.

Figure 3.4 shows the complete architecture of the model. The raw input graph is converted
to similarity sub-graphs by calculating a Symmetric PathSim(SPS), which is used to
measure the node pairs with each meta-path such as Visit-Diagnosis-Visit (V-D-V) or
Medication-Visit-Patient(M-V-P) as can be seen in the preprocessing step of the figure.
The first and second visits of the patient have one diagnosis common between them
out of the four diagnoses. As a result, the SPS between the patient’s first and second
visits based on the diagnosis is 2/4. Then each similarity subgraph, along with node
features, is passed to different graph neural networks such as GCN, which only handles
homogeneous graphs to fuse them together, preserving the true relations between the
node pairs.

Figure 3.4: Architecture of HSGNN [LLP+20]

The model was used for diagnosis prediction on the MIMIC-III dataset and evaluated
on precision metric and performed well (0.8189) against the baseline model such as Het-
eroMed (0.7866) [HCW+18], HAN (0.8083) [WJS+19], HetGNN (0.8070)[ZSH+19], GCT
(0.8107) [CXL+20] which also support the heterogeneous graphs.

1https://dblp.uni-trier.de/
2http://dl.acm.org/
3https://www.imdb.com/interfaces/
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4 Dataset

A dataset is a collection of information relevant to the question in the picture. It is needed
to train the machine-learning algorithm to make predictions. In the context of this thesis,
the collection of EHR’s of actual patients collected over 10 years from a hospital in the
US is considered as it has been used in many research studies and is widely considered a
benchmark. Although a real-world dataset is used in this thesis; access to such datasets are
hindered due to legal constraints, privacy concern, security and intellectual rights making
the accessibility time-consuming and difficult [BQE+21].

Alternatively, due to these constraints, many researchers tend to use synthetic datasets.
One such dataset in the health care domain is the Synthea dataset[WKN+18]. The algo-
rithm used in Synthea aims to generate a large number of electronic health records for
synthetic patients based on the ten most frequent primary and chronic conditions with the
highest mortality rates in the US. Although synthetic datasets overcome regulatory restric-
tions, streamline simulation, enable easy manipulations, & avoid common statistical prob-
lems such as data imbalance [BQE+21], they depend on the underlying data or information
used for generating them, which leads to colossal bias and also makes the results from
these datasets associated with high scepticism for credibility.

4.1 MIMIC-III Dataset

MIMIC-III (Medical Information Mart for Intensive Care) is a collection of patients’
health records who were admitted to the critical care units of Beth Israel Deaconess
Medical Center, Boston, Massachusetts between 2001-2012. The patient information is
deidentified following the Health Insurance Portability and Accountability Act (HIPAA)
to respect privacy concerns. The data was collected using the CareVue & MetaVision
clinical information systems. A clinical information system (CIS) is intended for us-
age in a critical care setting, such as an ICU. It can be a network of all the comput-
ers in a modern hospital, like those in the pathology and radiology departments. It
takes information from all these systems and puts it into an electronic patient record
that clinicians can look at while they are with the patient. The complete dataset can
be accessed by becoming a credentialed PhysioNet user and completing (CITI) pro-
gram’s “Data or Specimens Only Research” training. This training is required to ensure
compliance with regulations, data security and privacy, to consider ethical considera-
tions, to follow best research practices, and to promote responsible conduct of research
when handling human data and specimens. For more information, please follow this:
https://physionet.org/content/mimiciii/1.4/

MIMIC-III dataset has been used for benchmarking many tasks in the healthcare domain,
such as mortality prediction [LXZ+21], length of stay prediction [GAD+17], medical code
(ICD) prediction [BDLP20], multivariate time series analysis [CPC+18], and biomedical
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CSV file names Description Considered for experiment

PATIENTS
Information specific to Patient

Subject id, date of birth, date of death
Gender

✓

ADMISSIONS
Information specific to Admission

date of admission, ethnicity, religion, reason
of admission,

✓

DIAGNOSES_ICD ICD-9 Code, Long title, Short title ✓

PRESCRIPTIONS drug type, drug names, dosage value,
dosage unit, start date, end date, strength ✓

OUTPUTEVENTS Type of excretion, values, Unit of measurement,
charttime, stopped, new bottle

✓
only Urine output

NOTEEVENTS Clinical note text, category, chart time,
description ✗

LABEVENTS Lab name, type, value, unit of measurement,flag ✓

INPUTEVENTS Input type name, amount, unit of measurement,
route of feeding, stopped, new bottle, chart time ✗

CHARTEVENTS Vital name, value, unit of measurement, warning
error, result status, chart time

✓
["BUN", "Hgb", "Respiratory Rate", "Arterial BP [Systolic]",

"CaO2", "Dialysis Type", "Diet Type", "Eye Opening",
"GCS Total", "Heart Rate", "Manual BP [Systolic]", "Motor Response",

"NBP [Systolic]", "O2 Flow (lpm)", "Skin [Temperature]", "SpO2",
"Temperature C", "Verbal Response", "Arterial PaO2", "FiO2",

"Manual Blood Pressure Systolic Left", "Manual Blood Pressure Diastolic Right",
"Manual Blood Pressure Systolic Right", Manual Blood Pressure Diastolic Left",

"GCS - Eye Opening", "Arterial Blood Pressure systolic", "Non Invasive Blood Pressure systolic",
"GCS - Verbal Response", "GCS - Motor Response", "O2 saturation pulseoxymetry"]

MICROBIOLOGYEVENTS Microbiology event name,
specimen description, chart time ✗

PROCEDUREEVENTS Procedure description, start time, end time, value, location ✗

Table 4.1: MIMIC-III data description and their usage in the experiment

text classification [MKB+20]. The Table 4.1 describes the different data files and their
content in the MIMIC-III dataset and all the components that are considered for the
experiment in this thesis.

4.1.1 MIMIC-III structure

Figure 4.1 provides a complete overview of the dataset. During the hospitalization, the
patient’s information is collected and categorized into 26 different tables, including admis-
sion, demographic data, laboratory results, vital signs, procedures performed, medications
given, preconditions, medical notes, and many more. Before publishing the MIMIC-III
database, the data is archived as a whole and then preprocessed to maintain the patients’
anonymity by abstracting the essential information that can be utilized to trace the pa-
tient’s identity. The steps used in this process are as follows:

• De-Identification: 18 different data elements about the patient (as per HIPAA Act)
were identified and removed to maintain the anonymity of the patient, such as name,
address, telephone number etc.,

• Date Shifting: The date and time for every single action performed at the hospital
on the patients, such as testing for labs, prescribing drugs, performing procedures,
etc., were all shifted with a random offset consistent with preserving the actual
interval.

• Format Conversion: The free text present in the reports provided by physicians,
radiologists, or nurses can contain sensitive information about the patient; this
information was masked using exhaustive dictionary lookups and pattern matching
using regular expressions.

Finally, the curated data is stored in the database and made available to the creden-
tialed user. It is then carefully monitored and updated regularly based on database user
feedback.
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Figure 4.1: MIMIC-III database overview [JPS+16]
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5 Design

The Chapter 2 of this thesis provides a comprehensive introduction to the concepts and
terminology fundamental to the work. In this chapter, precise research questions are
defined and addressed. An experimental design practised for mortality prediction is out-
lined and a detailed data analysis and data preprocessing is provided. For the sake of
organization, this chapter will proceed as follows:

• Firstly in section 5.1, specific research questions are established that are evaluated
in this thesis.

• In section 5.2, the design pipeline followed in this thesis is presented.

• The section 5.3 presents a detailed data analysis of the patients diagnosed with
Sepsis condition in the MIMIC-III dataset.

• Finally, in section 5.4, a complete data pre-processing carried out on the dataset
before passing them onto the graph neural network model is explained.

5.1 Research Questions

This thesis aims to understand how well graph machine learning models capture the
complex underlying information of EHR’s presented in a graph data structure. Since the
data can be modelled in various formats in the graph structure itself, we try to understand
how different graph data representations impact the quality of the embeddings generated
from graph machine learning models. In order to evaluate the embeddings, we formulate
our learning task as mortality prediction of patients diagnosed with Sepsis. Finally, we
compare the important mortality predictors extracted from graph neural networks with
the SAPS-II & SAPS-III model.

• RQ1: What will be the effect of different data representations in the graph (graph
modelling) on the model’s performance, GPU usage, and processing time?

– Does different encodings of free text (i.e. Diagnosis, or Drug name) affect the
predictive power of the model?

• RQ2: What are the important predictors of mortality for the patients diagnosed
with Sepsis according to the GAT model, and how do they compare with the well-
established SAPS-II & SAPS-III model predictors?

• RQ3: How different individual relationships contribute to the mortality prediction
using GAT model?

– how does GAT handle a biased relationship in the structure?
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5.2 Design Pipeline

The Figure 5.1 explains the high-level design approach followed in this thesis. Initially,
the dataset stored in CSV files is parsed, and a detailed analysis was performed. Then,
this data is uploaded to a graph database (Neo4j). Now, the database is queried as per
the requirement. A pre-processing step is carried out as discussed in 5.4, thus eliminating
the unnecessary noise and embeds the categorical & textual data into the numerical
format as machine learning algorithms are designed to work with numbers and vectors.
A heterograph is created that bundles nodes, node features, edges, and edge features
between the nodes together. The heterograph is passed as an data object to the graph
neural network to generate node embeddings. The embeddings from the GNN’s can then
be passed on to the downstream machine learning algorithm for making predictions. In
this thesis, the graph neural network is trained in an end-to-end fashion, i.e., the GNN can
directly predict the outcome/class. The results are evaluated using a metric (AUROC),
and based on the evaluation, the hyperparameters, as discussed in 6.2.2 are tuned to
optimize the task.

Figure 5.1: Framework high-level view

5.3 Data Analysis

This section comprises a detailed data analysis of the Medical Information Mart for In-
tensive Care (MIMIC) dataset concerning the patients diagnosed with Sepsis condition.
In general, the Table 5.1 represents the overall and Sepsis-related statistics of the dataset.
On average, the patients diagnosed with Sepsis had 39.3% more visits than those unre-
lated to Sepsis. The Figure 5.2, Figure 5.3, Figure 5.4, Figure 5.5 & Figure 5.6 shows the
patient mortality distribution based on their biological gender and different demographic
indicators such as Ethnicity, Religion, Age group & Marital status. It helps us correlate
our results to Representative data. The mortality % is indicated inside each bar of the
charts. The Figure 5.2 shows the mortality of the patients who had Sepsis based on the
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biological genders; it can be seen from the chart that the number of patients who survived
is much more than that of the expired; this shows that there is a considerable imbalance
in the survived (indicated with blue colour) and dead patients(indicated with red colour),
but there is no considerable imbalance between genders itself thus referring to a healthy
distribution amongst both genders.

Nodes Total number Sepsis - Related
Patients 46520 9928
Admissions 58976 15652
Labs 753 693
Drugs 4525 2893
Diagnosis 14567 4549
Procedures 3882 1225

Table 5.1: Patients overall & Sepsis distribution

Figure 5.2: Sepsis Mortality by Gender

The figure 5.3 shows that cases of Sepsis are found in all age groups but are dramatically
high in infants & kids aged ten years or below. However, the mortality in them is relatively
low. The number of patients diagnosed, as well as the mortality rate, rises with age.
Higher mortality is found in older adults. Since consideration of the age group 0-10 skews
the data towards this group and might not be an actual representation of the general
population, it is ignored in this study.

The figures 5.4, 5.5, 5.6 show the demographic distribution for ethnicity, marital status
and religious identification amongst the patients. These factors also play an essential
role in predicting mortality [Con13]. According to the distribution, the total number of
patients diagnosed with Sepsis is predominantly white, married or single, or identified
as Catholics although this might result from the huge imbalance between the different
groups( e.g., X% white patients and Y% Asian patients). Thus it acts as a reference for
the interpretation of the results.

The figure 5.7 shows the reason for the admission of the patient to the hospital. It
plays a vital role in mortality prediction in models such as SAPS-II & SAPS-III. It also
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Figure 5.3: Sepsis Mortality by Age group. The percentage inside of each bar represents
the mortality % for respective gender & age-group

demonstrates that emergency and newborn cases predominated among those diagnosed
with Sepsis.

Figure 5.8 show different types of laboratory test categories in the dataset. There are 753
unique lab tests categorized into three main categories (Hematology, chemistry & blood
gas) [Rif17].

Hematology is the study of blood and blood-forming tissues. Hematology tests are often
used to diagnose and monitor various health problems, such as anemia, bleeding disorders,
and blood cancers. Some standard hematology tests include:

• Complete blood count (CBC) is a blood test that examines the total number of
blood cells, including red blood cells, white blood cells, and platelets.

• Hemoglobin and hematocrit: These tests measure the amount of hemoglobin and
the volume of red blood cells in the blood. it is a protein in red blood cells that
carries oxygen.

• Coagulation tests: These tests measure the ability of the blood to clot and are used
to diagnose bleeding disorders.

• Differential white blood cell count: This test measures the number and types of
white blood cells in the blood and is used to help diagnose infections and immune
system disorders.

Chemistry tests are laboratory tests that measure the concentration of various chemicals
in the blood. These tests diagnose and monitor various medical conditions, including liver
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Figure 5.4: Sepsis Mortality by Ethnicity. The percentage inside of each bar represents
the mortality % for respective gender & ethnicity
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Figure 5.5: Sepsis Mortality by Marital Status
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Figure 5.6: Mortality from Sepsis by Religious Group. The percentage inside of each
bar represents the mortality % for respective gender & religion

Admission Types (Overall)

EMERGENCY 42071 (71,34%)

NEWBORN 7863 (13,33%)
ELECTIVE 7706 (13,07%)

URGENT 1336 (2,27%)

Admission Type (Sepsis)

6137 (62%)

NEWBORN 3132 (32%)
ELECTIVE 454 (5%)

URGENT 205 (2%)

EMERGENCY

Figure 5.7: Types of admission Overall vs only Sepsis

and kidney disease, diabetes, and electrolyte imbalances. Some standard chemistry tests
include:
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• Electrolytes: These tests measure the levels of electrolytes in the blood, including
sodium, potassium, and calcium.

• Liver function tests: These tests measure the levels of enzymes and other substances
produced by the liver and are used to diagnose liver diseases.

• Kidney function tests: These tests measure the levels of substances filtered by the
kidneys, such as creatinine and urea, and are used to diagnose kidney diseases.

• Glucose: This test measures the level of glucose(blood sugar) in blood and is used
to diagnose and monitor diabetes.

Blood gas tests measure the levels of gases, such as oxygen and carbon dioxide, in the
blood. These tests are commonly used to evaluate a patient’s respiratory and acid-base
balance and to diagnose and monitor conditions such as asthma, pneumonia, and chronic
obstructive pulmonary disease (COPD). Some standard blood gas tests include:

• Arterial blood gas (ABG) test: The arterial blood oxygen and carbon dioxide levels
are measured to determine the patient’s acid-base balance.

• Venous blood gas (VBG) test: This test measures the levels of oxygen and carbon
dioxide in the venous blood and is used to evaluate a patient’s acid-base balance.

• Pulse oximetry: This test measures the percentage of oxygen in the blood and is
used to evaluate a patient’s oxygenation.

Power BI DesktopLabcategory

Hematology 423 (56,18%)

Chemistry 293 (38,91%)

Blood Gas 37 (4,91%)

Figure 5.8: Lab category share

The figures 5.9, 5.10 and 5.11 illustrates the procedures performed on the patients di-
agnosed with sepsis during their admission, the co-diagnoses and the drugs prescribed
during their treatment.
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Procedures done on patients can be important for predicting mortality in patients diag-
nosed with sepsis because they can provide information about the severity of the patient’s
condition and the effectiveness of their treatment. For example, a person with sepsis who
needs intensive care or mechanical ventilation probably has a worse condition and a higher
chance of dying [RSN+14]. In the same way, let us say a patient with sepsis needs more
than one treatment or procedure, like dialysis or surgery. In that case, it may indicate
that their condition is not responding well to treatment and their risk of death is higher.
Additionally, specific procedures such as source control (removal of the source of infection)
can be essential to prevent sepsis from progressing and reduce mortality. Therefore, by
taking into account the procedures done on a patient with sepsis, healthcare providers
can more accurately assess the patient’s risk of death and plan the appropriate course of
treatment.

Power BI Desktop

Venous cath NEC 4095 (14,25%)

Entral infus nutrit sub 3105 (10,81%)Insert endotracheal tube 3025 (10,53%)

Cont inv mec ven <96 hrs 1996 (6,95%)

Vaccination NEC 1955 (6,81%)

Parent infus nutrit sub 1953 (6,8%)

Other phototherapy 1897 (6,6%)

Cont inv mec ven 96+ hrs 1791 (6,23%)

Non-invasive mech vent 1441 (5,02%) Packed cell transfusion 1438 (5,01%)

Arterial catheterization 1225 (4,26%)

Incision of lung 790 (2,75%)

Hemodialysis 736 (2,56%)

Closed bronchial biopsy 705 (2,45%)

Circumcision 680 (2,37%)

Dx ultrasound-heart 667 (2,32%)

659 (2,29%)

Ven cath renal dialysis 569 (1,98%)

Percu abdominal drainage

Figure 5.9: Procedures performed on Sepsis Patients

Comorbidities are essential for predicting mortality in patients diagnosed with sepsis be-
cause they can increase the risk of complications and death. Comorbidities such as chronic
lung disease, heart failure, and diabetes can impair the body’s ability to fight off infection,
making it harder for the patient to recover from sepsis. Additionally, comorbidities may
make it more difficult for healthcare providers to manage the patient’s condition, con-
tributing to a higher mortality rate. Therefore, when predicting the mortality of patients
with sepsis, it is crucial to take comorbidities into account to more accurately assess the
patient’s risk and plan the appropriate course of treatment.
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Power BI Desktop

Hypertension NOS 2311 (7,31%)

NB obsrv suspct infect 2305 (7,29%)

2179 (6,89%)

CHF NOS 2088 (6,6%)

Severe sepsis 2024 (6,4%)

Neonat jaund preterm del 1949 (6,16%)

Septicemia NOS 1880 (5,94%)Acute respiratry failure 1853 (5,86%)

Atrial fibrillation 1799 (5,69%)

Need prphyl vc vrl hepat 1793 (5,67%)

Septic shock 1444 (4,57%)

1312 (4,15%)

1216 (3,84%)

Respiratory distress syn 1208 (3,82%)

Single lb in-hosp w cs 1188 (3,76%)

Acidosis 1088 (3,44%)

Crnry athrscl natve vssl 1082 (3,42%)

Pneumonia, organism NOS 1054 (3,33%)

Acute kidney failure NOS

Urin tract infection NOS

DMII wo cmp nt st uncntr

939 (2,97%)
Anemia NOS

919 (2,91%)
Primary apnea of newborn

Figure 5.10: Co-Diagnosis of Patients with Sepsis (Top-30)

Medications prescribed to patients can be important for predicting mortality in patients
diagnosed with sepsis because they can provide information about the severity of the
patient’s condition and the effectiveness of their treatment. Medications such as antibi-
otics, vasopressors, and steroids are commonly used to treat sepsis [SDS+16], and their
use can indicate the severity of the patient’s condition. For example, if a patient with
sepsis requires high-dose vasopressors to maintain their blood pressure, it is likely that
their condition is severe and that their risk of death is higher. Similarly, suppose a pa-
tient with sepsis is not responding well to antibiotics and requires multiple or high-dose
antibiotics. In that case, it may indicate that their condition is not responding well to
treatment and their risk of death is higher. Additionally, certain medications, such as
activated protein C (APC), have been associated with a reduced mortality rate in sepsis.
Therefore, by taking into account the medications prescribed to a patient with sepsis,
healthcare providers can more accurately assess the patient’s risk of death and plan the
appropriate course of treatment.
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Power BI Desktop

Potassium Chloride 39691 (11,2%)

D5W 32121 (9,0%)

NS 32073 (9,0%)

Furosemide 25041 (7,0%)

Insulin 24269 (6,8%)

0.9% Sodium Chloride 23451 (6,6%)

Iso-Osmotic Dextrose 22085 (6,2%)

Magnesium Sulfate 16129 (4,5%)

SW 15142 (4,3%)5% Dextrose 15126 (4,3%)
Metoprolol 11674 (3,3%)

Sodium Chloride 0.9% Flush 10911 (3,1%)

Calcium Gluconate 10835 (3,0%)

Acetaminophen 10776 (3,0%)

Vancomycin 10210 (2,9%)

Morphine Sulfate 9571 (2,7%)

Lorazepam 9237 (2,6%)

Heparin 8933 (2,5%)

Fentanyl Citrate 7797 (2,2%)

Metoprolol Tartrate 7318 (2,1%)

LR 7139 (2,0%)

Vancomycin HCl 6340 (1,8%)

Figure 5.11: Most prescribed drugs to Patients with Sepsis

5.4 Data Preprocessing

Figure 5.12 explains the complete preprocessing carried out on the dataset before passing
it to the machine learning model in a flowchart. All the first admissions of patients aged
between 18-90 years diagnosed with "Sepsis", "Severe Sepsis", or "Septic shock" are queried
from a Neo4j database. These are then filtered to get the latest 24-hours activities ( such
as completed lab experiments or drugs taken in the last 24 hours of admission). The
results of the categories Labs, Vitals and dosage values in drugs involve a few common
preprocessing steps.
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Figure 5.12: Data Preprocessing on MIMIC-III

• Remove missing results or dosage value

• Removed results with error or thode which had an error or were discarded.

• Value formatting, there can be values in Labs results or drugs dosage values such
as >1 or Greater than 1 which needs to be standardized

• Encoding the categorical data

• Scaling the unique groups, it is done to adjust the features of a dataset so that they
are on a similar scale

Different node types (labs, drugs, diagnosis etc.,) include features such as Drug Names,
Lab names and vital names. These are categorical in nature but are also free text so
applying a text based encoding such as UMLSBert embedding is more beneficial as they
capture the context and semantic meaning of words and as discussed in background section
2.8.

The category Diagnosis also consists of free text (Diagnosis of the patient). An ex-
ample of a diagnosis is Tuberculous pneumonia [any form], tubercle bacilli not found
by bacteriological or histological examination, but tuberculosis confirmed by other meth-
ods [inoculation of animals]. Thus, we used UMLSBert to encode the different diag-
noses.

For the Demographic Data categories, such as Gender, Ethnicity, Marital Status and Reli-
gion which are categories are encoded using one-hot encodings.
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6 Experimental Setup

We provide all the information necessary to reproduce the evaluation results of this re-
search in the following chapter:

• Section 6.1 is devoted to describing experimental input data to the model.

• The Section 6.2 outlines the models used in the experiments and provides imple-
mentation details for different steps of the methodology as well as selected hyper-
parameters.

• The Section 6.3 explains the different metric used for evaluation of performance of
the model and evaluate model predictors in this thesis.

• Finally, in Section 6.4 we provide a detailed specification of the hardware and soft-
ware used.

6.1 Datasets

Throughout the experiments, a heterogeneous graph data object, as shown in the Fig-
ure 6.1 is used. The graph describes patients’ real-world interaction with the healthcare
system. A patient can have multiple admissions for specific(pre-planned surgery) or un-
specific reasons(in some emergency); Once admitted, different lab tests can be carried
out, drugs might be prescribed, procedures such as "Transfusion of platelets" may be
performed, vitals get checked and clinical notes get written. The hetero data object for-
mulates this input graph to an object known as a HeteroData object; it is created in
Pytorch geometric (PyG) library. To create this object, the following attributes need to
be passed.

• Node feature matrix with shape [num_nodes, num_node_features] denoted by x.
Features on the nodes such as demographic data, encoded lab names, drug names,
and diagnosis texts.

• Graph connectivity with shape [2, num_edges] denoted by edge_index. Example:
from the input graph Figure 6.1, the admission is connected to a lab then indexes
of these nodes are passed as a matrix.

• Edge feature matrix with shape [num_edges, num_edge_features] denoted by edge_attr.
The edges also have weights; in our case, the edge connecting Admission A1 with
Lab L1 has lab test values as edge weights, or the Admission A1 connecting to Drug
D1 has edge weights, which are drug dosages prescribed by the doctor.

67



• Labels to train against (may have an arbitrary shape), e.g., node-level targets of
shape [num_nodes, num_classes] or graph-level targets of shape [1, num_classes]
denoted by y. It is used to optimize the algorithm training; in our case, it is the
hospital mortality of the patients.

The object 6.1 illustrates the complete data object(balanced) passed to the graph neural
network.

Figure 6.1: Sample input graph

Listing 6.1: HeteroData Object
HeteroData (

num_node_features =3,
num_classes =2,
Admission={

x =[2194 , 5 6 ] ,
y =[2194 ] ,
train_mask =[2194 ] ,
val_mask =[2194 ] ,
test_mask =[2194]

} ,
Labs={ x =[203715 , 100 ] } ,
Vitals={ x =[81396 , 100 ] } ,
Output={ x =[21988 , 100 ] } ,
Drugs={ x =[266064 , 100 ] } ,
Diagnosis={ x =[32750 , 100 ] } ,
Demography={ x =[86857 , 3 ] } ,
( Admission , has_labs , Labs )={

edge_index =[2 , 203715 ] ,
edge_attr =[203715 , 1 ]

} ,
( Labs , rev_has_labs , Admission )={

edge_index =[2 , 203715 ] ,
edge_attr =[203715 , 1 ]

} ,
( Admission , has_vitals , Vitals )={

edge_index =[2 , 81396 ] ,
edge_attr =[81396 , 1 ]

} ,
( Vitals , rev_has_vitals , Admission )={

edge_index =[2 , 81396 ] ,
edge_attr =[81396 , 1 ]

} ,
( Admission , has_ouput , Output )={

edge_index =[2 , 21988 ] ,
edge_attr =[21988 , 1 ]

} ,
( Output , rev_has_ouput , Admission )={

edge_index =[2 , 21988 ] ,
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edge_attr =[21988 , 1 ]
} ,
( Admission , has_drugs , Drugs )={

edge_index =[2 , 266064 ] ,
edge_attr =[266064 , 1 ]

} ,
( Drugs , rev_has_drugs , Admission )={

edge_index =[2 , 266064 ] ,
edge_attr =[266064 , 1 ]

} ,
( Admission , has_diagnosis , Diagnosis )={ edge_index =[2 , 32750 ] } ,
( Diagnosis , rev_has_diagnosis , Admission )={ edge_index =[2 , 32750 ] } ,
( Admission , has_same_demo , Demography )={ edge_index =[2 , 86857 ] } ,
( Demography , rev_same_demo , Admission )={ edge_index =[2 , 86857 ] }

)

6.1.1 Data Splitting

A total number of 9928 Patients were identified of whom 8831 (Survived) 1097 (expired).
The complete data is used to randomly choose equal number of survived and expired
patients. Finally 2194 Patients are taken into account. A stratified (dataset maintains
the same proportion of class labels as the original dataset) split of 70% train & 30% test
is applied on this dataset using scikit-learn train-test split library. Further, a stratified
K-fold cross validation is applied on the training data with K=2. This splits the training
data into 2 equal sets ( train & validation) on which the GAT gets trained & validated
iteratively.

6.1.2 Encoding

The diagnosis text, lab name, drug name, vitals name, and excretion text, which were
all available as free text, were encoded into a numerical representation using UMLSBert
2.8. It returns a 768-dimensional vector for each text. It was then passed on to Principal
component analysis (PCA) for reducing the dimensionality and achieving computation
efficiency. Gender, religion, ethnicity, and marital status, all of which are available as
categories, were one-hot encoded 2.8. All the results of lab tests (unique groups), dosage
values of drugs (unique groups), and vital signs (unique groups) that are not numerical are
frequency encoded 2.8. Frequency encoding is prone to label leakage, thus it is performed
individually on each split (train, test and validation).

6.2 Model

A graph attention network, which is explained in detail in the background section 2.7 is
used as the primary model to predict the mortality of the patient diagnosed with sepsis.
This model is selected over GCN and SAGE model as it allows flexible and efficient
computation by incorporating attention mechanism. This allows the model to focus on
more important neighbors and to weigh them more heavily in the computation. Another
advantage of this model is that it can be applied on varying number of neighbours with
different feature dimension on each node whereas both GCN and SAGE assumes that the
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graph has fixed number of neighbours for each node. While both GCN and SAGE struggle
with scaling, GAT model can efficiently handle large graphs.

6.2.1 Architecture

Figure 6.2 illustrates the model architecture for training a heterogeneous graph. Since
GAT, does not support heterogeneous graphs in general, the architecture used in the
experiments duplicates the message passing and update function(GATConv) for each
individual edge types. The HeteroData object for each node (labs, drugs, diagnosis,
vitals) is passed to a GATConv (Graph Attention Convolution). In a GATConv, the
flow of computation for an undirected graph can be broken down into the following
steps:

1. Linear transformation: The input node features are first transformed using a linear
transformation matrix, which is learned during training. This step is typically done
with a single-layer perceptron.

2. Attention mechanism: The transformed features are then used to compute an atten-
tion coefficient for each neighbouring node of a given node. The attention coefficient
is a scalar value that represents the importance of the neighbouring node concern-
ing the given node. This step uses a multi-layer perceptron (MLP) with two linear
layers.

3. Attention-weighted aggregation: The attention coefficients are then used to weight
the features of the neighbouring nodes, which are then aggregated to form the
updated feature vector for a given node.

4. Repeat steps 2 and 3 for all the nodes in the graph.

5. Linear transformation: updated node feature for all nodes is again passed through
a linear transformation matrix to obtain a final representation.

6. Activation: This representation is passed through a non-linearity to learn complex
non-linear relationships. In case of GATConv leaky relu is used. Finally, it is passed
to softmax to convert the output vector to a probability distribution over all classes.

This entire process is done for all the model layers. Each layer’s output is passed as input
to the next layer.

In a GATConv for heterogeneous graphs, Node type represents different types of nodes
such as admissions, labs or drugs and Edge type are used to determine which node in-
teracts with which other node. Whereas in a homogeneous graph, all the nodes types
interact with each other. Attention coefficients are calculated based on edge types and
node types. The attention mechanism in GATConv allows the model to focus automati-
cally on the most relevant nodes and edges in the graph rather than considering all nodes
and edges equally.

The pseudo code 2 explains the flow of the code used for different experiments. The
complete code can be found in the GitHub repository 2

1https://pytorch-geometric.readthedocs.io/en/latest/tutorial/heterogeneous.html
2https://github.com/Aftab571/SepsisMortalityPredictionHetGATConv
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Algorithm 2: Pseudo Code
Input: Graph G(V, E); input features xv, ∀vϵV ; edge features edge_attrv, ∀vϵV ;

target condition T
Output: Vector representation zv, ∀vϵV ; Edge weight alpha; predictions metric

AUC
1 for Adm in filter(Diagnosis = T ) do
2 df_labs← preprocess(getLabs(Adm))
3 df_drugs← preprocess(getDrugs(Adm))
4 df_vitals← preprocess(getV itals(Adm))
5 df_CoDiagnosis← preprocess(getCoDiagnosis(Adm))
6 end
7 df_final← equalize(Adm[Survived, Dead])
8 train_mask, val_mask, test_mask← create_train_val_test_split(df_final)
9 heteroObj← createHeteroObj(train_mask, val_mask, test_mask)

10 Initialize GATConv(in_channels, out_channels, attention_head, edge_attrdim)
for i in epoch(0, 300) do

11 outi, alphai, lossi ← train(GATConv(heteroObj)[train_mask])
12 optimize(lossi) plot(lossi)
13 end
14 accval, preditionsval ←eval(GATConv(heteroObj)[val_mask])
15 acctest, preditionstest ←eval(GATConv(heteroObj)[test_mask])
16 AUROC ←report_eval_stats(predictionstest)
17 for x in [labs, drugs, diagnosis, vitals] do
18 alphax ←map(alpha, train_mask, x)
19 end
20 zv ←map(out[’Adm’][train_mask])
21 Important_features ←plot(sort[alphax]desc)
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Figure 6.2: GAT Architecture for multiple entities (undirected) adopted from PyG 1

6.2.2 Hyper-parameters

Figure 6.3: GAT Hyperparameters

6.3 Metric

This section explains the interpretation of each metric used in the evaluation of this
thesis.

• Sensitivity: it is also known as the "true positive rate" or "recall," is a measure
of the proportion of true positive predictions made by a binary classification model
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out of all the actual positive instances. It is the ratio of true positive predictions to
the total number of actual positive instances.

Sensitivity = (True Positives) / (True Positives + False Negatives)

In the case of this thesis a positive class denotes Survival of the patient. A model
with high sensitivity can correctly identify a large number of positive cases. It is
crucial when the cost of false negatives (missed detections), like in medical diagnosis
or fraud detection, is high.

• Specificity: it is alternatively known as the "true negative rate," is a measure of
the proportion of true negative predictions made by a binary classification model
out of all the actual negative instances. It is the ratio of true negative predictions
to the total number of actual negative instances.

Specificity = (True Negatives) / (True Negatives + False Positives)

In the context of this thesis, a negative class denotes a patient’s death. A model
with high specificity can correctly identify a large number of negative situations. It
is important in situations where the cost of wrong detection, or "false positives," is
high, like in medical diagnosis or security systems.

• AUROC: AUROC stands for "Area Under the Receiver Operating Characteristic
Curve." Receiver Operating Characteristics (ROC) is a graph depicting the perfor-
mance of a binary classifier system when the discriminating threshold is altered. The
ROC curve is derived by graphing the true positive rate (TPR) vs the false positive
rate (FPR) at different threshold levels. The area under the ROC curve (AUROC)
evaluates the classifier’s ability to differentiate between the two classes. A perfect
classifier would have an AUROC of 1, whereas a random guessing classifier would
have an AUROC of 0.5. AUROC is a popular measure because it is insensitive to
the choice of the classifier’s threshold, and it is a measure of the model’s overall
performance.

It is important to note that a high-sensitivity model doesn’t always mean a high-
specificity model, and vice versa. A trade-off is often made between sensitivity
and specificity, depending on the particular use case. It is reason why AUROC is
favoured than accuracy of the model.

• Percentile rank: it is also known as relative standing, is a way of describing the
position of a value within a set of data. It is expressed as a percentage of values
equal to or less than the value in question. For example, if a value has a percentile
rank of 80, it means that 80% of the values in the set of data are equal to or less
than that value.

Percentilerank = Number of values below the value
Total number of values x100

The percentile rank is often used in statistics and data analysis to compare the
relative standing of a value to the rest in the data set. It can be used to compare
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Library Version Library Version Library Version Library Version
comet-ml 3.31.12 NumPy 1.23.1 tokenizers 0.12.1 torch-sparse 0.6.14
matplotlib 3.5.2 pandas 1.4.3 torch 1.12.0 torch-spline-conv 1.2.1
neo4j 4.4.5 plotly 5.9.0 torch-cluster 1.6.0 torchaudio 0.12.0
nltk 3.7 scikit-learn 1.1.1 torch-geometric 2.0.4 torchmetrics 0.9.3
NumPy 1.23.1 sentence-transformers 2.2.2 torch-scatter 2.0.9 torchvision 0.13.0
tqdm 4.64.0 transformers 4.21.0 xgboost 1.6.2

Table 6.1: Experiment setup Library information

different groups of data, for example, to compare test scores of students or to de-
termine how an individual’s score compares to that of a group of people. In the
context of this thesis, percentile rank is used to determine the relative standing of
the mortality predictors.

6.4 Experimental Environment

In this section, we overview the essential details about the experimental setup we deploy,
running the experiments of this thesis. We employed the following configurations:

Machine Configuration - Database

• Operating System Ubuntu 18.04.6 LTS

• Processor 4× Intel(R) Xeon(R) CPU E5-2609 v2 @ 2.50GHz

• Memory 256 GB RAM

• Database Neo4j Kernel (Community Version : 4.4.5)

Machine Configuration - Program Execution

• Operating System Ubuntu 18.04.6 LTS

• Processor 4×Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz

• GPU NVIDIA GeForce RTX 2080 Ti

• Memory 32GB RAM

• CUDA 10.2

• Programming Languages Python (Version 3.8.10)

• Programming Tools Visual studio code, Jupyter Notebook (Version 6.4.8)

• Graph framework PyG (PyTorch Geometric)

• Libraries Refer table 6.1
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7 Results & Evaluation

In this chapter, the evaluation results are presented and discussed for the experiments
conducted to address the research questions raised in Section 5.1. This chapter is outlined
as follows:

1. In Section 7.1, the effect of different representations of data in the graph (graph
modelling) on the model performance and their GPU usage and processing time is
reported and these results are evaluated to understand their usage.

2. Section 7.2 reports the GAT models performance and the top predictors of the
mortality. These predictors are evaluated on their percentile ranking with predictors
of SAPS-II and SAPS-III models.

3. In Section 7.3, the effect of different relationship types on GAT is reported and the
nature of bias and correlation of the combinations are evaluated.

7.1 RQ-1 Graph data modelling

Modeling the graph data is a process of representing data in the form of nodes & edges
and assigning their properties. Determining whether a property should be stored in a
node or edge is based on the property and its relationship with other nodes in the graph.
This research question is an ablation study of graph representation. Here, three different
representations shown in figure 7.1, 7.2 and 7.3 are experimented with GAT to analyze
their effect on the performance of the model. All the representations explained below
follow a common initial structure wherein the patients can be admitted multiple times
to the hospital, and on each admission, different labs and procedures are carried out,
vital signs are measured, and drugs are prescribed. The activities performed on the
patients can be carried out many times at different time intervals during their stay in the
hospital.

• Representation-1 (Figure 7.1): In this representation, every single activity is stored
as an edge, with the timestamp and the measured value as properties of the edge.
The edge is then mapped to the activity name.

• Representation-2 (Figure 7.2) is similar to the first representation but instead of
having multiple edges for the same activity, it has one, which aggregates (SUM,
MEAN, MIN or MAX) all activities.

• Representation-3 (Figure 7.3) is similar to the first representation but all the prop-
erties present on the edges are transformed into properties of the node. Therefore,
each activity only has one edge between each admission and lab.
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Figure 7.1: RQ1: General Representation

  

Figure 7.2: RQ1: Edge Merge Representation
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Representation Number of Node Features Number of edge Features Number of Edges
General - (Representation-1) 768 1 311245

Mean 768 1 113335
Sum 768 1 113335
Min 768 1 113335
Max 768 1 113335

Edge Data on Node 795 0 113335

Table 7.1: Number of Node, Edge features and Total number of edges

  

Figure 7.3: RQ1: Edge data on Node

All three representations are then passed to the GAT to predict the mortality of each
patient. Table 7.1 shows the total number of features present on nodes and edges and
also the number of edges for each representation that are passed to the model and Ta-
ble 7.2 shows the results from the model. The model’s performance is measured with
the metrics Sensitivity, Specificity, and AUROC. It can be seen from the results that
all representations have nearly the same performance (64.0% - 66.0%). Significant dif-
ferences occur in the memory and time consumption for running the model. Figures
7.4, 7.5, and 7.6 show how different representations used GPU and their processing
times.
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Figure 7.4: GPU utilization during model training on different representations

Figure 7.5: GPU memory usage during model training on different representations

Figure 7.6: Time taken during model training on different representations

The memory and time consumption of aggregated edge features representation and edge
features as node features is comparatively lower than the general representation (Representation-
1) for the same AUROC of the model. The reason for this is less number of edges between
the nodes (63.5% fewer edges when compared to general representation) as can be seen
in table 7.1. However, there are a few problems to be taken into account before going for
any representation.
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Table 7.2: Results of different representations of the graph
Representation Type Aggregation Type Specificity Sensitivity AUROC

General - 0.692 0.63 0.66
Mean 0.719 0.586 0.66
Sum 0.625 0.674 0.649
Min 0.637 0.659 0.648Edge Merged

Max 0.658 0.629 0.643
Edge data on Node - 0.664 0.617 0.64

• In Edge Merged representation (representation-2), the edges are aggregated. It
introduces a bias in the model. For example, certain lab tests were conducted more
often than others. In this case, an aggregation such as sum gets a higher value
which in turn, during the matrix factorization of the GAT model will allocate more
weight to these labs. Whereas the aggregation function such as min or max can
act as better predictors of mortality of the patients as it can be seen in 2.1 and
2.2. The worst values for the last 24 hours are used while calculating the SAPS-III
score. In order to take the worst value there needs to be a baseline to compare them
which requires domain knowledge. The usage of min or max aggregators without
any domain knowledge of all the lab values induces a negative bias in the prediction.
Adding domain knowledge to this representation can solve the bias problem.

• In Edge data on Node representation(representation-3), one advantage is that lab
values taken at different timestamps are preserved as a new feature on the node.
However, there can exist certain labs which were less frequently carried out, leading
to missing values in the feature matrix. For example, in figure 7.7, Lab-2 for the
patient was only done twice, whereas, for lab-1, it was done thrice. These missing
value needs to be somehow masked. This induces a bias in the model’s prediction,
affecting the model’s ability to capture the underlying pattern in the data. The
missing values were masked with zeros in this representation. An extension in the
PyTorch library to handle variable-size tensors can solve this issue.

Figure 7.7: Missing data in Representation-3
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Encoding Sensitivity Specificity AUROC
Label- encoding 0.95 0.052 0.501

One hot encoding 0.779 0.814 0.797
UMLSBert Encoding 0.888 0.847 0.867

Table 7.3: Different encodings on Drugs

Figure 7.8: Visualization of different encoding

One of the sub questions answered relevant for the representation is the impact of different
feature encodings discussed in 6.1.2. Encoding the categorical or text data into any
numerical form is necessary as machine learning models can only use numerical data.
The figure 7.8 can be used to visualize how the encoding looks before passing them to the
model. Table 7.3 explains how different embeddings impact the predictive power of the
model. The encoding with UMLSBert (AUROC: 86.7%) clearly outperforms both Label
encoding (AUROC: 50.1%) and one-hot encoding (AUROC: 79.7%) as the UMLSBert
is fine-tuned on a large corpus of medical texts and has been trained to understand
medical concepts, terminology and context. However, to generate text embeddings from
a UMLSBert pre-tuned model additional time is required in the preprocessing step and
also the quality of the embedding depends on the underlying data used for pre-training and
fine-tuning. The one-hot encoding on the other hand does not require such a pre-trained
model but still performs better than label encoding as the relationships between the
categories are not misinterpreted as a numerical ordering.

7.2 RQ-2: Mortality prediction and evaluation of
predictors

In this question, the GAT model using the architecture explained in section Figure 6.2 of
evaluation setup and using the hetero graph object Listing 6.1 is evaluated for predicting
the mortality of patients diagnosed with sepsis. The model is evaluated on 30% (659) test
data of the total 2194 patients. The train, test & validation accuracy and the training
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loss of the GAT model are provided in Figure 7.9 and Figure 7.10 respectively. They
provide information about how well the model is learning over 300 epochs and is able to
generalize on unseen test data. The confusion matrix Figure 7.11 shows the distribution
of correctly and falsely predicted values on the test data. Table 7.4 shows all measures
derived from the confusion matrix. The model reports an 87.5% AUROC with a specificity
of 83% and sensitivity of 91.5%. The measures indicate that the model distinguishes
between survived and dead patients fairly. Furthermore, we evaluated which features
(predictors) are important in the model for prediction. Therefore, we retrieved all edges
after the model was trained. Then, we determined the target of each edge (lab, drug or
diagnosis). Then the edge weights for unique lab tests are summed up to calculate their
percentile rank (i.e., their importance). The figure 7.13 shows the 30 most important
(highest percentile ranks) predictors in the relationship between Admissions and Labs.
To compare the goodness of these important features they are compared against the well-
established SAPS-II and SAPS-III models. Figure 7.12 shows all the lab-related features
which are used as important predictors for mortality in SAPS-II and SAPS-III are ranked
in the top 90 percentile (out of 468 features) with the majority being in the 95 percentile in
features that are important predictors in the GAT model. This shows that the GAT model
emphasizes on the differentiating features of the mortality while learning the underlying
pattern. Similarly, the same feature correspondence can also be seen in the relationship
between the Admissions and vital signs in the Figure 7.14. All the plotted vitals are used
as predictors in both SAPS-II & SAPS-III scores.

Figure 7.9: RQ2: Train, Validation & Test Accuracy for GAT
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Figure 7.10: RQ2: Training loss

Figure 7.11: RQ2: GAT Confusion matrix on Test Data

Measure Value
Sensitivity 0.9150
Specificity 0.8329

Area Under the Receiver Operating Characteristic 0.8756
Table 7.4: Measures derived from confusion matrix for the GAT models prediction
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Figure 7.12: RQ2: GAT edge ranking for Labs comparing with SAPS-II & SAPS-III
features

Figure 7.13: RQ2: GAT Top-30 features
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Figure 7.14: RQ2: GAT edge ranking for Vitals comparing with SAPS-II & SAPS-III
features

7.3 RQ-3: Effect of different combinations of
relationship types & the nature of bias

This question answers how important different relationship types are in the mortality
prediction of patients diagnosed with Sepsis. Table 7.5 shows the effect of each individual
relationship type with single node types in predicting the mortality of the patients. The
node type drugs (AUROC: 85.8%) act as better predictors than labs(AUROC: 66.0%),
diagnoses(AUROC: 81.7%), or vitals(AUROC: 71.3%) because the prescription of drugs
is based on a diagnoses, which involves some information about the patient’s underlying
condition. This is a disadvantage, but it can be used under certain circumstances, such
as to predict the mortality of patients by trying different permutations & combinations
of drugs before administering them to the patients. Furthermore, it can also be used
to check which drugs have a higher mortality risk. Additionally, the use of drugs as
predictors introduces some bias as they are heavily dependent on the labs and vitals of
the patients.

Relationship Type Sensitivity Specificity AUROC
Admission - Drugs 0.841 0.876 0.858

Admission - diagnoses 0.819 0.816 0.817
Admission - Vitals 0.730 0.694 0.713
Admission - Labs 0.63 0.692 0.66

Table 7.5: Effect of individual relationship type with single node types on mortality
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The tables 7.6, 7.7, 7.8, & 7.9 shows the effect of different combinations of node types.
what follows after the admission of a patient (i.e. a patient gets admitted, then vital
signs are checked, then lab tests are done, followed by diagnoses of the patient leading to
the drug prescription). This sequential treatment procedures leads to more information
about each patient within this process. It is observed that a sequential correlation of
AUROC exists with respect to patients’ sequential treatment procedures. Consequently,
considering the combination of node types labs and diagnoses (AUROC: 74.1%) or labs
and drugs (AUROC: 79.7%) improves the predictive power of the model compared to
considering only the node type labs (AUROC: 66.0%). Similarly, there is also an increase
for the AUROC when considering the combination of node types vitals and diagnoses
(AUROC: 77.1%) or vitals and drugs (AUROC: 81.9%) compared to considering only
the node type vitals (AUROC: 71.3%). However, there is a single exception for this
pattern (combination of the node types vitals and labs). One reason for this might be
that they are independent of each other (i.e a lab is not done based on vital signs but
more based on symptoms) and, therefore, do not contribute further information to each
other.

In a real-world scenario, diagnoses information and drug prescriptions are usually accessi-
ble in the later stages of admission. Therefore, labs and vitals have a much higher relevance
for predicting mortality in the early stages of admission.

Relationship Type Additional
Relationship Sensitivity Specificity AUROC

Drugs 0.805 0.789 0.797
diagnoses 0.699 0.783 0.741Admission - Labs

Vitals 0.580 0.759 0.669

Table 7.6: Effect of additional relationship in combination with Admission - Labs

Relationship Type Additional
Relationship Sensitivity Specificity AUROC

Vitals 0.761 0.876 0.8191Admission - Drugs diagnoses 0.820 0.858 0.839

Table 7.7: Effect of additional relationship in combination with Admission - Drugs

Relationship Type Additional
Relationship Sensitivity Specificity AUROC

Admission - diagnoses Vitals 0.752 0.790 0.771

Table 7.8: Effect of additional relationship in combination with Admission - diagnoses

Relationship Type Additional
Relationship Sensitivity Specificity AUROC

diagnoses 0.781 0.856 0.819Admission - Labs -
Drugs Vitals 0.808 0.856 0.832

Table 7.9: Effect of additional relationship in combination with Admission - Labs - Drugs
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Unlike multi layer perceptrons (MLP), a graph neural network takes into account the rela-
tional information between the nodes, which makes them powerful algorithms for handling
graph-structured data. But does it mean that adding more relationships gives better pre-
dictive power? In order to answer this question, a new relationship type "Demography" is
created based on the demographic data GAMER(Gender, Age-group, Marital status,
Ethnicity and Religious status) between the admissions of the patients. The Figure 7.15
depicts the addition of a same demography relationship between the admission nodes.
It is crucial to note that the relationship created is highly biased towards certain age-
group, ethnicity, marital & religious status as discussed in the section 5.3 of the design
chapter. The addition of this relationship should highly influence the predictions of the
model towards mortality of the patients which can be seen in the results of Admission
- Demography in the table 7.10.

Relationship Type Sensitivity Specificity AUROC
Admission - Demography 0.10 0.919 0.512

Table 7.10: Biased relationship

Figure 7.15: Addition of same demography relationship between the admissions

Now when this relationship is added along with other edge types, it can be seen in table
7.11 that this new relationship has only a small influence on the predictions of the model.
The reason for this small influence is that the GAT’s attention mechanism is designed to
calculate attention coefficients, and these coefficients calculated on biased edges are less
impactful.

Relationship Type Additional Relationship Sensitivity Specificity AUROC
Admission - Labs 0.638 0.631 0.634

Admission - Drugs 0.774 0.819 0.797
Admission - diagnoses Demography 0.771 0.784 0.777

Admission - Vitals 0.796 0.490 0.643

Table 7.11: Effect of Demography relationship with other relationship types
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Thus it can be concluded that for the GAT model, the impact of bias depends on the
kind of bias introduced. The nature of bias can come from different edge weights, miss-
ing edges, or unbalanced edges (imbalance in the number of edges for different node
types).
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8 Conclusion and Future Work

This chapter summarizes the work in this thesis and presents the conclusions obtained
from this work. It also proposes some future practices which may extend this research.
This chapter is structured as follows:

• In Section 8.1, important conclusions derived from our thesis work is presented.

• In Section 8.2, some extensions to the existing work are presented as future work.

8.1 Conclusion

The research presented in this thesis involved the construction of different graph represen-
tations from the MIMIC-III dataset. It investigated the impact of these representations
in the graph on the GAT model. Three different types of representations with Admission
- Lab’s relationship were experimented with. It was found that all representations per-
formed comparatively similar on the AUROC metric (64.0% - 66.0%). Nevertheless, the
representation in which edge data was transformed as node features performed best on
GPU utilization (12%) and GPU memory usage (0.897 Gb). Although all the representa-
tions can be utilized, it can be seen that the representation with edge aggregation induced
a bias without domain knowledge and the representation with edge data transformation
as node features induced bias by masking missing values. Though the GAT model theo-
retically allows variable length node features but the current limitation of passing fixed
shaped tensor in PyTorch limits the possibility of handling missing values. Thus general
representation (Representation-1) (Figure 7.1) was selected. Furthermore, the thesis ex-
plained the effects of different encodings on the performance of the model. The predictive
power of the model increased by 36.6% with UMLSBert and 29.6% with one-hot encoding
of features when compared to label encoding.

Using this general representation with all possible relationships and node types, a GAT
model was trained. The model reports an 87% AUROC with 91.5% Sensitivity and
83.3% Specificity. The goodness of the model was quantified by comparing the percentile
ranking of edge weights of top predictors of the trained GAT model with the predictors of
the SAPS-II & SAPS-III model. It was found that lab predictors (bicarbonate, sodium,
potassium, white blood cells, urea nitrogen, bilirubin, creatinine, pH, platelet count, and
leukocytes) in SAPS-II & SAPS-III are ranked amongst the top 90-95 percentile. Vital
signs predictors (heart rate, O2 saturation pulse oxymetry, non-invasive blood pressure
systolic, FiO2, temperature, Glasgow coma score total) are ranked amongst the top 80
percentile with the exception of Glasgow coma score total, which is ranked in the top
70 percentile.

Furthermore, to understand how the individual relationship types affect the predictive
power of the GAT model. All the individual relationship types were evaluated on the
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model. It was found that Admission - Drugs alone report an 85.8% AUROC, whereas
Admission - Diagnosis achieved 81.7% AUROC, Admission - Vitals 71.3% AUROC and
Admission - Labs 66% AUROC. This experiment of assessing individual relationship type
was extended to understand the effect of a biased relationship in the structure by introduc-
ing a new relationship (Demography) by taking into account the patient similarity based
on their demographic data GAMER(Gender, Age-group, Marital status, Ethnicity and
Religious status). It was found that the attention mechanism of the model corrected the
effect of such a biased relationship.

8.2 Future Work

This research has investigated different aspects of representation learning on electronic
health records using a graph neural network and provided new insights into the area of
graph modelling, feature ablation, and helped to understand the effect of bias in the graph
structure, evaluates the model’s underlying predictors. However, there are still several ar-
eas for future research that can be built upon the findings of this study.

One potential area for future research is to extend the existing heterogeneous graphs,
which presently involve the relationships between Admission and Labs/Drugs/Diagnosis
/Vitals. One such extension would be connecting drugs with targeted proteins to find
new therapeutic protein targets for a given drug or new drugs (for a given protein target)
or connecting drugs based on known negative interactions to find adverse side effects.
Similarly, diagnoses can be connected with symptoms, which can help identify patterns
and connections that may not be immediately obvious. This can be used to identify
new potential causes or risk factors for a condition or to find new ways to classify and
diagnose a patient’s condition. These relationships can be added using NLP from online
sources of drug banks 1, and diagnosis-symptom data sources 2. This study could con-
tribute to a better understanding of such relationships and improve model performance
on mortality prediction and their implications for embeddings generated by graph neural
networks.

Another potential area for future research is to perform a time series analysis on the
graph data and analyze how patients’ mortality prediction is affected over different time
periods. The change in AUROC, sensitivity and specificity over time could improve the
reliability of predictions. The investigation could provide survived and expired patients’
treatment trajectories which could be valuable in understanding how different treatment
plans could affect mortality.

Another potential area is to integrate the reference ranges of labs results while training the
GAT model and calculate the percentile ranking based on the edge weights. This would
help to interpret the importance of variation of results in the prediction of mortality. For
example, a reference range for creatinine levels in the blood, which indicate how well the
kidneys function, typically ranges between 0.7-1.3 mg/dL for adult males and between
0.5-1.1 mg/dL for adult females 3.

1https://go.drugbank.com/
2https://accessmedicine.mhmedical.com/book.aspx?bookID=2715
3https://www.urmc.rochester.edu/encyclopedia/content.aspx?ContentTypeID=167&ContentID=creatinine_serum
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