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ABSTRACT
Highly-configurable software systems (also called software prod-
uct lines) gain momentum in both, academia and industry. For
instance, the Linux kernel comes with over 12 000 configuration
options and thus, can be customized to run on nearly every kind of
system. To a large degree, this configurability is achieved through
variable code structures, for instance, using conditional compila-
tion. Such source code variability adds a new dimension of com-
plexity, thus giving rise to new possibilities for design flaws. Code
smells are an established concept to describe design flaws or decay
in source code. However, existing smells have no notion of variabil-
ity and thus do not support flaws regarding variable code structures.
In this paper, we propose an initial catalog of four variability-aware
code smells. We discuss the appearance and negative effects of
these smells and present code examples from real-world systems.
To evaluate our catalog, we have conducted a survey amongst 15
researchers from the field of software product lines. The results
confirm that our proposed smells (a) have been observed in existing
product lines and (b) are considered to be problematic for common
software development activities, such as program comprehension,
maintenance, and evolution.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Restructuring, reverse engineering, and reengineer-
ing

General Terms
Design, Languages
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Design Defects, Code Smells, Variability, Software Product Lines

1. INTRODUCTION
Code smells are an established concept to describe that a soft-

ware system suffers from design flaws and code decay [12]. Usu-
ally, a code smell intrinsically indicates the need for restructuring
the source code by means of refactoring. As a result, the code be-
comes easier to understand and thus easier to maintain and evolve.
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Over the last decade, a variety of work has addressed the detec-
tion [30, 43] and correction of code smells [29]. Moreover, the im-
pact of code smells on different aspects of software development,
such as evolution, maintenance, or program comprehension, has
been studied [1, 21, 22, 44]. Complementarily, anti-patterns have
been proposed to describe more profound shortcomings, for in-
stance, shortcomings that arise from the occurrence of several code
smells in concert [7]. Hence, a certain maturity has been reached
and thus, code smells are a well-established concept for traditional
(mostly object-oriented) software systems.

In the recent past, however, highly-configurable software sys-
tems (also known as software product lines (SPLs)) gained much
attention in both, academia and industry. Such systems usually en-
compass a vast number of related programs (also called a program
family), which are based on a common platform [8]. The notion of
features is used to communicate commonalities and variabilities in
a program family, and thus, to distinguish between particular pro-
grams. In this context, a feature is an increment in functionality,
visible to a stakeholder.

An advantage of the SPL approach is that a feature is imple-
mented only once but can be reused in many different programs,
based on a user-specified configuration. As a result, the SPL ap-
proach improves, for instance, flexibility, time-to-market, or the
reliability of programs. For implementing SPLs, different varia-
bility mechanisms exist, which basically follow one of two ways:
Composition-based mechanisms aim at modularizing all code (and
non-code) artifacts that belong to a particular feature. By contrast,
annotation-based mechanisms provide a virtual separation of fea-
tures by annotating the respective code just-in-place [19]. In either
case, variability is implemented explicitly and thus, is part of the
code base. This, in turn, may not only increase the complexity
of the source code and thus, impede comprehension and mainte-
nance [6, 41]. More than that, it also limits the application of ex-
isting techniques, such as source code analyses, because current
approaches do not address variability.

We argue that it is necessary to take variability into account as
a first-class concept for code smells and their detection. Only then
can we extend the well-established foundations of code smells to
the domain of configurable software systems. This is of special im-
portance, because such systems are defined with longevity, which
inherently leads to code decay during evolution.

In this paper, we address the aforementioned problem by revisit-
ing code smells in the light of variability. To this end, we inject the
notion of variability into existing code smells, resulting in an initial
catalog of variability-aware code smells. Particularly, we make the
following contributions:

• In this paper, we propose four code smells that take variabil-
ity into account. Basically, we take existing code smells as a
foundation and lift them up to SPLs, resulting in variability-
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Figure 1: FODA feature model specifying valid configurations
of a Stack product line

aware code smells.
• We discuss the occurrence and shape of these smells for two

different variability mechanisms, the C preprocessor (CPP)
and feature-oriented programming (FOP).

• We discuss possible (negative) effects of these smells on pro-
gram comprehension, maintainability, and evolvability.

• To evaluate our code smells, we conducted a survey with 15
researchers that are experts on software product lines. Our
results reveal that most of them (a) observed these smells
in real-world systems and (b) acknowledge that such smells
may hinder maintenance and evolution.

For all details on our survey as well as additional examples for
variability-aware code smells, we provide a supplementary web
page, available at https://www.isf.cs.tu-bs.de/cms/
team/schulze/material/vacs/.

2. VARIABILITY MECHANISMS
In this section, we explain how variability in software product

lines is managed on the domain level and how it is implemented on
the code level. Moreover, we discuss the impact of variability on
the code structure and, consequently, on code smells.

2.1 Variability Modeling
Features are one way of representing variability choices. Fea-

tures denote increments in functionality, which can be common
to all products, but can also be variable. This variability leads to
(sometimes complex) relationships and dependencies among fea-
tures. Feature models (FMs) are a common means to organize
these relationships and dependencies in a tree structure [16]. In
Figure 1, we show the FM of a simple stack product line (Stack
SPL). Features in an FM can be mandatory (always present) or op-
tional. Furthermore, they can form groups in order to express addi-
tional dependencies. For instance, the Storage feature has two child
features: AStorage uses a dynamically resizable array, whereas LL-
Storage uses a linked list. Both features form an alternative group,
that is, exactly one feature has to be selected for any variant. Fi-
nally, feature Locking constitutes an optional feature for concurrent
access to the stack.

2.2 Variability Implementation
The variability modeled on the domain level has to be realized on

the code level. To this end, different variability mechanisms exist,
which can be subdivided into annotation-based and composition-
based mechanisms. The difference between the two is the way of
implementing features (a. k. a. feature code) in terms of modular-
ization and separation of concerns [18]. As a result, the respective
variability mechanism affects the way variable code is structured.

Annotation-based mechanisms.
Annotation-based mechanisms provide a virtual separation of

concerns [18]. That is, all features of an SPL are implemented
in a single code base. Annotations are used to mark code frag-

1 class Stack<E> {
2 // #ifdef AStorage
3 List<E> store = new ArrayList<E>();
4 // #endif
5 // #ifdef LLStorage
6 List<E> store = new LinkedList<E>();
7 // #endif
8 // #ifdef Locking
9 void push(E e, Lock lock) {

10 lock.lock();
11 store.add(e);
12 lock.unlock();
13 }
14 E pop(Lock lock) {
15 lock.lock();
16 try { return store.remove(store.size()-1); }
17 finally { lock.unlock(); }
18 }
19 // #else /* !defined(Locking) */
20 void push(E e) { store.add(e); }
21 E pop() { return store.remove(store.size()-1); }
22 // #endif
23 }

Figure 2: Annotation-based implementation of the Stack SPL

ments that correspond to a given feature. In order to create a spe-
cific product, annotated code is removed or modified by means
of a preprocessor [2]. As an example, consider the annotation-
based implementation of the Stack SPL, given in Figure 2. The
code is written in Java, and feature-related code is annotated with
ANTENNA1 preprocessor directives. ANTENNA directives are sim-
ilar in syntax and semantics to C preprocessor (CPP) directives,
with the difference that ANTENNA directives require an additional
‘//’ prefix. For instance, the statements on Lines 9–18 implement
push() and pop() for feature Locking, whereas Lines 20 and 21
contain the non-locking implementation. Both fragments are op-
tional and their in-/exclusion is controlled by configuration options,
which relate to features and are associated with preprocessor direc-
tives (a. k. a. #ifdefs). Consequently, the locking implementa-
tion is only included if macro Locking is defined. Conversely, if
Locking is undefined, the code is removed during preprocessing.

Composition-based mechanisms.
Composition-based mechanisms physically separate concerns,

which means that all artifacts (code and non-code) that belong to
a certain feature are modularized into one cohesive unit [2, 18].
In feature-oriented programming (FOP), this unit is called a fea-
ture module, and directly corresponds to a feature in the FM [5,
33]. There are several tools that support the feature-oriented im-
plementation of SPLs, e. g., AHEAD [5], FEATUREHOUSE [3] and
FEATUREIDE [42]. Beyond FOP, other composition-based mech-
anisms have been explored, for instance, component frameworks,
plug-in architectures, and aspect-oriented programming [13, 40].
For our discussion, though, we focus on FOP due to its formal foun-
dation, clear focus on physical separation of concerns, mature tool
support, and availability of open-source case studies.2

In Figure 3, we show the feature modules of the FOP imple-
mentation of our Stack SPL. Module BaseStack introduces a class
Stack, containing the methods push() and pop(). Further-
more, modules AStorage and LLStorage refine this class definition
by adding field store. Finally, module Locking adds locking to
methods push() and pop(). The locking code utilizes the FOP-
specific keyword original to invoke the push() and pop()
implementation provided by BaseStack (cf. Figure 3, Lines 4 and 9
in module Locking).

1http://antenna.sourceforge.net/
2See http://spl2go.cs.ovgu.de/ for a selection of SPL
case studies.

https://www.isf.cs.tu-bs.de/cms/team/schulze/material/vacs/
https://www.isf.cs.tu-bs.de/cms/team/schulze/material/vacs/
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Feature BaseStack

1 class Stack<E> {
2 void push(E e, Lock lock) { store.add(e); }
3 E pop(Lock lock) {
4 return store.remove(store.size()-1);
5 }}

Feature AStorage

1 class Stack<E> { List<E> store=new ArrayList<E>(); }

Feature LLStorage

1 class Stack<E> { List<E> store=new LinkedList<E>(); }

Feature Locking

1 class Stack<E> {
2 void push(E e, Lock lock) {
3 lock.lock();
4 original(e, lock);
5 lock.unlock();
6 }
7 E pop(Lock lock) {
8 l.lock();
9 try { return original(lock); }

10 finally { lock.unlock(); }
11 }}

Figure 3: Feature-oriented implementation of the Stack SPL

2.3 Effect of Variability on Code Smells
Upon closer inspection of the exemplary implementations of the

Stack SPL, we observe several variability-related peculiarities, not
unlike code smells. There are at least two flaws in the the annotation-
based implementation (cf. Figure 2). First, Lines 11 and 16 of the
Locking implementation are duplicated in Lines 20 and 21 of the
non-locking code. Thus, whenever the non-locking code has to
change, the locking code will likely have to change as well. The
second flaw is that if Locking is enabled, both push() and pop()
require an additional parameter, lock. Consequently, client ap-
plications cannot easily switch between locking and non-locking
variants of the Stack SPL because that would require adapting ev-
ery call site of push() and pop(). As others have previously
observed, this is not desirable [34].

While the aforementioned peculiarities are absent from the com-
position-based example, another flaw occurs: Due to the fixed pa-
rameter list of push() and pop(), parameter lock is now un-
used in feature BaseStack (cf. Figure 3). However, lock cannot
simply be removed, because it is required by module Locking.

As these examples show, design flaws may exist in the code
structure of an SPL that are highly related to variability. Put dif-
ferently, variable code structures create new opportunities to make
bad design decisions. Considering the longevity of most SPLs, this
increases the risk of code decay. This code decay, however, is not
well captured by existing code smells, because these smells have
been proposed for single software products (SSPs), that is, soft-
ware systems with a fixed code structure. We argue that we have
to make code smells aware of variability to capture design flaws in
code with a variable structure. As a solution, in the next section,
we propose variability-aware code smells.

3. A CATALOG OF VARIABILITY-AWARE
CODE SMELLS

In this section, we first explain how we derived variability-aware
code smells from SSP code smells. Then we present an initial cat-
alog of four smells that were derived with this methodology.

3.1 Derivation Methodology
We have derived our proposed smells from well-known code

smells described by Fowler et al. [12]. Specifically, we have con-
sidered how variability constructs, such as #ifdefs, can affect

the language elements of the smell description, and how this will
alter the code shape. For instance, the SSP code smell LONG
METHOD describes a method with too many statements, indicating
that the method is too complex to be understood easily. Applying
our methodology to this smell, with a focus on annotation-based
variability, our question was: “What will a LONG METHOD look
like if some (or many) of the statements are guarded by #ifdefs?”
This methodology works straightforward for many SSP smells be-
sides LONG METHOD (e. g., DUPLICATED CODE, SWITCH STATE-
MENTS). However, it does not work for all smells. One coun-
terexample is PRIMITIVE OBSESSION, which criticizes the use of
primitive data types (e. g., char, int) when a class would be more
appropriate. We have found no obvious way in which variability
could affect this smell and a number of others.

In this paper, we focused on four SSP smells that have been
found to occur regularly in source code. For those smells, we ap-
ply our methodology and distinguish between the two variability
mechanisms CPP and FOP in case that their interactions with lan-
guage elements matters. As we will show, there can be pronounced
differences. We discuss them in more detail when we compare our
variability-aware smells ANNOTATION BUNDLE and LONG RE-
FINEMENT CHAIN.

3.2 Catalog
Next, we present four variability-aware code smells that we have

derived using the method just described. For each smell, we start
with a summary of the original SSP code smell, followed by a
description of the derived smell. We further state which variabil-
ity mechanisms (annotation-based, composition-based or both) the
smell applies to. We then present an illustrative example and finally
discuss potential problems for program comprehension, mainte-
nance, and evolution that are caused by the respective smell. For
our discussion, maintenance comprises bug fixes, quality improve-
ments and other minor changes, whereas evolution means adding
new functionality or making major modifications.

Inter-Feature Code Clones
Derived from: DUPLICATED CODE [12]

Code replication, also known as code cloning, is the practice of
copying an existing piece of code and pasting it in another location
with or without modification [35]. The result of code replication,
DUPLICATED CODE, is not without problems. For instance, it has
been identified as a source of subtle bugs [23] and has been linked
to maintenance problems, such as the inconsistent bug fix (modify-
ing some clone instances but missing others) [15].

Variability-aware description: There are two ways in which
code duplication can occur in software product lines. First, code
may be duplicated within a feature. However, the resulting clones
do not depend on variability and hence are associated with the same
problems as code clones in SSPs. More interesting is the second
case, when there are two or more features that contain similar code.
We call this smell INTER-FEATURE CODE CLONES. This smell
can originate from intentional cloning (see Kapser and Godfrey
for a description of common cloning strategies [17]). However,
INTER-FEATURE CODE CLONES may also arise unintentionally.
For instance, developers sometimes reimplement functionality that
already exists in another feature because they are unaware of the
existing solution.

Applies to: Annotation-based and composition-based
mechanisms

Example: We already presented an annotation-based example of
INTER-FEATURE CODE CLONES in the previous section (cf. Fig-
ure 2). The Graph Product Line (GPL)3, a product line of classical
3http://spl2go.cs.ovgu.de/projects/49

http://spl2go.cs.ovgu.de/projects/49


1 sig_handler process_alarm(int sig
2 __attribute__((unused))) {
3 sigset_t old_mask;
4 if (thd_lib_detected == THD_LIB_LT &&
5 !pthread_equal(pthread_self(),alarm_thread)) {
6 #if defined(MAIN) && !defined(__bsdi__)
7 printf("thread_alarm in process_alarm\n");
8 fflush(stdout);
9 #endif

10 #ifdef SIGNAL_HANDLER_RESET_ON_DELIVERY
11 my_sigset(thr_client_alarm, process_alarm);
12 #endif
13 return;
14 }
15 #ifndef USE_ALARM_THREAD
16 pthread_sigmask(SIG_SETMASK,&full_signal_set,
17 &old_mask);
18 mysql_mutex_lock(&LOCK_alarm);
19 #endif
20 process_alarm_part2(sig);
21 #ifndef USE_ALARM_THREAD
22 #if !defined(USE_ONE_SIGNAL_HAND) && defined(

SIGNAL_HANDLER_RESET_ON_DELIVERY)
23 my_sigset(THR_SERVER_ALARM,process_alarm);
24 #endif
25 mysql_mutex_unlock(&LOCK_alarm);
26 pthread_sigmask(SIG_SETMASK,&old_mask,NULL);
27 #endif
28 return;
29 }

Figure 4: Annotation Bundle in MySQL, file
mysys/thr_alarm.c

graph algorithms [25], provides another example. The code ex-
cerpt can be found on our supplementary web page; for brevity,
we omit it here. In the GPL, features BFS (breadth-first search)
and DFS (depth-first search) contain an exact clone of the method
GraphSearch(). This may appear surprising at first, as the two
search algorithms are very different. Nevertheless, the GPL imple-
mentation is correct, as most of the work is performed by a helper
method, which the features BFS and DFS implement differently.

Problems: We argue that INTER-FEATURE CODE CLONES are
an even bigger obstacle than DUPLICATED CODE in SSPs. First,
the aforementioned unawareness of clone instances in other fea-
tures increases the likelihood of inconsistent changes. Secondly,
the variability in an SPL adds another layer of complexity as the
features containing the clones may be used in combination with
many different sets of features. Consequently, when a bug is fixed
or some other kind of modification is performed, the consistent
propagation of the change to other features may not be necessary or
even lead to semantic errors in other features. Hence, the developer
has to verify for each feature in every valid configuration whether
the change is both syntactically and semantically correct.

Annotation Bundle
Derived from: LONG METHOD [12]

The longer a method, the more difficult it is to understand [12].
A large number of statements can be used as a simple indicator of
this smell [30].

Variability-aware description: An ANNOTATION BUNDLE is
a method whose body consists of many variable parts. A large
number of features controls which of these parts are included or
excluded. On the code level, this results in many (groups of) state-
ments that are annotated, e. g., using CPP directives. Several differ-
ent annotations are involved, maybe even nested.

Applies to: Annotation-based mechanisms
Example: In Figure 4, we show a function implemented in C,

which is heavily annotated with CPP directives. It is taken from the
open source database management system MySQL, version 5.6.17.4

4http://dev.mysql.com/downloads/file.php?id=

class Main { // Feature ’dmain’
public static void process(Model root) throws /*...*/ {
// layers extend this method for AST processing

}
}

class Main { // Feature ’fillgs’
public static void process(Model root) throws /*...*/ {
original(m);
// harvest the tree
m.harvest( new fillFPtable() );
if (Util.errorCount() != 0)
throw new SemanticException(
"Error(s) in specification found");

m.harvest( new enterGspec() );
if (Util.errorCount() != 0)
throw new SemanticException(
"Error(s) in specification found");

}
}

class Main { // Feature ’propgs’
public static void process(Model root) throws /*...*/ {
original(m);
grammar.current.visit( new propcons() );
if (Util.errorCount() !=0)
throw new SemanticException(
"Errors in propagating Constraints");

}
}

class Main { // Feature ’formgs’
public static void process(Model root) throws /*...*/ {
original(m);
production.makeFormula();
pattern.makeFormula();
if (Util.errorCount() != 0)

throw new SemanticException(
"Errors in making propositional formulas");

}
}

class Main { // Feature ’clauselist’
public static void process(Model root) throws /*...*/ {
original(m);
production.makeClauses();
pattern.makeClauses();
ESList.makeClauses();
grammar.makeClauses();
if (Util.errorCount() != 0)
throw new SemanticException(

"Errors in making conjunctive normal formulas");
}

}

class Main { // Feature ’modelopts’
public static void process(Model root) throws /*...*/ {
original(m);
if (modelMode) {
try { harvestInfo(); }
catch (IOException e) {
JOptionPane.showMessageDialog(null, "Model" +
" Harvesting Error -- see command line for" +
" details", "Error!", JOptionPane.ERROR_MESSAGE);
System.err.println(e.getMessage());

}}}}

Figure 5: Long Refinement Chain in GUIDSL

Although the function is not very long in terms of C statements,
there are five different CPP macros that control which of these state-
ments make up a concrete implementation. Moreover, these macros
are nested and sometimes negated. For instance, the statement on
Line 23 is controlled by three different macros, two of which must
be undefined for the statement to be included. Altogether, only few
lines (e. g., the if condition on Lines 4–5) of the whole function
are stable and thus, pervasive in each compiled program.

Problems: We argue that an ANNOTATION BUNDLE is difficult
to understand for a certain configuration or in its entirety. Having
many variable parts in the method body obscures the view on the
core functionality. Moreover, each annotation requires additional
knowledge of the macros that are involved. Hence, to comprehend
an ANNOTATION BUNDLE, a developer has to work with many
different abstractions on both the programming language level and
the variability level.

Maintenance and evolution tasks are also hampered by heavily
annotated methods. For instance, locating a bug is difficult if the
exact configuration that exhibits the defect is not known. More-
over, developers have to take special care when changing heavily
annotated code. Otherwise they might break the presence condi-
tions of existing statements or introduce dangling references due to
particular configurations they failed to consider.

Long Refinement Chain
Derived from: LONG METHOD [12]

Variability-aware description: The smell LONG REFINEMENT
CHAIN is the composition-based counterpart of ANNOTATION BUN-
DLE. As such, it denotes a method with many variable parts due to
feature refinement.

Applies to: Composition-based mechanisms
Example: In Figure 5, we show a LONG REFINEMENT CHAIN

from GUIDSL [4]. GUIDSL is a product line configuration tool im-
plemented in FOP. In our code example, we show the process()
method of class Main and all of its refinements. The method is
introduced as an empty stub by feature dmain and subsequently re-
fined by five other features (fillgs, propgs, formgs, clauselist, mod-
elopts). By contrast, the average refinement depth in GUIDSL is
lower than one, that is, most methods are never refined. Each
refinement of process() contains between three to nine addi-
tional lines of code and thus, contributes considerably to the overall
method. Moreover, most of these refinements can occur in different
combinations, depending on the feature selection.

Problems: In contrast to an ANNOTATION BUNDLE, with a
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Feature WeightedOnlyVertices

1 public class Graph {
2 public void addAnEdge(Vertex start, Vertex end, int weight) {
3 addEdge(start, end, weight);
4 }
5 public void addEdge(Vertex start, Vertex end, int weight) {
6 addEdge(start, end);
7 start.addWeight(weight);
8 /* More source code ... */
9 }}

Feature DirectedOnlyVertices

1 public class Graph {
2 public void addAnEdge(Vertex start, Vertex end, int weight) {
3 addEdge(start, end);
4 }
5 public EdgeIfc addEdge(Vertex start, Vertex end) { /* ... */ }
6 }

Figure 6: Latently Unused Parameter weight in the GPL

LONG REFINEMENT CHAIN, feature-specific parts of a method
are encapsulated in refinements. Even though encapsulation is a
favorable property, excessive refinement is problematic. First, as
with ANNOTATION BUNDLEs, it is hard to understand the effect
of a particular refinement for a concrete configuration. Secondly,
when modifying an often-refined method or adding a new refine-
ment, the developer must be aware of all existing refinements (and
their combinations) and possible side effects of changing or adding
code. Hence, we contend that methods with a LONG REFINEMENT
CHAIN are harder to understand, maintain and evolve than methods
with few refinements.

Interestingly, even though we have derived both, ANNOTATION
BUNDLE and LONG REFINEMENT CHAIN, from the same SSP
smell (LONG METHOD), they manifest themselves very differently
on the code level. This illustrates how much the chosen variabil-
ity mechanism affects the shape of an SSP code smell when it is
transferred to an SPL context.

Latently Unused Parameter
Derived from: LONG PARAMETER LIST & SPECULATIVE GEN-
ERALITY [12]

A method with many parameters hampers program comprehen-
sion as each parameter increases the cognitive burden of the caller.
Furthermore, a LONG PARAMETER LIST impedes evolution as it is
frequently changed when additional data is needed [12].

SPECULATIVE GENERALITY, in turn, describes a situation in
which there is functionality within a software system that is never
used. Such functionality increases the complexity of the code but
has no immediate benefit [12]. SPECULATIVE GENERALITY can
take several forms, unused parameter is one of them.

Variability-aware description: In an SPL context, parameter
lists are also subject to variability. Sometimes, a parameter of a
method is optional, i. e., it is only needed by a certain feature, but
is unnecessary for others. One way to deal with an optional pa-
rameter would be variable method signatures, that is, the parame-
ter is only present if the corresponding feature is selected. How-
ever, as we have discussed in Section 2.3 and others have stated
before [34], variable method signatures are problematic. Another
solution is to forward-declare the optional parameter upon intro-
duction of the method [34], even if it is used much further down
in the refinement chain. The disadvantage of forward-declaration,
however, is that for all features higher up in the refinement chain,
the forward-declared parameter will be unused. This, in turn, is a
form of SPECULATIVE GENERALITY.

Applies to: Annotation-based and composition-based
mechanisms

Example: We have already presented a LATENTLY UNUSED
PARAMETER in Figure 3 of the previous section. In this exam-
ple, parameter lock was required by feature Locking, but unused
in BaseStack. We show another example in Figure 6, taken from

the GPL. Here, feature WeightedOnlyVertices extends class Graph
with method addAnEdge() (see Lines 2–4). The third parame-
ter of this method is an integer, weight. This is reasonable, as
the feature provides support for weighted graphs. Indeed, weight
is used by helper method addEdge() (cf. Lines 3 and 5–9). Fea-
ture DirectedOnlyVertices also provides a method addAnEdge().
In order to be compatible with feature WeightedOnlyVertices, the
same signature is used. However, in the latter case, the parameter
weight is confusing and, in fact, unused.

Problems: The natural assumption is that a parameter has some
effect on the method’s outcome. Unused parameters make a meth-
od harder to understand because they foil that assumption [12].
LATENTLY UNUSED PARAMETERs only foil that assumption in
particular cases, which is at least as bad. Moreover, a LATENTLY
UNUSED PARAMETER introduces coupling between callers of the
method and the feature that requires the parameter. For instance,
a client application of the GPL, which only uses feature Directe-
dOnlyVertices (and never WeightedOnlyVertices), will nonetheless
have to supply a weight when calling addAnEdge(). This is
not only confusing to developers of the client application. In addi-
tion, in order to understand the reason behind the extra parameter,
the developers are forced to inspect WeightedOnlyVertices – a fea-
ture that is otherwise entirely irrelevant to them.

4. EVALUATION
While the descriptions of the variability smells in the previous

section have been elaborated with care and are based on existing,
well-established code smells, they may be biased to the author’s
point of view. Hence, before detecting such smells or proving their
severity by means of empirical studies, it is necessary to verify
whether the proposed smells “really are smells.” To this end, we
conducted a survey amongst experts in the field of software product
lines. In the following, we provide information about the setup, the
particular questions and the result of this survey.

4.1 Objectives
The objective of our survey was to receive feedback on our pro-

posed variability-aware code smells from product-line experts. Par-
ticularly, we designed our survey with two questions in mind:

Q1: Do our proposed smells exist in the design and implementa-
tion of SPLs?: We assume that most participants of the survey have
to deal with SPLs on implementation level, whether it be through
teaching, analysis, implementation, or tool support. With this ques-
tion, we aim to elicit which of the proposed smells the participants
encountered in the described (or similar) form.

Q2: Are our smells problematic with respect to different aspects
of SPL development?: Code smells do not just indicate a decay of
source code, but also lead to problems regarding program compre-
hension, maintenance and evolution. Hence, we are interested in
how the participants estimate the severity of our proposed smells
with respect to these aspects.

4.2 Setup
In the following, we provide information about participants and

concrete questions of our survey. The complete survey with all
questions and corresponding answers is available at the supplemen-
tary web page (cf. Section 1 for the URL).

4.2.1 Participants
As target audience for our survey, we decided to send out our sur-

vey to participants of the international meeting on feature oriented
software development (www.fosd.de/meeting2014), held at
Schloß Dagstuhl in May 2014. The audience consists of PhD stu-
dents, post-docs as well as professors, all of them working in the

www.fosd.de/meeting2014


# 
of

 a
ns

w
er

s

0

2

4

6

8

10

12

14

16

Code Smells
Clones Refinement Bundle Parameter

Not observed CPP FOP

Figure 7: Results for the occurrence of variability-aware code
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field of software product lines. We sent out our survey two weeks
before the meeting and received 17 response sets. Two response
sets were incomplete and thus, have been discarded. Moreover, to
ensure that participants are eligible for our survey, we measured
their programming experience for both, general purpose program-
ming as well as SPL programming, based on the work of Siegmund
et al. [11]. Particularly, we asked questions about programming ex-
perience, different programming paradigms, programming activity,
and experience with different variability mechanisms. Based on
the responses, we confirm that all participants are advanced pro-
grammers with a solid background in SPL implementation. Partic-
ularly, most of the participants are (very) experienced with feature-
oriented programming and using the CPP, respectively. Thus, we
argue that the responses we got are sufficiently reliable.

4.2.2 Survey – Structure & Questions
We divided our survey into four sections. Initially, we asked for

personal data such as gender, age, or the current affiliation of the
participant. Next, we had a larger section regarding the background
& experience of the participant, which mainly focused on the above
mentioned programming experience. In the third section, we asked
questions about the knowledge of code smells. Given a basic knowl-
edge of the concept, or even knowledge of concrete smells, it is
probably easier to identify variability-aware code smells.

Finally, the last section contained questions about our proposed
code smells and thus, constitutes the main part of our survey. For
each of the variability-aware code smells in Section 3, we asked
whether participants observed these smells, for which variability
mechanism (if not specified by the smell), and in which kind of
project (e. g., open source, industrial). Moreover, participants were
requested to estimate the severity of each code smell for the follow-
ing aspects: program comprehension, maintainability, and evolv-
ability. Together with the survey, we handed out a short description
of the code smells, similar to the one in Section 3. This description
is available on the supplementary page.

4.3 Results
Next, we present the main results of our survey. For brevity, we

only present results about variability-aware code smells, because
this has been the main objective of the survey. Additional answers
and comments are available at the supplementary page.

In Figure 7, we present the results related to the existence of our
proposed smells. Basically, these results confirm that most of the
smells have been observed “in the wild” by the participants. Partic-
ularly, 63% of the participants (average over all code smells) have
observed at least one of the proposed smells. Concerning the varia-
bility mechanism, responses indicate that the smells occur equally

in SPLs implemented with FOP and the CPP, respectively. More-
over, individual participants observed certain smells for proprietary
mechanisms.

Beyond these observations, we asked for the impact of our pro-
posed smells on different aspects of SPL development. Our re-
sults, which we show in Figure 8, reveal that most of the code
smells are considered problematic. First, for program comprehen-
sion (cf. Figure 8 (a)), especially REFINEMENT CHAIN, ANNOTA-
TION BUNDLE, and LATENTLY UNUSED PARAMETER have been
judged to be problematic, while INTER-FEATURE CODE CLONES
are seen as less of an issue. Secondly, the participants estimate that
all code smells are mostly problematic for maintainability of SPLs
(cf. Figure 8 (b)). Particularly, 61% on average estimate the sever-
ity of the smells “rather problematic” or even “very problematic.”
Similarly, participants judge these smells to impede evolvability of
SPLs (cf. Figure 8 (c)).

4.4 Discussion
Next, we interpret and discuss the aforementioned results by re-

lating them to the questions in Section 4.1.
Q1:Do our proposed smells exist in SPLs?: Based on the re-

sults, we argue that our proposed variability-aware code smells oc-
cur regularly in SPLs. For all smells, a considerable number of
participants (between 50% and 70%) acknowledged that they faced
the respective smells in SPL implementations. Moreover, partici-
pants observed these smells not only in toy examples; rather, they
confirmed these smells also for open source and industrial projects,
which is also reflected by the following two comments:

[INTER-FEATURE CODE CLONES] “Our industry
partner is struggling with inter-feature code clones due
to a lack of awareness. . . . ”

[ANNOTATION BUNDLE] “. . . in Linux, I have ob-
served that in some cases a lot of #ifdefs are used in
a method and some of them are nested making the
method longer and more complicated.”

Additionally, the fact that half of the affected projects were using
the CPP gives rise to the conclusion that the proposed smells occur
frequently in the wild.

Q2: Are our smells problematic with respect to different aspects
of SPL development? Although our results reveal differences be-
tween particular code smells and the different aspects, the overall
opinion is that our proposed smells impede program comprehen-
sion, maintenance, and evolution of SPLs. Particularly, up to 80%
participants acknowledged possible problems. Of course, this re-
sult only reflects the personal opinion and experience, which may
be somewhat subjective (e. g., no independent measurements exist).
However, each participant has long-time experience with SPLs, and
has worked on projects from different domains.

Overall, the results of our survey confirm that (a) the notion of
variability is beneficial for reasoning about code smells and (b) that
variability-aware code smells, as proposed by us, occur regularly
and may impede SPL development.

5. RELATED WORK
Apart from us, Apel et al. introduced the term “variability smell”

and present a summary of fourteen possible smells that may occur
in different phases of SPL engineering, such as feature modeling,
product configuration or SPL implementation [2]. The only overlap
between their smells and ours is DUPLICATE CODE IN ALTERNA-
TIVE FEATURES, a form of our INTER-FEATURE CODE CLONES
that is restricted to alternative features. The list by Apel et al. is
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an overview of problems that should be investigated in future re-
search, rather than a fully evaluated and systematic methodology.
Compared to their smells, we focus on code smells exclusively and
provide a systematic methodology for defining such smells.

Beyond that, code smell definition and detection for product lines
has been subject to recent work. Highly related to our approach is
the work by Patzke et al., which deals with root causes of anoma-
lies during SPL evolution [32]. They present a template of different
high-level problems that may occur during SPL evolution and pro-
vide root causes for each problem. These root causes are given
informally and may be combined to define code smells, similar to
those we presented. Hence, we see synergy potential in our ap-
proach and theirs. However, our work differs in that we define con-
crete smells on the code level for different variability mechanisms,
while they focus on higher level problems (which may manifest in
source code) and on ways to mitigate them.

Next, different approaches exist that use SPLs as subjects for de-
tecting code smells, as well as architectural decay [14,26,27]. Par-
ticularly, Andrade et al. identified traditional architectural smells
in an SPL by means of a case study [9]. However, all of these
approaches mostly focus on language-specific smells for OOP and
AOP and put the focus on crosscutting concerns while neglecting
variability. Moreover, they focus on detection rather than on pro-
viding a systematic methodology to define variability-aware code
smells, as we do.

In a broader sense, our approach is related to foundational work
on refactoring and anti-patterns/smells [20, 28, 31, 39]. However,
these smells either lack the notion of variability in code [20, 28]
or are specifically tailored to a concrete variability mechanism [31,
39]. In contrast, our smells explicitly take variability into account.
Moreover, we discuss them for different variability mechanisms.

Beyond concrete code smells, a large body of work exists on
observed shortcomings of CPP directives. Among other aspects,
the negative impact of such directives on maintainability, program
comprehension, and error-proneness has been discussed [10, 38,
41]. With respect to variability, Liebig et al. present empirical re-
sults on the use of #ifdef directives, specifically with a focus on
granularity, scattering, tangling, and nesting of such directives [24].
While all this work is related due to the focus on shortcomings of
the CPP, the proposed metrics, such as scattering, by themselves are
too low-level to be considered code smells as code smells describe
concrete patterns of misuse. However, the proposed metrics may
be useful for future detection approaches, and may apply to other
variability mechanisms besides the CPP.

Finally, in recent work, we provide details on the concrete smell
DUPLICATED CODE in both, composition-based and annotation-
based SPLs, and how to manage them [36, 37]. This work comple-

ments the smells proposed in this paper, because it gives empirical
evidence for the existence of one of these smells.

6. CONCLUSION
Software product lines and other highly configurable software

systems owe much of their configurability to variable code struc-
tures. This implementation-level variability introduces a new di-
mension of complexity, which in turn may lead to new kinds of de-
sign flaws. Code smells are established indicators of design flaws
in source code. Such flaws make the code harder to understand,
maintain and evolve. If not addressed, they may cause a decrease
in programmer productivity or the introduction of actual faults. Un-
fortunately, existing smells have no notion of variability and thus,
are insufficient to describe variability-related design flaws in highly
configurable systems.

To address variability-related code decay, we propose an initial
catalog of four variability-aware code smells. Our smells are based
on established code smells but explicitly take variability into ac-
count. We consider both annotation-based and composition-based
variability mechanisms, which makes our smells applicable to a
large number of configurable systems. Moreover, we evaluated our
smells by means of a survey, which was sent out to researchers from
the field of software product lines. The majority of the participants
confirm that our smells (a) have been observed in real-world sys-
tems and (b) constitute problems for understanding, maintenance
and evolution.

Currently, we are working on an automatic detection framework,
which will allow us to determine how frequently the proposed and
other smells occur in existing systems. In future work, we will con-
sider the impact of variability on further established code smells.
We also plan to widen the scope of our research to anti-patterns,
architectural smells and other indicators of faulty software design.
Furthermore, we intend to investigate variability-aware refactorings
to correct these design flaws. Eventually, this effort may result in a
guideline to reduce complexity in highly configurable software.
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