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Abstract

Prolific growth has been observed recently in the healthcare sector through Arti-
ficial Intelligence(AI). Therefore, researchers are working with healthcare data
available in the form of Electronic Health Records (EHR) to improve resource
management(by predicting mortality and length of stay) as well as improve di-
agnostics. However, the EHR data are difficult to handle because of their het-
erogeneous nature and temporal aspects. Furthermore, it is an arduous task to
classify and analyze sparse data arising from patient diagnoses, medication, and
lab events. This master thesis focuses on addressing the problem of handling
time-dependent patient data recorded at specific intervals in the Intensive Care
Unit(ICU). To do this, I tested two different models, long short-term memory
graph attention networks (LSTM-GAT) and a long short-term memory single
layer perceptron (LSTM-SLP). LSTM-GAT was proposed by Rocheteau et al. [38]
and represents a hybrid model consisting of an LSTM and GAT model. Similarly,
LSTM-SLP is a hybrid model consisting of an LSTM and Single Layer Perceptron.
Both models showed comparatively similar performance on a classification task
(mortality prediction) and a regression task (length of stay prediction). Therefore,
I can conclude that for simple tasks such as mortality and length of stay predic-
tion, complex graph-based modeling is not required. In addition, my experiment
showed that adding diagnoses to the features improved the performance of both
models. I have also evaluated the query time for specific information in a graph
database(Neo4j) and in a relational database(PostgreSQL).
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1
Introduction

1.1 Introduction

Royal Society of Medicine, famously quoted on the use of AI in healthcare:

"AI has the potential to augment and enhance the capabilities of healthcare

professionals, enabling them to provide better care with greater accuracy

and increased efficiency. "[35]

This quote highlights the potential benefits of incorporating AI (Artificial

Intelligence) into healthcare. AI has the ability to analyze and interpret

large amounts of data quickly and accurately, which can help healthcare

professionals make more informed decisions about patient care. However,

modern medicines are becoming increasingly complex due to a variety of

genetic processes and environmental interactions that the human body

undergoes. As a result, the depth of medical knowledge is exponentially

developing.[14]. For example, the International Classification of Diseases

(ICD)-10, which currently contains approximately 68,000 diagnoses (five

times as many as the ICD-9), is constantly expanding [33]. Additionally,

research on human genetic, environmental, and lifestyle variations has ad-

vanced the notion that medical treatment should be tailored to the unique

needs of each patient[32]. Consequently, more patient-specific information

needs to be added which requires storing and processing. With existing

tools to store and share information in the current era, an aided human can

comprehend and utilize the extraordinary amount of knowledge generated

in medicine through artificial intelligence (AI).[34]. While there could be

direct contributions of AI in this domain where the patient’s condition is

actively improved through disease prediction or drug prescription, there

are also indirect contributions that could be made by AI such as better
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resource management, mortality prediction of patients in hospitals, espe-

cially intensive care units (ICU).

A clinical decision support system is a computer-based tool that provides

healthcare professionals with real-time patient-specific information and

knowledge to support clinical decision-making. They can use various

sources of information such as electronic health records, laboratory results,

medication orders, and patient-specific data to provide evidence-based

recommendations for clinical care. For instance, predicting a patient’s

length of stay in the ICU may help healthcare professionals make medical

decisions, and manage medical staff and resources [1]. Therefore, machine

learning (ML) when applied to clinical data can offer future insights with a

high level of precision, in a healthcare environment to forecast prospective

outcomes of interest [4]. Clinicians or physicians are frequently interested

in forecasting adverse outcomes so that the required steps may be taken to

prevent them (if preventable) or get ready for them. A few examples include

the development of an illness, hospital readmission, and mortality.

Sometimes physicians or clinicians can also make false decisions leading to

adverse patient outcomes and increased costs. Examples include patients

being frequently readmitted after premature discharge from ICU [23], and

physicians not considering potential interactions with other medications

the patient is taking leading to adverse drug reactions, and/or patients fre-

quently undergoing unnecessary operations, some resulting in immediate

death [3]. Similarly, incorrect diagnoses and unnecessary medical testing

are becoming more prevalent [5] causing a detrimental effect on patient’s

health and rising expenses.

The use of ML in healthcare is expected to play a significant role in raising

the standard of care [21] through analyzing clinical data like Electronic

Health Records (EHR). EHRs are real-time, digital patient records that gives

authorized healthcare professionals secure access when needed across dif-

ferent healthcare facilities. The EHR’s structure is chronologically ordered

and include (a) clinical information about the patient, such as symptoms,

treatments, diagnoses, lab results, and medications given to them and: (b)

demographic information about the patient (age, gender, etc.)

One of the most important steps in developing ML models is the extraction

of features which act as predictor variables (predictors). Predictors can be
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any of the input features(e.g., age, gender). In ML, the process of extracting

features is frequently referred to as feature engineering. Frequently domain-

based feature extraction is used to create prediction models (i.e., a domain

expert chooses the relevant features). However, this approach does not

scale well, because the selection of predictors from the input features is

task-specific, For example, a characteristic such as "blood pressure" is

more relevant to the prediction of "cardiovascular disease" than it is to the

prediction of "skin allergies".

Another challenge when dealing with a huge amount of clinical data like

EHR data is storing them appropriately. The idea of big data is gradu-

ally having an impact on the healthcare sector. The relational database

model has been commonly used for decades in healthcare data storage and

management systems. Given that each type of patient’s data has a unique

schema and format, storing and managing such diverse, dispersed, and

unstructured data presents difficult problems. An individual patient’s data

may be dispersed across multiple tables and can have different representa-

tions (e.g., data can be stored across demographic, admissions, diagnosis

table). Doctors and other healthcare professionals typically require uni-

form access to this data at the same time. Modelling EHR data as a graph is

more appropriate and prevents the usage of cost-intensive join operations.

To address the problem, I propose an appropriate graph database model in

Neo4j which can hold patient data in nodes and edges. I intend to compare

the performance of using a graph database model, particularly in Neo4j

against the relational database model, PostgreSQL.

Adhering to the above issues, I propose the use of graph data structure to

analyze EHR records, for predicting patients’ mortality and length of stay.

Graphs provide an appropriate way to model EHR data because of high

inter-dependencies within the data. After modeling, the data could even be

fetched easily even for analysis. My research has shown that graph neural

networks are useful tools for analyzing EHR records. Furthermore, graph

databases are dynamic and horizontally scalable making them suitable for

complex medical data.

The thesis aims to investigate the following research questions related

to using graph-based patient representation to predict the outcomes of

patients in the ICU using EHR:
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Graph Neural Networks(GNN) are a type of neural network that is designed

to operate on graph-structured data, such as EHRs. GNNs can capture

complex relationships between different elements of the EHRs, such as

patients, diagnoses, medications, and procedures(explained in depth in

background section). This allows them to model the dependencies and

interactions between these elements, which can be important for predicting

patient outcomes.

Single layer of perceptrons are a simple type of neural network, that per-

form a weighted sum of their inputs and apply a nonlinear activation func-

tion(explained in depth in background section). Therefore, the first re-

search question I would try to answer is:

RQ1: Do graph neural networks perform better predictions than single-

layer perceptrons(SLP)?

To address this research question, the thesis will evaluate the performance

of GNNs and SLPs for predicting patient outcomes using EHR data. This

evaluation will likely involve training and testing both types of models on

the same dataset and comparing their performance using metrics such as

such as area under the Receiver Operator Characteristic curve (AUROC)

and area under the precision recall curve(AUPRC).

Patient diagnoses can be a critical factor in predicting outcomes as they

may indicate the severity of a patient’s condition, the likelihood of com-

plications, and the appropriate treatment options. However, it is not clear

how important diagnoses are relative to other patient features, such as

demographics or vital signs, in predicting outcomes. Therefore, the second

research question I would try to answer is:

RQ2: How important are the patient’s diagnoses for the prediction with a

graph neural network and for the prediction with an SLP?

To answer this question, the thesis will evaluate the impact of patient

diagnoses on outcome prediction using both the hybrid LSTM-GNN model

and the hybrid LSTM-MLP model. This evaluation will highlight the relative

importance of patient diagnoses in predicting patient outcomes with these

models. The methodology of the thesis will build on the work of Rocheteau

et al.[38], who proposed a graph-based patient representation technique

using common diagnoses and a hybrid LSTM-GNN model to predict patient

outcomes.
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In recent years, graph databases have become increasingly popular for

handling complex, interconnected data, such as social networks, recom-

mendation engines, and biological networks. One advantage of graph

databases is that they can efficiently handle queries that traverse relation-

ships between nodes. In contrast, relational databases are optimized for

handling queries involving structured data stored in tables. Therefore, the

third research question I would try to answer is:

RQ3: Are Cypher queries in Neo4j faster in fetching data than SQL queries

in PostgreSQL?

To address this research question, the thesis will create a graph model in

the Neo4j database and upload the same dataset in a relational database

(PostgreSQL). The thesis will then measure the query time taken to fetch

data using both Cypher and SQL queries for various query types.

The results of this evaluation will provide insights into the relative per-

formance of graph databases and relational databases for data retrieval.

Specifically, it will assess whether Cypher queries in Neo4j are faster than

SQL queries in PostgreSQL for retrieving data from a large, complex dataset.

This information may be valuable for researchers and practitioners who

are considering using graph databases for their applications.

This report is structured into several chapters, each covering a specific

aspect of the thesis. Chapter 1 serves as an introduction to the research

problem and outlines the objectives of the thesis. Chapter 2 provides a

more in-depth background of the research topic, laying the groundwork for

the subsequent chapters. Chapter 3 presents a summary of the current state

of the art, including its benefits and drawbacks, which will inform the de-

velopment of the proposed solution. Chapter 4 provides an overview of the

dataset used for the research, explaining its relevance and characteristics.

In Chapter 5, the graph data model and the proposed model architecture

are discussed in detail, highlighting their advantages and limitations. Chap-

ter 6 reports on the results and evaluation of experiments conducted to

validate the proposed solution. Finally, Chapter 7 presents a conclusion

and future work, summarizing the main findings and outlining potential

avenues for future research.



2
Background

In the following section, I will present the basic concepts which were re-

quired in my thesis to predict the mortality and length of stay of patients in

the Intensive Care Unit(ICU). I will start by discussing the digital version of

a patient’s medical history and health information which is the electronic

health records (EHR), the key target variables are the length of stay (LOS)

and mortality prediction of patients. Furthermore, I will explain our choice

of using a graph database to store EHR data graphically and provide a com-

prehensive understanding of graphs and their components. And finally, I

will explain recurrent neural networks (RNNs), long short-term memory

(LSTM), and graph neural networks (GNNs) in detail, which are the algo-

rithms of primary focus in this research. Because using these algorithms

would help me better analyze the EHR data which is being stored in the

graph database.

2.1 AI in Healthcare: Electronic Health Records (EHR)

Artificial intelligence (AI) has been increasingly applied to healthcare in

recent years, aiming to improve patient outcomes and reduce diagnostic

costs within application areas such as medical imaging analysis [41], drug

discovery [15], precision medicine [26], and virtual health assistants[27].

Leveraging the use of AI in performing calculations and analysis plays

a crucial role in analyzing the vast array of data, that is available in the

healthcare sector. The healthcare sector gathers, manages, and examines

a wide variety of data, including EHR data, claims data, clinical trial data,

administrative data, imaging data, research data, and more. EHR analysis

is crucial for medical research and can raise the standard of treatment for

patients. For instance, the prescriptions in EHRs can aid in medication

7
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recommendations, distribution of cohorts based on patients’ phenotypes,

help hospitals to manage their resources effectively, and inform patients

about possible risks of their underlying disease. Also, would facilitate

the doctor to have a clear understanding of their patient’s condition and

improve their treatment.

Raw EHRs often include a variety of patient characteristics, such as de-

mographics, medical history, diagnoses, prescriptions, diagnostic images,

and time-dependent vitals. However, the major challenges of working with

raw EHR data include handling the temporal nature, high dimensionality,

and sparsity of the data. Temporality is a problem in EHR because it refers

to the issue of recording and representing the order and timing of events

in a patient’s medical history. For instance, the order in which a patient

received certain medications or treatments can impact the effectiveness of

those treatments, and this information needs to be captured accurately in

the EHR data. Also, some data have timestamps which are also important

to analyze their time dependence. To address the challenges of tempo-

rality in EHR data, various techniques, such as time series analysis and

longitudinal data analysis, can be used to model the data over time and

identify the connections between various incidents in a patient’s medical

history. In addition to temporality, high dimensionality can also pose major

challenge. High dimensionality in the EHR data means that a patient can

have a large number of features(e.g, age, diagnosis, lab results, etc). This

high dimensionality can make it challenging to analyze and interpret the

data, as there are many potential relationships and patterns that need to

be considered. For example, when trying to predict a patient’s risk of a

certain disease, there may be hundreds or thousands of variables in the

data that could potentially impact the outcome. In such cases, it may be

difficult to determine which variables are most important. Also, training

the model will be slower as the dimensions increase. To overcome the

challenges of high dimensionality in EHR data, various techniques, such

as dimensionality reduction, feature selection, and machine learning algo-

rithms, can be used to extract meaningful insights from the data and make

more accurate predictions. Besides, features in the data often have missing

values, which can cause sparsity. This can occur for various reasons, such

as the incompleteness of the EHR system, missing information at the time

of data entry, or a lack of standardization in the way data is collected and
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recorded. The result of this sparsity is that many cells in an EHR data matrix

are empty or have no recorded values. This can impact the accuracy and

reliability of predictive models, since missing data can cause the model to

be biased. To address the issues with EHR data sparsity, various techniques,

such as imputation methods, can be used to fill in missing data, or machine

learning algorithms that are designed to handle sparse data can be used

for analysis and prediction. Modern deep learning models are capable of

handling the aforementioned challenges.

2.1.1 Length of Stay (LOS)

Length of stay prediction is a task in healthcare where the goal is to predict

the length of time that a patient will spend in a hospital or healthcare facility.

This target variable is important for several reasons:

1. Resource allocation: Accurate predictions of the length of stay can

help healthcare facilities allocate resources more effectively, such

as staffing and bed allocation, and minimize the impact of resource

constraints.

2. Patient care: Predicting length of stay can help healthcare providers

plan for patient care and ensure that patients receive the appropriate

level of care while they are in the facility.

3. Quality of treatment: Predicting length of stay can also help health-

care facilities monitor and improve the quality of treatment that pa-

tients receive, as shorter lengths of stay are often associated with

better outcomes for patients.

4. Financial planning: Accurate predictions of the length of stay can also

help healthcare facilities plan their finances and make more informed

decisions about resource allocation and budgeting.

Length of stay prediction is typically performed using machine learning

algorithms that consider various factors, such as patient demographics,

medical history, and information about the patient’s condition and treat-

ment, to make predictions about the length of time that a patient is ex-

pected to spend in the facility. The state-of-the-art methods for the length
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of stay prediction tasks in healthcare have advanced significantly in recent

years with the increasing availability of EHR data and the development of

sophisticated machine learning algorithms. Traditional statistical models,

such as linear regression and time series analysis, are still widely used for

length-of-stay prediction. These models are relatively simple to imple-

ment and interpret, and they can provide good results when the data is

well-behaved and the relationships between variables are linear. For the

task of predicting length of stay, machine learning algorithms including

decision trees, gradient boosting and random forest are also gaining pop-

ularity.Additionally, deep learning models, such as convolutional neural

networks (CNNs) and recurrent neural networks (RNNs), are being used

more frequently for length-of-stay prediction in recent years. Tasks that

require processing sequential data are particularly well-suited for these ap-

proaches, such as time series data in EHRs, and they can identify intricate

patterns in the data that conventional statistical methods would miss.

2.1.2 Mortality Prediction

Mortality prediction is a task in healthcare where the goal is to predict

the likelihood of a patient dying within a given time period. Predicting

mortality can help healthcare facilities monitor and improve the quality

of care that patients receive, as earlier detection of declining health can

lead to earlier interventions and potentially better outcomes. Also, it can

assist healthcare providers to ensure that patients receive the appropriate

level of care while they are in the facility, and to manage the resources effec-

tively. Mortality prediction is typically performed using machine learning

algorithms that consider various factors, such as patient demographics,

medical history, and information about the patient’s condition and treat-

ment, to make predictions about the likelihood of a patient dying. Deep

learning models, such as convolutional neural networks (CNNs) and recur-

rent neural networks (RNNs), are being used more frequently for mortality

prediction in recent years. Additionally, Graph Neural Networks (GNNs)

are becoming increasingly popular for mortality prediction in recent years.

Tasks that require analyzing graph-structured data are particularly well

suited for these models, such as patient co-morbidities and medical history,

and they can capture complex relationships in the data.
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2.2 Data Storage

Choosing the right data storage is crucial for machine learning algorithms

because it has a direct impact on the performance and efficiency of the

model. A poorly optimized data storage can lead to slow processing times,

which can make training and inference computationally expensive. Addi-

tionally, if the storage is not scalable, it may become a bottleneck as the size

of the data increases. In such scenarios, we are most often left with several

options - relational databases, NoSQL databases, graph databases, dis-

tributed file systems, object storage, in-memory databases, and columnar

databases.

While relational databases are widely used due to their high query perfor-

mance and scalability, it performs best when it has to deal with multi-row

transactions (see Table 2.1). Multi-row transactions in relational databases

refer to a group of database operations that are executed together as a

single unit of work. This means that either all of the operations in the group

are executed successfully or none of them are executed at all, ensuring the

integrity of the data in the database. Electronic health records demand

more dynamic methods to represent the data within the database due to

the unstructured format it follows. Dynamic methods refer to techniques

that allow for the creation of flexible and adaptive database structures that

can change in response to changing requirements. In an EHR system, data

is constantly changing as new information is added, updated, or deleted.

Dynamic methods in relational databases help to manage these changes

and ensure that the database structure can adapt to new requirements. In

comparison to relational databases, non-relational databases have data

models that include document-based, key-value, graph-based, and colum-

nar. They can be structured or unstructured. Structured databases use a

predefined data structure, while unstructured databases allow for more flex-

ible data storage. Non-relational databases such as NoSQL databases like

MongoDB and Cassandra can handle large amounts of unstructured data

and can scale horizontally, which means adding more nodes to a database

cluster in order to handle the increasing amount of data. This is a great

advantage when dealing with the high volume of data generated by medical

systems.
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Relational Non-relational (Graph)
Query Language SQL cypher, GQL

Scalability vertical horizontal

Data Structure table-based document, key-value, graph etc

Optimal for multi-row transactions unstructured data e.g. JSON

Table 2.1: Relational vs non-relational database

The choice between a relational and non-relational database for a medical

application will depend on the specific requirements of the application,

such as :

1. Need to handle large amounts of unstructured data

2. Ability to scale horizontally

3. Need for precise querying and data integrity

In many cases, it may be beneficial to use a combination of both types of

databases to take advantage of the strengths of each, such as the ability

of relational databases to enforce data consistency and the ability of non-

relational databases to handle large amounts of unstructured data. For

example, one might use a relational database to store structured data, such

as patient demographics, while using a non-relational database to store

unstructured data, such as images or diagnostic reports. This approach can

help to improve the performance and scalability of the database system.

Lastly, we have a graph database which is a type of non-relational database

that is used to store and manage data in the form of nodes and edges. They

are preferred over traditional relational databases (SQL databases) or non-

relational databases (NoSQL databases) in certain use cases for several

reasons:

1. Flexible Data Modeling: Graph databases allow for flexible data mod-

eling, as data can be modeled as a graph and stored as nodes and

relationships, which can be easily modified as data evolves over time.

2. Fast Data Retrieval: Graph databases are optimized for fast data re-

trieval, as they allow for quick traversal of relationships between

nodes, which is a common operation in graph-based data.
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3. Efficient Queries: Graph databases are efficient at handling complex

queries and relationships, as they can quickly traverse the graph to

find and retrieve relevant data.

4. Scalability: Graph databases can be easily scaled to handle large

amounts of data and processing demands, as they can be distributed

across multiple nodes in a cluster.

Age Gender
P1
P2
P3
P4
P5

P1
Age: x1

Gender: y1

P2
Age: x2

Gender: y2

P3
Age: x3

Gender: y3

P4
Age: x4

Gender: y4

P5
Age: x5

Gender: y5

Figure 2.1: Transformation of tabular data to graph data. Rows of patients have
been transformed into nodes with node attributes. The edges between nodes can
have edge weights which can be the distance/similarity between the rows as per
the values of the variables.

In figure 2.1, we demonstrate how tabular data was transformed into the

graphical data structure for this research. Every patient row, with values for

multiple variables, can be represented as nodes with edge values between

them representing relationships between patients in the graph.

2.3 Graphs

A graph is a type of non-Euclidean data structure made up of nodes (also

known as vertices) and edges between them. A graph can store features or

attributes as properties associated with nodes, edges, or both. These prop-

erties can be stored as key-value pairs or in more complex data structures,

such as arrays or nested objects. Adjacency matrices can be used to model

graphs. A two-dimensional array called an adjacency matrix contains rows

and columns that represent nodes and values that denote the existence or

absence of edges connecting those nodes. Figure 2.2 shows a simple graph

having 3 nodes and the lines connecting them as edges. The representation

of the graph is shown as an adjacency matrix alongside, where the connec-

tion between them is written with a 1 and 0 for no connection. Graphs can

also be represented as adjacency lists, where each node is associated with
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a list of its neighbouring nodes. Another common representation used in

PyG is a feature matrix. It is a 2D tensor that represents the node features

of a graph. Each row in the tensor corresponds to a node in the graph, and

each column represents a different feature or attribute of the node. The

shape of the feature matrix is in the form [num_nodes, num_features]. And

to represent the edges of the graph ’edge_index’ is used. It is a 2D tensor of

shape (2, num_edges), where each column represents an edge and consists

of the indices of the two nodes that form the edge. And finally, we represent

the edge feature matrix as [num_edges, num_edge_features].

Graphs have become an integral part of our lives, as we use them every day

to find the shortest possible route to our destination [31] or receive recom-

mendations from nearby restaurants [19]. Additionally, the common use of

graphs comes while using social network profiles to get friend suggestions

on Facebook and Twitter. [7]

0

1
2

0 1 1

1 0 0

1 0 0

0 1 2
0

1

2

Figure 2.2: Graph and adjacency matrix

2.3.1 Types of Graph

We will explain the different types of graphs available with the help of a dia-

gram given below. The first one is an undirected graph in figure 2.3(a). They

do not have any direction. An undirected graph is symmetric: if there is an

edge connecting node A to node B, then there is also an edge connecting

node B to node A. Undirected graphs are often used to model symmet-

ric relationships between objects or entities. For example, an undirected

graph can be used to model a social network, where each vertex represents

a person and each edge represents a friendship between two people.
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Figure 2.3: Types of Graph

The second one is a directed graph in figure 2.3(b), also known as a digraph,

which has a specific direction at all the edges of the graph. Node A is

connected to Node C in the forward direction only but the opposite is not
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true. Directed graphs are often used to model asymmetric relationships

between objects or entities. For example, a directed graph can be used to

model a transportation network, where each node represents a city and

each directed edge represents a one-way road between two cities.

One key difference between directed and undirected graphs is that directed

graphs can have cycles that loop back to a node after following a series of

edges. In contrast, undirected graphs are acyclic, meaning that there are no

cycles. Directed graphs are often used to model processes, flows, or causal

relationships, while undirected graphs are often used to model connections

or dependencies between objects or entities.

Figure 2.3(c) is a weighted graph which is a type of graph in which each

edge has an associated numerical value, called a weight. The weight of an

edge can represent some kind of cost or distance associated with traversing

that edge. Weighted graphs are often used to model real-world scenarios

where the cost of moving from one node to another is not the same for all

edges. In the real world, a weight on an edge might represent the distance

in a transportation network or the bandwidth in a communication network.

Weighted graphs can be directed or undirected, and the weights can be

positive or negative, depending on the modeled problem. Weighted graphs

in comparison to unweighted graphs have the benefit of modeling quantita-

tive relationships and can represent priorities and preferences. For example,

weighted graphs can have weights on their edges in a recommendation

system, allowing for more personalized and relevant recommendations.

Figure 2.3(d) shows a homogeneous graph. All nodes and edges in a ho-

mogeneous graph are of the same kind. A practical example of a homoge-

neous graph could be a medication-prescription graph where each node

represents a medication and each edge represents a prescription of that

medication to a patient. In this graph, all nodes would have the same type

(medication), and all edges would have the same type (prescription). The

nodes would be connected by edges only if a prescription for that medi-

cation has been issued to a patient, which creates a homogeneous graph

where all edges have the same type and all nodes have the same type. This

graph can be useful for analyzing medication usage patterns and identify-

ing potential adverse drug interactions or other medication-related issues

for a particular patient or group of patients. In contrast, a heterogeneous
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graph has nodes of different types, represented as different color circles in

figure 2.3(e). As an example, Liu et al. [28] propose a heterogeneous graph

created from electronic health records. The graph is connected by different

node types called patient, visit, diagnosis, and medication. Each patient

can have multiple visits to a hospital and on every visit to the hospital he

may be diagnosed with various conditions and can be prescribed multiple

medications based on his conditions. Every node type or edge type can

have a different set of attributes. Since one patient can have multiple visits

to a hospital, a heterogenous graph can capture the entire journey of a

patient. For example, HAS_VISIT, IS_DIAGNOSED, and IS_MEDICATED

could be some of the edges which represent the different types of rela-

tionships or interactions between the nodes. While homogeneous graphs

can be useful for representing simple relationships between entities in an

EHR, heterogeneous graphs provide a greater representation of complex

relationships, improved analysis, and insights, increased interoperability,

and may provide better patient outcomes.

2.3.2 Tasks of Graph

Graphs are flexible data structures that can be used to represent a wide vari-

ety of relationships [43]. To extract insights or meaningful information from

the graph, we can perform different kinds of tasks(e.g. node classification,

link prediction, and community detection).

1. Node classification is a machine-learning task that involves classify-

ing nodes in a graph based on their features and the features of their

neighboring nodes. One popular approach to node classification is to

use machine learning algorithms, such as neural networks, to learn

a function that maps the features and topology of the graph to the

node labels. Classifying paper categories in a citation network is one

example of node classification [50].

2. Edge(also referred to as Link) prediction is a machine learning task

that involves predicting which nodes in a graph are likely to form

new connections(edges) in the future based on the existing node and

edge properties. Item recommendation is a type of link prediction

problem where the goal is to recommend items to users based on

their historical preferences or interactions [22].



18 CHAPTER 2. BACKGROUND

3. Community detection, also known as graph clustering, is the task

of identifying groups of nodes in a graph that are more densely con-

nected than the rest of the graph. These groups of nodes, known

as communities or clusters, are often assumed to have similar char-

acteristics or to be involved in similar activities. There are several

approaches that can be used to perform community detection, in-

cluding modularity-based methods that maximize a quality func-

tion called modularity, which measures the density of edges within a

community compared to the density of edges between communities.

Deep learning-based methods use neural networks to learn repre-

sentations of nodes and edges, and then use these representations

to identify communities. As an example, community detection can

identify groups of web pages that are more densely linked to each

other than to the rest of the network [30].
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Node Classification Link Prediction

Community Detection

Figure 2.4: Tasks on graph

Figure 2.4 shows the different tasks on the graph which have been briefly

explained above.

2.4 Machine Learning: Artificial Neural Networks

Machine learning is a subfield of artificial intelligence that is concerned

with the development of algorithms and statistical models that enable

computers to learn from data. It has enormous applications in several

fields, especially in the field of medical science where it is commonly used

for diagnostic imaging, drug discovery, and analyzing large amounts of data

such as EHR. Machine learning algorithms can be broadly classified into

three main categories:
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• Unsupervised Learning: Algorithms process unlabelled data to learn

patterns and groupings. It is used in a number of applications such

as anomaly detection, clustering, and dimensionality reduction.

• Reinforcement Learning: Algorithms interact with an environment

and are trained with punishment or reward. Autonomous driving is

an example of reinforcement learning.

• Supervised Learning: Algorithms process labeled data by mapping

input data to the corresponding target variable. Supervised learning

is used in a wide range of applications, such as image classification,

speech recognition, etc.

Neural networks are a type of supervised machine learning algorithms that

are modeled after the structure and function of the human brain and it is

made up of interconnected artificial neurons that process information and

learn from it. The strength of the connections between neurons, known

as weights along with the bias, is adjusted during the learning process to

optimize the performance of the network. There are several forms of neural

networks:

• Feed forward neural networks.

• Recurrent neural networks.

• Convolutional neural networks.

• Generative adversarial networks.

2.4.1 Neural Networks

Neural Networks consist of layers of interconnected "neurons", which

process and transmit information. It is also known as a multi-layer percep-

tron(MLP) that consists of one or more layers of artificial neurons, where

each layer is fully connected to the next layer.

Neural networks have several use cases across many industries, such as:

• Medical image classification for diagnosis [52].

• Using historical financial data to make financial forecasts [20].
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• Forecasting of electrical load and energy demand. [39]

• Identification of a chemical compound. [2]

The basic structure of a simple neural network has been explained in the

following:

1. Input Layer: The artificial neural network’s input layer is the first layer

that receives the input data. They consist of one or more neurons.

The number of neurons in the input layer is determined by the size

of the input data, where each neuron receives one feature from the

input data. For example, if the input data consists of a 28x28 image,

the input layer of the neural network will have 784 neurons, where

each neuron corresponds to a pixel in the image.

2. Hidden Layers: Each neuron in a hidden layer receives inputs from

the neurons in the previous layer, and it performs a computation on

those inputs using a set of weights and biases. By adding multiple

hidden layers, the network can learn more complex and abstract

features from the input data, allowing it to model more complex

relationships between the inputs and outputs.

3. Output layer: The output layer in a neural network is the final layer of

the network that produces the network’s output. This layer consists

of one or more neurons, where each neuron produces a single output

value or a vector of output values depending on the type of problem

being solved. For example, in a binary classification problem, the

output layer will have a single neuron that produces a value between 0

and 1, representing the probability of the input belonging to one of the

two classes. In a multi-class classification problem, the output layer

will have one neuron for each class, with each neuron producing a

probability value for its corresponding class. In a regression problem,

the output layer will have a single neuron that produces a continuous

output value.

Forward propagation, backward propagation, and loss are important con-

cepts in neural network training. Forward propagation refers to the process

of taking input to a neural network and passing it through the network to
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Figure 2.5: Forward and backward propagation

produce an output. During this process, the input is transformed through

a series of mathematical operations and activations in the network’s lay-

ers, eventually resulting in an output that can be used for prediction or

classification. Backward propagation (also known as backpropagation), is

the process of computing the gradients of the loss function with respect

to the weights and biases of the neural network. These gradients can be

used to update the parameters of the network during training using an op-

timization algorithm like stochastic gradient descent. The loss function is a

mathematical function that measures the difference between the predicted

output of a neural network and the actual output. The goal of training a

neural network is to minimize this loss function by adjusting the weights

and biases of the network through backpropagation. In every iteration,

we compute the loss value and update the weights and biases during the

backpropagation stage. The training steps of a feed-forward neural net-

work as shown in figure 2.5 is an iterative process when the weights are
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computed both in the forward and backward propagation stage until the

loss is brought minimum.

Each layer is made up by the stacking of multiple neurons. The layers

communicate with each other by weights and biases of the layers which

are represented by arrows in the figure. The level of importance of each

input is managed by the weights while the bias is used to offset the results.

Initially, non-zero random values are assigned as weights and biases in a

step known as parameter initialization. Activation functions are used in

artificial neural networks to introduce non-linearity into the output. This

non-linearity allows the network to learn complex patterns and model

non-linear relationships between inputs and outputs. Without activation

functions, a neural network would be just a linear model and would not be

able to learn these complex patterns. There are several activation functions

as shown in figure 2.6. Activation functions like Sigmoid, Tanh, Relu, and

LeakyRelu are in figure 2.6 and are widely used in deep learning models.

The Sigmoid function produces output in the range of (0,1) and Relu in (0,

infinity), and Tanh in (-1,1).

This generates a predicted value as output in the output layer. The neural

network calculates the loss function by comparing the ground truth val-

ues with the predicted values. The loss score that is computed is also

called the error of the model. Based on the type of machine learning

tasks(classification and regression), we have to use different loss functions.

In the classification task, the model tries to predict the probabilities of all

target classes(categorical variables). Whereas, in the regression task, the

model tries to predict continuous values based on a number of features,

that have been fed into. The classification loss functions are Binary cross-

entropy loss (also known as log loss), Categorical cross-entropy loss, Sparse

categorical cross-entropy loss, Hinge loss, and Focal loss. The regression

loss functions are: Mean squared error (MSE) loss, Mean absolute error

(MAE) loss, Huber loss, and Smooth L1 loss.

What is Backward propagation?

Backpropagation is part of the training steps of artificial neural networks.

It is used to adjust the weights of the neural network in order to minimize

the loss between the predicted output and the true output. At each layer,

the error is used to calculate the gradient of the weights with respect to
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Table 2.2: Advantages and disadvantages of activation functions

Advantages Disadvantages

Sigmoid
function

• Has a simple and smooth
curve, which is easy to com-
pute and differentiate.

• It maps the output to a
probability-like value, which
can be useful for binary classi-
fication problems.

• The sigmoid function is prone
to saturation, which means
that the gradients become
very small as the input be-
comes very large or very small.

• It is not zero-centered, which
can make it difficult to learn
where the input data has a
large dynamic range.

ReLU
(Rec-
tified
Linear
Unit)
function

• It avoids the saturation prob-
lem of the sigmoid function.

• It is simple and efficient for-
mula, which makes it compu-
tationally cheap and easy to
implement.

• The ReLU function suffers
from the "dying ReLU" prob-
lem, which occurs when the
input to the function is neg-
ative, and the gradient be-
comes zero.

• The ReLU function is not dif-
ferentiable at zero.

Tanh
function

• The Tanh function is zero-
centered.

• It is similar to the sigmoid
function but with a steeper
gradient,

• The Tanh function still suffers
from the saturation problem
of the sigmoid function, which
can lead to slow convergence
or vanishing gradients in deep
neural networks.

Leaky
ReLU
function

• The Leaky ReLU function
addresses the "dying ReLU"
problem by introducing a
small slope for negative input
values.

• The Leaky ReLU function can
introduce some noise in the
output.

the error. The gradient is then used to update the weights in the opposite

direction, in order to minimize the error. This process is repeated for many

iterations(epoch) until the error is sufficiently small. After completion of

the first iteration, usually, the difference between the predicted value and

the ground truth value is large, because initially random weights and biases

had been assigned to the neural network. So, the process of updating the
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Figure 2.6: Activation Functions

weights is carried out by an optimization algorithm(e.g. gradient descent)

that implements the back-propagation algorithm.

The goal of optimization algorithms is to find the global minima or regions

with the lowest values of the loss function. However, finding the global

minimum of a complex loss function is significantly difficult for an opti-

mization algorithm. In figure 2.7, a global and local minimum is shown. A

global minimum is the lowest point on the graph, representing the set of

model parameters that result in the smallest loss value across the entire

search space. This is the optimal set of parameters that we want to find. On

the other hand, a local minimum is a point on the graph that is lower than

all the neighboring points but is not the global minimum. Local minima

can be problematic for optimization, as they can prevent the algorithm

from finding the optimal set of parameters, and can lead to suboptimal

performance of the model.
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Batch Size and epochs Training a neural network using all of the training

data in a single cycle is known as full batch gradient descent or batch

gradient descent. While this approach has the benefit of providing the

most accurate parameter updates, it can be computationally expensive for

large datasets. So we often use mini-batch gradient descent or stochastic

gradient descent. In mini-batch gradient descent, the training data is

divided into small subsets or "mini-batches". The model is then trained on

each mini-batch in turn, with the parameters updated based on the average

gradient across the mini-batch. This approach provides a balance between

the accuracy of full batch gradient descent and the efficiency of stochastic

gradient descent. In stochastic gradient descent, the model is trained on a

single training instance at a time, with the parameters updated based on

the gradient of that instance. This approach can be much faster than full

batch and mini-batch gradient descent, especially on large datasets, but

can also be less stable since the parameter updates are based on a single

instance. One complete iteration over all batches is called an epoch. Let’s

consider a dataset of 1000 training samples as an example when we set the
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batch size to 10 and the number of epochs to 20. In this instance, we will

partition our dataset into 100 (1000/10) batches. Thereby each batch(10

training samples) is passed to the neural network until all batches were

passed. The model parameters (i.e., their weights and biases) are optimized

after each batch (i.e., 100 times for each epoch). Since there are 20 epochs,

the optimizer iterates 20 times over the complete dataset(i.e. 20 times

overall 100 epochs).

Train, validation, and test split refers to the process of dividing a dataset

into three subsets: training, validation, and testing.

• The training set is used to train a machine learning model, and typi-

cally consists of the largest portion of the data. [17]

• The validation set is used to tune the hyperparameters (e.g.learning

rate and the number of hidden layers) of the model, and to measure

its performance during the training process. [6]

• The test set is used to evaluate the final performance of the model and

is typically held out from the training process to provide an unbiased

assessment of the model’s performance. [37]

The division of the dataset into training, validation, and test sets is crucial

to ensure that the model is not overfitting or underfitting the data.

Overfitting and underfitting

Overfitting is a common problem in machine learning where a model

becomes too complex and begins to fit the training data too closely. When a

model is overfitting, it has learned the noise and fluctuations in the training

data rather than the underlying patterns and relationships. As a result, the

model performs very well on the training data but has poor performance

on new data. For example, consider a dataset that consists of the number

of hours of study per day and the corresponding exam scores for a group

of students. If the relationship between study hours and exam scores is

actually linear, a simple linear regression model would be appropriate.

However, if a more complex model, such as a high-degree polynomial

regression, is used, the model may capture the noise and fluctuations in

the training data and overfit the data. As a result, the model will perform

poorly when used to predict exam scores for new students who were not
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part of the training data. To prevent overfitting in this case, techniques such

as regularization, early stopping, and cross-validation can be used. For

example, regularization can be used to add a penalty term to the objective

function that the model is optimizing, which can discourage overfitting

by limiting the complexity of the model. Cross-validation can be used to

ensure that the model is not overfitting to a specific subset of the data, and

early stopping can be used to stop the training of the model before it has

converged to prevent it from continuing to fit the noise in the training data.

Underfitting is a phenomenon in machine learning where a model is not

complex enough to capture the underlying patterns and relationships in

the data, resulting in poor performance on both the training data and new,

unseen data. For example, if the true relationship between study hours

and exam scores is a quadratic function, a linear regression model would

be too simple to capture this relationship. As a result, the model would

underfit the data and perform poorly on both the training data and new,

unseen data. To prevent underfitting in this case, a more complex model,

such as a polynomial regression model with a higher degree, could be used.

Additionally, feature engineering could be used to create additional features

that capture the non-linear relationship between study hours and exam

scores.

How message passing works?

n1

n3

n2

n4
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m13
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mij = fe(hi, hj, eij)

h = fv(hi, )

m11

Figure 2.8: Message Passing Layer
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Permutation-equivariant layers that convert a graph into a new version of

the same graph are known as message-passing layers. A permutation equiv-

ariant layer can process the same graph regardless of the order in which

the nodes are listed. They can be described formally as "message-passing

neural networks" (MPNNs). The message(i.e., information) is usually com-

puted as a function of the node features and the edge connecting the nodes.

The information contained in the messages is then aggregated at each node

to produce a new representation of the node. This process is repeated

several times to produce a final representation of the graph that captures

the underlying graph structure.

To explain figure 2.8 for a message-passing network, let us assume we have

a graph with n nodes and e edges. The features of each node are contained

within the node itself, in the form of a vector or a tensor. The goal of

message passing is to allow the GNN to capture the structural information

of the graph and to use that information to make predictions. Each node in

the graph sends and receives messages to and from its neighboring nodes.

The messages contain information about the features of the sender and the

relationship between the sender and the receiver and are used to update

the features of the receiving node. Messages are passed between nodes i

and j and represented by mij, and is calculated by the help of a function fe

shown in the first equation from equation 2.1. the edge features between

the two nodes are represented as eij. The fe in the formula represents a

differentiable function which is usually a small ML) that takes into account

both the features of nodes and edges if they have edge features.

mi j = f e(hi ,h j ,ei j )

h = f v(hi , (
∑

m j i ))
(2.1)

A permutation-invariant function, such as summation, mean or max shown

in the second formula of equation 2.1, is then used to aggregate all messages

that arrive at each node. Sometimes mean or max is also used in place of the

summation. There exists another MLP as fv in the second formula, which

joins the aggregated representations and gives an updated feature vector of

the node n1 in figure 2.8. An MPNN is considered a basic foundation for

GNN[45].
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When updating their representation, graph nodes in an MPNN get data

from their close neighbors. With n MPNN layers stacked, one node can

interact with nodes that are up to n "hops" distant. If the number of MPNN

layers is equal to the diameter of the graph(i.e. maximum distance between

any two vertices in the graph) would need to be stacked so that each node

would capture information from all other nodes in the graph. However,

oversmoothing and oversquashing may occur when stacking several MPNN

layers. Oversmooting can happen when the graph has too many layers (i.e,

propagates information too many times through the graph). Therefore,

leading to node representations become too similar and lose their local

properties. Additionally, using a propagation function that is too simple

or homogeneous can also lead to oversmoothing [51], as it may not ef-

fectively capture the complex relationships between nodes in the graph.

Oversmoothing can be reduced by reducing the number of GNNs.

Another problem that can occur in GNNs is oversquashing. MPNNs often

struggle to handle tasks that rely on long-range connections between nodes

in a graph. This is especially problematic when the graph has an exponen-

tially increasing number of distant neighboring nodes, which means that

a node’s "receptive field" grows rapidly as the radius of the neighborhood

increases. In order to deal with these non-adjacent nodes, their messages

must be compressed into fixed-size vectors, which can result in an over-

squashing of information. For example, using graph pooling methods(e.g.,

attention-based pooling, adaptive pooling, dimensionality reduction) the

size of the graph can be reduced by aggregating information from multiple

nodes into a single, coarser node. This can help the GNN process informa-

tion more efficiently while preserving important structural features of the

graph.

2.4.2 Graph Neural Networks(GNN)

GNNs are specialized neural networks designed to operate on graph-

structured data. They are effective at tackling a variety of graph prediction

challenges at the graph, node(e.g. node classification), and edge levels(e.g.

link classification). In a GNN, each node is associated with a feature vector,

and the edges between nodes represent the relationships or connections

between them. GNNs operate by iteratively updating the node features
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based on their neighboring nodes and the edges that connect them. The

use of pairwise message passing is a critical component in the design of

GNNs, allowing graph nodes to iteratively update their representations by

exchanging information with their neighbors.

Applications for GNNs include recommending friends in a social network

[49]. Also, there are several open-source libraries that implement graph

neural networks, including TensorFlow GNN [48], PyTorch Geometric [16].

Different types of GNN

There are several forms of MPNN that have been proposed namely Graph

Convolutional Network(GCN), Graph attention network(GAT)

Model Key features

GCN (Graph Convolutional
Network)

Uses a simple mean or sum aggregation of neigh-
borhood features for node representation learn-
ing.

GAT (Graph Attention Net-
work)

Introduces attention mechanism to weight the
contribution of different neighbors when aggre-
gating their features.

GraphSAGE Samples a fixed-size neighborhood for each
node and aggregates the feature information of
these neighbors.

GIN (Graph Isomorphism
Network)

Uses a multi-layer neural network with a learn-
able aggregation function to update node repre-
sentations.

Table 2.3: Comparison of different types of GNN

Here are some advantages and disadvantages of each model:

Graph Convolutional Networks (GCN)

Advantages:

• Captures local neighborhood information well

• Simple and easy to implement

• Can be efficient for small graphs

Disadvantages:
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• Can struggle with modeling long-range dependencies

• Not very scalable for large graphs

Graph Attention Networks (GAT) Advantages:

• Can model fine-grained attention mechanisms

• Can handle long-range dependencies

Disadvantages:

• Computationally expensive

• Can overfit on small graphs Attention mechanisms can be difficult to

interpret

GraphSage

Advantages:

• Can scale to large graphs Efficient and computationally inexpensive

• Can capture local neighborhood information at different scales

Disadvantages:

• Less expressive than GCN and GAT. May not perform as well on tasks

that require modeling long-range dependencies

2.4.3 Sequential data handling by Neural Networks

Recurrent Neural Network

Recurrent Neural Networks (RNNs) are a type of neural network that is

commonly used for sequential data processing tasks. RNNs are designed

to operate on sequences of input data, such as time-series data or natural

language text, by maintaining a hidden state that encodes information from

previous inputs..Rumelhart et al.[40] first introduced vanilla RNN in their

paper. To explain how RNN works, it is important to know the difference
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Figure 2.9: Feed-forward neural network vs RNN

between RNNs and feed-forward neural networks first. The following figure

would help us to explain the difference.

In the feed-forward neural network, as shown in figure 2.9, information

only travels in one direction, from the input layer to the output layer via

the hidden layer. These networks take in a fixed number of inputs and

use the weights of the connections between neurons to transform the

inputs into an output. They are poor at predicting the next outcome of

the sequence data because they cannot hold the memory of the previous

input that they receive. In contrast, the information passed through an

RNN maintains a loop. When it gives an output, it takes into account

the current input and what it has learnt from the previous inputs. To

give an example, consider feeding the word ’report’ as an input to a feed-

forward network, one by one. The moment the character reaches ’o’, the

previous characters are not remembered and it cannot predict that the

next character would be ’r’. However, an RNN is fully capable enough

to keep those characters in it memory, by copying the generated output

and sending it back to the network as a loop. In this way, RNN learns its

input and keeps it in the memory. The internal hidden layer allows RNNs

to process and make predictions about sequences of variable length. In

the feed-forward neural network, as shown in figure 2.9, information only

travels in one direction, from the input layer to the output layer via the

hidden layer. These networks take in a fixed number of inputs and use the
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weights of the connections between neurons to transform the inputs into

an output. They are poor at predicting the next outcome of the sequence

data because they cannot hold the memory of the previous input that they

receive. In contrast, the information passed through an RNN maintains a

loop. When it gives an output, it takes into account the current input and

what it has learnt from the previous inputs. To give an example, consider

feeding the letters of the word ’report’ as an input to a feed-forward network,

one by one. The moment the character reaches ’o’, the previous characters

are not remembered and it cannot predict that the next character would

be ’r’. However, an RNN is fully capable enough to keep those characters

in its memory, by copying the generated output and sending it back to the

network as a loop. The internal hidden layer allows RNNs to process and

make predictions about sequences of variable length.

Long Short-term Memory Networks: LSTM

Long Short-term Memory(LSTM) network is able to retain information

over long periods of time because of the memory cell, which acts like a

conveyor belt, allowing information to flow through it and be stored over

time. Standard RNN architecture has a problem known as the vanishing

and exploding gradient. The vanishing gradient problem occurs when the

gradients used to update the weights during backpropagation become very

small as they propagate through the network. As a result, the weights may

not be updated effectively, and the model may have difficulty learning long-

term dependencies. Conversely, the exploding gradient problem occurs

when the gradients become very large as they propagate through the net-

work. LSTMs solve this problem by introducing a memory cell and three

gates (input, output and forget gates) which can retain information over

long periods of time. By doing this they control the flow of information into

and out of the memory cell. The gates are controlled by sigmoid neural

network layers, which decide what information to store in the memory cell,

what to discard and what to output. The input gate controls the flow of

new information into the memory cell, the forget gate controls the flow of

information out of the memory cell(i.e., which information to discard), and

the output gate controls the flow of information out of the memory cell and

into the output.
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Figure 2.10: LSTM Unit

At each time step, the LSTM takes in an input, x, and the previous hidden

state, h(t-1), and computes the current hidden state, h(t), and output, y(t).

The computation is done in the following steps(see figure 2.10):

1. Forget gate: The forget gate determines which information in the

current memory cell should be discarded. It takes as input the previ-

ous hidden state h_t-1 and the current input. A vector created by a

multiplying a set of learnable weights and added learnable bias with

it. Afterwards this vector is then passed through a sigmoid activa-

tion function to produce an output between 0 and 1. This output

is then element-wise multiplied by the previous memory cell state

value, C_t-1, which allows the network to selectively forget irrelevant

or redundant information. Values close to 0 indicating that the cor-

responding element in the memory cell should be forgotten, and

values close to 1 indicating that the corresponding element should be

retained.
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2. Input gate: the input gate determines which information should be

stored in the memory cell. It takes as input the previous hidden

state h_t-1 and the current input, and passes them through a sigmoid

activation function to produce an output between 0 and 1

3. Candidate memory: The candidate memory cell state value is com-

puted using a tanh activation function. It takes as input the previous

hidden state h_t-1 and the current input, and combines them to

produce a value between -1 and 1. This value represents the new

information that could be added to the memory cell.

4. Output gate: The output gate determines which information in the

memory cell should be outputted as the final hidden state of the LSTM

network. It takes as input the previous hidden state h_t-1 and the

current input, and passes them through a sigmoid activation function

to produce an output between 0 and 1. This output is then element-

wise multiplied by the current memory cell state value C_t, which

allows the network to selectively output the relevant information.

The resulting value is passed through a tanh activation function to

produce the final hidden state h_t as shown in the figure 2.10.

In this way, LSTMs can selectively read, write, and erase information in the

memory cell, which allows them to maintain long-term dependencies in

sequential data. However, LSTM networks, like all neural network models,

can have several problems, including:

• Overfitting: LSTMs can memorize the training data too well, leading

to poor generalization on unseen data.

• Slow training: LSTMs can be computationally expensive to train,

especially on large datasets.

• Difficulty in interpret-ability: LSTMs are complex models and it can

be difficult to interpret the internal workings of the model, making it

challenging to understand why a particular prediction was made.

• Need for a large amount of data: LSTMs require large amount of

data to train, which makes it difficult for small datasets to be trained

effectively.
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Transformers

The Transformer architecture was designed to overcome the limitations

of LSTMs and RNNs and to provide improved performance on sequential

data tasks. A transformer-based encoder-decoder architecture is based on

attention layers and was first proposed by Vaswani et Al[44].

The Transformer consists of two main components, the encoder block(see

first gray rectangle of figure 2.11) and the decoder block(see second gray

rectangle of figure 2.11).

The Encoder Block: The encoder processes the input sequence and pro-

duces a sequence of hidden representations, known as the encoded se-

quence. The encoder consists of several identical layers, each containing

two sub-layers: a self-attention mechanism and a fully connected feedfor-

ward network shown in figure 2.11. Input embeddings are used to represent

the input words in a sequence as dense, low-dimensional vectors that can

be easily processed by the model. These embeddings are learned through

training and are optimized to capture the semantic and syntactic features of

the words. Next, positional embeddings are added to the input embeddings

to create a representation that encodes both the content of the word and

its position in the sequence. And attention mechanism allows the model to

focus on different parts of the input sequence when generating each output

word.

Self-Attention Mechanism: The self-attention mechanism allows each el-

ement in the input sequence to attend to all other elements, weighted by

the degree of relevance. The attention mechanism is implemented as a dot-

product between a query vector, a key vector, and a value vector for each

element in the sequence. The query vectors are used to calculate attention

scores for each position in the input sequence, key vectors represent the

positions in the sequence being attended to, and value vectors represent

the actual information being attended to. The attention weights are then

used to compute a weighted sum of the value vectors, which is used as the

output for the self-attention mechanism. The "Add and norm" step in the

Transformer model combines the output of the attention and feed-forward

layers and applies layer normalization.

Feedforward Network: The feedforward network is a simple neural network

with a series of fully connected layers. It is used to learn non-linear trans-
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Figure 2.11: Transformer

formations of the input representations and to add non-linearity to the

model.
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The Decoder Block: The decoder processes the encoded sequence and pro-

duces the output sequence. The decoder is similar to the encoder, with the

addition of an attention mechanism that allows the decoder to attend to the

encoded sequence. In the decoder block of the Transformer model, atten-

tion is applied over the encoder outputs and the decoder inputs, whereas

in the encoder block, attention is applied only over the input sequence.

By means of this attention mechanism the decoder take into account the

context of the input sequence when generating the output sequence. The

decoder also contains a series of identical layers, each containing two

sub-layers: a self-attention mechanism, an attention mechanism over the

encoded sequence, and a fully connected feedforward network.The atten-

tion mechanism is needed in the decoder of the Transformer model to

allow the decoder to focus on relevant parts of the input sequence while

generating the output, as the decoder’s output at each step is influenced by

the entire input sequence. In contrast, the encoder only needs to capture

the important features of the input sequence and can process the sequence

sequentially.

The transformer model have several advantages compared to RNN and

LSTM. The self-attention mechanism in the Transformer model allows

for parallel processing of input sequences, which can significantly speed

up training and inference. In addition, the attention mechanism in the

Transformer model allows for visualization of the importance of different

parts of the input sequence in generating the output, making the model

more interpretable. However, the Transformer model has a large number

of parameters, which requires a large amount of training data to avoid

overfitting.

2.5 Evaluation

Evaluating machine learning models is a crucial step in the development

and deployment of machine learning systems. It helps us to determine the

performance and robustness of the models. Furthermore, it guides us in

making decisions about model selection, optimization, and deployment.

In the following, I list several important reasons for evaluating a machine

learning model.
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• Model Performance: Evaluation allows us to quantify the perfor-

mance of a model on a specific task and compare it with other models.

This helps us determine which model is best suited for the task at

hand.

• Model Selection: Evaluation allows us to choose the best model for

a specific task based on its performance. This is important because

different models may perform better on different types of tasks or

datasets.

• Model Optimization: Evaluation helps us determine where a model

can be improved and what changes can be made to optimize its per-

formance. This could include adjusting hyperparameters, changing

the architecture of the model, or using a different type of model alto-

gether.

• Model Deployment: Evaluation is critical for determining when a

model is ready to be deployed in a real-world setting. A model that

performs well on a validation set may not perform as well in a real-

world setting, so evaluation is necessary to ensure that the model is

robust and can generalize well to new data.

• Model Trust: Evaluation helps to build trust in a model by providing

transparency into its performance and limitations. This is impor-

tant because machine learning models are increasingly used to make

important decisions, and it’s important to ensure that they are trust-

worthy and accurate.

Accuracy is a popular metric for evaluating machine learning models. How-

ever, many real world datasets are imbalanced, i.e., classes differ in their

sample size One example where this might occur is in predicting a specific

disease(e.y, lung cancer).Only a small fraction of patients have the dis-

ease(minority class) while most patients do not have this disease(minority

class). In such cases, accuracy can be misleading because a model that

simply predicts the majority class for all instances will have a high accuracy,

but it will not have any practical value. Therefore, we should also consider

other metrics. Other metrics such as precision, recall, F1-score, Area under

the ROC curve(AUC), Receiver operating characteristic (ROC) curve and

the confusion matrix should also be considered, depending on the specifics



2.5. EVALUATION 41

of the task(e.g., using precision for fraud detection, recall for medical diag-

nosis) and the dataset. Two common metrics used for regression tasks are

as follows:

• Mean Squared Error (MSE): MSE measures the average squared dif-

ference between the predicted and actual values. It is calculated by

taking the average of the squared differences between the predicted

and actual values. A lower MSE indicates better performance of the

model.

• Mean Absolute Error (MAE): MAE measures the average absolute

difference between the predicted and actual values. It is calculated by

taking the average of the absolute differences between the predicted

and actual values. A lower MAE indicates better performance of the

model.

Area Under the curve

Figure 2.12: Receiver operating characteristic curve

The area under the curve (AUC) is a widely used metric in machine learning

that measures the performance of a binary classification model. It is a sum-

mary of the model’s performance over all possible classification thresholds,

expressed as the area under the receiver operating characteristic (ROC)

curve (see figure 2.12). AUC measures the model’s ability to discriminate

between the positive and negative classes, making it a more reliable metric

for imbalanced data.
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Table 2.4: Confusion matrix

The ROC curve is a plot of the true positive rate (TPR) against the false posi-

tive rate (FPR). A confusion matrix(see table 2.4) is a table that summarizes

the performance of a binary classification model. It has four entries: True

Positive (TP), False Positive (FP), True Negative (TN), and False Negative

(FN). The confusion matrix can be used to calculate the TPR and FPR at

different classification thresholds, which can be used to plot the ROC curve.

At each threshold, the confusion matrix is calculated, and the TPR and FPR

are calculated based on the entries of the confusion matrix. The TPR(also

known as sensitivity) is calculated as TP / (TP + FN), while the FPR is calcu-

lated as FP / (FP + TN). The TPR and FPR are then plotted on the ROC curve,

with the TPR on the y-axis and the FPR on the x-axis. TNR (also known

as specificity) measures the model’s ability to correctly identify negative

instances. The TNR is calculated as TN / (TN + FP). False Negative Rate

(FNR) is the ratio of false negatives to the total number of actual positives

calculated as FN / (FN + TP).

AUC summarizes the trade-off between TPR and FPR into a single number,

where an AUC of 1.0 corresponds to a perfect model and an AUC of 0.5

corresponds to a random model, and AUC of 0 means that the binary

classifier’s predictions are completely wrong. The AUC provides a measure

of how well the model separates positive and negative instances and gives

a single metric for comparing models.
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3.1 Predictive Analytics in Healthcare

Predictive analytics serves as an efficient tool in the healthcare domain,

especially to improve patient outcomes and reduce healthcare costs. In this

section, I describe some major case studies with methodologies, on the use

of predictive analytics in health care. It is important to note that the quality

of results obtained from the analysis is vastly dependent on the quality of

data available for analysis. However, as our understanding of data accuracy

and its optimal representation increases, a great amount of improvement

has been observed in the field of healthcare. For eg:

1. Prediction of patient readmission.

2. Prediction of chronic diseases such as diabetes, heart diseases and

cancer.

3. Prediction of medication adherence in patients.

4. Predictive modelling of ICU patients for the length of stay, mortality

prediction etc

5. Prediction of sepsis.

My research has primarily focused on predicting the length of stay and mor-

tality of ICU patients. This is generally useful to identify patients at a state

of high risk and to enable early interventions and improve their outcomes

and is typically achieved by implementing machine learning models on

historical patient data, demographic information, clinical variables and

treatment information. Some of the most commonly used variables in this

case, which I have also considered in my work are:

43
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• Vital signs e.g. heart rate, blood pressure, temperature etc.

• Laboratory test results e.g. blood glucose levels

• Medical history e.g. previous medications

• Treatment information e.g. current medications

3.1.1 Mortality Prediction

The main goal of mortality prediction in patients, which is most often

applied to patients in ICU and in critical conditions, is to estimate the like-

lihood of death of patients, thereby assigning priority to the patients with

a high likelihood of mortality. Variables such as vital signs, lab test results

and medical history could be modelled in logistic regression, decision trees,

random forest and/or neural networks to achieve this.

3.1.2 Length of Stay (LOS)

Modelled using similar variables as mortality prediction such as vital signs,

lab test results etc., LOS prediction aims to estimate the duration of hospi-

talization in patients, most often for patients in ICU. In addition to helping

clinicians plan better care routines for patients, such results also contribute

to the efficient management of hospital resources which in turn improves

outcomes for other patients.

3.2 Neural Networks

Neural networks can be used for efficient mortality prediction and length

of stay in patients since they are especially eminent in capturing complex

affinities between variables and can be used to model non-linear relation-

ships, which may not identifiable through traditional statistical methods.

For both mortality prediction and length of stay, neural networks can be

trained from a range of available techniques such as feedforward, convolu-

tional or recurrent, gaining a probability score as an output which can be

used to categorize patients into several risk categories.

There are two primary challenges, however, in using neural networks for

mortality and LOS prediction: the need for high-quality data in training
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and the complexity of the neural network models causing difficulty in

interpreting them. Additionally, once generated, the models would also

require constant updates and validation to maintain accuracy and ensure

their effectiveness over time.

3.3 Patient Representation

The important objective of graph representation learning is to produce

representation vectors that can encapsulate the important features of large

graphs precisely. This is vital for downstream prediction tasks such as node

classification, and link(e.g. edge) prediction which essentially relies on the

quality of the representation vectors of the graphs. Graphs can contain

various kinds of entities(nodes) and an edge connecting them. In contrast,

traditional deep learning methods cannot incorporate such diversified

properties of the entities and strong correlations between them.

Patient representation learning is a type of machine learning that focuses

on analyzing and extracting meaningful features or representations from

patient data, such as medical records or imaging data, to improve clini-

cal decision-making and patient outcomes. Traditionally, medical data

has been analyzed using statistical methods, which may not capture the

complex relationships between different variables of patient data. How-

ever, patient representation learning can leverage more advanced machine

learning techniques, such as deep learning and neural networks, to iden-

tify important patterns and relationships in the data. Huang et. al.[42]

discuss various techniques for patient representation learning, including

deep learning models such as autoencoders, convolutional neural net-

works, and recurrent neural networks. They also provide examples of how

these techniques have been used in various healthcare applications, such

as predicting disease risk and identifying disease subtypes. The authors

highlight the potential benefits of patient representation learning for im-

proving healthcare outcomes and call for further research in this area. In

the following sections, various patient representation learning methods

have been reviewed and compared.
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3.3.1 Vector-based patient representation

Vector-based patient representation refers to the representation of patients

as vectors (i.e., arrays of numerical values) in a high-dimensional feature

space. These vectors are learned using machine learning techniques, such

as deep neural networks, and can capture complex relationships between

different patient data modalities, such as electronic health records, medical

imaging, and genomic data. Wang et al.[46] developed a deep-learning

model to automatically detect metastatic breast cancer in lymph node

specimens. The model was trained on a large dataset of high-resolution

digital pathology images and used a convolutional neural network to learn

a vector-based representation of the images. The learned representations

were then used to classify the images as either positive or negative for metas-

tasis. The model achieved state-of-the-art performance on a public dataset

and demonstrated the potential of vector-based patient representation for

improving the accuracy and efficiency of a cancer diagnosis.

Word embeddings are a popular vector-based patient representation learn-

ing technique that is used to represent textual data. Word embeddings

represent each word in a patient’s EHR as a vector in a high-dimensional

space, where semantically similar words are mapped to nearby vectors.

For example, a study by Choi et al. [12] used word embeddings to predict

the risk of heart failure for patients based on their EHRs, achieving higher

accuracy compared to other machine learning models. Word embeddings

are a simple and effective way to represent text data as vectors, which can

capture semantic relationships between words and can be used with both

structured and unstructured data. However, they can be sensitive to the

choice of parameters used to generate them, which can lead to different

embeddings for the same words.

Deep autoencoders are a type of neural network architecture that learns

to compress and reconstruct input data. A study by Cheng et al. [11] used

autoencoders to predict the risk of COVID-19 for patients based on their

EHRs, achieving higher accuracy compared to other machine learning

models. Autoencoders can learn a low-dimensional representation of high-

dimensional data, which can capture important features and patterns.

They can be used with various types of data, including both structured

and unstructured data, and can be trained in an unsupervised manner.
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However, Autoencoders can suffer from overfitting when the dimensionality

of the latent space is too small. Additionally, they can be computationally

expensive to train, especially for large datasets.

3.3.2 Temporal matrix-based patient representation

In this type of representation, a 2D matrix for each patient is created where

the x-axis represents time and the y-axis represents all the clinical events.

High-dimensional data is eventually reduced to lower dimensions with the

aid of a set of non-negative elements generated by non-negative matrix

factorization(NMF). The authors [47] have used NMF based framework

to extract the temporal features of the patients and therefore created a

matrix of all the events. They have validated their methodology on a real-

world diabetes dataset which contains diabetes as labels. They have used

their framework to mine the temporal features from lab results, medical

procedures, etc. They have been shown to outperform the baseline meth-

ods without the temporal features using Area Under the curve(AUC). This

was one of the earliest research to create a mathematical representation

of patients. Although a convolutional matrix factorization method was

suggested them to identify shift-invariant patterns across patient EHR ma-

trices, they are unable to select the ideal pattern lengths and must loop

every potential value.

Using almost a similar approach mentioned above, authors [10] have pro-

posed a noble methodology to perform predictive modelling of chronic

diseases. Initially, every patient is represented as a matrix of events with re-

spect to time. Then a four-layer convolutional neural network was devised

to get the phenotypes and finally make the prediction. They have improved

upon the work of Zhou et al [53] who also extract phenotypes by grouping

temporal trends having similarity. However, their work fails to address the

temporal relationships across the different events.

3.3.3 Graph-based Patient representation

Graph-based patient representation learning uses graphs to represent pa-

tient data and extract meaningful features for various healthcare applica-

tions. In this approach, patients are represented as nodes in a graph, and

the relationships between patients are represented as edges connecting
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the nodes. Graph-based patient representation learning techniques aim to

learn a low-dimensional representation of the patient graph that preserves

important information about the relationships between patients. GCNs

are a type of neural network that can operate on graphs to learn represen-

tations of nodes based on their neighbourhood relationships. GCNs have

been used in patient representation learning for various healthcare appli-

cations, including disease diagnosis, patient similarity measurement, and

drug response prediction. For example, a study by Ma et al. [29] used GCNs

to predict the disease status of patients based on their EHR data, achieving

superior performance compared to traditional machine learning methods.

GATs are a type of neural network that can learn attention weights for the

edges in a graph, allowing the model to focus on the most important rela-

tionships between patients. GATs have been used in patient representation

learning for various healthcare applications, including patient clustering,

drug response prediction, and disease diagnosis. For example, a study by

Zitnik et al. [54] used GATs to predict the effectiveness of drugs for patients

with breast cancer. GAEs are a type of neural network that can learn a

low-dimensional representation of a graph while preserving its important

structural properties. Graph Auto Encoder(GAE) have been used in pa-

tient representation learning for various healthcare applications, including

disease diagnosis, patient clustering, and drug response prediction. For

example, a study by Goyal et al. [18] used graph autoencoders to learn the

graph structure of electronic health records (EHRs) and predict the risk of

heart failure.

3.3.4 Sequence based representation

Each patient’s timestamped event sequential characteristics are created

using a sequence-based patient representation. RNNs are a type of neural

network that can operate on sequences of data by learning a hidden state

that represents the contextual information of the previous elements in the

sequence. For example, a study by Che et al. [8] used RNNs to predict the

risk of heart failure for patients based on their EHR data. Although the

authors provide a promising approach for predicting clinical outcomes

using RNNs and handling missing data in time-series data, further research

is needed to validate the approach in diverse populations and healthcare

settings, and to address limitations related to missing data and model com-
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plexity. Transformer-based models can operate on sequences of data by

attending to all elements in the sequence, without the need for a recurrent

structure. For example, a study by Alsentzer et al. (2019) used a transformer-

based model to predict the risk of sepsis for patients based on their EHR

data. Hidden Markov Model(HMM) is a type of probabilistic model that can

operate on sequences of data by modelling the probability of each element

in the sequence given its previous elements. For example, a study by Che

et al. [9] used HMMs to predict the risk of heart failure readmission for

patients based on their EHR data. However, HMMs can be computation-

ally expensive to train and may not be well-suited for large-scale datasets,

which can limit the practicality of the approach for use in clinical settings.

3.3.5 Tensor-based representation

Tensor-based patient representation learning techniques use tensor data

to extract meaningful features and patterns for various healthcare appli-

cations. Tensors are multi-dimensional arrays that can represent complex

data structures such as multi-modal healthcare data. Tensor-based patient

representation learning techniques can be divided into three categories:

tensor factorization, tensor regression, and tensor networks. Tensor fac-

torization is a type of matrix factorization technique that can operate on

tensors by decomposing them into multiple lower-dimensional tensors.

For example, a study by Kim et al. [25] used tensor factorization to predict

the risk of heart failure for patients. Tensor regression is a type of regres-

sion technique that can operate on tensors by modelling the relationship

between a tensor and a set of target variables. For example, a study by Kim

et al. [24] used tensor regression to predict the response to chemotherapy

for cancer patients based on their multi-modal healthcare data. Tensor

networks can operate on tensors by learning a low-dimensional represen-

tation of the tensor while preserving its essential structural properties. For

example, a study by Lee et al. (2020) used tensor networks to predict the risk

of stroke for patients based on their multi-modal healthcare data, achieving

higher accuracy compared to other machine learning models.
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4.1 Dataset: EICU

In this section I will discuss about the dataset being used for this thesis and

how I have preprocessed the dataset. I have used the eICU Collaborative

Research Dataset [36], a database of Intensive Care Unit(ICU) patients from

more than 200 hospitals in the USA. The database contains data from about

139,367 patients who spent at least one night in an ICU. 166,355 hospital

admissions and 200,859 ICU admissions are included in the data. The

dataset contains more admissions than patients because some patients

were admitted to the ICU more than once during a single hospital stay

or were hospitalized more than once, a disparity between the number of

patients and admissions is seen.

Patients’ discharge statuses from the ICU or hospital are noted as "Expired"

or "Alive." 156,476 entries had people with a discharge status of "Alive,"

whereas 9,861 patients had a discharge status of "Expired." The patient

table includes demographic information such as age, gender, and ethnicity.

The median age of patients admitted to the ICU is 65 years old, and mor-

tality rises with the age of admission. ICU admission statistics on gender

show that 108 379 of patients identified as male, 92 303 as female, 35 were

recorded as Unknown, and 8 chose the status Other. The mortality rate of

both males and females are almost similar, 5.46 % for males and 5.37 % for

females. However, the mortality rate in the hospital show little difference,

as females have a rate of 9.15 % and male 8.9 %.

Diagnosis of patients is an important factor to consider for building out

machine learning model. So, we have classified the most important diag-
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Table 4.1: Most frequent diagnosis

Diagnosis Count
Sepsis, pulmonary 8862

Infarction, acute myocardial (MI) 7228

CVA, cerebrovascular accident/stroke 6647

CHF, congestive heart failure 6617

Sepsis, renal/UTI (including bladder) 5273

Rhythm disturbance (atrial, supraventricular) 4827

Diabetic ketoacidosis 4825

Cardiac arrest 4580

CABG alone, coronary artery bypass grafting 4543

noses by filtering diseases with the highest frequencies. The table below

shows the diagnoses with more than 4500 patients.

4.2 Preprocessing

Input
Tables

Data
Cleaning

Data
Integration

Data
Transformation

Data
Reduction

Static
Features table

Time series
features table

Labels table

Figure 4.1: Overview of data preprocessing steps

In this project, I have used the data preprocessing steps(see figure 4.1),

which I shall explain in the following sections. In the input tables shown in

the first block of the diagram, the following four queries were run on data

stored in postgresSQL and also in Neo4j graph database to generate labels,

diagnosis, flat features and time-series tables.

Query 1 (Labels Table): The labels table has been generated by running an

SQL query to inner join patient and apachepatientresult. The patients from

both the tables had been matched by the patientunitstayid. Only the most

recent apache prediction model was used, excluding anyone who doesn’t

have at least 24 hours of data. A selection table is created which considers

the first ICU stay of every patient, and satisfying the 24 hours of stay. The
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Table 4.2: Static Features extracted from EHR data

Attribute Type
Age Discrete

Gender Binary

Height Continuous

Ethnicity Categorical

Weight Continuous

UnitType Categorical

UnitAdmitSource Categorical

UnitStayType Categorical

UnitStayType Categorical

Physician Speciality Categorical

Eyes Discrete

Verbal Discrete

Motor Discrete

Meds Discrete

Intubated Binary

Dialysis Binary

Ventilated Binary

idea behind that is the model should be used as soon as the hospital has

24 hours of continuous data. Running this query returns 89143 stays of

patients. We have written a similar query to extract the patients from Neo4j

Graph database.

Query 2 (Diagnosis table): We have taken patients only present in the labels

table. The diagnosis was entered either before the patient was admitted to

the hospital or recorded in the first 24 hours of stay.Also, the past medical

history and the primary diagnosis of every patient before being admitted

to the ICU was been extracted. The patients in admissiondx table and

pasthistory table was matched by using the unique patientunitstayid. The

diagnosis string of 89143 patients were been extracted by the help of this

query.

Query 3 (Flat features table): By using this query we have extracted 17

static features of patients from apacheapsvar and apachepatientresult ta-

ble.Only the patients listed in the labels table were inner joined using the

patientunitstayid. The list of the flat features has been listed below
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Query 4 (Timeseries table): Features from multiple tables has been ex-

tracted from to create time series table. Firstly, we extract the most com-

mon labs present in the dataset, and consecutively the counts of number

of patients having result for those labs. The labresultoffset was selectd

between -1440 and 1440 because it is important to note down lab results

before the start of the unit time. This could potentially help the imputation

of missing values forwards. After extraction of all the labs, we limit to those

common labs which are present for at least 25 % of the patients. And the

counts of patients were in descending order. This results in two columns

having labname and count and 47 lab features.

Secondly, we retrieve the time series features from the common lab tests

extracted above. By inner joining the common labs and labels table and

keeping the labresultoffset between -1440 and 1440 we get four columns of

data, namely, patientunitstayid, labresultoffset, labname and labresult.

Thirdly, we retrieve the most common respiratory chart entries and con-

secutively how many patients have results from respiratory charting table.

Similar to above we consider respchartoffset between -1440 and 1440 so

that we can do the imputation during the preprocessing stage. By inner

joining the labels table and grouping by respchartvaluelabel, we only keep

the data that is available for at least 13% of the patients because only few

patients are ventilated. This results in a table having only two columns

namely, respchartvaluelabel and count.

Then, based on the respiratory chart entries we have extracted in the pre-

vious query, we create a table having respchartoffset, respchartvaluelabel

and respchartvalue by inner joining commonresp and labels table. The

respiratorychart offset is kep between -1440 and 1440. After this, the peri-

odic(regularly sampled) time series data extraction is followed by doing an

inner join of vitalperiodic extracing a multiple of features namely, observa-

tionoffset, temperature, sao2, heartrate, respiration, cvp, systemicsystolic,

systemicdiastolic, systemicmean, st1, st2 and st3. The observation offset

range as kept as similar.

Finally, we extract the aperiodic data which are irregularly sampled time se-

ries data. A range of features namely observationoffset, noninvasivesystolic,

noninvasivediastolic, noninvasivemean is extracted by this last query.
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As soon as the tables available after running the SQL and cypher queries,

I get raw data in the form of csv’s and passed to the main preprocessing

block(see figure 4.1)

Data Cleaning Missing values in the flat tables are handled by filling the

values in the age column with the mean age. There are few ages, which

are ’>89’, for them an extra variable was created to store that information.

For the timeseries data, masking was done at 1-hour intervals. The data

was irregular with missing values, so the values had been forward-filled.

The column where there was % sign present, was been removed and then

converted into numbers.

Data Integration In the data integration stage, I have combined multiple

tables which contains time dependent features into one to perform further

preprocessing steps.

Data transformation In the data transformation stage, normalization and

standaradization are performed. So it is important to rescale the variable

to have similar range or variance for the machine learning model to learn.

Some features such as admissionHeight, age, eyes, motor, verbal and hour

are not normally distributed, so to normalize the data, we subtract the

minimum value and then divide by the max value for each of these fea-

tures. Categorical data has been converted to numerical data using one

hot encoding, where each category is represented as a binary vector. The

labels has been processed by replacing the actualhospitalmortality with

the expired as 1 and the alive as 0. In order to preserve the hierarchical

structure of the diagnosis, I have used multi-hot encodings with each spot

relating to a different diagnosis and assigned distinct characteristics to

each class level. This results in a vector with an average sparsity of 99.5

% and a size of 4,436. Diagnoses having a prevalence of more than 0.5 %

are included. If an illness falls below this cutoff, it is included through any

parent classes that do.

Data reduction Only a selected number of features taken in the data reduc-

tion stage for the static features as shown in table 4.2. And the set of time

series features has been extracted as shown in table 4.3.

The output of the preprocessing steps are three tables(static features, label

and timeseries). Each of the tables were split into 70% for training, 15%
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Table 4.3: Timeseries Features extracted from EHR data

Attribute Type
Bedside glucose Continuous

FI02 Continuous

SaO2 Continuous

Non-Invasive Diastolic Continuous

Non-Invasive Systolic Continuous

Non-Invasive Mean Continuous

CVP Continuous

Heart Rate Continuous

Respiration Continuous

st1 Continuous

st2 Continuous

st3 Continuous

Systemic Diastolic Continuous

Systemic Systolic Continuous

Systemic Mean Continuous

Temperature Continuous

validation and 15% for test. The patient ids were kept unique in each of the

different splits of the different splits.
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Methods

The figure 5.1 below depicts the overview of our approach. We start by

storing the electronic health records in a graph database storage (Neo4j).

The data is stored in the underlying graph storage as nodes(see figure 5.2)

and edges before the preprocessing steps. Every patient has multiple unit

stays in the ICU. And each unit stay has multiple diagnoses of a patient

recorded. Apart from that, labs, vitalperiodic(continuously recorded every

time interval, e.g., heart rate), past history, are stored in the respective

nodes shown in the diagram. We compare the query performance of Neo4j

with SQL query stored in PostgresSQL. The results of the query performance

will be compared(section 6).

To start with step A in figure 5.1, we take into account a group of features

that describe the patients, including both unchanging(static) features and

features that change(temporal)s over time. The features are fetched from

Neo4j and stored in a CSV(easier to integrate with Machine learning work-

flows). After I performed pro-processing(see section4), the set of patients

go through a graph construction phase. The resulting graph contains all

patient as nodes connected based on their similarity. Next, I train the

Temporal(LSTM)-Graph(GNN) with the patient graph in an end-to-end

fashion. For the purpose of obtaining per-node predictions of mortality

and length of stay task, the Temporal-Graph generates three different types

of embeddings: the temporal dependencies, spacial dependencies, and

static dependencies(shown in section B of the diagram). Now, lets dis-

cuss the procedures of graph construction and the training steps of the

Temporal-Graph model.
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Figure 5.1: Overview of approach.
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GRAPH MODEL(NEO4J)

Figure 5.2: Graph storage model.

5.1 Patient similarity graph construction

In this section I will discuss the concepts behind the patient similarity graph

construction methodology with the help of a mathematical formula. Before

the calculation, all the diagnoses of the patients are multi-hot encoded

produce a matrix with dimensions m rows and n columns. In this context,

m denotes the total number of patients, while n refers to the number of

distinct diagnoses. I have used the formula for patient’s similarity graph

construction which was published by Rocheteau et al.[38].

Scor e(i , j ) = a(
n∑

u=1
DiαD jα(

1

oα
+b))−

n∑
u=1

(Diα+D jα) (5.1)

(5.2)
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where

Scor e(i , j )i ssi mi l ar i t y scor e

Diα−Diagnosis vector of patient i

D jα−Diagnosis vector of patient j

n −number of distinct diagnosis

oα−occurrence of a diagnosis

a,b −hyperparameters

The formula above, calculates the similarity score between two patients

i and j. The first part(green color) of the formula calculates the score of

shared diagnoses and the second part means all the diagnoses encountered

between patients i and j. Multiplying the diagnoses in the first part ensures

that only the diagnoses which are shared between the two patients are

taken into account. And then incorporating the inverse of that unique di-

agnose taken the rare diagnosis into consideration because it is important

to consider not only shared diagnoses but also the rare diagnoses which

are also important for calculating the similarity. The constants a and b are

used so that we can get a positive value for the similarity score. And in the

second part(blue color), subtracting the summation of all the diagnoses

benefits the patients from becoming high hubs of connectivity. To deter-

mine the number of edges connected with every patient node, we evaluate

the calculated Score using the k-Nearest Neighbor (k-NN) technique.

5.2 Training steps using LSTM-GNN

After creation of the patient similarity graph, node classification as outcome

prediction(alive or expired) is performed. The model we use is a hybrid

of two components, Graph(GNN) and Temporal(LSTM) [38], which work

together to encode graph and temporal information, respectively. Each

patient node consists of static features as well as time series features. In the

first step, the time series features are provided as input to a bi-directional

LSTM, which outputs a set of hidden state vectors in both the forward and

backward directions. To generate a temporal embedding for each node, we

concatenate the vectors that correspond to the most recent timestep. The

GNN component then propagates the temporal embedding of each node

inside its neighborhood. In order to generate a new node representation,
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the GNN modifies the weight of each patient node’s features by consid-

ering the feature vectors of its adjacent nodes in its immediate vicinity.

The static features are being given as input to the fully connected layer

which also generate a representation for each patient. Finally, all the three

different representations(temporal dependencies from the LSTM, spatial

dependencies from the GNN and static features from a fully connected

layer) are being concatenated and passed through a dense block to give a

final prediction for each node(patient).

5.3 Baseline Model

LSTM Dense Dense

18 time-varying
features(24 time steps)

20 non time-varying
features

Dense Dense Concatenated layer

output ihm/los prediction

C. Baseline Model(LSTM+SLP)

64 dense
blocks

3 layer biLSTM

Figure 5.3: Graph storage model.

We have created a baseline model for processing time series features and

and static features. Therefore, we have created a model consisting of a

bidirectional LSTM layer and a single layer perceptron(see figure 5.3). The

idea behind this method is that the single-layer perceptron will concentrate

on the model’s static characteristics while the bi-directional LSTM learns

the relationship between the time-series features. One SLP and three LSTM
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layers make up the model architecture, which is followed by a concatenated

layer that combines the output from LSTM and SLP layers. This combined

output is then sent to a further dense layer, followed by an output layer

with an sigmoid activation that can determine the mortality of the patient.

The model summary has been given in the image below:-

Figure 5.4: Model summary LSTM SLP architecture

The static inputs to the model are static features of individual patients in

the ICU, namely, gender, age, height, weight. ethnicity, etc. But time series

features include patient features which are varying over time, example,

bedside glucose, Heart rate, respiration, systolic, diastolic pressure, etc.

These measurements change every hour for the 24 hours periods which

is taken under consideration. The number of timesteps considered for

the training is 24. The training goes for 50 epochs having a batch size of

64. Smaller batch size have the benefit of regularizing effect and reducing

the generalization error. Also, it helps to fit one batch of training data in

memory. Batch size of 64 signifies that the 64 samples of the training dataset

to calculate the error gradient before the weight of the model is updated.

And for each training epochs the, algorithm make one pass through the

train data.
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Neural networks which are large and trained on smaller datasts cal cause

overfitting to the training data. The model learns the noise of the training

data which results in poor generalization on new unseen data.As a result,

generalizaiton error increases beacause of overfitting. One approach we

could follow is to train the same dataset on multiple different neural net-

works and to average the predictions of every model. This is not feasible

due to the time constraints. TO overcome that issue of overfitting, we have

used dropout layer in between the LSTM Layer. The way it functions is by

ignoring or dropping out some number of layer outputs.
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Results and Evaluation

In this section of the thesis, I present the results and evaluation of the

proposed methods, which aim to answer the research questions defined in

the introduction (section 1). The model was trained to predict two patient

outcomes: mortality and length of stay. To answer RQ1, I divided the

patient outcomes into classification and regression tasks and evaluated

the performance of LSTM-GAT and LSTM-SLP using a set of evaluation

metrics. In addressing RQ2, I compared the respective models with and

without diagnosis features added. Finally, for RQ3, I measured the query

times of two different databases.
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Figure 6.1: LSTM-GAT Loss Function for In-hospital mortality prediction.
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6.1 RQ1

For the LSTM-GAT model, the batch size was kept as 128 and the training

was run for 50 epochs. The activation function for GAT used was ’elu’ and

the loss function for the classification task was used as a cross-entropy loss.

And for the regression task, the loss function was used MSELoss. After every

epoch, the training loss and validation loss were monitored(see figure 6.1).

As can be seen from figure 6.1, the gap between the training and validation

loss is decreasing up to 20 epochs, which means the model has learned the

data properly. But after 20 epochs, since the model is very complex, it is

overfitting to the training data meaning that it is incapable to generalize

well to new, unseen data. In comparison, the LSTM-SLP loss curve(see

figure 6.4) is seen to have less gap between the train and the validation

data which seen the model being trained without being overfitted for the

LSTM-SLP.
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Figure 6.2: LSTM-GAT vs LSTM-SLP for In-hospital mortality prediction(AUROC)

As seen in figure 6.2, the LSTM-GAT model is seen to perform slightly

better(3.93%- without diagnosis and 1.77% with diagnosis) for the mor-

tality prediction task. The results being compared in the chart are for the

evaluation metric AUROC.
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Figure 6.3: LSTM-GAT vs LSTM-SLP for In-hospital mortality prediction(AUPRC)

As seen in figure 6.3, the LSTM-GAT model is performing better for the

mortality prediction task(9.8 %- without diagnosis and 6.3 % increase with

diagnosis). Therefore, to conclude, graph neural networks perform slightly

better predictions than single-layer perceptrons.

6.2 RQ2

After doing the preprocessing of the dataset, I have successfully created

patient similarity graph. The similarity was defined by the similar diag-

noses between patients. And each patient contained flat features and

time-dependent features(see section 5). As soon as the graph generation

for patient was complete, it is passed through LSTM-GAT model. The

model was trained on the objective to find mortality and length of stay.

The training was performed for 50 epochs with a learning rate of 0.0005.

The evaluation on done on seperate unseen set of patients and is based on

AUROC and AUPRC for mortality. The loss function for LSTM-GAT model

with diagnosis(see figure 6.4) is given as follows.

Table 6.1 shows the results of the experiment run for the LSTM-GAT model,

without and with diagnoses concatenated to the flat features. The higher

the AUROC and AUPRC values, the better. It is evident from the diagrams
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Figure 6.4: LSTM-GAT Loss Function for In-hospital mortality prediction.

Model AUROC AUPRC
LSTM-GAT( no diagnoses) 0.846 0.422

LSTM-GAT( with diagnoses) 0.859 0.453

Table 6.1: LSTM-GAT model (IHM) results

and the table that both values are higher when diagnoses are added to

the features(with diagnoses(AUROC: 0.859, AUPRC: 0.453) compared to

without diagnosis(AUROC: 0.846, AUPRC: 0.422)) during training allowing

the Graph Attention networks to learn better.

The reason behind LSTM-GAT performing slightly better when diagnosis

are added is that it uses the attention to weight the importance of neigh-

bouring nodes(patient). Here, each patient’s contribution is weighted by

the importance of this patient for the final prediction. Thereby, information

from other patients with similar diagnoses help in predicting a patients

mortality). However, GAT’s learning process is computationally expen-

sive and requires a large amount of data and computational resources,

especially when working with large graphs.[13]

As another hybrid model, I have used LSTM-Single Layer Perceptron(SLP)

to check the importance of graph structure. Here, I have removed the GNN

so that I don’t have information from patients with similar diagnoses. This
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model is also trained and evaluated with and without diagnoses features

added to the flat features.

Model AUROC AUPRC
LSTM-SLP( no diagnoses) 0.814 0.385

LSTM-SLP( with diagnoses) 0.844 0.426

Table 6.2: LSTM-SLP model (IHM) results

To compare, (with diagnoses(AUROC: 0.814, AUPRC: 0.385) compared to

without diagnosis(AUROC: 0.844, AUPRC: 0.426)), shows an increment

of 3.67% of AUROC when diagnoses added and 10.65 % increments with

respect to AUPRC.

Since the AUPRC (Area Under the Precision-Recall Curve) value is low for

mortality prediction, it suggests that the model’s performance in identifying

true positive cases (i.e. correctly identifying patients who will die) is poor.

The reason could be that in the training dataset, the number of patients

who died is low (5865 patients). AUROC is important because it provides a

comprehensive summary of the model’s performance across all possible

threshold values

AUROC is a measure of a model’s ability to discriminate between positive

and negative cases, regardless of the imbalance in the data. AUPRC, on

the other hand, is a measure of a model’s ability to correctly identify true

positive cases out of all predicted positive cases.

In the case of mortality prediction, the data is highly imbalanced, with a

much larger number of negative cases (i.e. patients who will not die) than

positive cases (i.e. patients who will die). Considering that, our model has a

high AUROC value by correctly identifying a large number of true negative

cases, but a low AUPRC value because it is not identifying enough true

positive cases.

Figure 6.5 shows that for the LSTM-SLP model that the loss decreases while

training. Since the gap between the training and validation loss is less

after a few epochs, shows that the neural network was successfully trained.

The ROC and PRC (see figure 6.6) curve for mortality prediction is being

presented for the LSTM-SLP model.
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Figure 6.5: LSTM-SLP Loss curve for In-hospital mortality prediction.
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Figure 6.6: LSTM-GAT ROC and PRC curve

The larger area corresponds to a better performing classifier. The green

curve in the left figure is the evaluation result from the model and the red

dashed line is the what the random classifier performs.

Length of Stay Prediction Task I have used mortality prediction to compare

the performance of the models with the different inputs on a classification

task. But classification tasks are not enough to make valid comparison

between different models. Therefore, I have trained the models on another
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Figure 6.7: AUROC(left) and AUPRC(right) for In-Hospital Mortality(IHM)

objective known as length of stay prediction. I have evaluated the length of

stay prediction task based on 5 different evaluation criteria as mentioned

in table 6.3:

Model KAPPA MAD MSE MAPE MSLE
LSTM-GAT( no diagnoses) 0.242 1.908 15.105 50.911 0.388

LSTM-GAT( with diagnoses) 0.257 1.891 14.926 50.070 0.381

Table 6.3: LSTM-GAT comparison for length of stay task

For Mean absolute deviation(MAD), Mean Squared Error(MSE), Mean ab-

solute percentage error(MAPE) and Mean Squared Log error(MSLE), lower

score is preferred whereas for Kappa, higher score is preferred. As can be

seen from table 6.3, all the evaluations have slighty improved upon addition

of diagnosis to the static features(MAD: 1.908 to 1.891, MSE: 15.10 to 14.926,

MAPE 50.91 to 50.070, 0.388 to 0.381). And for kappa, we are getting higher

results with diagnosis concatenated. The results for the hybrid LSTM-SLP

model has been shown in table 6.4:

Model KAPPA MAD MSE MAPE MSLE
LSTM-SLP( no diagnoses) 0.147 2.001 16.289 53.021 0.435

LSTM-SLP( with diagnoses) 0.283 1.91 14 54.59 0.384

Table 6.4: LSTM-SLP comparison for length of stay task
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With diagnoses features added, the Kappa score has outperformed the

LSTM-GAT model. Also, the MSE value has improved in the LSTM-SLP

model.However, the MAD, MAPE and MSLE values indicate that LSTM-SLP

model performs almost similarly to the LSTM-GAT model. There could

be several reasons for GAT(Graph Attention networks) to not perform very

well compared to the single layer perceptron(SLP).

• GAT is a more complex model than a single layer perceptron. While

GAT can perform well on certain tasks, it may not perform well as SLP

or when the data does not contain a lot of complex relationships.

• SLP is a very basic neural network and is less complex than GAT. It can

handle linear decision boundaries, but not suitable for more complex

non linear boundaries.

• Another reason could be, the length of stay prediction task is simple

and the data can be easily separable by a linear decision boundary

which makes it suitable for SLP to perform well in certain cases.

The following experiments help us to answer our first and second research

questions, that for simple tasks such as mortality prediction and length of

stay prediction, both LSTM-GAT and LSTM-SLP perform almost equivalent

to each other, because the tasks does not involve complex model and

relationships.

6.3 RQ3

To answer the third research question I have evaluated the query execution

time for both SQL and Cypher in Neo4j Graph Database.
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Queries Postgres(SQL) Cypher
Q1(Fetching labels ) 841ms 128ms

Q2(Fetching diagnosis ) 3117ms 241ms

Q3(Fetching flat features ) 514ms 187ms

Q4(Fetching common labs ) 6611ms 55289ms

Q5(Fetching timeserieslabs ) 10677ms 283ms

Q6(Fetching commonresp ) 3338ms 25177ms

Q7(Fetching timeseriesresp ) 4399ms 585ms

Q8(Fetching timeseriesperiodic ) 45028ms 92ms

Q9(Fetching timeseriesaperiodic ) 10663ms 228ms

Table 6.5: SQL vs Cypher Query execution time
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Figure 6.8: Queries execution time between Neo4j and Cypher

As can be seen from table 6.1 and figure 6.3, cypher queries have a bet-

ter performance mostly compared to SQL queries. Because in most SQL

queries, we have ’INNER JOIN’ of multiple tables. This is taken care of

in Cypher using the relationship between the graph nodes. The graph

traversal to find specific nodes are much easier compared to SQL queries

which cause the performance to improve in Neo4j. However, Q4 and Q6

performed better compared to SQL compared to Cypher. The size of the

dataset used for both of these queries is comparatively larger compared
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to the other queries, which can have an impact on the execution time. An

example of a Cypher query and an equivalent SQL query for retrieving

patient data from a hospital database:

Cypher Query:

MATCH (p:Patient)-[:VISIT]->(v:Visit)
WHERE p.name = ’John Smith’ AND v.date >= date(’2022-01-01’)
RETURN p.name, v.date, v.reason
ORDER BY v.date DESC

SQL Query:

SELECT p.name, v.date, v.reason
FROM Patient p
JOIN Visit v ON p.id = v.patient_id
WHERE p.name = ’John Smith’ AND v.date >= ’2022-01-01’
ORDER BY v.date DESC;

In this example, the query retrieves the names of patients, visit dates, and

reasons for visits for patient John Smith. The result set is ordered by visit

date in descending order.

The Cypher query starts with the MATCH keyword to specify the pattern of

nodes and relationships to match. The WHERE clause filters the results to

only those that match the specified conditions. Finally, the RETURN clause

specifies which properties to return in the result set and the ORDER BY

clause orders the results in descending order.

In the SQL equivalent, the query uses JOINs to connect the Patient and

Visit tables. The WHERE clause filters the results to only those that match

the specified conditions, and the SELECT clause specifies which columns

to return in the result set. The ORDER BY clause orders the results in

descending order.

Both Cypher and SQL can be used to retrieve data from a database. While

the syntax and structure of the queries are different, they can achieve

the same goal of retrieving the desired data from the database. In the
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patient data example, both Cypher and SQL queries are relatively simple

and involve a single join between the Patient and Visit tables. Therefore, the

difference in execution time and performance is likely to be minimal, and

it may depend on the specific implementation of the database and query

engine. In terms of syntax, Cypher is generally considered more expressive

and intuitive for graph-related queries. It allows for a more natural and

flexible traversal of nodes and relationships in the graph. SQL, on the other

hand, is better suited for querying and manipulating tabular data.
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Conclusions and Future Work

In this thesis, I have answered the following research questions:

• Do LSTM-GAT perform better predictions than single-layer perceptrons(LSTM-

SLP)?

• How important are the patient’s diagnoses for the prediction with a

graph neural network and for the prediction with an SLP?

• Are Cypher queries in Neo4j faster in fetching data than SQL queries

in PostgreSQL?

To answer my research questions, I have used state-of-the-art deep neural

networks using electronic health records(EHR) namely the eICU dataset.

Initially, I stored the datasets in two different databases, where one is a

graph database(Neo4j) and the other is a relational database (Postgres-

SQL). Different SQL and Cypher queries had been constructed to fetch the

data from the two respective databases. The performance of the queries

had been compared based on the amount of time each query requires

to fetch the result from the database. As observed, Neo4j outperforms

PostgresSQL, when the size of the data being fetched is not large enough

than 100k. However, more experiments with large storage could have been

performed, which were part of the limitations of this thesis. In total 89143

unique patient data were fetched and preprocessed. This gives 3 different

patient tables containing labels, flat features, and time-series tables.18 time-

varying features and 20 non-time-varying features were used for Machine

Learning tasks. The multi-hot encoded diagnoses of the patients were later

used to create a patient similarity graph. Every patient is connected to

each other by edge weight, based on the number of common diagnoses,
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and also the rare diagnoses. An LSTM model was used to create time-

related embed-dings from time-series data. The static embed-dings were

generated by passing through a fully connected layer. Later, a graph neural

network algorithm called GAT is used to propagate the features with the

neighbouring patient node to create graph embeddings. The 3 different

embeddings are joined together to predict mortality and length of stay in

the hospital.

The results of the two tasks were evaluated based on a set of evaluation

criteria. Since mortality prediction is a classification task, AUROC and

AUPRC were used to evaluate and compare the two different methods.

From experiments performed, it is observed that the LSTM-GAT model

with diagnoses added, adds predictive power to the model. The time series

and static features together can facilitate the GNN to obtain better em-

beddings. However, the hybrid LSTM GNN is a complex model and needs

much computational power during training. Whereas, the LSTM-SLP is a

simple model, and performs almost equivalently to the hybrid model. In

conclusion, although the graph neural network does not show a consider-

ably large improvement in the evaluation results, the full potential of the

GNN is yet to be explored.

As an extension to the current research performed, I suggest to make a

comparison of the patient’s homogeneous and heterogeneous graphs.The

heterogeneous graph will contain both patient and medication node type.

I believe that adding further information like medications to the hetero-

geneous graph would improve the predictive capability of the model. The

medication feature could also be added to the homogeneous graph. Finally,

it would be interesting to see how the models would perform after replacing

the LSTM with the transformer model.
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