
SIMD Vectorized Hashing for Grouped
Aggregation

Bala Gurumurthy, David Broneske, Marcus Pinnecke, Gabriel Campero, and
Gunter Saake

Otto-von-Guericke-Universität,
Magdeburg, Germany

firstname.lastname@ovgu.de

Abstract. Grouped aggregation is a commonly used analytical func-
tion. The common implementation of the function using hashing tech-
niques suffers lower throughput rate due to the collision of the insert
keys in the hashing techniques. During collision, the underlying tech-
nique searches for an alternative location to insert keys. Searching an
alternative location increases the processing time for an individual key
thereby degrading the overall throughput. In this work, we use Single
Instruction Multiple Data (SIMD) vectorization to search multiple slots
at an instant followed by direct aggregation of results. We provide our
experimental results of our vectorized grouped aggregation with various
open-addressing hashing techniques using several dataset distributions
and our inferences on them. Among our findings, we observe different
impacts of vectorization on these techniques. Namely, linear probing
and two-choice hashing improve their performance with vectorization,
whereas cuckoo and hopscotch hashing show a negative impact. Overall,
we provide in this work a basic structure of a dedicated SIMD acceler-
ated grouped aggregation framework that can be adapted with different
hashing techniques.

Keywords: SIMD · hashing techniques · hash based grouping · grouped
aggregation · direct aggregation · open addressing

1 Introduction

Many analytical processing queries (e.g., OLAP) are directly related to the effi-
ciency of their underlying functions. Some of these internal functions are time-
consuming and even require the complete dataset to be processed before produc-
ing the results. One of such compute-intensive internal functions is a grouped
aggregation function that affects the overall throughput of the user query. Hence,
it is evident that improving the throughput of grouped aggregation processing
in-turn improves the overall query throughput.

A grouped aggregation function is commonly implemented using hashing
techniques. The throughput of a grouped aggregation function is affected by the
collision of keys in the underlying hashing techniques. A collision occurs when

2 Gurumurthy et al.

a given key is hashed to a slot that is preoccupied with another key. In this
case, the collision is resolved by finding an alternative location for the colliding
key. Searching for an alternative location requires more time and affects the
throughput of the whole operation. Hence, improving probe time in a hashing
technique improves the overall execution time.

Since real-time systems process large volumes of data, Single Instruction Mul-
tiple Data (SIMD) is the commonly sought out parallelization strategy to per-
form these operations. Previous work has shown how to use SIMD to accelerate
different database processing operations [7, 3, 11]. Ross et al., detail a strategy of
using SIMD acceleration for probing multiple slots in cuckoo hashing [14]. Fur-
thermore, Broneske et al. have shown that execution of hand-written database
operations that are code optimized for underlying hardware can be faster than
the query plan given by a query optimizer [1, 2]. Using these insights, we explore
the advantages of hand-written grouped-aggregation using SIMD acceleration
over various hashing techniques. In addition to it, we also use the code opti-
mization strategy of direct aggregation for improved throughput (explained in
Section 3).

We discuss a SIMD-based probing called horizontal vectorization, where mul-
tiple slots are searched for a single key at an instant using the instructions avail-
able in the SIMD instruction set [10]. We adopt this technique to different open-
addressing hashing techniques available. This vectorized probing is enhanced
with direct aggregation for increased performance. From our evaluation results,
we observe that these optimizations provide notable speedups of up to N x over
the scalar mechanism, where N is the vector length. Our core contributions in
the paper are:

– We explore SIMD-based code optimization for different hashing techniques
(Section 3).

– We evaluate the performance of computing grouped aggregation using these
SIMD accelerated techniques (Section 5.2).

– Finally, we report our observations on the results and discuss the impact of
SIMD for the different hashing techniques (Figure 10).

From our evaluation, we found out that the multiple parameters involved in
hashing techniques also affect their efficiency. Hence, SIMD accelerated grouped
aggregation could be further improved by tuning these underlying hashing tech-
nique’s related parameters. Also, based on our results, we show that the best
hashing algorithm for a given data distribution can be selected for reduced la-
tency.

2 Related Work

In this chapter, we compare our work with others that are similar in studying the
aggregation operation in databases. The approaches are selected based on the
use of SIMD and other hardware related optimizations over grouped aggregation
functions.

SIMD Vectorized Hashing for Grouped Aggregation 3

In this work, we do not consider quadratic probing and double hashing. We
exclude them due to their poor locality of keys.

Jiang et al. use a modified bucket chaining hashing technique to group data
and aggregate them on the fly during insertion [7]. In order to eliminate conflicts
arising due to SIMD parallelization with insertion and to accommodate values
within main memory, they have proposed to add a distinctive offset for each of
the SIMD lanes and manipulate data separately. This approach is also extended
for MIMD execution. Broneske et al. use SIMD to accelerate selection opera-
tions [1]. The authors argue that SIMD acceleration influences the operation of
aggregation operations. In our approach, we have gained similar improvements
in SIMD acceleration of grouping with aggregation operation especially for lin-
ear probing and two choice hashing. Further, various SIMD-based aggregation
operations are explained in the paper by Zhou and Ross [15]. They detail the
performance impact of SIMD on different aggregation operations.

Finally, Richter et al. provided an extensive analysis of different hashing
techniques [13]. These are some of the works done on hashing and grouped ag-
gregation techniques. In the next section, we discuss different hashing techniques
followed by details on incorporating SIMD on the them.

3 Hash-Based Grouped Aggregation

Traditional grouped aggregation using hashing techniques is computed in two
phases. In the first phase, all the keys are hashed and segregated into their own
buckets. In the second phase, each of the keys within the buckets is aggregated
providing the final result. Since it is time-consuming to perform two passes on
the same data, an alternative single pass variant - direct aggregation is used to
improve the throughput.

Direct aggregation initializes the aggregate value for a key during its inser-
tion. During subsequent insertions of the same key, its corresponding aggregate
value is updated. To further improve the throughput of the single pass algorithm,
SIMD vectorization can be used.

In this section, we describe the different hashing techniques used for com-
puting grouped aggregation followed by our strategy to incorporate SIMD vec-
torization on these techniques.

3.1 Outline of Hashing Techniques

The major bottleneck of any hashing technique is the collision of keys, where
two keys are hashed into the same location. Each of the hashing techniques has
their own ways to resolve the collision of keys.

We use the open-addressing hashing techniques: linear probing, two-choice
hashing, hopscotch hashing and cuckoo hashing for computing grouped aggrega-
tion. These techniques have a linear hash-table structure with a known boundary
which is suitable for vectorization. In the following sections, we detail the colli-
sion resolution mechanism of these techniques and the ways to perform grouped
aggregation on them.

4 Gurumurthy et al.

3.2 Cuckoo Hashing

Cuckoo hashing resolves collision by using multiple hash tables [9]. These tables
resolve collision by swapping collided keys. The collided key, during collision, re-
places the key within the insert table. The replaced key is then hashed into the
next hash table. The keys are swapped until the final table. In case of collision in
final table, the replaced key is routed back to the first table and swapping con-
tinues. Since number of swaps is in-determinant, a user-defined threshold, swap
number cuts-off, swapping and re-hash the whole keys using different hashing
functions for the tables and increasing the hash table size. Hence, cuckoo hash-
ing has near direct probing by trading-off increased insertion time. For grouped
aggregation computation, first the given key is probed in all the locations in
the hash tables. If it is found, the corresponding payload is updated. Else, the
key along with the initial payload are inserted. Both the key and payload are
swapped among the tables for accommodating the new key.

3.3 Linear Probing

Linear probing, as the name suggests, searches the hash table for a desired
location using sequential scanning [4]. It searches the hash table to find the
nearest empty slot for insertion. Similarly, it scans the table linearly for the
probe value. For grouped aggregation, we search the hash table until either the
probe key or an empty location is found. If an empty slot is encountered first,
then aggregate resultant is initialized. Else if the key is found, the aggregate is
updated.

3.4 Two-Choice Hashing

Two-choice hashing, a variant of linear probing, has two different hash functions
for a single hash table [12]. The two hash functions provide for a given key, two
alternative positions. Having alternative positions increase the chance of finding
a slot with lesser probe time. If both of the slots are occupied, the hash table is
probed linearly from both the slots until an empty slot is encountered. Grouped
aggregation is computed similar to linear probing. However, instead of a single
probe, the hash table is probed from the two start locations.

3.5 Hopscotch Hashing

Hopscotch hashing has a user-defined parameter - neighborhood - that guar-
antees any given key will be available within the neighborhood range from the
originally hashed location [6]. If the key is not available within the neighborhood,
it has to be inserted. For insertion of a key, the hash table is searched for an
empty location and the existing keys in the table are swapped until an empty
slot is available within the neighborhood. Finally, the key is inserted in the slot.
Thus, hopscotch hashing trades less search space to prolonged insertion.

SIMD Vectorized Hashing for Grouped Aggregation 5

4 SIMD Vectorization of Hashing Techniques

SIMD performs a single instruction on multiple data in an instant. Modern CPUs
have extended register sizes of up to 128 bits, possible for accommodating four
packeted integers. Using these larger registers, a single operation is applied over
multiple data at a time. Though it might seem trivial that K packed values
provide a speed-up of K in SIMD, incorporating SIMD in hashing techniques
has its complexities due to the collision of keys.

Specifically, a hashing technique has delayed time due to the search of the
desired location either for inserting a new key or searching an existing key. We
address this issue by incorporating SIMD for searching multiple slots at a time
thereby improving the throughput. In the next sections, we detail the SIMD
accelerated probing on the above discussed hashing techniques.

4.1 Table Structure

Probing requires multiple slots of a given hash table to be readily available.
Hence, a right table structure improves the efficiency of the hashing technique.
Since cuckoo hashing has multiple hash tables, we use the table structure de-
scribed in Figure 2. We store a packed set of keys followed by a packed set of
payloads for each bucket. As multiple swaps are required, packing keys and pay-
loads improves the efficiency by loading both into the memory for easy swapping
among tables.

Fig. 1: SoA table structure Fig. 2: Cuckoo hash-table structure

For other hashing techniques, we use a Structure of Arrays (SoA) for the hash
table as shown in Figure 1. The hash tables have keys and payloads in different
arrays with the same index pointing to a key and its corresponding index. We
use this structure, as the payload is accessed only if the key is found in the hash
table.

4.2 SIMD Accelerated Cuckoo Hashing

Ross et al., have given a detailed outline for performing SIMD accelerated prob-
ing in cuckoo hashing [14]. We extend their idea by adding the direct aggregation
mechanism. We depict the general direct aggregation with probing in cuckoo
hashing in Figure 3.

6 Gurumurthy et al.

Fig. 3: SIMD accelerated cuckoo hashing (extended from Ross et al. [14])

Grouped aggregation using cuckoo hashing has two phases. First, the slot
locations are identified using hashing functions. Second, we use the identified
slots to probe the respective tables.

In our approach, the slots for a key are identified using multiplicative hashing.
The function multiplies the key with a random multiplier, then performs modulo
on the resultant with the table size to get the slots. To perform multiplicative
hashing in SIMD, a SIMD COPY functions (e.g., _mm_set_epi32()) vectorize
the search key. This key vector is multiplied with a multiplier vector using SIMD
MULT functions (e.g., _mm_mul_epi32()) (2). Finally, the resultant vector is
again multiplied with a table size vector (3). The slot values are available in the
least significant bytes of the result vector.

Based on the slots, the bucket vector values are compared with the key vector
using SIMD CMP-EQ functions (e.g., _mm_cmpeq_epi32()) providing a mask
vector (4, 5). The mask vector based on the comparison has either 0 or 1 and
this result along with the corresponding payloads are updated using SIMD SUM
operations (e.g., _mm_add_epi32()). Finally, if all the masks are 0 then the
key is inserted .

4.3 SIMD-Accelerated Linear Probing

Scanning hash table one at a time is time consuming. This is improved by using
SIMD for scanning multiple slots in an instant.

In Figure 4, we describe the SIMD adapted linear probing mechanism. First,
scalar multiplicative hashing function computes the slot for the given key. We
use scalar function as only one slot is required. Second, the search key is vec-
torized using a SIMD COPY function (1). This search key vector is then com-
pared with the values present in the pointed bucket using SIMD COMPARE

SIMD Vectorized Hashing for Grouped Aggregation 7

Fig. 4: SIMD accelerated linear probing

((e.g., _mm_cmpeq_epi32()). Final steps are similar to that of cuckoo hash-
ing, where the resultant mask vector is added to the corresponding payloads (4)
and insertion based on the mask is determined (5).

4.4 SIMD Accelerated Two-Choice Hashing

The major advantage of using SIMD for two-choice hashing is to compute the
slots from two hash functions at a time. SIMD acceleration is similar to that
of linear probing. Instead of comparing the key in a single vector of slots, we
compare the vectors from the selected slots in sequence.

4.5 SIMD Accelerated Hopscotch Hashing

Hopscotch hashing is a multi-step algorithm, where the probing for key is done
in the first and swapping of keys to have empty location in the second. Hence,
this technique requires additional measures for adapting SIMD. In fact, it might
even create an overhead for preprocessing the input to adapt SIMD for each
of these steps. We call these steps forward and reverse probe. In the forward
probe, we search for a key until the neighborhood boundary and empty space
afterward. In reverse probe, we perform the swaps with the empty slots until we
reach the neighborhood. We use SIMD to accelerate the probing of keys in the
forward probe and swapping of keys while insertion.

We use the same SIMD acceleration of linear probing for the forward probe
in hopscotch hashing (cf. Figure 4). For swapping of keys, we use the gather
instructions in SIMD as given in Figure 5.

8 Gurumurthy et al.

Forward Probe Within the neighborhood, direct aggregation is done similar
to linear probing. Once outside the boundary, the table is probed for an empty
location. This empty location index is used in the next phase for swapping of
keys.

Fig. 5: SIMD accelerated hopscotch
hashing - reverse probe

Reverse Probe A reverse probe
is done to select the positions to
swap the keys in order to have an
empty location within the neighbor-
hood boundary. During the reverse
probe, the pointer moves back from
the empty slot until a key inside the
neighborhood of insert key can be
swapped. On each step, the key to be
swapped is stored into a swap array
until the neighborhood of the insert
key is reached. The keys are swapped
for the indexes and the given key is
inserted. If the neighborhood is not
reached, then the table has to be re-
hashed.

In the next section, we evaluate these SIMD-accelerated hashing techniques
using different data distributions. We detail our evaluation setup first, followed
by our results. Finally, we provide our insights on the results found.

5 Evaluation

To assess the efficiency of the presented hashing techniques, we measure their
performance for different data distributions. In our hashing techniques, the in-
sertion and aggregation functions are performed in a single atomic step. Hence,
we include the overall insertion and probing time for determining the efficiency
of the techniques. We conducted our experiments on a machine running Cen-
tOS Linux version-7.1.1503 and gcc version 4.8.5 with an octa core Intel Xeon
E5-2630 v3s- 2014. The system is incorporated with the AVX2 instruction set.

5.1 General Assumptions and Experimental Setup

For all our experiments we have the below assumptions for terms of consistency.
These are common across all the hashing techniques.
Key-payload pair: We assume that the key and payload to insert are 32-bit
integers. Also, w.l.o.g., the value zero is not a valid key or payload value as it
is used to represent empty slots in the hash table. In a production system, the
maximum value in the domain can also be chosen.
Hash function: A multiplicative hashing function is used to disperse the input
keys into different buckets. The main advantages are: (1) it can be parallelized

SIMD Vectorized Hashing for Grouped Aggregation 9

easily, (2) provides a good balance for arithmetic progression values (e.g., pri-
mary key). We use Knuth’s multipliers in the hashing function [8].
Aggregation: For simplicity, we perform count as the aggregation function to
be performed over the given set of keys. This can be easily extended to perform
other aggregation operations such as max, min, sum. The approach fails for other
dual pass functions such as average or standard deviation. In this case, normal
two pass algorithm is used as in first pass total count is recorded followed by the
respective function in the second pass.

All the experiments are run with an increasing number of keys and we record
the CPU processing time for complete computation of grouped-aggregation for
the different distributions. Every experiment is executed for 20 iterations and
the results are averaged. We have performed two different tests over the hashing
techniques. In Section 5.2, we discuss in detail the impact of the different pa-
rameters and we discuss in detail the impact of different distributions on these
hashing functions.

The techniques are subjected to insertion with different distribution gener-
ators for our test cases. Each distribution represents the characteristics of the
input keys provided to the hashing techniques. We synthesize these input based
on descriptions given by Gray et al. [5]. The distributions used are (1) unique
random, (2) uniform random, (3) moving cluster, (4) exponential, (5) self similar,
and (6) heavy hitter. We use the parameters for the generation of the different
distributions based on the values given by Gray et al. [5]. For unique random
distribution, the seed for generation is selected based on the given input size. We
use the random generator function to generate the keys for the uniform random
generation. In exponential distribution, the lambda is set to as 0.5, where the
number of keys is normalized. Our heavy hitter distribution produces 50% of
the given input size as duplicates with remaining keys unique. Finally, the self
similar distribution generates 80% of the given input size as duplicates and the
remaining 20% is generated as unique keys.

5.2 Factors Affecting Cuckoo Hashing and Hopscotch Hashing

The performance of cuckoo and hopscotch hashing relies on the parameter values,
swap number, and neighborhood size respectively. The maximum efficiency of
these techniques is achieved by selecting the right value for these parameters.
we vary these parameters and find their impact on the load factor. Load factor
is the ratio of number of slots filled to the total number of slots available in a
hash table. Since, both the hash tables in the worst case cannot accommodate
100% of the hash table slots, we use the parameter for which the load factor is
the maximum.

Cuckoo Hashing We depict in Figure 6, how the swapping threshold impacts
the achievable load factor. Since reaching the swap number threshold requires
the table to be rehashed, the execution time of the hashing technique is directly
related to the swap number and its corresponding load factor.

10 Gurumurthy et al.

0 20 40 60 80 100

98.34

98.36

98.38

No. of swaps (% of total size)

Lo
ad

fa
ct
or

Fig. 6: Cuckoo hashing - swap threshold
vs. load factor

For this experiment, we iterate the
insertion of keys with size equal to the
size of the hash table. We vary the
swap number in steps until the total
key size. We are able to achieve a max-
imum load factor of 98.385% for swap
number at 25% of the total number of
keys. We were not able to achieve hun-
dred percent of the load factor due to
the dispersion of keys by the underly-
ing hash function.

Hopscotch Hashing Hopscotch hashing has minimal insertion time for a key
within the neighborhood. Whereas, swapping is performed outside the neighbor-
hood swapping for insertion. Thus, decreasing the neighborhood size leads to
faster probing and slower insertion and increasing the neighborhood size does
the vice versa. Hence, an optimal neighborhood size must be used for efficient ex-
ecution. Similar to cuckoo hashing, we evaluate the optimal neighborhood of the
hashing technique with different neighborhood sizes and the charts are plotted
in Figure 7.

We run two tests to determine the correct neighborhood size for hopscotch
hashing. In our first test, we determine the neighborhood size for optimal in-
sertion time. We vary the neighborhood size from 10% to 100% the total size
of the table and record the overall average insertion time for the different sizes.
From the results plotted in Figure 7(a), we observe the lowest insert time is for
a neighborhood size 20% of the total table size. We also see that the insert time
increases rapidly after the neighborhood size 40% of the total table size mainly
due to the multiple swaps for every insertion. Hence, a neighborhood size be-
tween 10% to 20% of the total size shows good performance for the hashing
technique.

In our second experiment, we investigate the impact of neighborhood size on
the load factor. In this experiment, we vary the neighborhood size and record the
maximum load factor reached. This is plotted in Figure 7(b). From our obser-
vations, we are able to reach an average of 99% load factor. However, increasing
the neighborhood size impacts in the runtime as the number of probe locations
increases. We observe that a load factor of 98% is reached for neighborhood size
after 20% of the total size for all the data sizes. Hence, the best neighborhood size
lies between 20% to 30% of the total size. The remaining keys are not inserted
due to poor dispersion of the keys by the hashing function.

Summary Using the above mentioned parameters, we could reach a maxi-
mum load factor of 98% for these two hashing techniques after which re-hashing
of the tables is probable. We set the number of swaps for cuckoo hashing as 25
and the neighborhood size of hopscotch hashing as 50 for all the experiments
below. Also, we keep the load factor as 96%.

SIMD Vectorized Hashing for Grouped Aggregation 11

10 20 30 40 50

500

1,000

1,500

Neighborhood size (in % of total size)

T
im

e
in
µ
s

(a) Hopscotch hashing - neighborhood vs. response time

0 50 100 150 200 250

0.97

0.98

0.99

1

Neighborhood size

L
oa

d
fa
ct
or

(b) Hopscotch hashing - neighborhood vs. load factor

Data size

100

200

500

Fig. 7: Hopscotch hashing - impact of neighborhood

Impact of Different Distributions In this experiment, we aggregate keys of
various distributions using the hashing techniques with their optimal parame-
ters. Since cuckoo hashing is having a maximum load factor of 98%, we set our
maximum load factor as 95% in order to insert all the given keys. Also, we use
the optimal parameters for cuckoo and hopscotch hashing.

20,000 40,000 60,000 80,000 100,000

0

50

100

150

200

No. of keys

ex
ec
ut
io
n
ti
m
e
in

m
s

(a) Dense unique random distribution

Scalar cuckoo hashing

Vector cuckoo hashing

Scalar hopscotch hashing

Vector hopscotch hashing

Scalar linear probing

Vector linear probing

Scalar two-choice hashing

Vector two-choice hashing

20,000 40,000 60,000 80,000 100,000

0

20

40

60

80

No. of keys

ex
ec
ut
io
n
ti
m
e
in

m
s

(b) Uniform random distribution

Scalar cuckoo hashing

Vector cuckoo hashing

Scalar hopscotch hashing

Vector hopscotch hashing

Scalar linear probing

Vector linear probing

Scalar two-choice hashing

Vector two-choice hashing

Fig. 8: Hopscotch hashing - Impact of distribution

Dense random unique distribution: For unique random distribution linear prob-
ing performs worst, whereas the vectorized version competes with other tech-
niques as shown in Figure 8(a). This is mainly due to the advantage of probing
multiple slots in a single step. Cuckoo hashing performance degrades with in-
creasing data size, mainly due to swaps during insertion. The other hashing
techniques have a linear increase of runtime as they have no additional over-
head in inserting keys. Specifically, hopscotch hashing works efficiently for this
distribution due to the neighborhood size reducing the number of keys to be
probed.

12 Gurumurthy et al.

Uniform distribution: Figure 8(b) shows the performance graph for uniform dis-
tribution. Hopscotch hashing performs worse in this case due to the overhead of
swapping. Cuckoo hashing has nearly similar efficiency as the hopscotch hashing,
due to again the penalty from insertion. In case of linear probing and two-choice
hashing, the efficiency depends on the order of hashing keys, as the best or-
der of insertion needs less probing. Hence, the runtime oscillates from low to
high. However, the vectorized version of the hashing techniques has near linear
runtime, except for hopscotch hashing. All other vectorized versions are more
efficient than their scalar version, with linear probing having the best speed-up
of 3x the scalar version mainly due to an early detection of an empty slot during
the probe.

Moving cluster: We see a peculiar impact on cuckoo hashing for the moving
cluster distribution shown in Figure 9. It performs efficiently until it reaches
50K and after that its performance degrades rapidly. This is mainly due to the
heavy swapping of keys inside the cluster. Whereas, the other hashing techniques
have a linear performance with increasing data size.

20,000 40,000 60,000 80,000 100,000

0

200

400

No. of keys

ex
ec
ut
io
n
ti
m
e
in

m
s

Scalar cuckoo hashing

Vector cuckoo hashing

Scalar hopscotch hashing

Vector hopscotch hashing

Scalar linear probing

Vector linear probing

Scalar two-choice hashing

Vector two-choice hashing

Fig. 9: Moving cluster distribution

Other distributions: We omit a per-
formance graph for the other distri-
butions, as the technique’s behavior
are similar to what we see for uniform
distributed values. The only notable
difference is that vectorized cuckoo
has good performance for self-similar
and exponential distributions for ear-
lier data sizes but is soon surpassed
by vectorized two-choice hashing.

Speed-up Gain Based on our results, we found that several factors influence
the speed-up gained by vectorization of the hashing techniques. We plot the
speed-up of the hashing techniques in Figure 10.

LP
TC

H CH HH
0.5
1

1.5
2

2.5
3

3.5
4

Sp
ee
d-
up

Fig. 10: Speed-up across all tested distri-
butions

We observe from the figure, linear
probing (LP) has consistently posi-
tive impact of SIMD acceleration with
the maximum of up to 3.7x the speed
of scalar version. Two-choice hashing
(TCH) also has a considerable impact
of vectorization with the maximum
gain of 2.5x, but the speed-up depends
on the input data distributions. SIMD
vectorization has no impact on cuckoo

SIMD Vectorized Hashing for Grouped Aggregation 13

hashing (CH) as the insert time for cuckoo hashing balances the speed-up gained
due to probing of keys. However, for distributions with a high number of du-
plicate keys, the technique gains a speed-up of 2x the scalar version. Finally,
our result indicates that the usage of SIMD instructions for hopscotch hashing
(HH) is not providing a performance increase. This is due to the preprocessing
steps needed for inserting keys. Mainly for SIMD insertion, single key insertion
re-arranges multiple keys inside the table.

6 Conclusion

Vectorization impacts the execution of a grouped aggregation function. This
impact differs based on the hashing technique used to compute the results. In
the work, we explored the impacts on vectorizing the commonly used open-
addressing hashing techniques.

For vectorization of the techniques, we provide a framework with horizontal
vectorization along with an interleaved insertion. In our method, a given key
is searched in a hash table using vectorized probing with either an insertion
of a key or an update of the aggregate payload. We detail the execution flow
of vectorized hashing techniques and discuss the complexities in incorporating
them.

In our experiments, we found that the overhead of vectorizing a scalar key
limits the overall performance gain from SIMD. For the case of linear probing
and two choice hashing, SIMD acceleration provides gain of 2x with respect to
their scalar implementation. Whereas in case of cuckoo hashing and hopscotch
hashing, we get negative impact from SIMD. This is mainly due to additional
overheads for key insertions in these techniques.

Using our framework, we provide a possible vectorization model for hash-
ing techniques. This model is extensible for further techniques as well as other
vectorization strategies. Our current framework is not scalable for a multi-CPU
system but a synchronization mechanism can be easily added. Finally, from our
analysis, we found that the hashing technique related parameters must be tuned
for efficient execution.

7 Acknowledgments

This work was partially funded by the DFG (grant no.: SA 465/51-1 and SA
465/50-1)

14 Gurumurthy et al.

References

1. Broneske, D., Meister, A., Saake, G.: Hardware-sensitive scan operator variants for
compiled selection pipelines. In: Datenbanksysteme für Business, Technologie und
Web (BTW). pp. 403–412 (2017)

2. Broneske, D., Saake, G.: Exploiting capabilities of modern processors in data in-
tensive applications. it - Information Technology 59(3), 133 (2017)

3. Cieslewicz, J., Ross, K.a.: Adaptive aggregation on chip multiprocessors. Proceed-
ings of the Very Large Databases (VLDB) pp. 339–350 (2007)

4. Flajolet, P., Poblete, P., Viola, A.: On the analysis of linear probing hashing.
Algorithmica 22(4), 490–515 (1998)

5. Gray, J., Sundaresan, P., Englert, S., Baclawski, K., Weinberger, P.J.: Quickly
generating billion-record synthetic databases. International Conference on Man-
agement of Data (SIGMOD) pp. 243–252 (1994)

6. Herlihy, M., Shavit, N., Tzafrir, M.: Hopscotch hashing. In: International Sympo-
sium on Distributed Computing. pp. 350–364. Springer (2008)

7. Jiang, P., Agrawal, G.: Efficient SIMD and MIMD Parallelization of Hash-based
Aggregation by Conflict Mitigation. Proceedings of the International Conference
on Supercomputing (ICS) pp. 24:1–24:11 (2017)

8. McClellan, M.T., Minker, J., Knuth, D.E.: The Art of Computer Programming,
Vol. 3: Sorting and Searching. Mathematics of Computation 28(128), 1175 (1974)

9. Pagh, R., Rodler, F.F.: Cuckoo hashing. Journal of Algorithms 51(2), 122–144
(2004)

10. Polychroniou, O., Raghavan, A., Ross, K.A.: Rethinking SIMD Vectorization for
In-Memory Databases. Proceedings of the International Conference on Manage-
ment of Data (SIGMOD) pp. 1493–1508 (2015)

11. Polychroniou, O., Ross, K.A.: High throughput heavy hitter aggregation for mod-
ern SIMD processors. Proceedings of the Ninth International Workshop on Data
Management on New Hardware (DaMoN) pp. 6:1–6:6 (2013)

12. Richa, A.W., Mitzenmacher, M., Sitaraman, R.: The power of two random choices:
A survey of techniques and results. Combinatorial Optimization 9, 255–304 (2001)

13. Richter, S., Alvarez, V., Dittrich, J.: A seven-dimensional analysis of hashing
methods and its implications on query processing. Proceedings of the Very Large
Databases (VLDB) 9(3), 96–107 (2015)

14. Ross, K.A.: Efficient hash probes on modern processors. In: Proceedings of the In-
ternational Conference on Data Engineering (ICDE). pp. 1297–1301. IEEE (2007)

15. Zhou, J., Ross, K.A.: Implementing Database Operations Using SIMD Instructions.
In: International Conference on Management of Data (SIGMOD). p. 145 (2002)

