On the Role of Program Comprehension in Embedded Systems

Janet Feigenspan, Norbert Siegmund, Jana Fruth
University of Magdeburg, Germany

Today, we are surrounded by computers. However,
only a minor part is working stations we might think
of. The major part, about 98 %, are embedded sys-
tems [15], for example PDAs, mobile phones, sensors,
or credit cards. For embedded systems, resource con-
straints regarding memory capacity and performance
are characteristic. Furthermore, the hardware is het-
erogeneous, which leads to challenges regarding how
to tailor software to actual hardware of application
scenarios [10].

In practice, embedded systems are typically imple-
mented in C using conditional compilation with the
C preprocessor. Conditional compilation allows users
to customize software to new hardware without hav-
ing to implement or adapt source code. To illustrate
this, we show a source-code excerpt of BerkeleyDB!,
an embedded data base, in Figure 1. We can configure
BerkeleyDB to run on several systems without having
to change or introduce new source code. For example,
in Line 5, we see an ifdef directive #ifndef, followed by
a variable HAVE_QUEUE. This means that if HAVE_QUEUE
is not defined, the following 3 lines are included by the
preprocessor. If HAVE_QUEUE is defined, then the lines
are deleted and, as defined by the ifdef directive #else
in Line 9, the following lines (10-16) are included in-
stead. Hence, by simply specifying variables, we can
adapt BerkeleyDB to run on different hardware, dif-
ferent operating systems (e.g., Windows or Linux) or
for different application scenarios (e.g., with or with-
out transaction support), without changing the source
code.

Although preprocessors are widely used in practice,
in the literature, they are considered ‘harmful’ [13] or
even as ‘#ifdef hell’ [6]. Arguments against the pre-
processor are based on the fact that we can annotate
everything, even single variables or opening brackets
without the corresponding closing one. Hence, it can
be very difficult for a programmer to get an overview
of source code that is annotated with ifdef directives.
Specifically, they can be (i) scattered, (ii) ‘hidden’,
(iii) nested, or (iv) used to annotate long code frag-
ments. For example, if we want to implement a log-
ging mechanism, this means that we have logging
source code in many different locations in different
files. Hence, according ifdef directives are scattered,
as well. As another example, in Figure 1, Line 16
states that over 100 additional lines of code are de-

Thttp://www.oracle.com/technetwork/database/
berkeleydb

© 00~ U WN -

el e e e
0O Uk WN~O

static int __rep_queue_filedone(dbenv, rep, rfp)

DB_ENV *dbenv;

REP *rep;

__rep_fileinfo_args *rfp; {
#ifndef HAVE_QUEUE

COMPQUIET (rep, NULL);

COMPQUIET (rfp, NULL);

return (__db_no_queue_am(dbenv));
#else

db_pgno_t first, last;

u_int32_t flags;

int empty, ret, t_ret;

#ifdef DIAGNOSTIC

DB_MSGBUF mb;

#endif
// over 100 lines of additional code
#endif
}

Figure 1: Code excerpt of Berkeley DB.

fined, before the #ifndef in Line 5 is closed with the
corresponding #endif. Hence, beginning and end of
an ifdef directive may not even appear on the same
screen, which makes it difficult for a developer to keep
track of it.

Understanding the source code of a program is cru-
cial for many important tasks. We may introduce se-
curity leaks, because we do not understand portions
of the source code. We may write bugs more often,
because we do not understand the program flow com-
pletely. We may waste energy of the embedded sys-
tem, because we cannot efficiently utilize the hard-
ware due to the effort of writing variable code specific
for some hardware components. All these problems
increase maintenance costs and cause risks for relia-
bility and security.

To address comprehensibility issues of preproces-
sor usage, we have to measure program comprehen-
sion. To define suitable measures, we first have to
understand what program comprehension is. In the
literature, we can find three different categories of
program-comprehension models: Top-down models,
bottom-up models, and integrated models. Top-down
models describe how developers derive a general hy-
pothesis of the purpose of the program and then re-
fine it stepwise by examining source code in more and
more detail [3, 8, 11]. Bottom-up models describe how
a programmer examines statements of a program and
groups them into semantic chunks. These chunks can
be combined further until the developer has an under-
standing of the general purpose of a program [7, 9].
Typically, a developer uses both approaches: Top-



down, if she is familiar with a program’s domain
(e.g., she does not have to examine a method called
quickSort statement by statement, because she knows
from the name what it does), and bottom-up, if she
has no hint what a program does [16].

Hence, program comprehension is an internal cog-
nitive process that cannot be observed directly. In-
stead, we have to find indicators to measure it.
Typically, (i) software measures, (ii) self estimation,
(iii) tasks, and (iv) think-aloud protocols are used.
First, software measures, such as lines of code or cy-
clomatic complexity are believed to have a link to pro-
gram comprehension. They are calculated based on
a properties of source code and do not require any
human subjects. Hence, they are easy to apply, how-
ever, not very reliable, because their link to program
comprehension is not empirical validated [2]. Software
measures should only be used in combination with the
other three techniques, because they recruit human
subjects. Second, using self estimation, subjects are
asked how much they think they understood of source
code. This is closer to the real comprehension process,
however it can easily be biased [4]. Third, tasks are
often used to measure program comprehension. For
example, in maintenance tasks, subjects are asked to
locate and /or fix a bug [4]. Since to fix a bug, subjects
have to understand the underlying source code, a suc-
cessful bug fix can only be based on a comprehension
process. Last, in think-aloud protocols, subjects ver-
balize their thoughts [12]. This way, we can observe
the comprehension process itself.

To profit from the benefits of preprocessor us-
age and handle the introduced problems at the same
time, we have to take care of the comprehensibil-
ity issues. This way, we support the maintenance of
preprocessor-based software, in that we save time and
cost. Typically, a maintenance programmer spends
up to 60% of her time with understanding source
code [14, 17] and the cost for maintenance are the
major contributing factor for the software develop-
ment [1]. Hence, if we can improve comprehensibility
of source code, we can reduce the time and cost de-
velopers need to maintain source code and thus allow
developers to spend more time improving reliability
and security of source code.

Now that we can measure program comprehension,
we can start improving it. An example can be found
in [5]. In this approach, background colors are used to
highlight source code that is annotated with ifdef di-
rectives. For example, in Figure 1, Lines 5 to 17 would
be annotated with a background color and Lines 13 to
15 with another background color. The effectiveness
of background-color usage was shown with an exper-
iment, in which subjects should solve comprehension
tasks.

Acknowledgements

Feigenspan’s, Siegmund’s, and Fruth’s work is funded
by the German Ministry of Education and Science
(BMBF), project 01IM08003C.

References

[1] B. Boehm. Software Engineering Economics. Prentice
Hall, 1981.

[2] J. Boysen. Factors Affecting Computer Program Compre-
hension. PhD thesis, Iowa State University, 1977.

[3] R. Brooks. Using a Behavioral Theory of Program Com-
prehension in Software Engineering. In Proc. Int’l Conf.
Software Engineering (ICSE), pages 196-201. IEEE CS,
1978.

[4] A. Dunsmore and M. Roper. A Comparative Evaluation
of Program Comprehension Measures. Technical Report
EFoCS 35-2000, Department of Computer Science, Uni-
versity of Strathclyde, 2000.

[5] J. Feigenspan et al. Using Background Colors to Support
Program Comprehension in Software Product Lines. In
Proc. Int’l Conf. Evaluation and Assessment in Software
Engineering (EASE), pages 66-75, 2011.

[6] D. Lohmann et al. A Quantitative Analysis of Aspects in
the eCos Kernel. In Proc. Europ. Conf. Computer Systems
(EuroSys), pages 191-204. ACM Press, 2006.

[7] N. Pennington. Stimulus Structures and Mental Represen-
tations in Expert Comprehension of Computer Programs.
Cognitive Psychologys, 19(3):295-341, 1987.

[8] T. Shaft and I. Vessey. The Relevance of Application Do-
main Knowledge: The Case of Computer Program Com-
prehension. Information Systems Research, 6(3):286-299,
1995.

[9] B. Shneiderman and R. Mayer. Syntactic/Semantic In-
teractions in Programmer Behavior: A Model and Exper-
imental Results. International Journal of Parallel Pro-
grammang, 8(3):219-238, 1979.

[10] N. Siegmund et al. Challenges of Secure and Reliable Data
Management in Heterogeneous Environments. In Proc.
Int’l Workshop on Digital Engineering, pages 17-24. ACM
Press, 2010.

[11] E. Soloway and K. Ehrlich. Empirical Studies of Program-
ming Knowledge. IEEE Trans. Softw. Eng., 10(5):595—
609, 1984.

[12] M. Someren, Y. Barnard, and J. Sandberg. The Think
Aloud Method: A Practical Guide to Modelling Cognitive
Processes. Academic Press, 1994.

[13] H. Spencer and G. Collyer. #ifdef Considered Harmful or
Portability Experience With C News. In Proc. USENIX
Conf., pages 185-198. USENIX Association, 1992.

[14] T. Standish. An Essay on Software Reuse. IEEE Trans.
Softw. Eng., SE-10(5):494-497, 1984.

[15] D. Tennenhouse. Proactive computing. Communications
of the ACM, 43(5):43-50, 2000.

[16] A. von Mayrhauser and A. Vans. From Program Compre-
hension to Tool Requirements for an Industrial Environ-
ment. In Proc. Int’l Workshop Program Comprehension
(IWPC), pages 78-86. IEEE CS, 1993.

[17] A. von Mayrhauser, A. Vans, and A. Howe. Program Un-
derstanding Behaviour during Enhancement of Large-scale
Software. Journal of Software Maintenance: Research and
Practice, 9(5):299-327, 1997.



