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Abstract: Program comprehension plays a crucial role during the software-develop-
ment life cycle: Maintenance programmers spend most of their time with compre-
hending source code, and maintenance is the main cost factor in software development.
Thus, if we can improve program comprehension, we can save considerable amount of
time and cost. To improve program comprehension, we have to measure it first. How-
ever, program comprehension is a complex, internal cognitive process that we cannot
observe directly. Typically, we need to conduct controlled experiments to soundly
measure program comprehension. However, empirical research is applied only reluc-
tantly in software engineering. To close this gap, we set out to support researchers in
planning and conducting experiments regarding program comprehension. We report
our experience with experiments that we conducted and present the resulting frame-
work to support researchers in planning and conducting experiments. Additionally, we
discuss the role of teaching for the empirical researchers of tomorrow.

1 Introduction

Today, we are surrounded by computers. They are in our cars, credit cards, and cell phones.
Thus, there is a lot of source code that needs to be implemented and maintained. In
the software-development life cycle, maintenance is the main cost factor [Boe81]. Fur-
thermore, maintenance developers spend most of their time with understanding source
code [vMVH97, Sta84, Tia11]. Thus, if we support program comprehension, we can save
considerable amount of time and cost of the software-development life cycle.

To improve program comprehension, various programming techniques and tools were im-
proved since the first programmable computers. From machine code over assembly lan-
guages, procedural programming, and contemporary object-oriented programming [Mey97],
modern programming paradigms, such as feature-oriented and aspect-oriented program-
ming emerged [Pre97, KLM+97]. In the same way, tools have been developed to support
programmers in working with source code. For example, Eclipse, FeatureIDE [KTS+09],
or CIDE [KAK08] target, among others, better comprehension of software.

These new techniques and tools are only rarely evaluated empirically regarding their effect
on program comprehension. However, program comprehension is an internal cognitive
process and can be evaluated only in controlled experiments—plausibility arguments are
not sufficient, because they can prove wrong in practice. One reason for the reluctance of
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using empirical evaluation is the effort for conducting experiments, which usually takes
several months from the planning phase to results.

With our work, we want to raise awareness of the necessity of empirical research and
initiate a discussion on how to motivate and support other researchers to conduct more
empirical studies in software engineering. We focus on the following contributions:

• Description of typical problems when planning controlled experiments based on our
experience.

• Framework to reduce the effort of conducting controlled experiments.

• Establish and revive the empirical-research community in software engineering.

Of course, the appeal for more empirical research in software engineering is not new [Kit93,
TLPH95, Tic98]. Nevertheless, in a recent study, Sjoberg and others found that the amount
of papers reporting controlled experiments is still low (1.9 %). Thus, there is still a reluc-
tance to apply empirical methods. By reporting our experience and the resulting frame-
work, we hope to remove the obstacles of planning and conducting experiments and, thus,
motivate other researchers to apply controlled experiments to evaluate their new techniques
and tools regarding the effect on programmers.

This paper is structured as follows: First, we take a closer look at program comprehension
and the logic of experiments, followed by our experience with program-comprehension
experiments. This way, we want to raise the awareness for the difficulties that accom-
pany controlled experiments. Then, we present the framework, which we developed based
on our experience and which supports researchers with conducting experiments. All ma-
terial we present here is also available at the project’s website (http://fosd.net/
experiments).

2 Program Comprehension and its Measurement

In this section, we recapitulate important concepts related to program comprehension to
ensure the same level of familiarity for our readers. Readers familiar with program com-
prehension and controlled experiments may skip this section. Our intention is not to give
an exhausting overview of program comprehension, but to give an impression of the com-
plexity of the process. We are aware that we are focusing on one aspect of program com-
prehension (other aspects are described, e.g., by Fritz and others [FOMMH10]). In the
same way, we only shortly discuss software measures.

To understand source code, developers typically use either top-down or bottom-up com-
prehension. When developers are familiar with a program’s domain, they use top-down
comprehension; so they start with stating a general hypothesis about a program’s pur-
pose [Bro78, SV95, SE84]. By looking at details, developers refine this hypothesis. If they
encounter a part of a program from an unfamiliar domain, they switch to bottom-up com-
prehension. In this case, developers analyze source code statement by statement and group
statements to semantic chunks, until they understand the code fragments [Pen87, SM79].



Thus, program comprehension is a complex process. To measure it, we need to find an
indicator. Often, software measures are used, such as lines of code or cyclomatic complex-
ity [HS95]. It seems reasonable that the more lines of code or the more branching state-
ments a program has, the more difficult it is to understand. However, software measures
cannot fully capture the complex process of understanding source code [Boy77, FALK11].
Thus, we should not rely solely on software measures to measure program comprehension.

Another way is to observe in controlled experiments how human participants understand
source code. This way, we do not rely on properties of source code, but consider the com-
prehension process itself. Often, tasks, such as corrective or enhancing maintenance tasks
are used [DR00, FSF11]. The idea is that if participants succeed in solving a task, they
must have understood the source code—otherwise, they would not be able to provide a cor-
rect solution. Another way is to use think-aloud protocols, in which participants verbalize
their thoughts [ABPC91]. This allows us to observe the process of comprehension. Both
techniques, tasks and think-aloud protocols only indirectly assess program comprehen-
sion. So far, there is no way to look into participants’ brain while they are understanding
source code.

Designing controlled experiments with human participants requires considerable effort
and experience, because there are confounding parameters that need to be considered.
Confounding parameters influence the behavior of participants and can bias the result. For
example, an expert programmer understands source code different than a novice program-
mer; a participant who is familiar with a program’s domain uses top-down comprehension,
whereas a participant who is unfamiliar with a domain uses bottom-up comprehension.
Even details that appear irrelevant may influence behavior, such as violating coding con-
ventions (the performance of expert programmers can decrease to the level of novice pro-
grammers [SE84]) or using under score vs. camelCase identifier style [BDLM09, SM10].

After identifying relevant confounding parameters, we need to select suitable control tech-
niques. For example, to avoid bias due to differences in programming experience, we
could only recruit novice programmers. However, this would limit the applicability of our
results to novice programmers. Instead of recruiting only novices, we could also measure
programming experience and evaluate how it influences the result. However, measuring
programming experience takes additional time and requires that a measurement instru-
ment exists. Additionally, we need more participants and it increases the complexity of
the experimental design and analysis methods. Thus, there is always a trade off between
generalizability, accuracy of results, and available resources.

Next, we present our experiences with our controlled experiments and how we addressed
this trade off.

3 Experience

When we started our work on program comprehension in 2009, we set out to evaluate
how modern programming paradigms, such as feature-oriented programming [Pre97] or
aspect-oriented programming [KLM+97], and new tools, such as CIDE [KAK08], influ-



1 public class PhotoListScreen extends L
2
3 //Add the core applicaton commands always
4 public static final Command viewComman
5 public static final Command addCommand
6 public static final Command deleteComm
7 public static final Command backComman
8
9 public static final Command editLabel

10
11 // #ifdef includeCountViews
12 public static final Command sortComman
13 // #endif
14
15 // #ifdef includeFavourites
16 public static final Command favorites
17 public static final Command viewFavori
18 // #endif
19 ...

1 public class PhotoListScreen extends L
2
3 //Add the core applicaton commands always
4 public static final Command viewComman
5 public static final Command addCommand
6 public static final Command deleteComm
7 public static final Command backComman
8
9 public static final Command editLabel

10
11
12 public static final Command sortCommand
13
14
15
16 public static final Command favorites =
17 public static final Command viewFavorit
18
19 ...

Figure 1: Left: Source code with #ifdef directives; right: source code with background colors. In the
colored version, Line 12 is annotated with orange background color, Lines 16 and 17 with yellow.

ence program comprehension. However, during the planning phase, we soon learned that
such broad questions are unsolvable in a single experiment—we would need over one
million participants to account for all confounding parameters [Fei09].

Thus, we narrowed our research question. In a first experiment, we evaluated how back-
ground colors support program comprehension compared to no background colors in pre-
processor-based code [FKA+12]. As material, we used one medium-sized Java program
that was implemented with preprocessor directives.1 From that program, we created a
second version, in which we used background colors instead of preprocessor directives.
Everything else was the same. In Figure 1, we show a screen shot of both version to give
an impression.

By narrowing our research questions, we controlled for a lot of confounding parameters
and can attribute program comprehension, operationalized by correctness and response
time of solutions, only to the difference in the source code we used (i.e., background
colors vs. textual #ifdef directives). As a drawback, however, our results are limited to the
circumstances of our study: Java as the programming language, medium-sized program,
students as participants, etc.

Designing this seemingly simple study took us several months and a master’s thesis. The
most difficult problems were to find suitable material, present the material to participants,
control for programming experience as one of the most important parameters, and find a
suitable indicator for program comprehension. We discuss each problem in more detail.

First, we needed to find suitable material. Participants should not understand it at first sight
nor be overwhelmed by the amount of source code. Furthermore, the source code should
be implemented in Java, because participants are familiar with it. After several weeks of

1Java is a popular language to develop Apps for mobile devices. To meet the resource constraints, preproces-
sors, such as Antenna or Munge, are also used for Java.



1 public class PhotoListScreen{
2 /* ... */
3 // #ifdef includeFavourites
4 public static final Command favoriteCommand = new

Command("Set Favorite",Command.ITEM,1);
5 public static final Command viewFavoritesCommand = new

Command("View Favorites",Command.ITEM,1);
6 // #endif
7 /* ... */
8 public void initMenu() {
9 /* ... */

10 // #ifdef includeFavourites
11 this .addCommand(favoriteCommand);
12
13 // #endif
14 /* ... */
15 }
16 }

Figure 2: Bug for M3: viewFavoritesCommand is not added.

searching and comparing source code, we found MobileMedia, which has a suitable size,
was code reviewed to ensure coding conventions, and was implemented in Java ME with
preprocessors [FCM+08]. Hence, finding suitable material is tedious and can take some
time.

Second, we needed to present source code to participants. If we had used Eclipse, partic-
ipants who were familiar with it (e.g., knew how to use call hierarchies or regular expres-
sions to search for code fragments), would have performed better independent of whether
they worked with background colors of #ifdef directives. Eventually, we used a browser
setting with syntax highlighting and basic source-code navigation, but no other tool sup-
port. Thus, an intuitive solution may not be optimal and a seemingly awkward solution
may be the better choice.

Third, we needed to control for programming experience, because participants with more
experience typically understand source code better. Since we did not find any validated
questionnaire or test to measure programming experience, we constructed our own based
on a literature survey and by consulting programming experts. We again needed to in-
vestigate a couple of weeks, but as result we had a questionnaire that we can reuse in
subsequent experiments. Hence, we should take great care to control for confounding
parameters, especially if we believe they have an important influence on our result.

Last, to measure program comprehension, we used tasks, which participants could only
solve if they understood the underlying source code first. In a pilot study, we observed
that our tasks fulfilled that criterion, but some of them were too difficult. To give an
impression of the nature of the tasks, we present the source code of one task in Figure 2.
The bug description was that a command was not shown, although it is implemented. The
bug was located in Line 12, where the command was not added to the menu. Thus, we
adapted the tasks and evaluated their difficulty in a second pilot study. Eventually, after
several months of careful planning, the design of our study was finished.

In subsequent experiments [FSP+11, FALK11, FKL+12, SFF+11, FKA+12, SBA+12,
SKLA12], we did profit from our experiences of the first experiment. For example, we



often used different variants of MobileMedia and the programming-experience question-
naire. Furthermore, we developed a feeling for how difficult tasks can be when working
with students of computer science, so that often one small pilot study sufficed. Addition-
ally, we could reuse the scripts for analyzing the data. Thus, the effort and time invested
in the first experiment payed off for subsequent experiments. With our work, we aim at
reducing the effort of the first experiment for other researchers, for whom we developed
the framework that we present next.

4 A Framework to Support Controlled Experiments

Based on our experiences, we developed a framework to support researchers to plan and
conduct experiments in the context of program comprehension. It consists of four parts:
First, we developed a questionnaire to reliably measure programming experience. Second,
we implemented a tool for presenting source code, tasks, and questionnaires to partici-
pants. Third, we documented confounding parameters for program comprehension. Last,
we developed teaching material and holding according lectures to train the empirical re-
searchers of tomorrow. We discuss each part of the framework in more detail in this
section.

4.1 Programming-Experience Questionnaire

The first part of our framework is a questionnaire to measure programming experience,
one of the major confounding parameters for program comprehension. To this end, we
conducted a literature survey of seven major journals and conferences of the last ten
years [FKL+12]. We reviewed all papers that reported program-comprehension experi-
ments and extracted how programming experience was defined and measured. Based on
these insights, we refined the questionnaire we developed for our first experiment.

It consists of the following four categories (in Appendix 8.1, we show the complete ques-
tionnaire):

• Years (related to the amount of time participants spent with programming)

• Education (related to experience participants gained from education)

• Self estimation (participants had to estimate their experience with several topics)

• Size (size of projects participants had worked with)

To evaluate whether this questionnaire is suitable for measuring programming experience,
we evaluated it in a controlled experiment with over 100 undergraduate computer-science
students. Specifically, we compared the answers of students in the questionnaire with the
number of correct answers for ten programming tasks—the more tasks participants are



No. Question ρ N

Self estimation
1 s.PE .539 70
2 s.Experts .292 126
3 s.ClassMates .403 127
4 s.Java .277 124
5 s.C .057 127
6 s.Hasekll .252 128
7 s.Prolog .186 128
8 s.NumLanguages .182 118
9 s.Functional .238 127

10 s.Imperative .244 128
11 s.Logical .128 126
12 s.ObjectOriented .354 127

Years
13 y.Prog .359 123
14 y.ProgProf .004 127

Education
15 e.Years -.058 126
16 e.Courses .135 123

Size
17 z.Size -.108 128

ρ: Spearman correlation; N: number of subjects;
gray cells denote significant correlations (p < .05).

Table 1: Spearman correlations of number of correct answers with answers in questionnaire.

able to solve correctly within the given time frame (40 minutes), the higher their program-
ming experience should be, and the higher they should estimate their experience in the
questionnaire. In Table 1, we show the correlations with the number of correct answers
with each question in the questionnaire (in Table 4 in the Appendix, we explain the abbre-
viations.). A high correlation indicates that a question is suitable to describe programming
experience (operationalized by the number of correct answers).

So far, self estimation appears to be a good indicator to assess programming experience.
However, questions also correlate among each other. For example, participants who es-
timate a high experience with logical programming also estimate a high experience with
Prolog (a logical programming language typically taught at German universities). Thus,
using simply all questions with a high correlation with the number of correct answers is
not sufficient. Instead, we need to use partial correlations, which is the correlation of two
variables that is cleaned by the influence of a third variable [Bor04].

Thus, to extract the most relevant questions that best describe programming experience,
we used stepwise regression, which is based on partial correlations of variables. With step-
wise regression, we identified two relevant questions: The self-estimated experience with



logical programming and the self-estimated experience compared to the class mates of
students. These two questions can be supplied with control questions (e.g., self estimated
experience with Prolog or self estimated programming experience) and used to measure
the programming experience of participants. In future work, we plan to further validate our
questionnaire and confirm that these two questions are the best indicator for programming
experience.

4.2 Program-Comprehension Experiment Tool

As a second part of our framework, we developed the tool PROPHET to present source
code, questionnaires, and tasks to participants [FS12]. It is a complex tool for planning
and conducting experiments. To support a variety of program-comprehension experiments,
we consulted the papers of our literature review again and analyzed the requirements for
conducted experiments. Based on these requirements, we implemented PROPHET, which
is available at the project’s website.

PROPHET has two views, one for the experimenter and one for the participants. In the
experimenter view, experimenters can decide how to present source code to participants
by selecting check boxes (e.g., with or without syntax highlighting or allowing a search
function or not). To give an impression, we show one tab of the experimenter view in
Figure 3. In Appendix 8.2, we show additional screen shots.

To customize how participants see source code and tasks, experimenters select check boxes
in the preferences tab of the experimenter view, shown in Figure 3 of the Appendix. For
example, experimenters can define a file that is displayed when a task begins, choose what
behavior of participants to log, whether participants see line numbers or are allowed to use
the search, as well as specify a time limit for a task or the complete experiment.

In the view for participants, source code is presented as specified by the experimenter. In
a second window, the tasks, questions, and forms for answers are presented.

We used PROPHET for our experiments since 2011 and found it very helpful to prepare
the experiments. We did not have to implement any new source code or adapt source code
of our existing tool infra structures. Instead of days to prepare the tasks and questions,
we now need only hours. Thus, PROPHET saved us a considerable amount of time. We
also found that other researchers used PROPHET for their experiments, indicating that
PROPHET is general enough to support other researchers. We encourage researchers to
use PROPHET for their experiments and give us feedback about their experience.

4.3 List of Confounding Parameters

The next part of our framework is a list of confounding parameters for program compre-
hension. To this end, we again consulted the paper of our literature review and, this time,
extracted parameters that authors treated as confounding parameters.



We identified two categories of parameters: personal and experimental parameters. First,
personal parameters are related to the participants, such as programming experience, in-
telligence, or domain knowledge. In total, we extracted 16 personal parameters. Second,
experimental parameters are related to the setting of the experiment, such as the familiar-
ity of participants with tools used, fatigue, or the layout of the study object. We found 23
experimental parameters.

In Appendix 8.3, we present an overview of all currently identified confounding param-
eters. To give an impression of the nature of confounding parameters, we present the
most important parameters based on how often researchers considered them in their study.
First, in 112 (of 158) papers, programming experience was mentioned as confounding pa-
rameter. Programming experience describes the experience participants have with imple-
menting and understanding source code. The higher the experience, the better participants
comprehend source code. Second, familiarity of study object (76) describes how famil-
iar participants are with the concepts being studied, such as Oracle or UML. The more
familiar they are, the better they might perform in an experiment. Both, programming
experience and familiarity with study object, are personal parameters.

The third parameter is the programming language (72). Participants who are familiar with
a language perform different than participants who are not. Fourth, the size of the study
object (67) describes how large the study object is, for example in terms of lines of code
or number of classes. Last, learning effects were mentioned in 65 papers, which describe
that participants learn during an experiment. Thus, they might perform better at the end of
an experiment, because they learned how to solve tasks.

With a list in which we describe each possible parameter, researchers can decide for each
parameter on the list whether it is relevant for their study and select a suitable control
technique. They do not have to put too much effort in identifying the parameters. When
we plan our experiments, we are now traversing the list and discuss for each parameter
whether it is relevant or not. This saved us considerable time and effort.

To describe how confounding parameters are managed, we suggest a pattern like the one
in Table 2. It contains the applied control technique and rationale for the decision, as well
as the used measurement technique and the rationale for the technique. This way, readers
of a report can get a quick overview of how confounding parameters were managed.

This work will be continued as long as researchers publish experiments, because there
might always be parameters that have not been considered so far. Thus, the list of con-
founding parameters is intended to grow. On the project’s website, we present the status of
the work, including the currently reviewed papers and extracted parameters. We explicitly
encourage other researchers to extend the review with new papers of new venues.

4.4 Teaching Material

In the German computer-science curricula, empirical methods are under-represented or
even neglected at most universities. However, empirical methods are an important aspect
also beyond computer science. For example, in psychology, students learn from the first



Parameter (Ab-
breviation)

Control technique Measured/Ensured

How? Why? How? Why?

Programming
experience (PE)

Matching Major con-
found

Education level undergraduates have
less experience than
graduates

Rosenthal effect
(RE)

Avoided Reliable Standardized in-
structions

Most reliable

Ties to persis-
tent memory
(Ties)

Ignored Not relevant — —

Table 2: Pattern to describe confounding parameters.

semester how to plan experiments, how to solve the difficulties, how to analyze data, how
to develop questionnaires, and so forth.

To improve the current situation, we designed a lecture, in which we teach students the
basic methods of empirical research. For example, we teach how to apply the think-aloud
protocol or how to set up performance measurements. Furthermore, we teach methods to
analyze the data and conduct hypothesis tests to differentiate a random effect from a real
effect. So far, students were interested and engaged in the topics of the lecture.

To let students apply the learned methods, students designed, conducted, and analyzed
their own experiments and submitted a report. When looking at the report of students,
we found that the experiments were carefully designed and analyzed and that some of
the experiments are even good enough to be published. Thus, there is evidence that there
is a need and interest to learn and teach empirical methods. In the future, we hope to
motivate students to select an empirical topic for their bachelor or master’s thesis and
maybe continue to use empirical methods in a PhD thesis.

So far, this lecture took place at the Philipps University Marburg (held by Christian Kästner).
Currently, the lecture takes place at the University of Magdeburg (held by Janet Sieg-
mund). Since we had positive feedback from our students and since we could reuse the
material of the lecture, we are planning to offer the lecture again. So far, the lecture is
planned at the University of Passau and Carnegie Mellon University. We also are happy
to share our experience and teaching material with other researchers to support others in
training the empirical researchers of tomorrow.

5 Applying the Framework

To show that our framework helps to conduct experiments, we discuss how it helped us to
design two of our experiments. First, we set up and pilot tested an experiment to evaluate
how physical and virtual separation of concerns affect program comprehension [SKLA12].



We could consult the list of confounding parameters and decide for each parameter how
important its influence is and how we can control for it. We also could apply the question-
naire to measure programming experience and create balanced groups with a comparable
experience level. Third, for presenting the task material, and programming-experience
questionnaire, we could use PROPHET. The pilot study was conducted at the University
of Passau, without the responsible experimenter being present. Instead, a colleague in
Passau conducted the experiment without any difficulties.

Second, we conducted an experiment to evaluate whether the derivation of a model is
easier to understand than the model itself [FBR12]. We could also consult the list of
confounding parameters, because the selection criteria for papers of the literature survey
were broad enough to also include experiments on model comprehension. We could also
reuse the questionnaire for programming experience, but had to add questions related to
model comprehension. We could not use the tool PROPHET, because it does not support
modifying images, which was one of the tasks—currently, we can only display images.
However, we are working on PROPHET to also support the modification of images.

In summary, we now only needed weeks instead of months to set up the experiments. We
also encourage other researchers to use the framework and give us feedback how it helped

6 Conclusion and Vision

Although there is effort to establish an empirical research community, empirical research
is still reluctantly applied to evaluate new techniques and tools that target, among oth-
ers, better comprehensibility. We believe that one reason is the effort that accompanies
applying empirical methods, such as controlled experiments.

Based on our experience, we developed a framework to help other researchers in over-
coming the obstacle of designing the first controlled experiment. The framework consists
of a list of confounding parameters and a questionnaire to measure programming expe-
rience, the most important confounding parameter. Furthermore, we developed the tool
PROPHET to support researchers during planning and conducting experiments. Addition-
ally, we invest our effort in training the empirical researchers of tomorrow.

In future work, we want to explore further strategies to measure program comprehension.
In cognitive neuro science, researchers successfully use functional magnetic resonance
imaging to visualize cognitive processes. In collaboration with André Brechmann, a neuro
biologist, we are currently exploring whether functional magnetic resonance imaging can
also be used to measure program comprehension [SBA+12].
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[FKA+12] Janet Feigenspan, Christian Kästner, Sven Apel, Jörg Liebig, Michael Schulze,
Raimund Dachselt, Maria Papendieck, Thomas Leich, and Gunter Saake. Do Back-
ground Colors Improve Program Comprehension in the #ifdef Hell? Empirical Softw.
Eng., 2012. DOI: 10.1007/s10664-012-9208-x.
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8 Appendix

8.1 Programming-Experience Questionnaire

In this section, we show the programming-experience questionnaire. In Table 4, we sum-
marize all questions, including the category to which it belongs, the scale for the answer,
and the abbreviation, which we use in the remaining tables.

In Table 3, we show the results of an exploratory factor analysis. Our goal was to look for
clusters of questions that show a high correlation among themselves. This way, we intend
to develop a model that describes programming experience. The next step is to confirm
our model with a different sample. To this end, we are currently collecting data of students
from different German universities.

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

s.C .723
s.ObjectOriented .700 .403
s.Imperative .673 .333 .303
s.Experts .600 .326
s.Java .540 .427

y.ProgProf .859
z.Size .764
s.NumLanguages .335 .489 .403
s.ClassMates .449 .403 .424

s.Functional .880
s.Haskell .879

e.Courses .795
e.Years -.460 .573
y.Prog .493 .554

s.Logical .905
s.Prolog .883

Gray cells denote main factor loadings.

Table 3: Factor loadings of variables in questionnaire.



Source Question Scale Abbreviation

Self
estima-
tion

On a scale from 1 to 10, how do you estimate
your programming experience?

1: very in-
experienced to
10: very expe-
rienced

s.PE

How do you estimate your programming ex-
perience compared to experts with 20 years
of practical experience?

1: very in-
experienced to
5: very experi-
enced

s.Experts

How do you estimate your programming ex-
perience compared to your class mates?

1: very in-
experienced to
5: very experi-
enced

s.ClassMates

How experienced are you with the following
languages: Java/C/Haskell/Prolog

1: very in-
experienced to
5: very experi-
enced

s.Java / s.C /
s.Haskell /
s.Prolog

How many additional languages do you
know (medium experience or better)?

Integer s.NumLanguages

How experienced are you with the
following programming paradigms:
functional/imperative/logical/object-oriented
programming?

1: very in-
experienced to
5: very experi-
enced

s.Functional /
s.Imperative /
s.Logical /
s.ObjectOriented

Years For how many years have you been program-
ming?

Integer y.Prog

For how many years have you been program-
ming for larger software projects, e.g., in a
company?

Integer y.ProgProf

Education What year did you enroll at university? Integer e.Years
How many courses did you take in which you
had to implement source code?

Integer e.Courses

Size How large were the professional projects typ-
ically?

NA,
<900,
900-40000,
>40000

z.Size

Other How old are you? Integer o.Age
Integer: Answer is an integer; Nominal: Answer is a string. The abbreviation of
each question encodes also the category to which it belongs.

Table 4: Overview of questions to assess programming-experience.



Figure 3: Top left: task definition; bottom left: preferences for categories; top right: preferences for
the complete experiment; bottom right: task viewer for participants.

8.2 Prophet

Our tool PROPHET (short for PROgram ComPreHension Experiment Tool) supports ex-
perimenters in creating experiments and presenting material to participants. In the experi-
menter view, experimenters can set up the tasks with HTML. We provide common HTML
elements in drop-down lists, as shown in Figure 3.

Experimenters can also specify settings for a complete experiment. By selecting the check
box “Send e-mail”, the data of participants are zipped and sent from the specified sender
address to the specified receiver address without requiring interaction from participants.
Additionally, experimenters can set a time limit for the complete experiment (check box
“time out”), after which the experiment is aborted.

Last, we show the view for participants, which shows the task as specified. Participants
enter their answer in the text area and navigate forward with the button (labeled “Next”).



8.3 Confounding Parameters

As last part of the appendix, we show the confounding parameters we extracted for each
journal and conference. For better overview, we divide personal parameters (shown in
Table 5 into the categories personal background (i.e., parameters that are defined with the
birth and that typically do not change), personal knowledge (i.e., parameters that change
only slowly over the course of weeks), and personal circumstances (i.e., parameters that
change rapidly, even within minutes). Furthermore, we divide experimental parameters
into the categories subject related (i.e., parameters related to the person of the participants,
but that occur only because they take part in an experiment), technical (i.e., parameters re-
lated to the setting of the experiment), context related (i.e., parameters that typically occur
in nearly all experiments), and study-object related (i.e., parameters related to properties
of the object under evaluation)2.

To create a sound experimental design, we recommend traversing this list of parameters
and discuss for each parameter whether it is relevant for the experiment and document
this process. Additionally, we should also document how we controlled for a confounding
parameter. This way, other researchers can consult this documentation when designing
experiments and may not trip over neglecting confounding parameters.

Parameter ESE TOSEM TSE ICPC ICSE ESEM FSE Sum

Personal background
Color blindness 0 0 0 1 0 0 0 1
Culture 0 0 2 1 0 0 0 3
Gender 0 0 3 4 1 0 0 8
Intelligence 0 0 2 4 1 0 0 7

Personal knowledge
Ability 12 2 12 7 5 4 2 44
Domain knowledge 3 0 5 4 0 0 0 12
Education 8 1 6 15 8 3 0 41
Programming experience 24 2 25 23 22 11 5 112
Reading time 0 0 0 3 0 1 0 4

Personal circumstances
Attitude toward study object 0 0 1 1 0 0 0 2
Familiarity with study object 19 2 17 10 10 12 6 76
Familiarity with tools 5 2 9 8 9 1 3 37
Fatigue 8 0 5 0 2 5 0 20
Motivation 12 0 10 7 3 2 0 34
Occupation 0 0 0 3 0 1 0 4
Treatment preference 0 0 0 3 1 2 0 6

Table 5: Number of personal confounding parameters mentioned per journal/conference.

2We described each parameter in detail in our PhD thesis [Sie12]



Parameter ESE TOSEM TSE ICPC ICSE ESEM FSE Sum

Subject related
Evaluation apprehension 0 0 1 1 0 0 0 2
Hawthorne effect 9 1 3 2 2 5 0 22
Process conformance 15 1 10 4 5 8 1 44
Study-object coverage 2 0 0 1 0 1 0 4
Ties to persistent memory 0 0 0 1 0 0 0 1
Time pressure 7 0 4 1 0 2 0 14
Visual effort 0 0 0 1 0 0 0 1

Technical
Data consistency 0 0 1 0 0 0 0 1
Instrumentation 8 0 8 2 0 1 0 19
Mono-method bias 2 0 1 0 0 0 0 4
Mono-operation bias 2 0 1 1 0 0 0 3
Technical problems 0 0 0 2 0 2 0 2

Context related
Learning effects 15 0 14 16 7 9 4 65
Mortality 0 0 1 0 0 0 1 2
Operationalization of study object 1 1 0 0 0 0 0 2
Ordering 5 0 7 8 2 2 3 27
Rosenthal 10 1 2 3 3 5 0 24
Selection 11 1 6 1 2 2 1 24

Study-object related
Content of study object 5 1 1 9 0 2 1 19
Language 7 2 14 23 13 7 6 72
Layout of study object 4 0 2 7 0 3 1 17
Size of study object 14 1 19 15 9 6 3 67
Tasks 6 0 6 14 5 4 2 37

Table 6: Experimental confounding parameters.


