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ABSTRACT

As outlined for instance by the CAP theorem, achieving
consistency guarantees within a 100% available and fault-
tolerant distributed system is impossible. Nevertheless, in
real-life applications actual properties are neither black nor
white and the degree of fulfilment of requirements depends
on the likelihood of failures and communication parameters
of distributed systems. While typical Cloud-based appli-
cations weaken consistency in accordance with less strict
applications requirements, strong consistency can also be
achieved, for instance by tunable consistency. This, how-
ever, often comes with a strong degradation of scalability
(performance of growing clusters) and availability. Based
on a project investigating the usefulness of Cloud DBMS for
Massively Multi-player Online Role-Playing Games
(MMORPGS) we describe how strong consistency can be
provided for such a scenario, by still proving a high-level of
availability and performance suitable for this specific appli-
cation. For this purpose we implement a lightweight mecha-
nism to detect failures based on timestamps and only react
accordingly if required.

CCS Concepts

eInformation systems — Parallel and distributed
DBMSs; Database performance evaluation; Massively
multiplayer online games; Database transaction process-
ing;
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1. INTRODUCTION

Using highly distributed and parallel data management
solutions appears as an attractive choice in many Cloud or
Web applications because of the support for huge and flexi-
ble data volumes and numbers of users. Cloud data manage-
ment systems such as BigTable, HBase, MongoDB, or Riak
address these specific requirements such as scalability and
availability [17], while often only offering limited support
for classical DBMS features such as query languages and
concurrency control. The CAP-theorem [14], describing the
iron triangle of consistency, availability, and partition toler-
ance of distributed systems, has shown that these conflicting
requirements remain as a problem for which only application
specific trade-offs can be found.

In the currently running CloudCraft project we investigate
the usability of Cloud data management systems for Mas-
sively Multi-player Online Role-Playing Games (MMORPGs),
which represent applications of growing popularity and com-
mercial importance and have recently gained interest from
the database community [6, 27]. In our project, we found
that the solutions offered ad hoc are suitable for several data
sets, e.g. logs and in-game chats requiring only weak con-
sistency or user and login services that may accept lowered
levels of availability to achieve higher consistency. Never-
theless, for game state data, e.g. an avatar’s properties and
position in a persistent game world, players expect high con-
sistency and availability. A performance suitable to fulfill
the real-time constraints of a computer game is a further
necessary requirement to grant a continuous game experi-
ence [21, 26, 13, 8].

To address these problems, we present an approach devel-
oped within the CloudCraft project, which takes advantage
of application specific properties. We suggested and imple-
mented a two-level data management architecture, where



the game data is initially stored in a main-memory DBMS
(in our case H2) for local game servers and propagated via
configurable checkpoint mechanisms to an underlying scal-
able storage layer using the Cassandra Cloud data manage-
ment system. Typical properties of this scenario are frequent
bulk writes and rare read operations. To grant strong con-
sistency we apply a timestamp-based mechanism and infor-
mation about storage locations, which in combination allow
detecting possible inconsistencies and dealing with them ac-
cording to application requirements.

The presentation in this paper is structured as follows: in
Section 2 we introduce the reason why we propose to use
Cassandra in this project. Cassandra cannot support game
consistency efficiently, so we highlight this issue in Section 3.
In Section 4 we introduce a concept to achieve the required
consistency level for our application as outlined before. Its
implementation and an evaluation of the runtime perfor-
mance as well as the achieved consistency are presented in
Section 5.

2. USE OF CASSANDRA IN MMORPGS

Data in an MMORG could be classified into four data
sets, namely account data, game data, state data, and log
data [12]. These different classes vary widely regarding their
requirements and have to be managed accordingly [12]. The
most demanding data set is state data, which includes an
avatar’s properties, inventories, and position as well as states
of game objects. All these may be modified constantly.

According to the architecture currently applied in
MMORPGs [22, 19], modifications of state data are exe-
cuted by an in-memory database in real-time [5, 23], so that
these changes can be synchronously propagated to the rele-
vant players within an acceptable period of time [10]. They
are then backed up to the disk resident database periodi-
cally (checkpointing) [6, 23]. The checkpoint is created for
two purposes: one is to recover the in-memory database in
the case of a system failure; another one is to restore the
state data to the in-memory database when a player restarts
the game (state data will be removed from the in-memory
database when a player logs out of the game in order to re-
duce memory consumption). Since state data of an avatar
are only fetched from the disk resident database once dur-
ing the game, a write-intensive database is required to per-
sist them. Beyond that, it is intolerable that players realize
that their last game records are lost when they restart the
game. Accordingly, strong or at least a Read-Your-Writes
consistency [24] is required for such data. Furthermore, the
database must be scalable because the number of players in
an MMORPG could be up to millions [16, 18].

Currently, the popular MMOPRGs mainly apply a dis-
tributed RDBMS to manage data (e.g., Second Life and
World of Warcraft both run on MySQL [2], Guild Wars
runs on Microsoft SQL Server [1]). However, the existing
RDBMS cannot fully satisfy all these requirements simulta-
neously [26, 7]. In consideration of these factors, we chose
to apply Cassandra' in the CloudCraft project [12]. The
advantages of using Cassandra are as follows: Cassandra is
always writeable because there are no single points of fail-
ure (checkpointing of state data will always be available);
its write performance is high, and is more efficient than the

! Apache Cassandra project: http://cassandra.apache.org/
(accessed 09.02.2015)

read performance, which is different to other Cloud stor-
age systems [20]; Cassandra provides a flexible data model
(comparing with RDBMS), so all state data of one player
can be stored together, which decreases the response time
to query them (no join operations); Cassandra supplies user
specified data consistency, which guarantees different levels
of data consistency (e.g., Read-Your-Writes consistency for
state data); furthermore, it is easy to scale out.

3. DATA CONSISTENCY IN CASSANDRA

3.1 Issues cased by Guaranteeing High Level
Consistency

Cassandra takes a decentralized structure. That means,
there is no master/primary copy for a data object. On the
one hand, a failure of one node will not affect the system
availability (no single points of failure). On the other hand,
to guarantee a high level consistency is expensive. Because
in Cassandra a query could be executed by any replica, to
guarantee a high level consistency, such as strong consis-
tency, consistency level (e.g., ONE, TWO, and ALL) of a
write operation and its subsequent read operation should
meet a prerequisite:

W+ R > N,with W,R e {1,2,...,N} (1)

In this formula, N refers to the total number of replicas
(replication factor), while W and R represent the consis-
tency level of write and read, respectively. This formula
states that only if the total number of replicas responded
write and its subsequent read exceeds the replication factor,
Cassandra could ensure strong consistency. This is because
only in this case at least one of the replicas that respond to
the query contains the up-to-date data. As a result, more
than half of the replicas have to participate in the process
of updating and fetching data, which reduces the system
performance. In the case of only one available replica (repli-
cation factor is more than one), write or/and read cannot
be successful because the prerequisite is not met, thereby
effecting the system availability.

3.2 Eventual Consistency in Cassandra.

Performing write ONE and read ONE cannot ensure that
the up-to-date data will be fetched because data are eventu-
ally consistent on all replicas in Cassandra (ONE means, if
one of the replicas has responded the request, this query will
be considered complete.). However, the time gap between
the write and a following read is a vital parameter [4], which
affects the accuracy. We have carried out some experiments
on Cassandra to evaluate its efficiency of data propagation.
The experimental setup here is the same as it described in
Section 5.

Detection of Inconsistent Data..

In experiments we quantified the effect of eventual consis-
tency, when the consistency level of both write and read is
specified to ONE (replication factor is three). The result is
shown in Table 1.

During the first test, all five nodes in the cluster are alive.
Clients send a total of 10000 write requests to Cassandra.
As soon as a write request is successful, the client sends
a read request regarding that modification (so called eager
detection). In theory, 66.7% of data returned by Cassandra



Table 1: Detection of Inconsistent Data

Operation | Number of nodes | Write requests | Read requests | Detection method | Inconsistent data
WORO 5 10000 10000 Eager 10.43%
WORO 5 10000 10000 Lazy 0%

WORO 3—5 10000 10000 Lazy 4.09%
WORO 3—5 200000 10000 Lazy 22.16%

could be stale. In our practical experiment, however, only
an average of 10.43% of the results are stale. If the read re-
quests are sent after all (10000) write requests are successful
(lazy detection), no stale data have been detected (see test
two). The reason is that, no matter which consistency level
is specified by the client, Cassandra actually forwards the
write request to all available replicas at the same time. In
other words, if all replicas are available, the modification
will be synchronized to all of them.

For the next test we have simulated a bad case: two nodes
are failed while updating data, but all five nodes are alive
while reading data (if more than two nodes fail, for some
data objects all three replicas will be unavailable. Thus,
write operations could not be performed). In this case, read-
ing from the two temporarily unavailable nodes should fetch
stale data. However, the result (test three) shows that only
an average of 4.09% of data is stale. We increase the to-
tal number of write requests to 200000 so that there could
be more inconsistent data (about 300 MB) in the cluster,
and Cassandra needs more time to replay writes. The ex-
perimental result shows that although the number of stale
data is enlarged (about 22.16%), it is not directly propor-
tional with the increase of the number of write requests (see
test four). Furthermore, the inconsistency window in this
situation is about 942296ms (15m 42s), which is very short.

3.3 Conclusion and Prospect.

The Cassandra cluster in our experiment is deployed in
an Intranet, which reduces network latency. However, from
the experiment result, we can still conclude that Cassan-
dra actually offers a higher data consistency level than it
promises. Although there could be some inconsistent data
in the case of node failure, they only exist for a short pe-
riod of time after the node is restarted. In MMORPGS a
player typically restarts the game after a long time. Dur-
ing this time gap, modifications of state data have sufficient
time to be propagated to all available replicas. Therefore,
in most cases the up-to-date data could actually be fetched
by specifying consistency level of writes and reads to ONE.
Unfortunately, a client could not specify it like that only be-
cause there might be an unpredictable node failure during
the update, and consequently stale data would be returned
later. To address this issue, the system should be able to
detect stale data automatically. Only when stale data are
returned, the system should increase the consistency level of
read and execute it again. To achieve this goal, the existing
Cloud storage system needs to be extended [3, 15, 25, 11].

4. TIMESTAMP-BASED FAILURE DETEC-
TION

This section will give a brief introduction of the application-
specific scenario, the proposed concept, as well as an opti-
mization method. In previous work, we proposed a timestamp-
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Figure 1: CloudCraft architecture:
MMORPGs.

Physical Storage
Distributed relational or Cloud-based DBMS

reusable services for

based model (TSModel) for Cloud-based MMORPGs to solve
the issue discussed in the last subsection [11]. In this work,
we aim at implementing and improving this concept based
on Cassandra, where the timestamp can be applied as a ver-
sion ID for each checkpoint, which will then be used as a
query criterion to fetch the current data [3].

4.1 Integration with MMORPG Application
Scenario.

In order to guarantee game-specific consistency, a game
persistence layer is applied between the game logic layer and
the physical storage layer in the new Cloud-based game ar-
chitecture (see Figure 1). This layer consists of data access
servers (DAS) holding the timestamp tables (TST). A DAS
is responsible for creating consistent checkpoints from the
in-memory database, flushing them to Cassandra, fetching
data from Cassandra regarding game-specific consistency,
and playing the role of a counter (generation of monotoni-
cally increasing timestamps). The structure of a TST is very
simple, containing only four attributes, namely an avatar’s
or game object’s ID (Id), the last checkpointing time (TS),
the host address of the last checkpoint in the Cassandra
cluster (IP), and a player’s log status for avatar data.

A time asynchronisation among DAS’s less than the fre-
quency of checkpointing is acceptable. In a typical client-
server-based MMORPG, unless a player has changed the
zone server or a DAS has failed, checkpointing of game state
data is handled by a fixed DAS. For this reason, an accurate
global time synchronization is not necessary. The system
clock on each DAS could be synchronized by applying the
network time protocol (NTP).

4.2 Checkpointing and Data Recovery with the
TSModel.

To describe the timestamp-based detection model, let us
first outline the process of checkpointing game state data.
The DAS creates a consistent snapshot of game state from
the in-memory database periodically. The system’s current
time of the DAS will be used as a unique monotonically
increasing version ID (also called TS) for each checkpoint.



Data: snapshot of game state
Result: back up to Cassandra
begin
TS <— system current time
CL<+— ONE
Cassandra.put(Id, TS, data) with CL
TST.put(Id,TS)
end
Algorithm 1: Checkpointing

The DAS executes a bulk write to Cassandra with consis-
tency level (CL) ONE. Cassandra divides the message into
several write requests based on Id. The current state of an
object and the TS are persisted together in one row. When
the DAS receives a success acknowledgement, it will use the
same TS to update the TST accordingly. When a player
has quitted the game and the state data of her/his avatar
have been backed up to Cassandra, the log status will be
modified to “Logout”. Then, the DAS sends a delete request
to the in-memory database to remove the respective state
data from it.

When a player restarts the game, the DAS first checks the
player’s log status in the TST. If the value is “Login”, that
means the previous checkpointing is not yet completed, so
the up-to-date state data of her/his avatar is still hosted in
the in-memory database. In this case, it is not necessary to
recover the in-memory database. If the value is “Logout”,
the DAS gets the timestamp from the TST, and then uses
TS and Id as query criteria to retrieve the up-to-date data
with CL. ONE. When a replica in Cassandra receives the
request, it compares the T'S with its own TS. If they match,
the state data will be returned. Otherwise, a null value
will be sent back. In this case, the DAS has to increase
the CL and send the read request again until the up-to-date
data are found or all available replicas have been retrieved.
If the expected version still has not been found, the latest
version (but stale) in Cassandra has to be used for recovery.
At last, the player’s log status in the T'ST will be modified
from “Logout” to “Login”.

4.3 Optimisation using a Node-aware Policy.

From the description above, we can conclude that if the
first attempt of retrieval fails, the read request has to be
executed again, which increases the response time. There-
fore, the success rate determines the read performance. The
reason for receiving stale data is that the read request is ex-
ecuted by a node that does not host the up-to-date replica.
To optimise this model, we propose to sacrifice a part of
database transparency in exchange for the success rate. In
other words, the IP address of a node, which hosts the cur-
rent replica of an avatar’s or game object’s state, will also be
recorded in the TST. For subsequent read requests on this
state data, the DAS will connect to this node directly. In
this case, the success rate will be increased if the host is still
available. The new proposal will not affect the system avail-
ability. The checkpoint could still be flushed to any replica
as before; if the host fails, a read request could be executed
by the other nodes. In this paper, we name refer to this
strategy as NodeAwarePolicy.

4.4 System Reliability

In order to prevent a single TST from becoming a bottle-

Data: avatar/object Id
Result: avatar/object’s state data

begin
TS «— TST.getT'S(Id)
CL+— ONE
data <— null
while data == null and CL < number of available

replicas do
data <— Cassandra.get(Id,T'S) with CL
if data == null then
| CL++
end
nd
if data == null then
CL <— number of available replicas
dataSet «— Cassandra.get(Id) with CL
for d € dataSet do
if data. TS < d. TS then
| data <—d
end

o

end
end
return(data)

end
Algorithm 2: Data Recovery

neck of the system, several TST's on different nodes need to
work in parallel. The checkpoiting information (e.g., TS) is
assigned to different TSTs depending on the location(game
world/map) of avatars/objects. If one of the TSTs is down, a
new/another TST should take place its work immediately. A
TST failure will not affect the gameplay. The lost data (e.g.,
TS) could be replaced by accepting new checkpoints (for ac-
tive avatars/objects), or recovered by fetching relevant infor-
mation (such as get the biggest version ID of the checkpoints
of one avatar/object) from Cassandra cluster(for inactive
avatars). During the recovery, a player could perform a read
ALL to get the up-to-date state data of her/his avatar.

S. IMPLEMENTATION AND EVALUATION

5.1 Overview of the Implementation.

To use a timestamp as a query criterion in Cassandra, we
have to either create a secondary index on the TS column,
or set it as part of the compound primary key. Since the
TS is modified frequently in our application scenario, main-
taining such an index will seriously affect the write perfor-
mance (checkpointing). For this reason, we propose to use
the avatar/object ID and T'S columns as compound primary
key. Hence, the checkpointing is converted to an insert oper-
ation (not update). The disadvantage is that, the stale data
cannot be removed automatically because Cassandra does
not know if they have already gone out of use. Thus, an
additional process is required to detect and clean up them,
as discussed below.

For the TST on the server side, we have applied H2?,
which is a lightweight in-memory RDBMS. A query in a
Cassandra cluster is first sent to a coordinator (a random
node), which will then forward the request to nodes that

*H2 website: http://www.h2database.com/html/main.html
(accessed 09.02.2015)



Table 2: Experimental Setup

Computer System virtual machine
CPU Intel(R) Xeon(R) E5620 2.40 GHz
RAM 8 GB (28.3% ~ 34.5% used)
Disk 90.18 GB, 7200RPM
Operating System Ubuntu 13.04 (64 bit)
Java version 1.7.0_25
Network 100MBit/s
Cassandra Version 1.2.13
Number of Nodes 5
Replication Factor 3
Number of Rows 30 million
Number of Columns 110 ~ 160
Data Size > 120 GB
Client Driver DataStax Java Driver 1.0
‘Writes : Reads 9:1

host relevant replicas. That means, only the coordinator
decides which replica will respond the query. Therefore, we
have implemented a new user-defined load balance policy
in the Cassandra client driver in order to specify the coor-
dinator for each query. The NodeAwarePolicy strategy in
our project functions like this: at the checkpointing phase,
a write request will be sent to a node (coordinator), which
hosts an relevant available replica. So we can ensure that
this node will contain the current checkpoint. The IP ad-
dress of this node will be recorded in the TST; at the re-
covery phase, the same node will be used as coordinator.
Since this node already contains the (up-tp-date) replica, it
could execute the read locally, and does not need to for-
ward the request to any other nodes (if CL is ONE). In this
way, the query performance as well as the accuracy could be
improved.

5.2 Experimental Setup.

Table 2 shows the setup of the testbed. We have de-
ployed a five-node Cassandra cluster. Although the number
of nodes is less than that in a practical game database, it
is enough for our evaluations because we can already per-
form tests with different consistency levels, simulate a node
failure, and get inconsistent data (see Table 1); 30 million
rows have been pre-inserted in Cassandra cluster as well as
the TST to simulate a real number of registered players in
an MMORPG; In practice, there will be multiple TSTs in
parallel. We have only deployed one in order to evaluate
its performance under heavy workload; Each row in Cassan-
dra contains a flexible number of columns from 110 to 160,
which simulates the different number of properties that an
object has; Column name is string type, and column value
is integer type; Cassandra is mainly used in this scenario to
back up data, so writes are significantly more than reads.
During the experiment, we have executed 10 processes in
parallel to communicate with Cassandra, with nine for writ-
ing and one for reading; If there is no special statement, the
response time showed in following figures is the total time
of executing 10000 write/read operations.

5.3 Effect of Accessing the TST.

As outlined before, the TST has a simple structure (only
four columns). Compared to the query in a distributed disk
resident database with data replication, its effect is negligi-
ble. Figure 2a and 2b present the response time of writes
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Figure 2: Query performance in the new architecture.

and reads with different CLs. The response time of query-
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Figure 3: Read performance under node failure.

ing the TST only occupies about 9% in writes and about
12% in reads. Moreover, even if the response time of H2
is calculated, the total time of querying with a low CL is
still shorter than the response time of querying Cassandra
with a high CL. For instance, the total time of write ONE
is 129231 ms, which is still shorter than performing write
TWO in Cassandra (131929 ms).

5.4 Query Performance with new strategies.

Figure 2c and 2d compares the write/read performance
with different strategies and CLs when all five nodes are
available. We name our timestamp-based model as T'SModel

and the optimised strategy (NodeAwarePolicy) as OTSModel.

The total time of these two strategies also includes the re-
sponse time of H2, which is not calculated in the other three
methods. It is apparent from the figures that the query
performance of T'SModel is between write/read ONE and
TWO. The query performance of the OTSModel is similar
to or even better than write/read ONE. The reason is that
there is less communication among nodes in the cluster (co-
ordinator is one of the replicas).

5.5 Read Performance with node failures.

Similar to test four presented in Table 1, we have simu-
lated the temporary node failure again. Figure 3 leads us to
the conclusion that only read ALL could ensure to fetch the
up-to-date data by just retrieving once. However, its perfor-
mance is the worst. Although the response time of read ONE
and read TWO is relatively shorter, both of them cannot
guarantee data currency. The performance of T'SModel and
OTSModel is between read ONE and read TWO, whereas it
can ensure to fetch all up-to-date data eventually. In prac-
tice, even though we have used the NodeAwarePolicy, invalid
data (null value) could still be returned. Through tracing
the query, we found that the coordinator did not always exe-
cute the request locally, sometimes it forwarded the request
to another replica, which might be just recovered from a
node failure, and consequently does not host the up-to-date
data. The reason could be that the workload of this coor-
dinator is too heavy, so the other replicas could process the
request faster. But we can still state that the invalid data
are halved, and consequently the read performance is much
closer to read ONE.

5.6 Effect of Data Size.

As discussed in Section 5, the data size of the cluster
will increase obviously because of the stale data. Figure 4
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Figure 4: Effect of data size.

describes the system performance under different data size
(130 GB and 280 GB). Both write and read performance
have been affected in this process. The time is wasted by re-
trieving a large number of files (SSTable) from disk. There-
fore, we conclude that it is imperative to clean up all stale
data timely.

The strategy of deleting stale data could be classified into
two groups, namely, eager deletion and lazy deletion. Ea-
ger deletion refers to deleting the stale data instantly af-
ter flushing a new checkpoint; Lazy deletion describes that
stale data will be deleted together asynchronously during a
garbage collection at a specific time or under a certain condi-
tion (e.g., when the cluster is idle). Cassandra does not yet
support a range query on the second compound primary key
(TS). That means, the stale data could only be deleted one
by one, thereby spending the same time, whichever strategy
is chosen. Lazy deletion prevents bringing extra workload
during peak hours. However, we have to record the times-
tamp of each checkpoint on the server side, or get it by
executing an expensive read ALL in the cluster and use it
to detect stale data. Overall, we need to choose the strategy
based on the actual scenario.

6. RELATED WORK

The problem tackled in this paper was addressed before.
E.g., [9] proposes to solve the game consistency issue by
extending an existing Cloud storage system. The authors
propose to support strong consistency, which will affect the
system performance. Our timestamp-based approach could
guarantee the data currency in an eventually consistent en-



vironment.

The possibility of using timestamps as version ID to iden-
tify current data in a replicated database has already been
studied. However, these solutions either focus on the other
storage systems or are designed for other application scenar-
ios. For instance, [3] proposed a new key-based timestamp-
ing service to generate monotonically increasing timestamps,
which is designed for distributed hash tables with a P2P
structure. The main objective is to synchronize timestamps
in a P2P environment and to scale up to large numbers of
peers. The testbed in this work takes a client/server struc-
ture, where these are not problematic. Furthermore, our
proposal is specific to Cassandra; the efficiency and accu-
racy of retrieval and garbage collection are our objective.

Similarly, in [15], authors also record the version ID got
from a Cloud storage system for data currency. However,
they suggested that if a read request fetched an old version
ID from the Cloud, the system should wait for some millisec-
onds and try it again. Consequently, this approach blocks
the read operation and increases unnecessary response time,
which is not suitable for MMORPGs.

7. CONCLUSIONS

We presented an approach to use Cassandra for MMORPGs,

which are a specific class of applications with high require-
ments regarding scalability. Nevertheless, the implied trade-
off between consistency and runtime performance and/or
availability cannot be solved easily, as we demonstrated. For
this purpose, we introduced several concepts to manage con-
sistency in a multi-layered architecture. A key ingredient is
a simple timestamp-based approach, which detects incon-
sistencies on the fly and only mends these if they occur.
As the check itself is quite light-weight and, as also shown,
situations triggering the inconsistency are very unlikely in
our scenario, the new approach provides excellent runtime
performance compared to strongly consistent operations as
provided by Cassandra itself.
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