Code Smells in Highly Configurable Software

Wolfram Fenske
Otto-von-Guericke-University Magdeburg
Magdeburg, Germany
Email: wfenske@ovgu.de

Abstract—Modern software systems are increasingly config-
urable. Conditional compilation based on C preprocessor direc-
tives (i. e., #ifdef£s) is a popular variability mechanism to imple-
ment this configurability in source code. Although C preprocessor
usage has been subject to repeated criticism, with regard to
variability implementation, there is no thorough understanding
of which patterns are particularly harmful. Specifically, we lack
empirical evidence of how frequently reputedly bad patterns
occur in practice and which negative effect they have. For object-
oriented software, in contrast, code smells are commonly used to
describe source code that exhibits known design flaws, which
negatively affect understandability or changeability. Established
code smells, however, have no notion of variability. Consequently,
they cannot characterize flawed patterns of variability implemen-
tation. The goal of my research is therefore to create a catalog of
variability-aware code smells. 1 will collect empirical proof of how
frequently these smells occur and what their negative impact is on
understandability, changeability, and fault-proneness of affected
code. Moreover, I will develop techniques to detect variability-
aware code smells automatically and reliably.

I. INTRODUCTION

Code smells are a concept to characterize source code that
suffers from structural deficiencies that make it hard to under-
stand, change, or test [1]. Fowler et al. introduced code smells
as indicators that the source code structure might need to
be improved through refactoring. Research has addressed the
detection [2]-[4] and correction [5] of code smells. Moreover,
the negative impact of code smells on software development
has been studied [6]-[10]. Complementarily, Brown et al. have
introduced anti-patterns [11], which are related to code smells
but describe shortcomings with more profound consequences
(e. g., architectural problems) and are not limited to code.

Despite the maturity of code smell and anti-pattern research
for traditional software systems (especially object-oriented
software), current approaches fall short when dealing with the
variability of highly configurable software systems. A highly
configurable software system (a.k.a. software product line
(SPL)) implements not just a single program, but a set of
related programs (a program family), which are built from a
common set of assets [12]-[14]. The commonalities and dif-
ferences of members of this program family are communicated
in terms of features, i.e., increments in functionality that are
important to some stakeholder.

There are different variability mechanisms to implement
highly configurable software systems. For instance, plug-
in architectures, aspect-oriented programming, and feature-
oriented programming have been proposed [15], [16]. In prac-
tice, however, conditional compilation, an annotation-based

978-1-4673-7532-0/15 © 2015 IEEE

602

approach, is the predominant variability mechanism [17]. This
mechanism follows a simple annotate-and-remove paradigm:
All features are implemented in a common code base, and
feature code is annotated in place, for instance, using #ifdef
directives of the C preprocessor (CPP). Controlled by a
configuration, feature code is conditionally excluded from
compilation by means of a preprocessor.

I contend that variability adds a layer of complexity to
highly configurable software that is not present in single
software systems: Not only do classes, functions, etc. have to
be structured, but the way that variability is implemented has
to be structured as well. Hence, variability poses new design
challenges, and some of the potential solutions arguably have
more negative effects on the understandability and change-
ability of source code than others. Established code smells,
however, have no notion of variability, and consequently fail
to capture this difference in effects.

Based on my previous work [18], I therefore propose
within my PhD research variability-aware code smells, specif-
ically, variability-aware code smells for highly configurable
software systems using preprocessor-based variability. Other
researchers have proposed variability smells in a broader
sense [14], [19]-[22], for instance, on the architectural level or
for variability models. However, neither has source code been
explicitly considered, nor has the harmfulness of these smells
been shown empirically. Starting from established code smells
and anti-patterns, I will derive a catalog of potential variability-
aware code smells. I will then empirically validate this catalog
by investigating which smells occur frequently in real-world
systems and by gathering evidence that my proposed smells
indeed negatively affect software development. As part of this
empirical validation, I will develop techniques to automatically
and reliably detect variability-aware code smells.

A. Research Questions

My objective is to investigate the relation between code
smells and preprocessor-based variability mechanisms. To this
end, I formulate the following research questions.

RQ1 How do annotation-based variability mechanisms
affect the code smell concept? The goal of this question is
to derive a set of potential variability-aware code smells. I
will investigate this topic with the following sub-questions.
RQ 1.1 How do established code smells change when annota-
tion-based variability is involved? RQ 1.2 Are there additional
variability-aware code smells, which are unrelated to existing
code smells?

ICSME 2015, Bremen, Germany

Accepted for publication by IEEE. © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

RQ2 How can those variability-aware code smell be de-
tected automatically? By answering this question, I will gain
a deeper understanding of the key properties of a particular
code smell. Moreover, automatic detection will enable me to
investigate how frequently a code smell occurs in practice.

RQ 3 To which extent do proposed smells negatively affect
the development of highly configurable software? Specifically,
I want to compare understandability, changeability and fault-
proneness of code that suffers from variability-related code
smells to code that does not suffer from these smells. To
this end, I pose the following sub-questions. RQ 3.1 Is smelly
code harder to understand (than non-smelly code)? RQ 3.2 Is
smelly code changed more frequently or more radically?
RQ 3.3 Is smelly code more prone to software faults?

II. STATE OF THE ART

Similar to the foundational work of Fowler et al. [1], others
have proposed code smells [23]-[29]. Some of this work also
proposed smell detection techniques [26]-[28]. However, these
smells either do not address variability [23], [24], or concen-
trate on aspect-oriented or delta-oriented programming [25]-
[29]. In contrast, I am interested in smells related to source-
code variability, and focus on preprocessor-based variability.

Apel et al. presented a summary of fourteen variability
smells for SPLs [14]. Similarly, based on practical experi-
ence, others have reported recurring variability-related prob-
lems [19]-[22]. Differently from my work, these smells and
problems are not limited to code, but also target other phases
of SPL engineering, such as variability modeling or prod-
uct derivation. Although these smells are founded on expert
knowledge, they require further, detailed investigation.

Based on problems in evolving SPLs, Patzke et al. analyze
root causes of those problems by means of expert interviews
and analysis of a case study [30]. Some of the identified root
causes may manifest as code smells. Thus, there is synergy
potential between his research and mine.

More recently, Abilio et al. proposed three code smells, as
well as detection metrics for SPLs that use feature-orient-
ed programming [31]. Their smells are derived from well-
known object-oriented smells, whose underlying problems
(e. g., scattering, tangling) are also important for software with
preprocessor-based variability. However, in code with prepro-
cessor variability, these problems will manifest differently, and
consequently, require different detection strategies.

Further research has used SPLs as subjects for the detection
of traditional code smells and architectural smells [32]-[34].
Carneiro et al. have proposed concern-sensitive visualizations
to help identify well-known object-oriented smells [35]. Fur-
thermore, Figueiredo et al. have proposed a set of concern-
sensitive heuristics to detect modularity flaws [36]. Their work
investigates known object-oriented and aspect-oriented smells,
putting an emphasis on crosscutting concerns. I, in contrast,
am interested in code smells that are specifically related to
variability and focus on preprocessor-based variability.

The smell DUPLICATED CODE (a.k.a. code clones), has
been investigated in the context of highly configurable sys-

tems [37], [38]. While not neglecting DUPLICATED CODE
entirely, I will also investigate other smells.

Finally, a large body of work deals with shortcomings of
the CPP. Among others, the negative impact of CPP directives
on understandability, changeability, and error-proneness has
been discussed [39]-[41]. With respect to variability, Liebig
et al. present empirical results on the usage of #ifdef
directives, specifically with a focus on granularity, scattering,
tangling, and nesting of such directives [17]. While this work
is related due to the focus on CPP use, it does not provide
concrete patterns of misuse. In contrast, I will investigate
concrete smells and relate them to problems for program
comprehension and maintainability.

IIT. RESEARCH METHODOLOGY

In this section, I outline how I will investigate and evaluate
the questions presented in Section I-A.

RQ 1: In order to answer how preprocessor-based vari-
ability affects code smells, I will develop a set of candidate
variability-aware code smells. Research questions 2 and 3, in
turn, are specifically designed to evaluate the occurrence of
these candidate smells in practice (RQ2), and their negative
impact on software development (RQ 3), respectively.

There are two sources of potential smells. First, I will
derive possible variability-aware code smells from established
code smells and anti-patterns by applying the methodology
described in my previous work [18]. The methodology works
by systematically introducing variability into the code pattern
associated with a particular smell. For instance, the established
smell LONG METHOD characterizes a method that implements
too much functionality, which typically manifests as a method
with a large number of statements [1]. To make this smell
variability-aware, I consider what happens to a long method
when many of its statements are annotated with preprocessor
directives. The result is a heavily annotated method, which
I argue would be just as problematic as its object-oriented
counterpart, but for different reasons.

As a second source of potential smells, I will solicit propos-
als from practitioners and fellow researchers, for instance, by
conducting interviews and surveys. Examples of smelly code
suggested in this manner will be collected and discussed in
an open database, similar to the effort by Palomba et al. for
object-oriented code smells [42] or Abal et al. for variability-
related bugs [43].

RQ2: Inspired by the DECOR framework [4], I plan to
provide a configurable smell detection framework that allows
for the flexible combination of different metrics in order to
detect instances of variability-aware code smells. Part of these
metrics (e. g., scattering and tangling), will be determined by
analyzing the static structure of source code. Other metrics,
such as code churn or co-change dependencies, can be better
detected by analyzing the evolution of a subject system [44].
I will extract these metrics by mining version control histories
of subject systems. The accuracy of the tool will be validated
by measuring its performance in terms of precision and recall
against a manually validated set of code smell instances.

603

sig_handler process_alarm(int sig
__attribute__ ((unused))) {
sigset_t old_mask;
if (thd_lib_detected == THD_LIB_LT &&
!pthread_equal (pthread_self (),alarm_thread)) {
#if defined (MAIN) && !defined(__bsdi_)
printf ("thread_alarm in process_alarm\n");
fflush (stdout) ;
#endif
10| #ifdef SIGNAL_HANDLER RESET ON_DELIVERY
11 my_sigset (thr_client_alarm, process_alarm);

O 0NN AW —

12| #endif
13 return;
14 }

15| #ifndef USE_ALARM THREAD
16 pthread_sigmask (SIG_SETMASK, &full_signal_set,

17 &old_mask) ;

18 mysqgl_mutex_lock (&§LOCK_alarm) ;
19| #endif

20 process_alarm_part2 (sig);

21| #ifndef USE_ALARM THREAD

22| #if 'defined (USE_ONE_SIGNAL_HAND) && defined(
SIGNAL_HANDLER RESET ON_DELIVERY)

23 my_sigset (THR_SERVER_ALARM, process_alarm) ;
24| #endif

25 mysqgl_mutex_unlock (§LOCK_alarm) ;

26 pthread_sigmask (SIG_SETMASK, &old_mask,NULL) ;
27| #endif

28 return;

291 }

Fig. 1. A heavily annotated function in MySQL. I propose the variability-
aware code smell ANNOTATION BUNDLE to describe functions annotated in
this manner.

RQ 3: 1 will investigate the negative impact of potential
variability-aware code smells empirically. Understandability
and changeability (RQ3.1 and 3.2) of smelly code will be
rated using questionnaires and experiments. These ratings will
be complemented with expert interviews with the original
developers of the subject systems. Change-proneness of smelly
code (RQ3.2) will additionally be investigated by mining
version control information. Furthermore, I will combine
version control and bug tracking information in order to
establish whether or not smelly code is more fault-prone than
non-smelly code (RQ3.3). This combination was previously
employed by Khomh et al. to investigate change- and fault-
proneness of code suffering from object-oriented smells [9].

IV. KEY PRELIMINARY RESULTS

In previous work, I have introduced the notion of variability-
aware code smells and a methodology to derive variability-
aware code smells from traditional, single-system smells [18].
Furthermore, I presented an initial catalog of four smells for
different variability mechanisms. This catalog was validated
with the help of a survey among researchers in the field of
highly configurable software systems.

As an example of a variability-aware code smell, I show in
Fig. 1 a function that suffers from the ANNOTATION BUNDLE
smell, which was derived from the object-oriented smell LONG
METHOD [1]. This function was extracted from the open-
source database management system MySQL, version 5.6.17,
file mysys/thr_alarm.c.! Although it is not especially
long in terms of lines of code, it contains a high amount of

Thttp://dev.mysql.com/downloads/file.php?id=451519

Syntactic Info

source.xml functions,
caller-callee,

src2srcML

C sources

cppStats

$ode Smell == | Parametrization
Feature v Results
x.c:11: Annotation Bundle: 0.9
§> Syntax y.c42: Large Feature: 0.7
Metri z.c:66: Latently Unused: 0.6
etrics

Feature Locations

stats.csv §> feature constants,
nesting,

Fig. 2. Preliminary architecture of my proposed variability-aware code smell
detection tool

variability, which is due to the high number of CPP annotations
(starting on Lines 6, 10, 15, 21, and 22). Because of these
annotations, this function can be compiled in a large number
of variants, all of which must be considered when trying to
understand, change, or test it. I argue that a function that is
annotated in this manner is hard to understand and change,
and therefore propose this pattern as a code smell.

In Fig. 2, I show the preliminary architecture of the variabil-
ity-aware code smell detection tool for C code containing CPP
annotations, which I extend and refine in ongoing work. Detec-
tion starts with a set of C source code files, which are analyzed
by two external tools, CPPSTATS? and SRC2SRCML? [45].
These tools extract syntactic information (e.g., locations of
function definitions), and information related to annotations
(e.g., the number of preprocessor macros). My tool then
combines this information and applies parametrized code smell
templates in order to detect code sections that suffer from
smells. The result of the detection process is a list of locations
that may be infected with a smell, along with a numeric value
indicating the severity of infection.

Preliminary runs of the detection tool on a number of
open-source subjects (e. g., OpenVPN, Vim, libxml2) indicate
that my proposed variability-aware code smell ANNOTATION
BUNDLE frequently occurs in practice. Moreover, the number
of smell occurrences varies widely from subject to subject.

V. CONCLUSION

Code smells are an established concept to identify flawed
solutions to recurring problems. Existing code smells are
geared at software whose source code structure is essentially
fixed. However, complex software systems are increasingly
highly configurable, meaning that they can be customized
for different operating systems, hardware platforms, and so
on. This configurability manifests in the form of variable
source code, for instance, in source code that is annotated with
C preprocessor directives. I argue that variable source code
adds a new layer of complexity that is not present in single
software systems. Some of the possible solutions to deal with
this complexity have a potentially detrimental effect on the

Zhttp://www.fosd.net/cppstats/
3http://srcml.org/

604

http://dev.mysql.com/downloads/file.php?id=451519
http://www.fosd.net/cppstats/
http://srcml.org/

understandability or changeability of source code. Established
code smells, however, are ill-equipped to characterize these
problematic solutions.

The goal of my research is therefore to make code smells
variability-aware. Due to their wide-spread use, I will focus
on preprocessor-based variability mechanisms. Based on estab-
lished code smells, I will derive a set of candidate variability-
aware code smells, investigate which of those smells occur
frequently in practice, and whether or not they have a negative
impact on software development. The envisioned contribution
of my research will be a catalog of variability-aware code
smells that I hope will raise awareness to recurring variability-
related problems. This awareness may in turn help increase the
internal quality of highly configurable software systems.

ACKNOWLEDGMENTS

I thank Gunter Saake for advising me on this thesis topic.
Moreover, I thank Sandro Schulze and Thomas Thiim for their
collaboration and numerous fruitful discussions.

REFERENCES

[1] M. Fowler, K. Beck, J. Brant, and W. Opdyke, Refactoring: Improving
the Design of Existing Code. Addison-Wesley, 1999.

[2] E. van Emden and L. Moonen, “Java quality assurance by detecting code
smells,” in WCRE. 1EEE, 2002, pp. 97-106.

[3] N. Moha, Y.-G. Guéhéneuc, A.-F. Le Meur, and L. Duchien, “A domain
analysis to specify design defects and generate detection algorithms,” in
FASE. Springer, 2008, pp. 276-291.

[4] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, “DECOR:
A method for the Specification and Detection of Code and Design
Smells,” IEEE Trans. Softw. Eng., vol. 36, no. 1, pp. 20-36, 2010.

[5] N. Moha, “Detection and correction of design defects in object-oriented
designs,” in OOPSLA. ACM, 2007, pp. 949-950.

[6] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice: Using
Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems. Springer, 2006.

[7]1 F. Khomh, M. Di Penta, and Y.-G. Guéhéneuc, “An exploratory study
of the impact of code smells on software change-proneness,” in WCRE.
IEEE, 2009, pp. 75-84.

[8] M. Abbes, F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol, “An empirical
study of the impact of two antipatterns, blob and spaghetti code, on
program comprehension,” in CSMR. IEEE, 2011, pp. 181-190.

[9] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol, “An
exploratory study of the impact of antipatterns on class change- and
fault-proneness,” Empir. Softw. Eng., vol. 17, no. 3, pp. 243-275, 2012.

[10] A. Yamashita, “How good are code smells for evaluating software
maintainability? Results from a comparative case study,” in ICSM.
IEEE, 2013, pp. 566-571.

[11] W. H. Brown, R. C. Malveau, and T. J. Mowbray, AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis. John Wiley
& Sons, 1998.

[12] K. Czarnecki and U. W. Eisenecker, Generative Programming.
Addison-Wesley, 2000.

[13] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001.

[14] S. Apel, D. Batory, C. Kistner, and G. Saake, Feature-Oriented Software
Product Lines — Concepts and Implementation. Springer, 2013.

[15] M. L. Griss, “Implementing product-line features by composing as-
pects,” in SPLC. Kluwer Academic Publishers, 2000, pp. 271-288.

[16] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise
refinement,” IEEE Trans. Softw. Eng., vol. 30, no. 6, pp. 355-371, 2004.

[17] J.Liebig, S. Apel, C. Lengauer, C. Kistner, and M. Schulze, “An analysis
of the variability in forty preprocessor-based software product lines,” in
ICSE. ACM, 2010, pp. 105-114.

[18] W. Fenske and S. Schulze, “Code smells revisited: A variability per-
spective,” in VaMoS. ACM, 2015, pp. 3-10.

[19] P. G. Bassett, Framing Software Reuse: Lessons from the Real World.
Prentice-Hall, Inc., 1997.

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

[32]

(33]

[34]

[35]

[40]

[41]

[42]

[43]

[44]

[45]

605

C. W. Krueger, “The 3-tiered methodology,” in SPLC. 1EEE, 2007, pp.
97-106.

——, “New methods behind a new generation of software product line
successes,” in Applied Software Product Line Engineering, K. C. Kang,
V. Sugumaran, and S. Park, Eds. CRC Press, 2009.

R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi, “Refactoring a legacy
component for reuse in a software product line: A case study,” Softw.
Maint.: Res. Pract., vol. 18, no. 2, pp. 109-132, Apr. 2006.

J. Kerievsky, Refactoring to Patterns. Addison-Wesley, 2004.

R. C. Martin and M. Martin, Agile Principles, Patterns, and Practices
in C#. Prentice Hall, 2006.

M. P. Monteiro and J. a. M. Fernandes, “Towards a catalogue of
refactorings and code smells for Aspect],” in Trans. Aspect-Oriented
Softw. Development 1. Springer, 2006, pp. 212-258.

E. K. Piveta, M. Hecht, M. S. Pimenta, and R. T. Price, “Detecting
bad smells in Aspect],” J. Univ. Comput. Science, vol. 12, no. 7, pp.
811-827, 2006.

K. Srivisut and P. Muenchaisri, “Bad-smell metrics for aspect-oriented
software,” in Int’l Conf. on Computer and Information Science (ICIS).
IEEE, 2007, pp. 1060-1065.

I. Macia Bertran, A. Garcia, and A. von Staa, “An exploratory study
of code smells in evolving aspect-oriented systems,” in AOSD. ACM,
2011, pp. 203-214.

S. Schulze, O. Richers, and I. Schaefer, “Refactoring delta-oriented
software product lines,” in AOSD. ACM, 2013, pp. 73-84.

T. Patzke, M. Becker, M. Steffens, K. Sierszecki, J. E. Savolainen, and
T. Fogdal, “Identifying improvement potential in evolving product line
infrastructures: 3 case studies,” in SPLC. ACM, 2012, pp. 239-248.
R. Abilio, J. Padilha, E. Figueiredo, and H. Costa, “Detecting code
smells in software product lines — an exploratory study,” in Int’l Conf.
on Information Technology - New Generations (ITNG). 1EEE, 2015,
pp- 433-438.

I. Macia, J. Garcia, D. Popescu, A. Garcia, N. Medvidovic, and
A. von Staa, “Are automatically-detected code anomalies relevant to
architectural modularity?: An exploratory analysis of evolving systems,”
in AOSD. ACM, 2012, pp. 167-178.

E. Guimaraes, A. Garcia, E. Figueiredo, and Y. Cai, “Prioritizing
software anomalies with software metrics and architecture blueprints,”
in Int’l Work. on Modeling in Software Engineering (MiSE). IEEE,
2013, pp. 82-88.

H. S. de Andrade, E. Almeida, and I. Crnkovic, “Architectural bad smells
in software product lines: An exploratory study,” in WICSA Companion
Volume. ACM, 2014, pp. 12:1-12:6.

G. de F Carneiro, M. Silva, L. Mara, E. Figueiredo, C. Sant’Anna,
A. Garcia, and M. Mendonga, “Identifying code smells with multi-
ple concern views,” in Brazilian Symposium on Software Engineering
(SBES). 1EEE, 2010, pp. 128-137.

E. Figueiredo, C. Sant’Anna, A. Garcia, and C. Lucena, “Applying and
evaluating concern-sensitive design heuristics,” J. Syst. Softw., vol. 85,
no. 2, pp. 227-243, 2012.

S. Schulze, S. Apel, and C. Kistner, “Code clones in feature-oriented
software product lines,” in GPCE. ACM, 2010, pp. 103-112.

S. Schulze, E. Jiirgens, and J. Feigenspan, “Analyzing the effect of
preprocessor annotations on code clones,” in SCAM. 1EEE, 2011, pp.
115-124.

H. Spencer and G. Collyer, “#ifdef considered harmful, or portability ex-
perience with C News,” in Proc. USENIX Conf. USENIX Association,
1992, pp. 185-197.

M. D. Ernst, G. J. Badros, and D. Notkin, “An empirical analysis of C
preprocessor use,” IEEE Trans. Softw. Eng., vol. 28, no. 12, pp. 1146—
1170, Dec. 2002.

S. Schulze, J. Liebig, J. Siegmund, and S. Apel, “Does the discipline of
preprocessor annotations matter? A controlled experiment,” in GPCE.
ACM, 2013, pp. 65-74.

F. Palomba, D. Di Nucci, M. Tufano, G. Bavota, R. Oliveto, D. Poshy-
vanyk, and A. De Lucia, “Landfill: An open dataset of code smells with
public evaluation,” in MSR (Data Papers Track). 1EEE, 2015, p. 4.

1. Abal, C. Brabrand, and A. Wasowski, “42 variability bugs in the Linux
kernel: A qualitative analysis,” in ASE. ACM, 2014, pp. 421-432.

F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, D. Poshyvanyk, and
A. De Lucia, “Mining version histories for detecting code smells,” IEEE
Trans. Softw. Eng., vol. 41, no. 5, pp. 462-489, 2015.

M. L. Collard, H. H. Kagdi, and J. I. Maletic, “An XML-based
lightweight C++ fact extractor,” in /IWPC. IEEE, 2003, pp. 134-143.

	Introduction
	Research Questions

	State of the Art
	Research Methodology
	Key Preliminary Results
	Conclusion
	References

