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Abstract

Generally, surveys are considered one of the popular mechanisms to collect data
regarding a problem associated with any field. The researchers use the collected
data to conduct studies or statistical analysis to identify the critical aspects of a
problem associated with the concerned domain. The occupation data of the pub-
lic is often used by researchers in scientific studies to understand the dynamics of
the labor market and health risks associated with occupations and determine social
status. Since the surveys consist of responses in textual form, occupation classifica-
tion schemes are used to standardize the responses by assigning an occupation code.
This enables the researchers to work with standardized responses to conduct further
studies and statistical data analysis. However, assigning the occupation code to the
free text responses using classification schemes is challenging due to the variation in
the quality of the user responses and the various categories of occupation codes. Ex-
isting methods in the research address this problem by implementing classification
rules from occupation classification schemes, using the classification scheme as an
index, or using statistical techniques combined with Machine Learning to perform
occupation coding. However, we observed that classification schemes were mainly
used as an index or a look-up mechanism in the process of occupation coding. In
addition, apart from the traditional Machine Learning methods, the application of
pre-trained language models to this task is still being explored. Hence, we propose
using the occupation information provided in the classification schemes as an in-
put to pre-trained language model (BERT) for occupation coding. We extract the
different types of information associated with the occupations from the official oc-
cupation classification scheme (KLDB) and provide it as input to BERT through
classification tasks. This methodology was evaluated on the Deutsche Zentrum für
Hochschul- und Wissenschaftsforschung (DZHW) occupation data for the occupa-
tion coding task. However, the proposed approach only showed a slight improvement
in the classification performance with the integration of domain knowledge.
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1. Introduction

Occupation is regarded as an important factor in the fields of Social Sciences, Eco-
nomics, and Healthcare. In the context of Socio-Economic research, it is used in
performing wage impact analysis [Ste11], observing job trends in the labor market,
and determining socio-economic status [CGL16] of an individual since an occupa-
tion indicates the income and education qualifications. In the case of healthcare,
researchers perform epidemiological studies [MK03, MCBB09] to understand the
health risks and workplace hazards associated with an occupation. In order to
do such assessments the data regarding occupations is collected from individuals
through surveys. These surveys are designed to collect user data for research on
aspects like employment, health, education, etc. The surveys consist of open-ended
questions for respondents regarding their current or previous or aspiring occupation,
skills, and educational qualifications required for their occupation. The respondents
are entitled to answer similar questions in a survey about their elders or partners.

Table 1.1 consists of questions regarding the employment of an individual and their
partner taken from The German General Social Survey (ALLBUS 2018) [fS19],
which is the English translation for ”Die Allgemeine Bevölkerungsumfrage der Sozial-
wissenschaften”. For questions F060 and F071 in Table 1.1 the respondents are ex-
pected to describe their current or previous main occupation and the activities/skills
involved in that corresponding role. In addition, the respondent is expected to an-
swer if the occupation has a unique or different name. Also, the respondents can
provide the details about their spouse (F081) or living partners (F094). In graduate
surveys, the questions can be about the aspired occupation (Wunschberufe) or the
jobs that the respondent has applied for (Ausbildungsberufe) (see Table 1.2). In
Table 1.2, one can observe that the questions can also be about the occupation of
respondents’ parents.

As the questions are descriptive in nature, the responses consist of details about the
occupation in the form of text with short sentences and sometimes keywords. In
order to perform any further analysis on the occupations of the respondents, firstly,
these responses have to be coded or converted into a standard format by assigning
occupation codes or IDs to the user’s responses based on official occupation cate-
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F060 - Falls Befragter hauptberuflich
erwerbstätig ist

F081 - Falls zusammenlebender Ehep-
artner hauptberuflich erwerbstätig ist

Welche berufliche Tätigkeit üben Sie in
Ihrem Hauptberuf aus?

Welche berufliche Tätigkeit übt Ihr(e)
(Ehe)Partner(in) in seinem/ ihrem
Hauptberuf aus?

Bitte beschreiben Sie mir Ihre beru-
fliche Tätigkeit genau.

Bitte beschreiben Sie mir die berufliche
Tätigkeit genau.

Hat dieser Beruf, diese Tätigkeit noch
einen besonderen Namen?

Hat dieser Beruf, diese Tätigkeit noch
einen besonderen Namen?

F071 - Falls Befragter ehemals haupt-
beruflich erwerbstätig war

F094 - Falls Lebenspartner des Be-
fragten hauptberuflich erwerbstätig
ist

Welche berufliche Tätigkeit übten Sie
in Ihrem Hauptberuf zuletzt aus?

Welche berufliche Tätigkeit übt Ihr
Partner/ Ihre Partnerin in seinem/
ihrem Hauptberuf aus?

Bitte beschreiben Sie mir Ihre letzte
berufliche Tätigkeit genau.

Bitte beschreiben Sie mir die berufliche
Tätigkeit genau.

Hat dieser Beruf, diese Tätigkeit noch
einen besonderen Namen?

Hat dieser Beruf, diese Tätigkeit noch
einen besonderen Namen?

Table 1.1: Questions related to occupations - ALLBUS

gorization schemes. The task of categorizing or assigning an occupation ID to a
user’s occupation is termed as occupation coding. The occupation categorization
schemes vary across countries. For example, the German Classification of Occupa-
tions (KLDB 2010) [PM13] is used in Germany and NOC [BBA20] in Canada. The
occupation categorization schemes consist of hierarchically structured occupations
with a unique identification number. For example, KLDB 2010 consists of a unique
5-digit number assigned as an ID to different occupation categories. The details of
this scheme are further explained in the Section 2.1.2

1.1 Occupation Coding Methods - Overview

Occupation coding can be done through manual and (semi-) automatic coding tech-
niques. The process of manually assigning an official occupation ID to the user’s
textual responses is an exhaustive task and requires the availability of domain ex-
perts and human coders. So, researchers developed computer-assisted and automatic
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Ausbildungsberufe Wunschberufe / Aspirationen

Welcher Ausbildungsberufe wird dies
voraussichtlich sein?

Unabhängig von ihrer aktuellen Situa-
tion, welchen Beruf würden Sie später
einmal am liebsten ergreifen?

Nennen Sie bitte die beiden Ausbil-
dungsberufe, für die Sie sich am häu-
figsten beworben haben.

Und wenn Sie einmal an alles denken,
was Sie jetzt wissen: welchen Beruf
würden Sie wohl tatsächlich einmal er-
greifen?

Ausgeübte Berufe Elternberufe

Was war/ist ihr hauptsächlicher
Tätigkeitsbereich?

Welchen Beruf üben bzw. übten Ihre
Eltern beruflich aus?
Vater:
Mutter:

Welche beruflichen Aufgaben erfüllten
Sie in diesem Tätigkeitsbereich?

Table 1.2: Questions related to occupations - DZHW

coding methods to fasten this process so that they can focus on performing statisti-
cal analysis and publishing key results for their respective problems. The computer-
assisted coding technique suggests a list of possible occupation categories for a user’s
response, and the human coder assigns the best category from the list. This can be
considered as a semi-automatic process for occupation coding. In the case of au-
tomatic coding techniques, there are rule-based [BBA20] methods, hybrid methods
[BBA20], and Machine Learning [SS20] methods. The rule-based approaches rely
upon a set of rules created by domain experts considering the occupation coding
process. These rules are designed by considering the taxonomy of the official oc-
cupation schemes. The computer-assisted and automatic coding methods often use
the occupation schemes as an index to perform text search and text matching to
assign an occupation ID for a given user response.

In Machine Learning (ML) context, occupation coding is considered a text classifi-
cation problem. The ML models assign an occupation ID for a user response. The
models are trained on data consisting of occupation IDs assigned by experts to the
user responses. Classifying or assigning an occupation ID to a user’s responses is
often tricky since the responses are often vague, with keywords and minimal de-
tails. In addition, as there are a higher number of target classes or occupation IDs,
it is a high-dimensional problem, and the algorithms require quality training data
to achieve a good classification performance. We discuss some widely known Ma-
chine Learning methods implemented in automatic and computer-assisted coding
algorithms in the related work section.
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1.2 Contribution & Research Questions

In this thesis, we propose an approach to impart the domain knowledge of an official
occupation classification scheme into a pre-trained language model (BERT) and
address the following research questions.

RQ1: How can domain knowledge be provided to BERT to address the scenario of
short text classification in occupation coding data?

The existing Machine Learning methods (ML) train models on the user responses
to perform occupation coding. The user responses often contain less amount of text
which affects the performance of the model. Hence, we propose an approach to
leverage the capability of BERT to utilize the domain knowledge of the occupation
categorization scheme to overcome the problem of lack of text in user responses. The
proposed approach consists of intermediate tasks to impart the domain knowledge
into BERT.

RQ2: Does integrating domain knowledge from the intermediate tasks improve the
performance of the BERT classifier in occupation coding?

In this research question, we evaluate whether the proposed approach helps in im-
proving the performance of a BERT classifier compared to the baseline using accu-
racy as an evaluation metric.

RQ3: Does the performance of the classifier improve on augmenting domain data
with the user responses during the training phase?

We combine the data of user responses and the official occupation categorization
schemes for the training BERT and later compare the performance with a baseline
to evaluate whether this affects the classifier’s performance.

1.3 Structure of Thesis

We structured the thesis report into six chapters. In the first chapter, we discuss
occupation coding and the contributions of this thesis. The second chapter provides
background information related to occupation coding and transformer architectures.
Further, in the third chapter, we discuss the approaches implemented to address oc-
cupation coding and how external knowledge is incorporated with BERT as part of
the related work. In the fourth chapter, we discuss the concept and implementation
of the proposed approach. We discuss the experiments and their results of the pro-
posed approach in the fifth chapter. In the sixth chapter, we provide the conclusion
and future work.



2. Background

The purpose of this chapter is to provide necessary background information about
the thesis topic. First, we discuss official occupation classification schemes used in
occupation coding, followed by transformer architectures BERT and SBERT.

2.1 Occupation Coding Schemes

As discussed in the previous Chapter 1, official occupation categorization schemes
often regarded as taxonomies are used in the process of occupation coding. In this
section, we discuss a couple of widely known categorization schemes namely ISCO -
08 and KLDB 2010.

2.1.1 ISCO - 08

The International Standard Classification of Occupations 2008, also known as ISCO-
08, was published by the International Labour Organization (ILO). It was developed
for a comparative analysis of occupations between countries in cross-cultural surveys.
ISCO-08 is a 4-level hierarchical classification that classifies all the occupations in
the world into 436 specific categories as mentioned in [ISC08]. The meaning of each
hierarchy level and the number of occupation categories at each level are mentioned
in the Table 2.1.

The ISCO-08 broadly classifies the different types of occupations into ten major
groups that are mentioned in Table 2.2. It assigns a 4-digit unique ID (ISCO-08

Hierarchy Level Meaning Categories
1 Major group 10
2 Sub-major group 43
3 Minor group 130
4 Unit group or Line of work 436

Table 2.1: ISCO - 08 classification details
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ISCO-ID Major groups
1 Managers
2 Professionals
3 Technical and Associate Professionals
4 Clerical support workers
5 Service and sales workers
6 Skilled agricultural, forestry, and fishery workers
7 Craft and related trades workers
8 Plant and machine operators, and assemblers
9 Elementary occupations
0 Armed forces occupations

Table 2.2: 10 Major groups in ISCO - 08

ISCO-ID Title
3 Technicians and Associate Professionals
31 Science and Engineering Associate Professionals
311 Physical and Engineering Science Technicians
3111 Chemical and Physical Science Technicians
3112 Civil Engineering Technicians
3113 Electrical Engineering Technicians
312 Mining, Manufacturing, and Construction Supervisors
3121 Mining Supervisors
3122 Manufacturing Supervisors
3123 Construction Supervisors
32 Health Associate Professionals
321 Medical and Pharmaceutical Technicians
3211 Medical Imaging and Therapeutic Equipment Technicians

Table 2.3: Major group 3 - Classification hierarchy from ISCO-08
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code) indicating the 4-levels of classification. For example, 3111 is the ISCO-08 ID
for Chemical and Physical Science Technicians. The significance of each digit for
the code 3111 is as follows:

• Digit 1: 3 - Major Group

• Digit 2: 1 - Sub-major group

• Digit 3: 1 - Minor Group

• Digit 4: 1 - Line of work - Unit Group

Table 2.3 displays an extract from [ISC08], which shows some occupation groups in
the classification hierarchy for the major group 3 - Technicians and Associate Pro-
fessionals. As observed, the classification scheme segregates Engineering and Health
Professionals using the subgroup (Digit 2) and groups the comparable occupations
related to Engineering and Mining using the minor groups (Digit 3) 1 and 2. Finally,
the actual occupation or the line of work is indicated by the unit group (Digit 4)
e.g., 3111 Civil Engineering Technicians and 3113 Electric Engineering Technicians.

2.1.2 KLDB 2010

Initially, two German national classification schemes: Klassification der Berufe 1998,
KLDB 1998 by Federal Employment Agency (Bundesagentur für Arbeit) and Klas-
sifikation der Berufe 1992, KLDB 1992 by Federal Statistical Office were used for
occupation coding till the year 2010. Because both classifications were derived from
theoretical work in the 1960s, KLDB 2010 was introduced to replace the outdated
classifications.

The KLDB 2010, which we refer to as domain data in this work, is a hierarchical
classification of 5 levels. The interpretation of each hierarchy level and the number
of occupation categories at each level are depicted in the Table 2.4. The hierarchy
is similar to the ISCO-08 scheme but has an additional 5th level.

Hierarchy Level Meaning Categories
1 Occupational fields - Berufsbereiche 10
2 Main occupational groups - Berufshauptgruppen 37
3 Occupational groups - Berufsgruppen 144
4 Occupation subgroups - Berufsuntergruppen 700
5 Occupational categories - Berufsgattungen 1286

Table 2.4: KLDB 2010 - classification details

The 5th level as mentioned in [PM13], indicates Auxiliary and semiskilled occu-
pations, specialized occupations, complex occupations for specialists, and highly
complex occupations. The KLDB 2010 broadly categorizes all the occupations in
Germany into ten main occupational fields (Berufsbereiche) mentioned in Table 2.5.
It assigns a 5-digit unique ID (KLDB ID) to the occupations, where the first four
digits indicate the professional specialization and the 5th digit indicates skill level.
According to [PM13], there are four types of skill levels, each indicated by a digit
as follows:
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KLDB ID Berufsbereich
1 Land-, Forst- und Tierwirtschaft und Gartenbau
2 Rohstoffgewinnung, Produktion und Fertigung
3 Bau, Architektur, Vermessung und Gebäudetechnik
4 Naturwissenschaft, Geografie und Informatik
5 Verkehr, Logistik, Schutz und Sicherheit
6 Kaufmännische Dienstleistungen, Warenhandel, Ver-

trieb, Hotel und Tourismus
7 Unternehmensorganisation, Buchhaltung, Recht und

Verwaltung
8 Gesundheit, Soziales, Lehre und Erziehung
9 Sprach-, Literatur-, Geistes-, Gesellschafts- und

Wirtschaftswissenschaften, Medien, Kunst, Kultur und
Gestaltung

0 Militär

Table 2.5: KLDB 2010 - Berufsberieche

• 1 - Helfer-/Anlerntätigkeiten

• 2 - fachlich ausgerichtete Tätigkeiten

• 3 - komplexe Spezialistentätigkeiten

• 4 - hoch komplexe Tätigkeiten

Table 2.6 is an extract of the hierarchy from [PM13] for the occupational area
”Rohstoffgewinnung, Produktion und Fertigung”. It is evident that occupations
with different professional specializations are denoted using a different KLDB ID
e.g., 2111 and 2112. It also indicates that occupations with varying skill levels
under a professional specialization 2111 are differentiated using the 5th digit in a
KLDB ID e.g., Helfer-/Anlerntätigkeiten (1) and fachlich ausgerichtete Tätigkeiten
(2).

2.2 Deep neural networks for NLP

Natural Language Processing (NLP) involves analyzing and representing human lan-
guage through sophisticated computational algorithms involving Machine Learning
and Deep Learning (DL). NLP deals with the task of analyzing the aspects like
syntax and semantics of the human language. So it is used in various scenarios like
Text generation and summarization, Question-Answering (QA), Text classification,
Automatic speech recognition (ASR), etc. DL algorithms based on CNN [Kim],
RNN [YKYS17], and Transformer [VSP+] architectures are often utilized to perform
such complex tasks. The neural networks are the building blocks of these architec-
tures. Neural networks were developed to model the human brain’s computation
mechanism, composed of neurons.

Figure 2.1 depicts a simple feed-forward neural network (FFNN) with input, hidden,
and output layers. The direction of the arrows indicates the flow of information
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Figure 2.1: Example of feed-forward neural network

Figure 2.2: Detailed view of hidden layer neuron in feed-forward neural network
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KLDB ID Title
2 Rohstoffgewinnung, Produktion und Fertigung
21 Rohstoffgewinnung und -aufbereitung, Glas- und Keramikherstel-

lung und -verarbeitung
211 Berg-, Tagebau und Sprengtechnik
2111 Berufe im Berg- und Tagebau
21111 Berufe im Berg- und Tagebau - Helfer-/Anlerntätigkeiten
21112 Berufe im Berg- und Tagebau - fachlich ausgerichtete Tätigkeiten
21113 Berufe im Berg- und Tagebau - komplexe Spezialistentätigkeiten
21114 Berufe im Berg- und Tagebau - hoch komplexe Tätigkeiten
2112 Berufe in der Sprengtechnik
21122 Berufe in der Sprengtechnik - fachlich ausgerichtete Tätigkeiten
21123 Berufe in der Sprengtechnik - komplexe Spezialistentätigkeiten
21124 Berufe in der Sprengtechnik - hoch komplexe Tätigkeiten
212 Naturstein- und Mineralaufbereitung und -verarbeitung und

Baustoffherstellung
2120 Berufe in der Naturstein- und Mineralaufbereitung und -

verarbeitung und Baustoffherstellung (ohne Spezialisierung)
21201 Berufe in der Naturstein- und Mineralaufbereitung und -

verarbeitung und Baustoffherstellung (ohne Spezialisierung) -
Helfer-/Anlerntätigkeiten

Table 2.6: Berufsbereich 2 - Classfication Hierarchy

in the network. The nodes in each layer are connected to all the nodes in the
preceding and succeeding layers. The connections between the nodes have different
weights, as shown in Figure 2.1. In addition, the nodes in hidden and output layers
consist of non-linear activation functions that typically alter the input values to non-
linear output. Sigmoid, ReLU, and Tanh are examples of some activation functions.
Figure 2.2 indicates the detailed view of the operations that occur at a neuron in
the hidden layer. The following equation in the Figure 2.2

h1 = ϕ(w.x + b1) (2.1)

where :

h1 = hidden state
ϕ = activation function
w =Weight matrix
. = dot product
x = input matrix
b1 = bias

indicates that dot product is performed on the inputs and weights, and bias is added
before applying an activation function.

As it is observed that in feed-forward neural networks, the information flow is uni-
directional, they do not recall the information they previously received. This is not
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ideal for NLP applications since the human language or text input is a sequence of
words of variable length. This makes the feed-forward architecture unsuitable for
analyzing the syntax and semantics. To address these limitations, architectures like
RNN and their variants LSTM were introduced. Figure 2.3 indicates the flow of
information in an FFNN and RNN.

Figure 2.3: Comparison of the flow of information in FFNN and RNN

2.2.1 RNN and LSTM

Recurrent neural networks (RNN) are a variant of the artificial neural network often
used to work with sequential data since they can maintain the previous input in-
formation to predict the output. This property of retaining past information makes
them suitable for NLP tasks since the RNNs can maintain the contextual informa-
tion of the text as the past information. Figure 2.4 depicts how RNN utilizes the
information from the past through the weighted connections between the hidden
states. It can be observed that for a current input xt, the hidden node ht uses the
previous information from the node ht-1 and gives the output yt. The following equa-
tions Equation 2.2 and Equation 2.3 indicate how the information from the previous
state ’t-1’ is used as input to predict the output of a current state ’t.’

ht = ϕ(wx.xt +wh.ht-1 + bh) (2.2)

yt = ϕ(wy.ht + by) (2.3)

where :

ϕ = activation function
wx,wy =Weight matrices
xt = input at time step t
. = dot product
ht, ht-1 = hidden state at time step t and t-1
bh, by = bias at hidden node and output node
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Figure 2.4: Unfolded view of an RNN. ’t’ indicates time step

In RNN, forward prorogation is performed through the operations mentioned in
Equation 2.2 and Equation 2.3 to predict the output, and later the error is computed
during the training phase. The neural networks rely on backpropagation [RHW86]
to calculate gradients and update the weights after the error computation. Back-
propagation, when performed in an RNN, is termed backpropagation through time
(BPTT). As mentioned earlier, the RNNs capability to retain contextual informa-
tion makes them suitable for NLP tasks, but they tend to retain such information
and work well for shorter sequences. For an example sequence, ’In summer the tem-
peratures are ’ the prediction from RNN can be ’In summer the temperatures
are high’. Nevertheless, for a longer sequence like ’John won a national swimming
competition five years ago before switching to a professional football career, but he
still likes ’. The prediction, in this case, should be ’swimming’. However,
RNNs fail to work in this scenario since they are prone to the problem of explod-
ing and vanishing gradient [PMB12] when the input sequence is extensive. Since
the network is unrolled for various time steps, the same weights shared across time
steps are updated using BPTT leading to the vanishing gradient problem. Long
short-term memory (LSTM) networks [HS], a variant of RNN, were proposed to
overcome the challenges of retaining the contextual information in larger sequences
and exploding and vanishing gradients.

Unlike RNNs, LSTMs can retain the context in more extensive sequences since they
can choose whether to forget or retain the historical information. The Figure 2.5
shows an unfolded view of the LSTM1 with the mathematical operations occurring
within an LSTM 2 cell. As it can be observed from the Figure 2.6 the LSTM consists
of input, forget and output gates. The forget gate decides which information from
the previous time steps will be used in the future time steps.

1https://colah.github.io/posts/2015-08-Understanding-LSTMs/
2https://medium.com/analytics-vidhya/lstms-explained-a-complete-technically-accurate-

conceptual-guide-with-keras-2a650327e8f2



2.2. Deep neural networks for NLP 13

Figure 2.5: Unfolded view of LSTM

Figure 2.6: Detailed view of an LSTM cell
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In the context of NLP, contextual information is important to understand the seman-
tics and syntax of the text or language. RNNs based on encoder-decoder [BCB15]
architectures capture such context information using a fixed length context vector
as shown in Figure 2.7. However, this caused problems with longer sequences, as
mentioned in [BCB15] since the information is compressed into a fixed length vector.
The attention mechanism [VSP+] addressed this limitation by opting to create a se-
quence of context vectors and selectively use them. This eventually led to the usage
of attention mechanism in NLP tasks like text summarization, text classification,
and sentiment analysis as mentioned in [GLT21, LPGL].

Figure 2.7: Example of an encoder-decoder architecture with RNN

2.2.2 Transformers

The attention mechanism proposed by Bahdanau in [BCB15] was implemented on
an encoder-decoder architecture with bidirectional LSTM as an encoder for machine
translation. It deals with the problem of fixed-length context vectors by enabling the
decoder to focus on input using a sequence of context vectors. However, the benefit
of the attention mechanism is limited to the decoder in the proposed architecture
[BCB15]. As the architecture was based on RNN, which is sequential, parallelism
could not be achieved during training. Transformers [VSP+] proposed by Vaswani
overcomes the above challenges by implementing attention in the encoder and re-
placing RNNs. The proposed architecture used attention in both encoders and
decoders (see Figure 2.8). Six encoders and decoders are stacked in the proposed
architecture, and a residual connection is placed between the stacked layers. The
encoder and decoder consist of a multi-head attention module and a feed-forward
neural network. According to Vaswani [VSP+], attention is the process of mapping
query and key-value pairs to output. The multi-head attention module performs the
task of computing the attention using scaled dot product attention for a given input
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by using query (Q), key (K), and value(V) vectors (see Figure 2.9). The mathemat-
ical representation of the scaled dot product attention from [VSP+] is mentioned in
Equation 2.4. The dot product of Q and K is scaled using

√

dk to deal with the
larger magnitude values, so it is termed as scaled dot product attention.

Attention(Q,K,V ) = Softmax(
(QKT

)

√

dk
)V (2.4)

Where:

Q,K,V = query, key, and value vectors
dk = dimension of key vector

Figure 2.8: Transformer architecture from [VSP+]

The authors found it beneficial to perform the scaled dot-product attention multiple
times by projecting the Q, K, and V vectors into different dq, dk, and dv dimensions.
The attention was applied on these vectors ’h’ times as observed in Figure 2.9. The
term ’h’ also indicates the number of attention heads, indicating the number of
times attention gets computed. Then the output after computing the attention for
’h’ times is concatenated and projected as a final output. The representation of this
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Figure 2.9: Attention mechanism in Transformers [VSP+]

process is indicated in the following equations Equation 2.5, and Equation 2.6 in
[VSP+].

Multiheadattention(Q,K,V ) = Concat(head1, , .., headh)W
o (2.5)

headi = Attention(QW i
Q,KW i

K , V W i
V
) (2.6)

Where W i
Q,W i

K , W i
V , and W i

O are parameter matrices of query, key, value, and
output vectors.

The proposed architecture achieved better results than state-of-the-art methods for
the machine translation task. In addition, the transformers were used for language
representation in tasks related to Information retrieval, Question answering, and
Text classification [WDS+]. The contextualized representation of the language as
embeddings plays a crucial role in the tasks mentioned above. Since the represen-
tation provides vital information related to the meaning of the language or text,
extracting these representations as embeddings using pre-trained language models
became popular in NLP [HR]. In deep learning, pre-training refers to initially train-
ing a model on a task and then using its parameters to perform downstream tasks.
ELMO [PNI+] and GPT [RN18] (Generative Pre-trained Transformer) are exam-
ples of such pre-trained language models. However, the authors of [DCLT] specify
that the language models mentioned above are unidirectional. So they proposed
BERT [DCLT] to overcome the limitation of unidirectionality by using masked lan-
guage modeling (MLM) and Transformer architecture. Some other language models
based on Transformer are SBERT (Sentence BERT)[RG], and T5[RSR+19]. In this
thesis, we used BERT and SBERT for the implementation, so we discussed these
architectures further.
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2.2.3 BERT

BERT is the acronym for Bidirectional encoder representations from transformers.
It provides a contextualized language representation using the attention mechanism
proposed in [VSP+]. The BERT framework is based on pre-training and fine-tuning
steps. The pre-training consists of tasks: Masked Language Modeling (MLM) and
Next Sentence Prediction (NSP). BERT tackles the problem of unidirectionality by
considering the context in the left and right sides of the sequence in an MLM task.
The main objective of the MLM task is to predict a missing word using the context
in randomly masked sequences. It is specified in [DCLT] that 15% of the tokens in
the input sequences are masked. These masked tokens are the targets that BERT
predicted during this MLM pre-training task. However, Devlin et al. [DCLT] express
the opinion that tasks like Question-Answering or Natural Language Inference (NLI)
rely upon understanding the relationship between sentences, and language modeling
alone cannot serve the purpose. So they incorporated a Next Sentence Prediction
(NSP) task in the pre-training phase of BERT. In this task, given two sentences,
A and B, BERT is trained to predict whether B is the following sentence of A.
The training dataset in NSP was balanced for the scenario when B is the following
sentence of A and when B is not the following sentence of A.

Figure 2.10: Overview of pre-training and fine-tuning steps of BERT [DCLT]

In fine-tuning step, the pre-trained BERT is trained on a downstream task using the
task-specific dataset. In this step, BERT is initialized with pre-trained parameters
from the pre-training step, and these parameters are updated based on the down-
stream task. Figure 2.10 illustrates the pre-training and fine-tuning steps of BERT.
It can be observed that for any down-stream task like Question-Answering (SQuAD)
[RZLL] and Natural Language Inference (NLI) [WNB] the pre-trained parameters
from BERT are used as the initial parameters and later fine-tuning is performed. For
the MLM task, BERT takes one sentence or sequence as input and two sentences in
the NSP task. In addition, for downstream tasks like Question-Answering (QA) and
text classification, the input for BERT varies. So, BERT handles such ambiguity in
the input through its input representation method. It combines multiple sentences
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Figure 2.11: Input representation of BERT [DCLT]

into a single sequence by using a unique token ’[SEP]’ to distinguish multiple sen-
tences (see Figure 2.11). Furthermore, it adds the position and segment embeddings
to the token embeddings to represent each token in the input. These steps to handle
ambiguity in input makes BERT suitable for different NLP tasks.

The authors of [DCLT] proposed two model sizes for BERT, namely BERT base and
BERT large. In this thesis, we have used ’deepset/gbert-base’ a BERT base model
by Deepset [CSM] available in HuggingFace 3 platform. We used the BERT model
since the results compared with GPT-3 were satisfactory for the task of Occupation
Coding. The ’deepset/gbert-base’ model was pre-trained using German Wikipedia
dump, OSCAR, OpenLegalData, and news articles datasets. Further, it was evalu-
ated on GermEval18 [WS18], and GermEval14 [BBKP14] text classification datasets
as downstream tasks. We used the German language BERT model since the dataset
used in the thesis is in German. Even though BERT successfully set new state-of-
the-art results in NLP, it faced limitations due to computational overhead and bad
sentence embeddings in regression tasks like clustering and semantic similarity com-
parison. The authors of [RG] mention the above limitations in BERT and propose
a modified version of BERT named Sentence-BERT (SBERT).

2.2.4 SBERT

SBERT is based upon BERT, Siamese, and triplet networks capable of deriving
similar sentence embeddings for semantically similar sentences [RG]. The Siamese
network [KZS15] based architecture of SBERT (see Figure 2.12) contains two identi-
cal neural networks that share weights. These networks work in parallel fashion, and
their outputs are compared using cosine similarity. SBERT was evaluated on Se-
mantic Textual Similarity (STS) and Argument Facet Similarity (AFS) datasets that
compare the similarity of sentences. In this thesis, we have used SBERT for extract-
ing embeddings in a similarity computation task based on the findings from [RG]
that sentence embeddings from BERT are not suitable for calculating the similarity
between sentences; we have used a German SBERT model from the HuggingFace 4

platform.

3https://huggingface.co/deepset/gbert-base
4https://huggingface.co/T-Systems-onsite/cross-en-de-roberta-sentence-transformer
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Figure 2.12: Architecture of SBERT [RG]
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3. Related Work

This chapter discusses the different methods used to address the occupation coding
task. Furthermore, as our proposed approach is based on imparting the domain
knowledge of the KLDB classification scheme, we discuss the several methods in the
literature which were used to incorporate external knowledge with BERT to solve
different NLP tasks.

3.1 Occupation Coding - Methods

As mentioned earlier in Section 1.1, the occupation coding methods can be grouped
into manual and (semi-)automatic methods. We discuss the state-of-the-art (semi-)
automatic methods implemented to address the occupation coding task. In this sec-
tion, we further differentiated the (semi-)automatic methods into rule-based, hybrid,
and statistical methods with machine learning.

3.1.1 Rule-Based Methods

The rule-based methods in occupation coding assign an occupation ID to the prepro-
cessed user responses by matching them against the rules provided by the domain
experts in the ’if-then’ format. In addition, these methods use occupation classifi-
cation schemes like Table 2.1 and Table 2.4 as an index or dictionary for matching
the user responses. Conrad et al. [Con97] in 1997 proposed an earlier implementa-
tion based on an expert system with pre-defined rules for occupation coding. These
methods rely upon text-matching techniques and rules to classify user responses.
Jürgen et al. [HZG03], and Hartmann et al. [HTS12] consists of rules to perform
occupation coding using the ISCO-08 and KLDB 2010 schemes. However, the au-
thors of [Sch14] mentioned that it is rare to achieve more than 50% of accuracy using
rule-based methods. So, the usage of advanced text processing and text matching
techniques became popular. Occupation coding systems like G-Code 1 by Statistics
Canada and CASCOT [EPR14] by the Warwick Institute for Employment Research

1https://www150.statcan.gc.ca/n1/en/catalogue/10H0033



22 3. Related Work

used the classification schemes combined with text processing techniques to classify
occupations. CASCOT [EPR14] provides a confidence score after assigning an oc-
cupation ID. Another approach proposed in [BBA20] is an iterative algorithm that
uses text search and filtering steps. It considers the user response as a query and
searches the Canadian National Occupational Classification (NOC -2016) based on
seven search strategies. It uses exact, partial, and weak text matching in the search
steps to select an appropriate occupation ID for a query based on the job description
and titles. If multiple occupation IDs match the description, it applies to a series
of filtering steps that check keyword frequency in the job title or description from
NOC and the query.

Additionally, some methods explored the use of linguistic relations between the user
responses and descriptions of several occupation categories available in the classifica-
tion schemes. These methods converted the responses and occupation descriptions
into vectors and computed cosine similarity, then assigned the response to a cate-
gory based on the highest similarity. Patil et al. [PP13] and Hacking et al. [HW12]
utilized the linguistic relations between the texts for classification. However, the
authors of [Sch14] mentioned that usage of statistical techniques with the Machine
Learning algorithms exceeded the performance of the rule-based and text search
methods.

3.1.2 Machine Learning - Methods

There has been considerable research on the automatic classification of texts into
predetermined categories using Machine Learning (ML). The authors of [KJMH+19],
[MP18], and [MKC+] provides an overview of the Machine Learning and Deep Learn-
ing (DL) methods for the text classification. [MKC+] also discusses how Deep Learn-
ing methods have outperformed the ML methods in the text classification tasks like
sentiment analysis, news categorization, and NLI. As the occupation coding task
deals with classifying the user responses into an occupation category by assigning
an occupation ID, it can be treated as a text classification problem. However, con-
sidering it as a text classification problem involves additional challenges like less text
and high dimensionality. In the first place, the user responses consist of keywords
with minimal text and incorrect spellings. Furthermore, the responses have to be
classified among several categories of occupations leading to the high dimensionality
problem. Schierholz et al. [SS20] discuss the above challenges and address these
issues by pooling data from multiple surveys to deal with the lack of text issue and
also to ensure the presence of all the categories of occupations in the data.

In the context of Machine Learning, the methods implemented so far primarily rep-
resented the user responses as vectors using bag-of-words (binary presence, TF-IDF)
from the human-annotated training data and used them as features to train the ML
models. Ikudo et al. [ILSW20] used the bag-of-words to represent the occupation
data and train an ML model using the random forest algorithm. Alexander et al.
[Mea14] represented the occupation-related data of employees using n-grams and
evaluated the performance of Multinomial Naive Bayes, SVM, and logistic regres-
sion algorithms for occupation coding, as part of analyzing the work-related illness
and injuries in the United States. It is specified in [Mea14] that the SVM and lo-
gistic regression algorithms had better accuracy than Naive Bayes. Takahashi et



3.2. Imparting external information into BERT 23

al. [TTTL14] proposed an occupation coding system based on bag-of-words and
SVM combined with a rule base for the classification schemes like ISCO and SSM.
In addition, the system provides a three-grade confidence score for the classified
occupation ID. Gweon et al. [GSK+17] also utilized the bag-of-words technique and
proposed an adapted nearest neighbor algorithm. It classifies the new user response
by computing the cosine similarity between the vector representation of the new
user response and the training data responses and assigns the occupation ID of the
most similar response. The proposed algorithm also exceeded the performance of
the SVMs with linear kernels on ALLBUS survey data.

Also, Schierholz et al. [SS20] provided a comprehensive survey of the Machine
Learning methods for the occupation coding task. It compared the performances of
seven methods on five survey datasets. Exact string matching, CASCOT [EPR14],
Memory based reasoning [CMSW], Adapted nearest neighbor [GSK+17], Multino-
mial regression and Tree boosting (XGBoost) methods. It evaluated the methods’
performances for the production and agreement rate metrics. It is mentioned in
[SS20] that the Multinomial regression and Tree boosting (XGBoost) methods out-
performed other methods in the occupation coding task.

Apart from the methods mentioned earlier, deep learning methods and pre-trained
models were also utilized in tasks like skills classification and normalizing job titles
for occupation data. Tran et al. [TVL21] proposed a multi-label classification tech-
nique for predicting job titles for a given job description. The proposed approach
used a Bi-GRU-LSTM-CNN with pre-trained models like BERT and DistilBERT to
predict a suitable job title for a job description. Decorte et al. [Dec21] proposed
JobBERT, a method to normalize job titles. The process of job title normalization
involves connecting free-form job titles to their most relevant standard titles. Also,
Nigam et al. [NTTS20] proposed SkillBERT, a BERT-based model to extract em-
beddings as input features for grouping or classifying skills into competency groups.
The competency groups are generally used to match the job skills and the applicants.
During the literature survey, we observed that the information from classification
schemes was used as an index or reference to generate rules for the task of occupation
coding. However, we also identified that the information available in the classifica-
tion schemes like KLDB and ISCO was not used along with the pre-trained models
like BERT for the occupation coding task. Hence, we propose a novel approach
to impart that information into BERT for occupation coding. In this process, we
also explored the techniques used to incorporate external knowledge into BERT for
specific NLP tasks.

3.2 Imparting external information into BERT
This section discusses methods that integrate external information with BERT to
solve Classification, Machine Translation, and Natural Language Understanding
(NLU) tasks. We categorized the external information into lexical, syntactic, and
semantic categories to group the proposed methods.

3.2.1 Lexical Information

Lim et al. [LTM] mention that even though BERT can capture semantic information
from the text, integrating corpus information along with BERT will be beneficial for
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specific tasks. Lim et al. proposed an ensemble approach to use TF-IDF informa-
tion and noun count as features of the corpus along with the sentence embeddings
extracted from BERT to address the tasks of abuse detection (subtask A) and target
detection (subtask B) in SemEval-2020 Task 12. Similarly, Prakash et al. [PTM]
proposed an approach for stance detection task by using count-based features (TF-
IDF) with RoBERTa. The proposed approach achieved state-of-the-art results for
the stance detection task. Koufakou et al. [KPBP] proposed HurtBERT for detect-
ing abusive language in texts on social media. It used an external lexicon HurtLex
2, a multilanguage lexicon of offensive words along with BERT. It integrated the
embeddings and encodings of offensive words to detect abuse in texts. Yan et al.
[YTM] mentioned that the pre-trained language models do not possess task-specific
statistical or domain knowledge information. They hypothesize that such informa-
tion helps in token classification tasks. The proposed approach uses count-based
features and uses a CRF to improve the performance of the toxic span prediction
task.

3.2.2 Semantic and Syntactic Information

Zhang et al. [ZWZ+20] specified that language models like ELMO, GPT, and BERT,
which are often used for language representation, utilize the context-sensitive fea-
tures of character or word embeddings. [ZWZ+20] points out that structured se-
mantic information, which can provide rich semantic information, needs to be taken
into account by these language models. Hence, they proposed SemBERT, a fine-
tuned BERT that uses Semantic Role Labelling (SRL) to use the explicit contextual
information in the text. Similarly, Sundararaman et al. [SSW+19] mentioned that
the transformer architectures, which provide representations of tokens by consider-
ing the relationship among the other tokens in sequence, could also be benefited by
explicitly providing syntactic information. So, [SSW+19] proposed to use Parts-of-
speech (POS), case (categorical attribute - upper or lower), and subword position
for each token as additional inputs to the transformer architecture so that the en-
coder pays attention to these syntactic features. Accordingly, Sundararaman et al.
[SSW+19] modified the pre-trained BERT based to infuse syntax information to
BERT and achieved state-of-the-art results in machine translation as well as several
downstream tasks from GLUE benchmark. However, Bai et al. [BWC+21] men-
tioned leveraging the syntax trees to provide syntactic information to BERT rather
than simple syntactic features like POS and subword position. Bai et al. [BWC+21]
proposed Syntax-BERT to effectively ingest syntax trees at the pre-trained check-
point of BERT and achieved consistent results over BERT and RoBERTa on NLU
tasks. Table 3.1 provides an overview of the above-mentioned methods based on the
type of external information integrated with BERT.

3.2.3 Additional pre-training

Apart from the semantic, syntactic, and lexical information, to improve the text clas-
sification performance and provide domain knowledge to BERT, Yu et al. [YTM]
converted a multi-class classification task into a sentence pair classification task by

2https://github.com/valeriobasile/hurtlex
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constructing auxiliary sentences from the corpus to incorporate task-specific knowl-
edge into BERT. Yu et al. [YTM] specify that by constructing auxiliary sentences,
the problem of limited supervised training data can be addressed, and the proposed
method achieved state-of-the-art results in the case of multi-classification datasets.
In addition, Yu et al. [YTM] proposed to use MLM and NSP to impart domain
knowledge into BERT. Also, Brinkmann et al. [BB21] mentioned that the per-
formance of pre-trained models on downstream tasks can be improved by adding
additional pre-training steps using the domain-specific corpus. [BB21] addresses the
task of hierarchical product classification to group product offers from online shops.
It used Masked Language Modelling (MLM) as an additional pre-training step to
provide domain knowledge to BERT regarding the hierarchy of products.

3.2.4 Summary

We discussed the rule-based and Machine Learning techniques proposed in the pre-
vious sections to solve the occupation coding task. However, we observed that the
classification schemes were often used as an index or dictionary in the proposed
techniques, and the pre-trained language models were not utilized for the occupa-
tion coding tasks. Hence, we propose to utilize the KLDB classification scheme for
occupation coding. In this attempt, we explored the techniques used to incorporate
external information with BERT to solve various NLP tasks. The Table 3.1 sum-
marizes the different approaches proposed for imparting external information with
BERT.
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4. Concept

This chapter discusses the approach implemented to integrate domain knowledge
into BERT. We further present the details about the datasets used and discuss how
we fine-tuned BERT on occupation-coding tasks using domain knowledge.

4.1 Datasets

In this thesis, we used two German language datasets for occupation coding: KLDB
2010 (KLDB data) published by the Bundesagentur für Arbeit (BA) and the DZHW
occupation data provided by the DZHW institute.

4.1.1 DZHW Occupation data

It is anonymized data with KLDB IDs assigned to user responses, collected through
occupation-related questions mentioned in Table 1.2. The KLDB IDs were assigned
by human coders/experts following the KLDB 2010 [PM13] classification scheme
since the respondents were from Germany. Figure 4.1 consists of examples taken
from the DZHW occupation data. The dataset contains the following features:
”Job Title”, ”Activity 1” and ”Activity 2” indicate activities for a corresponding ”Job
Title”. The DZHW data consists of 877 unique classes (KLDB IDs) and 56,206 rows
with the features mentioned earlier.

Figure 4.1: Anonymized DZHW occupation dataset

In the DZHW data, we observed that the activities often contain less text and some-
times just keywords. This poses a challenge for the ML or DL models to be trained



28 4. Concept

for occupation coding. Since the DZHW data followed KLDB 2010 classification
scheme, we assumed that providing the domain knowledge of the KLDB 2010 classi-
fication scheme to BERT would improve its classification performance on the DZHW
occupation data.

4.1.2 KLDB Data

We address this dataset as domain data since it contains details about the 5-level
hierarchy of occupation groups. The information regarding the occupation group
can be observed in Figure 4.2. The information provided in the KLDB columns is
as follows:

• Ebene: indicates the hierarchy level

• Titel: contains a title for an occupation group

• Allgemeine Bemerkungen: contains description of the occupation group

• Einschlüsse: contains information about the activities and skills of an occupa-
tion group

• Umfasst ferner: contains the list of occupation groups and job titles that are
included under an occupation group/title

• Ausschlüsse: contains the list of occupation groups and job titles that are
excluded for an occupation group/title

From this dataset, we have used the occupation groups that belong to the fifth level
since it contains information about the previous four levels. This dataset consists
of 1286 rows for the fifth hierarchy level, which is further used to create custom
datasets for fine-tuning tasks. In addition, we observed that the number of tokens
in the description and activities for both DZHW and KLDB data didn’t exceed 512,
which is the maximum input length for BERT.

Figure 4.2: KLDB dataset with description and activity information for occupations
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4.2 Implementation

In this section, we discuss how domain knowledge was provided to BERT using two
dimensions: Training and Dataset dimensions. In the training dimension, we discuss
the two approaches and the tasks involved in each approach to provide domain
knowledge and perform occupation coding. Also, we discuss the steps performed in
the Dataset dimension.

4.2.1 Training dimension

To integrate the KLDB classification scheme information into BERT, we propose
to use additional pre-training steps with a series of classification tasks. Hence, we
propose two approaches, namely, Approach 1 & 2, in which we fine-tune BERT
on text binary classification and text classification tasks for the KLDB data. These
approaches are based on Yu et al. [YSL19] & Brinkmann et al. [BB21] which suggest
to use NSP and auxiliary sentence classification tasks to integrate domain knowledge
into BERT. To utilize the domain information provided in KLDB data for occupation
coding, we decided first to fine-tune BERT on binary classification and occupation
coding on the domain data and later utilize the fine-tuned BERT for occupation
coding on DZHW occupation data (see Figure 4.3). The motivation behind these
approaches was also to tackle the lack of text in DZHW data by imparting the
KLDB classification scheme knowledge to BERT.

Figure 4.3: Overview of the tasks involved in training dimension

Approach 1:

In this approach, we fine-tuned BERT on a text classification task (KLDB ID Clas-
sification) in which we provided the job activity, title, and description as input
to BERT and classified it into a corresponding KLDB occupation group using the
KLDB ID. We considered this fine-tuning task as a method to integrate the domain
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knowledge into BERT. We created a custom dataset from KLDB data to perform
this task since it only had 1286 rows of data for the five-digit KLDB IDs. Hence,
we created a custom dataset from the occupation activities and description infor-
mation. As the KLDB data contains activities and descriptions for occupations,
we assumed that if BERT can perform well in predicting the KLDB ID on a given
input of job title and activity from domain data, it would simultaneously increase
the performance on the DZHW occupation data. The pipeline in Figure 4.4 depicts
the steps involved in this approach.

Figure 4.4: Pipeline 1 - BERT is fine-tuned to perform occupation coding on a
custom dataset created from KLDB data.

Custom Dataset - Approach 1

To prepare a custom dataset, we considered Allgemeine Bemerkungen (Descrip-
tion) and Einschlüsse (Activity) columns apart from KLDB ID and Titel (Title) in
KLDB Data because the activities and Job Titles of user responses in the DZHW
occupation data contained semantically similar words. In the process of custom
data creation, the activities featured in the Einschlüsse column for a corresponding
Job Title (see Figure 4.5) were split into a list of sentences so that more instances
of data could be generated (see Figure 4.6). Then we performed basic preprocess-
ing steps like removing special characters, replacing abbreviations in the activities,
and rearranging the titles. Since some titles were of the form ”Komiker/innen und
Kabarettisten/Kabarettistinnen” after the preprocessing step, they were converted
into ”Komiker oder Komikerinnen und Kabarettisten oder Kabarettistinnen”. After
performing basic preprocessing steps, we created a custom dataset with 8,907 in-
stances from the 1286 instances. In addition, we added the 4200 job titles extracted
from Ausschlüsse but they lacked the activity and description information.

Figure 4.5: Activities before splitting for KLDB ID - 11101
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Figure 4.6: Activities after splitting for KLDB ID - 11101

We considered KLDB ID as the target variable from the custom data and assumed
this as an occupation coding task on domain data (KLDB ID Classification) and
fine-tuned BERT. During KLDB ID Classification, a new classification head was
added on top of BERT to perform the classification to match the number of unique
KLDB IDs in the domain data. Also, during KLDB ID Classification, the pre-
trained and classification head weights of BERT get updated. It was also ensured
that the train, test, and validation splits contained the examples for all the KLDB
IDs. After the KLDB ID Classification, we assume that BERT contains the domain
knowledge of KLDB, so we only discard its classification head and replace it with a
new head to match the number of unique KLDB IDs in the DZHW occupation data
and fine-tune it again on the DZHW occupation data. We discuss this approach’s
hyperparameter configuration and results in the experiments section.

Figure 4.7: Pipeline 2 - BERT fine-tuned on an additional sentence pair classification
and occupation coding tasks on domain data.

Approach 2:

In this approach, we use an auxiliary sentence pair classification task as an ad-
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ditional step before performing the fine-tuning step on domain data as depicted in
the Figure 4.7. In the auxiliary task, BERT is fine-tuned to classify whether an ac-
tivity, description, and job title are relevant or irrelevant to each other. We address
this as a relevance classification task in Figure 4.7. This task was inspired by the
NSP task mentioned in Section 2.2.3. Since several occupation groups or titles in
KLDB data have semantically similar words in the activities and description, we
assumed that if BERT can classify whether an activity and title are relevant to each
other would further help improve its performance during the occupation coding on
domain and DZHW data.

Figure 4.8: Examples of relevant and irrevalant instances for the occupation - ”Berufe
in der Landwirtschaft ohne Spezialisierung Helfer oder Anlerntätigkeiten”

Custom Dataset - Approach 2

We have created a custom dataset based on the nearest neighbor approach from
the KLDB domain data to perform the binary classification task. We considered
the provided activity information in domain data as relevant samples in the custom
dataset creation for occupations. For example, the activity information provided
in Figure 4.5 is positive/relevant for the title ”Berufe in der Landwirtschaft ohne
Spezialisierung Helfer oder Anlerntätigkeiten”. To create an irrelevant sample, we
had a couple of alternatives: Firstly, based on the nearest KLDB ID and a similarity-
based method. In the KLDB ID approach, we consider the activities of the nearest
KLDB ID as irrelevant samples. For example, for the KLDB ID 11102, the irrelevant
samples will be the activities of KLDB IDs - 11101 and 11103. So, the nearest KLDB
IDs are determined by adding and subtracting one from a KLDB ID and verifying
whether that KLDB ID exists in the classification scheme. However, we pursued the
idea of using the similarity-based approach because we assumed that training BERT
to classify semantically similar activities for a KLDB ID would further improve its
performance in occupation coding tasks on domain and DZHW data.
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Algorithm 4.1: Relevant and irrelevant sample extractor

Result: Relevant & irrelevant instances for each occupation title
1 occupation list: list of occupations in KLDB;
2 activity list: list of activities for each occupation in KLDB;
3 activity embeddings: Sentence BERT embeddings for activities of each

occupation in KLDB;
4 similarity list: list of activity similarity values for each occupation;
5 rel irr samples: relevant and irrelevant samples for each occupation;
6 for occupation in occupation list do
7 activity embeddings[occupation] = SBERT(activity list[occupation])
8 end
9 for current occupation in occupation list do
10 for other occupation in occupation list do
11 if current occupation is not other occupation then
12 similarity list [current occupation] = similarity

(activity embeddings [current occupation, other occupation]);
13 end
14 else
15 rel irr samples[current occupation][’rel’] =

activity list[current occupation]
16 end

17 end
18 most similar occupation = argmax(similarity list

[current occupation])
19 rel irr samples [current occupation][’irrel’] =

activity list[most similar occupation]
20 end
21 return rel irr samples;

In the similarity-based approach, we utilize the text embeddings of the activities for
occupations provided by the KLDB scheme. For example, for the KLDB ID 11101
”Berufe in der Landwirtschaft ohne Spezialisierung Helfer oder Anlerntätigkeiten”,
to determine an irrelevant sample, we take the embeddings of the activities for 11101
and all the other KLDB IDs. Then, we determined the most similar activity based
on cosine similarity and considered it an irrelevant sample. The Figure 4.8 depicts
an example of relevant and irrelevant instances for the occupation with KLDB ID
11101. The relevance column indicates whether the text description of the activity
is relevant to the occupation ”Berufe in der Landwirtschaft ohne Spezialisierung
Helfer oder Anlerntätigkeiten”. We further explain the relevant and irrelevant sample
extraction in Figure 4.7 based on the algorithm 4.1.

From lines 6 to 8, it can be observed that SBERT (sentence BERT) was used for
generating the embeddings of the activities since it is mentioned in [RG] that sen-
tence embeddings generated from BERT are not suitable for similarity computation
tasks. As the positive/negative sample extraction is based on computing cosine sim-
ilarity for the embeddings, we decided to use SBERT. From lines 9 to 19, for each
occupation in the domain data, we compute cosine similarity for the activities (lines
10-13) and consider the current occupation’s activity as a positive sample (line 15)
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and only consider the topmost similar activity (line 18-19) as a negative sample.
Since there can be a lot of irrelevant samples for an activity, we decided to consider
only the topmost or first activity in the similarity list as an irrelevant sample so
that BERT can differentiate between the closely related activities of different job
titles and also avoid the class imbalance scenario in case of relevant and irrelevant
samples.

The custom dataset consisted of 18,251 instances for the binary classification task.
As observed in the Figure 4.7, we first fine-tune BERT on the binary classification
task (Relevance classification). Then we chose only the relevant/positive examples
from the created custom dataset and fine-tuned the BERT model from the binary
classification task to perform occupation coding on the domain data. Further, we
use the BERT model fine-tuned on domain data to perform occupation coding on
DZHW occupation data. The difference between approaches 1 and 2 is using the
binary classification task (Relevance classification) as an additional step before fine-
tuning BERT on domain data.

4.2.2 Dataset dimension

In the dataset dimension, we address the research question RQ-3 by augmenting the
user responses in the DZHW occupation data with the domain data to provide more
textual information as input to the BERT model during the training phase. We
append the DZHW data and the positive/relevant samples from the custom dataset
in approach 2 and fine-tuned BERT on the augmented data to perform occupation
coding. We also ensured that the domain data existed only in the training and
validation datasets but not in the test dataset to judge whether adding the domain
data to user responses in DZHW occupation data improved BERT’s classification
performance.

To summarize, we created two BERT models from the Training dimension, i.e.,
from Approaches 1 and 2, and one BERT model from the Dataset dimension. The
domain knowledge of the KLDB classification scheme was provided through a series
of classification tasks in the Training dimension, whereas in the Dataset dimension,
we provided the domain knowledge to BERT along with DZHW occupation data
as an input during the training phase. To judge whether integrating the domain
knowledge into BERT to perform occupation coding on DZHW occupation data
improved the classification performance, we have created a baseline BERT model.
This baseline model was fine-tuned to perform occupation coding on the DZHW
occupation data without any information regarding the KLDB classification scheme.
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In this chapter, we discuss the experimental setup and the experiments performed
for the KLDB ID classification and relevance classification tasks on the domain
data and later about the hyperparameter tuning configurations and evaluation of
the performance of BERT for the occupation coding tasks involved in the proposed
approaches.

5.1 Experimental setup

We implemented data understanding and data preparation, modeling, and evalua-
tion steps using the Python programming language for the proposed approach. In
the data understanding and data preparation steps, the KLDB and DZHW occupa-
tion datasets were analyzed and preprocessed using the Pandas1 and Spacy2 libraries.
In the modeling step, we performed hyperparameter tuning and fine-tuning steps on
the BERT models using PyTorch [PGM+19], Transformers [WDS+] by Hugging Face,
and Tune: scalable hyperparameter tuning framework [LLN+18] from Ray3 libraries.
Furthermore, we used the Weights & Biases [Bie20] tool to track the experiments.
During the hyperparameter tuning step, the best configuration was chosen based on
the performance of BERT on the validation dataset. After finding the best hyperpa-
rameter configuration, we fine-tuned the BERT model following the steps proposed
for the Training and Dataset dimension and baseline.

After the fine-tuning step, we performed a stratified k-fold cross-validation (k=5)
step for the DZHW occupation data to evaluate the performance of models based
on accuracy. In the stratified cross-validation step, the DZHW occupation data was
split into five folds of training and test dataset splits. The training and test splits
for the baseline and training dimension consisted of 44,920 and 11286 instances. As
we augment the domain data with DZHW data for dataset dimension the training
and test splits contain 58,024 and 11286 instances. For each fold, a new BERT

1https://pandas.pydata.org/docs/
2https://spacy.io/
3https://docs.ray.io/en/latest/index.html
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model was fine-tuned on training data, and the performance on the test dataset was
recorded. This step aims to determine how the performance of BERT varied for
different training and test datasets. As the DZHW data was imbalanced for the
877 unique KLDB IDs, we ensured that examples from each class were present in
training and test data splits. To perform the experiments mentioned in the modeling
and evaluation steps, we used the Tesla V100-SXM2-32GB GPU.

5.2 Initial experiments

This section discusses the initial experiments performed on the KLDB and DZHW
occupation data and the reason for choosing the grid search method to perform the
hyperparameter tuning step.

Figure 5.1: Training loss for relevance classification task reduced after adding the
description to activities for learning rates 2e−5,3e−5

As mentioned earlier, the KLDB domain data comprised information about the oc-
cupation group’s description and activities. We initially considered only the activity
information from the domain data (Section 4.1.2) for the relevance classification task
mentioned in the Approach 2. We observed that for a choice of the learning rates
2e−5,3e−5, and batch size 16, the training loss of the BERT model for the relevance
classification on the domain data remained stagnant and didn’t decrease as the train-
ing epochs were finished. This phenomenon can be observed from the Figure 5.1
indicated by ’Data-without-description’. After adding the occupation description to
the activities, the training loss for the relevance classification started to decrease
as indicated by ’Data-with-description’ in Figure 5.1. Hence, we decided to utilize
the description of occupations from the domain data in the proposed approaches.
Furthermore, we observed that the BERT model required more than three epochs
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to train on the domain data and the DZHW occupation data for the KLDB ID
classification tasks.

In addition, we have experimented with two methods for the hyperparameter tuning
step: Population-based training (PBT) 4 and Grid search. For 20 combinations of
the batch size, weight decay, learning rate, and epochs, we observed that the PBT
method executed the hyperparameter tuning of BERT for the occupation coding
task on DZHW data for six days. In contrast, the grid search method for 24 combi-
nations of hyperparameters executed the hyperparameter tuning step for two days.
Since PBT trains a series of models by mutating the hyperparameters and utilizing
the parameters of other hyperparameter configurations, it took a lot of computing
power and time. Table A.1 depicts the results of the baseline BERT model for hy-
perparameter tuning on the KLDB ID classification task for the DZHW occupation
data. In addition, PBT provides a trained model and training schedules instead
of the best hyperparameter configuration. So, we decided to use the grid search
method instead of PBT for the hyperparameter tuning. Furthermore, we discuss
the choice of hyperparameters and their values used for the hyperparameter tuning
step.

Hyperparameter Values
batch size [16, 32]
weight decay (0, 0.3)
learning rate [2e−5,3e−5,4e−5,5e−5]
epochs [5, 7, 9]

Table 5.1: Grid search hyperparameters for occupation coding tasks

To perform hyperparameter tuning for the classification tasks described in the pro-
posed approaches, we have used the batch size, epochs, weight decay, and learning
rate as hyperparameters. In the case of learning rate and batch size values, we have
selected the suggested values mentioned in [DCLT] and used the suggested weight
decay values by Tune 5 (see Table 5.1). We used the learning rate values suggested
by [DCLT] after comparison of training loss and validation accuracy for other learn-
ing rates 1e−6,1e−7, and 5e−7 with one of the learning rate value 5e−5 from [DCLT]
on KLDB ID classification task for DZHW data. It can be observed from the Fig-
ure 5.2 and Figure 5.3 that learning rate from 5e−5 tends to reduce the training loss
and attain a better validation accuracy. In addition, we used the Adam optimizer
and default dropout 0.1 value mentioned in [DCLT]. As discussed earlier, we have
used the Tune framework from Ray to perform hyperparameter tuning in PyTorch
on the ’gbert-base’ model from the Hugging Face platform. The Tune framework
creates different combinations of hyperparameters called trails using the grid search
method, trains a BERT model on each trail, and suggests the best configuration
of hyperparameters based on performance metrics like training loss or accuracy on
a validation dataset, etc. We have considered accuracy as an evaluation or perfor-
mance metric since we wanted to improve the accuracy of BERT for the occupation

4https://www.deepmind.com/blog/population-based-training-of-neural-networks
5https://medium.com/distributed-computing-with-ray/hyperparameter-optimization-for-

transformers-a-guide-c4e32c6c989b
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coding task. Moreover, as the KLDB ID classification is a multi-class classification
problem, the micro and weighted average of f1-scores were similar to the accuracy.
In addition, we have set a random seed 42 for all the hyperparameter tuning and
cross-validation steps.

Figure 5.2: Training loss of BERT for KLDB ID classification task on DZHW data
for learning rates 5e−5,1e−6,1e−7, and 5e−7

Figure 5.3: Validation accuracy of BERT for KLDB ID classification task on DZHW
data for learning rates 5e−5,1e−6,1e−7, and 5e−7
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5.3 Fine-Tuning the Models

This section presents the results of the hyperparameter tuning, fine-tuning and cross-
validation steps for the BERT models from Training and Dataset dimensions and
the baseline.

5.3.1 Approach 1

As discussed earlier in Section 4.2.1, approach 1 involves fine-tuning BERT on the
domain data for the KLDB ID classification task; we have done the hyperparameter
tuning on ’gbert-base’ model with the parameter space from Table 5.1. We have
performed the hyperparameter tuning with 24 trials generated from grid search and
trained a BERT model for each run on the domain data training dataset. We have
used validation accuracy as a metric to choose the best hyperparameter configura-
tion. The Table 5.2 consists of the results for the hyperparameter tuning on the
custom dataset generated from the KLDB domain data. The configuration of trial
15 performed well in comparison with the other trials in terms of validation accuracy.
So using the best configuration suggested from the hyperparameter tuning step, we
have trained a ’gbert-base’ on the custom domain data and checked its performance
on a test dataset from the custom dataset. The model achieved similar performance
on the test dataset with 0.9736 (97.36 %) accuracy for the KLDB ID classification
task.

After training BERT on the custom dataset, we assumed that the domain knowl-
edge from KLDB data was imparted into BERT and fine-tuned it on the KLDB
ID classification for anonymized DZHW data. We performed the hyperparameter
tuning step on the fine-tuned BERT to choose the best parameters for the DZHW
occupation data. The results of the hyperparameter tuning step for DZHW data
can be observed in the Table 5.3 and trial 7 achieved a higher validation accuracy
of 65.37 %. Furthermore, we have selected the hyperparameter configuration of the
trial 7 and performed stratified k-fold cross-validation with k=5 on the DZHW occu-
pation data to train the BERT with KLDB scheme information on different training
data and evaluate the performance on different splits of test data. We have chosen
stratified k-fold-cross-validation with to ensure that the training and test datasets
consisted of instances belonging to all the KLDB IDs. The mean accuracy of the
model on the test datasets from the stratified k-fold-cross-validation step was 66.67%
with a standard deviation of 0.11.

5.3.2 Approach 2

As mentioned earlier in Section 4.2.1, Approach 2 involves relevance classification, an
auxiliary sentence classification task as an additional step before fine-tuning BERT
on the domain data for the KLDB ID classification task. We have first fine-tuned
the ’gbert-base’ model on the custom dataset created from relevant and irrelevant
sample extractor for relevance classification, a binary classification task with the
following parameters from hyperparameter tuning step: 3 epochs, 16 input batch
size, and 3e−5 learning rate. The BERT model achieved an accuracy of 95.4% on val-
idation and 95.12% on the test dataset for the relevance classification task. Further,
we have fine-tuned this model on the KLDB ID classification task for the relevant
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Trial w decay lr train bs epochs val acc val loss
0 0.0550304 5e−5 16 5 0.00210 7.16355
1 0.0468056 4e−5 16 5 0.87719 3.75629
2 0.137775 3e−5 16 9 0.96491 2.10507
3 0.00617535 2e−5 32 9 0.89754 4.62434
4 0.0637017 5e−5 32 7 0.94877 2.8497
5 0.185244 2e−5 32 5 0.57543 5.8279
6 0.129584 3e−5 32 5 0.78666 5.09208
7 0.119958 5e−5 16 9 0.96350 2.37206
8 0.136821 4e−5 32 9 0.93473 2.77608
9 0.114739 5e−5 32 9 0.96350 1.91287
10 0.0139351 4e−5 32 5 0.77333 4.63553
11 0.13515 2e−5 16 5 0.00140 7.164
12 0.28969 2e−5 32 5 0.62386 5.78572
13 0.00478988 2e−5 32 5 0.64070 5.77945
14 0.204979 5e−5 32 9 0.96701 *** 1.92.836
15 0.0520094 3e−5 16 9 0.97122 * 2.06761
16 0.198757 2e−5 32 7 0.82315 5.17846
17 0.0623825 5e−5 32 7 0.93824 2.794
18 0.290875 2e−5 32 5 0.63859 5.77572
19 0.118545 5e−5 32 7 0.94947 2.75407
20 0.276562 5e−5 32 9 0.96912 ** 1.90421
21 0.15625 2e−5 32 9 0.90105 4.59276
22 0.116603 2e−5 32 5 0.63017 5.7915
23 0.176025 3e−5 16 5 0.88140 4.05215

Table 5.2: Hyperparameter tuning results for KLDB ID classification on custom
domain data. w decay - weight decay, lr - learning rate, train bs - batch size, val acc
- validation accuracy, val loss - validation loss
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Trial w decay lr train bs epochs val acc val loss
0 0.0550304 5e−5 16 5 0.64083 1.82234
1 0.0468056 4e−5 16 5 0.63611 1.88301
2 0.137775 3e−5 16 9 0.64596 1.85746
3 0.00617535 2e−5 32 9 0.62240 2.02624
4 0.0637017 5e−5 32 7 0.64402 1.82448
5 0.185244 2e−5 32 5 0.57721 2.37128
6 0.129584 3e−5 32 5 0.60674 2.12088
7 0.119958 5e−5 16 9 0.65379 * 1.83981
8 0.136821 4e−5 32 9 0.64663 1.84414
9 0.114739 5e−5 32 9 0.64840 1.81769
10 0.0139351 4e−5 32 5 0.62383 1.9835
11 0.13515 2e−5 16 5 0.60405 2.16116
12 0.28969 2e−5 32 5 0.57746 2.37385
13 0.00478988 2e−5 32 5 0.57754 2.36963
14 0.204979 5e−5 32 9 0.65076 *** 1.81429
15 0.0520094 3e−5 16 9 0.64680 1.85639
16 0.198757 2e−5 32 7 0.60388 2.15287
17 0.0623825 5e−5 32 7 0.64436 1.82313
18 0.290875 2e−5 32 5 0.57721 2.37405
19 0.118545 5e−5 32 7 0.64588 1.81662
20 0.276562 5e−5 32 9 0.65101 ** 1.81706
21 0.15625 2e−5 32 9 0.62046 2.02778
22 0.116603 2e−5 32 5 0.57704 2.37062
23 0.176025 3e−5 16 5 0.62156 1.97485

Table 5.3: Hyperparameter tuning results for KLDB ID classification on DZHW
occupation data for approach 1. w decay - weight decay, lr - learning rate, train bs
- batch size, val acc - validation accuracy, val loss - validation loss
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samples from the custom dataset. We have used the following hyperparameter con-
figuration weight decay - 0.0520094, learning rate - 3e−5, input batch size - 16, and
9 epochs for the KLDB ID classification and achieved similar results to the KLDB
ID classification in approach 1.

Trial w decay lr train bs epochs val acc val loss
0 0.0550304 5e−5 16 5 0.64142 1.83953
1 0.0468056 4e−5 16 5 0.63334 1.88544
2 0.137775 3e−5 16 9 0.64554 1.86463
3 0.00617535 2e−5 32 9 0.61558 2.04153
4 0.0637017 5e−5 32 7 0.64276 1.83923
5 0.185244 2e−5 32 5 0.57157 2.39511
6 0.129584 3e−5 32 5 0.59951 2.14601
7 0.119958 5e−5 16 9 0.65749 * 1.83003
8 0.136821 4e−5 32 9 0.63906 1.86255
9 0.114739 5e−5 32 9 0.64579 1.83467
10 0.0139351 4e−5 32 5 0.61945 2.00349
11 0.13515 2e−5 16 5 0.60136 2.16629
12 0.28969 2e−5 32 5 0.57022 2.39534
13 0.00478988 2e−5 32 5 0.57199 2.39023
14 0.204979 5e−5 32 9 0.64848 *** 1.82402
15 0.0520094 3e−5 16 9 0.64756 1.86575
16 0.198757 2e−5 32 7 0.59665 2.17398
17 0.0623825 5e−5 32 7 0.64142 1.85038
18 0.290875 2e−5 32 5 0.56938 2.39486
19 0.118545 5e−5 32 7 0.64175 1.83873
20 0.276562 5e−5 32 9 0.64983 ** 1.83522
21 0.15625 2e−5 32 9 0.61415 2.04337
22 0.116603 2e−5 32 5 0.57241 2.39325
23 0.176025 3e−5 16 5 0.62358 1.98135

Table 5.4: Hyperparameter tuning results for KLDB ID classification on DZHW
occupation data for approach 2. w decay - weight decay, lr - learning rate, train bs
- batch size, val acc - validation accuracy, val loss - validation loss

In the next step, we performed hyperparameter tuning on the DZHW occupation
dataset for the BERT model, which was fine-tuned on the above-mentioned relevance
classification and KLDB ID classification tasks for the domain data. The results of
the hyperparameter tuning step are mentioned in the Table 5.4. After this step, we
chose the best configuration from the hyperparameter tuning step and performed
a stratified 5-fold cross-validation step on the BERT model as mentioned in Sec-
tion 5.3.1. The mean accuracy of the model on the test datasets from the stratified
k-fold-cross-validation step was 66.68% with a standard deviation of 0.16. In addi-
tion to the above-mentioned steps, we increased the number of training epochs to 15
for Approaches 1 and 2 to observe its effects on the accuracy of test data. However,
the test data accuracy did not increase with the increase in the training epochs.
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Trial w decay lr train bs epochs val acc val loss
0 0.0550304 5e−5 16 5 0.68963 1.63083
1 0.0468056 4e−5 16 5 0.67633 1.73878
2 0.137775 3e−5 16 9 0.70475 ** 1.5972
3 0.00617535 2e−5 32 9 0.65009 1.99733
4 0.0637017 5e−5 32 7 0.23019 4.22415
5 0.185244 2e−5 32 5 0.58242 2.57916
6 0.129584 3e−5 32 5 0.61884 2.18926
7 0.119958 5e−5 16 9 0.71020 * 1.5675
8 0.136821 4e−5 32 9 0.70111 1.61009
9 0.114739 5e−5 32 9 0.42324 3.08806
10 0.0139351 4e−5 32 5 0.64980 1.9483
11 0.13515 2e−5 16 5 0.62429 2.22524
12 0.28969 2e−5 32 5 0.58184 2.58215
13 0.00478988 2e−5 32 5 0.57966 2.56316
14 0.204979 5e−5 32 9 0.68978 1.6915
15 0.0520094 3e−5 16 9 0.70417 *** 1.6056
16 0.198757 2e−5 32 7 0.63097 2.22991
17 0.0623825 5e−5 32 7 0.68781 1.68077
18 0.290875 2e−5 32 5 0.58118 2.5784
19 0.118545 5e−5 32 7 0.69872 1.64557
20 0.276562 5e−5 32 9 0.70366 1.58451
21 0.15625 2e−5 32 9 0.65758 2.00273
22 0.116603 2e−5 32 5 0.58315 2.57891
23 0.176025 3e−5 16 5 0.66201 1.91109

Table 5.5: Hyperparameter tuning results for KLDB ID classification on domain and
DZHW occupation data for dataset dimension. w decay - weight decay, lr - learning
rate, train bs - batch size, val acc - validation accuracy, val loss - validation loss
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5.3.3 Dataset Dimension

We have appended the domain data in the dataset dimension with the DZHW data
only during the training phase. So, we did the hyperparameter tuning of the ’gbert-
base’ model on the DZHW occupation data and domain data during the training
step. It was ensured that the instances from the domain data were not present in
test data during the stratified k fold-cross-validation to determine the performance
of the model. The results for the hyperparameter tuning step can be observed in
Table 5.5. In the cross-validation step, the BERT model achieved an accuracy of
67.25 % with a standard deviation of 0.04.

5.3.4 Baseline

As mentioned in Chapter 4, to compare the performance of the models from the
training and dataset dimensions, we have implemented a baseline model, which is
fine-tuned to perform the KLDB ID classification task only on the domain data. So
we have not provided the domain data related to KLDB to the baseline ’gbert-base’
model and performed the hyperparameter tuning (see Table 5.6) and stratified k-fold
cross-validation steps. In the cross-validation step, the model attained an accuracy
of 66.5 % with a standard deviation of 0.01.

5.4 Discussion

After performing the hyperparameter tuning and the cross-validation steps on for
BERT models from the Training, and Dataset dimensions and the baseline we sum-
marize the results of these models using the accuracy metric for the occupation
coding task on the DZHW occupation data in the Table 5.7. As mentioned in
the RQ-1, we provided the classification scheme’s domain knowledge through the
training dimension classification tasks. To evaluate whether providing the domain
knowledge through fine-tuning BERT on domain data helps to improve the perfor-
mance, as mentioned in RQ-2, we compare the accuracy of BERT from Approaches
1 and 2 with the baseline model. It can be observed that the performance of BERT
with domain knowledge tends to be on a similar accuracy level to the baseline. But
when the domain data was augmented with the DZHW occupation data as described
in the Dataset dimension (RQ-3), the accuracy of the BERT model after the cross-
validation step was higher than the baseline. Even though it was not a steep increase
in the accuracy of the model, there was a minor improvement.

To further understand the performance of models on the various classes present in
the DZHW occupation data, we considered the f1-score for all the 877 unique classes
in the test data. Table 5.8 indicates the number of KLDB IDs with zero f1-score for
all four BERT models. It can be observed that the number of KLDB IDs with zero
f1-score slightly decreased in the case of BERT models from the training and dataset
dimensions. Moreover, most classes with zero f1-score had less number of examples
in the test and train data. The model with domain information (BERT Approach-1)
had a f1-score greater than 0.8 for more classes than the other BERT models.

Further analysis showed that the KLDB IDs in Table 5.9 had an f1-score greater
than 0.8 for all the BERT models. It was observed that the common KLDB IDs do
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Trial w decay lr train bs epochs val acc val loss
0 0.0550304 5e−5 16 5 0.64091 1.82459
1 0.0468056 4e−5 16 5 0.63502 1.88609
2 0.137775 3e−5 16 9 0.64268 1.85129
3 0.00617535 2e−5 32 9 0.61920 2.04203
4 0.0637017 5e−5 32 7 0.64655 1.82689
5 0.185244 2e−5 32 5 0.57258 2.39953
6 0.129584 3e−5 32 5 0.60506 2.13539
7 0.119958 5e−5 16 9 0.65446 * 1.83642
8 0.136821 4e−5 32 9 0.64344 1.83659
9 0.114739 5e−5 32 9 0.64941 ** 1.81643
10 0.0139351 4e−5 32 5 0.62080 2.00238
11 0.13515 2e−5 16 5 0.60254 2.17286
12 0.28969 2e−5 32 5 0.57081 2.39629
13 0.00478988 2e−5 32 5 0.57401 2.39316
14 0.204979 5e−5 32 9 0.64571 1.82294
15 0.0520094 3e−5 16 9 0.64579 1.85534
16 0.198757 2e−5 32 7 0.60195 2.17561
17 0.0623825 5e−5 32 7 0.64057 1.83781
18 0.290875 2e−5 32 5 0.57123 2.3976
19 0.118545 5e−5 32 7 0.64360 1.825
20 0.276562 5e−5 32 9 0.6489 *** 1.81565
21 0.15625 2e−5 32 9 0.61735 2.04139
22 0.116603 2e−5 32 5 0.57401 2.3948
23 0.176025 3e−5 16 5 0.6245 1.98062

Table 5.6: Hyperparameter tuning results for KLDB ID classification on DZHW
occupation data for baseline. w decay - weight decay, lr - learning rate, train bs -
batch size, val acc - validation accuracy, val loss - validation loss

Model Accuracy
BERT fine-tuned on KLDB ID classification
(Approach-1)

66.67 ± 0.11

BERT fine-tuned on relevance classification
& KLDB ID classification (Approach-2)

66.68 ± 0.16

BERT with domain data during training
phase

67.25 ± 0.04

BERT baseline 66.5 ± 0.01

Table 5.7: Summary of the cross-validation results for the BERT models on occu-
pation coding task
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Model f1 - score
0.0 >0.0 and <= 0.5 >0.5 and <=0.8 >0.8

BERT Baseline 406 178 226 67
BERT Approach-1 402 181 213 80
BERT Approach-2 403 175 229 70
BERT Dataset dimension 400 185 220 72

Table 5.8: Performance of BERT models based on the distribution of f1-score for
877 classes

11293 33112 73324 81743
11294 54101 81102 81804
12104 62322 81112 81822
12144 63322 81142 82542
22342 71433 81234 83112
23322 71524 81353 83124
24232 72243 81454 83314
27212 72304 81474 84114
31114 73104 81504 84124
32122 73134 81624 84134
32142 73154 81733 84304

Table 5.9: Common KLDB IDs with f1-score > 0.8 for all the BERT models

not consist of IDs beginning with 0 and 4. Also, the KLDB IDs belonging to the Oc-
cupational field (Berufsbereiche) 8 - Gesundheit, Soziales, Lehre und Erziehung and
Main occupational group (Berufshauptgruppenwere) 81 - Medizinische Gesundheits-
berufe were more in the common KLDB IDs for f1-score > 0.8. Since BERT Approach-1

had higher KLDB IDs with an f1-score higher than 0.8, we further compared its re-
sults with the BERT Baseline to examine the additional KLDB IDs on which BERT

Approach-1 performed better. Table 5.10 indicates the classes on which the BERT

Approach-1 had a better performance when compared with the baseline. In addition,
BERT Approach-1, BERT Dataset dimension, and BERT Approach-2 models had 54 KLDB
IDs in common for the higher range of f1-score (> 0.8). On further investigation, we
observed that BERT models struggled to classify the responses belonging to Militär
and Naturwissenschaft, Geografie und Informatik occupational fields (KLDB ID - 0
and 4) and performed well, especially for Gesundheit, Soziales, Lehre und Erziehung
(KLDB ID - 8) mentioned in Table 2.5. Table 5.11 depicts the occupation field wise
distribution of higher f1-score for all the BERT models. We further represent the
occupation field-wise distribution of the other f1-score ranges in the Table 5.12 and
Table 5.13.
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21112 34302 61323 84414
23422 41184 72302 84513
24422 41393 73124 91344
27184 42124 81342 92122
27223 52413 82284 93222
31214 52132 84214 94214

Table 5.10: KLDB IDs with f1-score > 0.8 for BERT Approach-1 vs BERT Baseline

KLDB ID Baseline Approach-1 Approach-2 Dataset dimension
0 1 0 0 0
1 5 5 5 5
2 6 9 7 7
3 5 6 4 4
4 0 3 1 2
5 4 6 4 5
6 3 3 5 6
7 10 11 10 11
8 25 28 26 25
9 8 9 8 7

Table 5.11: Distribution of f1-score > 0.8 for level-1 KLDB IDs (occupational fields)
among the BERT models

5.5 Summary

In this chapter, we discussed the initial experiments performed on the custom
dataset created from the KLDB and the DZHW occupation dataset. We presented
the hyperparameter tuning results of the BERT models for the occupation coding
tasks. The hyperparameter tuning was performed on the custom dataset and the
DZHW datasets. Further, we discussed and implemented the stratified k-fold cross-
validation step and chose the accuracy metric to evaluate the performance of the
BERT models for the occupation coding task. We observe that the models trained
on domain data had shown minimal improvement in terms of accuracy when com-
pared with the baseline. Further, we examined the results using classification report
6 and considered f1-score to analyze the performance of models for the 877 classes.
We observed that all the BERT models did not perform well in particularly classify-
ing more than 400 classes due to the fewer training examples and lack of text in user
responses. We further examined the results for the f1-score ranges and presented
the class-wise distribution of f1-scores.

6https://scikit-learn.org/stable/modules/generated/sklearn.metrics.classification report.html
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KLDB ID Baseline Approach-1 Approach-2 Dataset dimension
0 0 0 0 0
1 10 11 13 12
2 40 37 41 40
3 13 12 13 12
4 21 21 24 22
5 15 15 17 15
6 20 20 24 22
7 33 28 28 27
8 48 45 44 46
9 26 24 25 24

Table 5.12: Distribution of f1-score > 0.5 and < = 0.8 for level-1 KLDB IDs (occu-
pational fields) among the BERT models

KLDB ID Baseline Approach-1 Approach-2 Dataset dimension
0 0 0 0 0
1 7 9 6 9
2 26 27 24 27
3 7 9 8 9
4 22 21 23 22
5 16 14 14 15
6 20 21 18 20
7 35 38 35 37
8 29 28 30 30
9 16 14 17 16

Table 5.13: Distribution of f1-score > 0.0 and < = 0.5 for level-1 KLDB IDs (occu-
pational fields) among the BERT models
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6.1 Conclusion

Occupation coding is considered an essential step in Socio-Economic studies as it
helps standardize the user responses collected from various occupation-related sur-
veys and further analyze the standardized responses. The occupation coding task
often relies upon official classification schemes to classify or categorize the survey
respondents’ occupations. During the literature review, we observed that occupa-
tion coding methods are categorized into manual and (semi-) automatic methods.
The (semi-) automatic methods are further divided into rule-based and Machine
Learning based methods. In Machine Learning, occupation coding is considered a
text classification problem. However, it has specific challenges as the text in the
user responses is often very short with keywords and contains many target classes
for the classification. In the literature review, we further observed that the official
occupation classification schemes were not utilized with the pre-trained language
models to perform occupation coding.

Hence, we decided to use the domain knowledge provided in the official occupation
schemes to tackle the short text scenario and utilize the pre-trained language models
(BERT) due to their capability to capture the semantics from the text information.
So we proposed an approach to integrate the domain knowledge from the KLDB
classification scheme through additional classification tasks and then perform the
occupation coding on the anonymized responses from DZHW occupation data. We
proposed to use relevance classification, and occupation coding classification tasks
to impart domain knowledge into BERT based on [BB21] and [YSL19]. For the
additional classification tasks, we created custom datasets from the KLDB classi-
fication scheme and fine-tuned BERT on these custom datasets before fine-tuning
on the anonymized DZHW occupation data. In addition, we proposed to augment
the domain data with the DZHW occupation data during the training phase as an
additional approach to integrate the domain knowledge.

Furthermore, we performed experiments related to hyperparameter tuning and cross-
validation for the proposed approach and used a baseline to evaluate whether in-
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tegrating the domain knowledge improves the classification performance of BERT
on the DZHW occupation data. After the cross-validation steps, we compared the
accuracy of the BERT models from the proposed approach with the baseline model,
we observed that there wasn’t a drastic increase in the accuracy of the BERT mod-
els with the domain knowledge, but there was a slight improvement. To further
examine the performance of BERT models on the various classes in DZHW data,
we observed the class-wise f1-score distribution. We observed that BERT could not
classify approximately 400 of the 877 classes due to the lack of enough text and
enough training examples. In addition, the models with domain knowledge had
more classes with f1-score > 0.8 compared to the baseline BERT with no domain
information.

6.2 Future Work

In this section, we discuss the scope for improvements and future work that was
identified during the thesis.

Including additional occupation titles: The KLDB classification scheme also pro-
vides information about the additional job titles that are included under a KLDB
ID. The relevant activities for these job titles are not provided in the KLDB scheme
since it provides generalized information about the activities for a KLDB ID. So a
semantic similarity-based approach can be used to identify relevant activities for the
additional job titles, and this information can be added to the custom dataset for
the relevance classification task to fine-tune BERT on the domain data, or it could
be added to the DZHW occupation data during the training phase of the BERT
model.

Information retrieval approach: Instead of automatically classifying the user re-
sponse by a Machine Learning or Deep Learning model, the occupation coding task
can be converted into an information retrieval problem, where the system suggests
a list of suitable KLDB IDs for user responses. The user responses and the occupa-
tion information provided in the KLDB scheme can be converted into embeddings
using a pre-trained model like SBERT. Then similarity between the responses and
occupation embeddings can be computed, and the most suitable KLDB IDs based
on a ranking mechanism can be suggested. Further, this approach can be evaluated
through metrics like precision and recall since the DZHW data consists of KLDB
ID assigned to the user responses.
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Trial w decay lr train bs epochs val acc val loss
0 0.28185 3.6e−5 25 8 0.641 1.8521
1 0.179055 3,00e−5 32 4 0.58419 2.2867
2 0.0174251 2,00e−5 16 7 0.62400 1.9989
3 0.268448 2.4e−5 19 5 0.60969 2.1127
4 0.109527 3.6e−5 32 4 0.60018 2.1659
5 0.0748107 3,00e−5 38 8 0.62837 1.9595
6 0.0912727 3,00e−5 16 4 0.61120 2.0783
7 0.109527 3,00e−5 19 4 0.60489 2.1157
8 0.33822 2,00e−5 30 8 0.61062 2.0880
9 0.0698314 3,00e−5 32 8 0.63275 1.9311
10 0.224196 3.6e−5 16 8 0.64739 1.8365
11 0.171133 2,00e−5 19 4 0.57392 2.3635
12 0.0975991 2,00e−5 9 4 0.60388 2.1608
13 0.282661 3,00e−5 32 8 0.62905 1.9358
14 0.109527 3.6e−5 12 4 0.62400 1.9554
15 0.33822 2.88e−5 30 8 0.62980 1.9402
16 0.290875 3.6e−5 32 4 0.59782 2.1974
17 0.117318 3,00e−5 16 5 0.62315 1.9855
18 0.0935133 3,00e−5 32 8 0.63266 1.9289
19 0.22548 4.32e−5 30 8 0.64091 1.8449

Table A.1: Hyperparameter tuning results of baseline BERT model for the KLDB
ID classification on DZHW occupation data using PBT method. w decay - weight
decay, lr - learning rate, train bs - batch size, val acc - validation accuracy, val loss
- validation loss.
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B. Abbreviations and Notations

Acronym Meaning

ALLBUS Die Allgemeine Bevölkerungsumfrage der Sozialwissenschaften
KLDB Klassification der Berufe
ISCO International Standard Classification of Occupations
BA Bundesagentur für Arbeit

DZHW Deutsche Zentrum für Hochschul- und Wissenschaftsforschung
ILO International Labour Organization
NOC National Occupation Classification

ML Machine Learning
DL Deep Learning
QA Question-Answering
ASR Automatic Speech Recognition
NLI Natural Language Inference
STS Semantic Textual Similarity
NLP Natural Language Processing

ReLU Rectified Linear Unit
FFNN Feed forward Neural Network
CNN Convolution Neural Network
RNN Recurrent Neural Network
LSTM Long short-term Memory
ELMO Embeddings from Language Model
BERT Bidirectional Encoder Representations from Transformers
SBERT Sentence BERT
GPT Generative Pre-trained Transformer
MLM Masked Language Modeling
NSP Next Sentence Prediction

TF − IDF Term Frequency - Inverse Document Frequency
CRF Conditional Random Field
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