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Abstract—Evaluating selection predicates is a data-intensive
task that reduces intermediate results, which are the input for
further operations. With analytical queries getting more and
more complex, the number of evaluated selection predicates
per query and table rises, too. This leads to numerous multi-
column selection predicates. Recent approaches to increase the
performance of main-memory databases for selection-predicate
evaluation aim at optimally exploiting the speed of the CPU by
using accelerated scans. However, scanning each column one by
one leaves tuning opportunities open that arise if all predicates
are considered together. To this end, we introduce Elf, an index
structure that is able to exploit the relation between several
selection predicates. Elf features cache sensitivity, an optimized
storage layout, fixed search paths, and slight data compression.
In our evaluation, we compare its query performance to state-of-
the-art approaches and a sequential scan using SIMD capabilities.
Our results indicate a clear superiority of our approach for multi-
column selection predicate queries with a low combined selectivity.
For TPC-H queries with multi-column selection predicates, we
achieve a speed-up between a factor of five and two orders of
magnitude, mainly depending on the selectivity of the predicates.

I. INTRODUCTION

Predicate evaluation is an important task in current OLAP
(Online Analytical Processing) scenarios [1]. To extract nec-
essary data for reports, fact and dimension tables are passed
through several filter predicates involving several columns.
For example, a typical TPC-H query involving several column
predicates is Q6, whose WHERE-clause is visualized in Fig. 1(a).
We name such a collection of predicates on several columns in
the WHERE-clause a multi-column selection predicate. Multi-
column selection predicate evaluation is performed as early as
possible in the query plan, because it shrinks the intermediate
results to a more manageable size. This task has become even
more important, when all data fits into main memory, because
the I/O bottleneck is eliminated and, hence, a full table scan
becomes less expensive.

In case all data sets are available in main memory (e.g., in
a main-memory database system [2], [3], [4]), the selectivity
threshold for using an index structure instead of an optimized
full table scan is even smaller than for disk-based database
systems. In a recent study, Das et al. propose to use an
index structure for very low selectivities only, such as values
under 2 % [5]. Hence, most OLAP queries would never use
an index structure to evaluate the selection predicates. To
illustrate this, we visualize the selectivity of each selection
predicate for the TPC-H Query Q6 in Fig. 1(b). All of its
single predicate selectivities are above the threshold of 2 %
and, thus, would prefer an accelerated scan per predicate.
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Fig. 1. (a) WHERE-clause, (b) selectivity, and (c) response time of TPC-H
query Q6 and its predicates Q6.1 - Q6.3 on Lineitem table scale factor 100

However, an interesting fact neglected by this approach is
that the accumulated selectivity of the multi-column selection
predicates (1.72 % for Q6) is below the 2 % threshold. Hence, an
index structure would be favored if it could exploit the relation
between all selection predicates of the query. Consequently,
when considering multi-column selection predicates, we achieve
the selectivity required to use an index structure instead of an
accelerated scan.

In this paper, we examine the question: How can we exploit
the combined selectivity of multi-column selection predicates
in order to speed up predicate evaluation? As a solution
for efficient multi-column selection predicate evaluation, we
propose Elf, an index structure that is able to exploit the
relation between data of several columns. Using Elf results
in performance benefits from several factors up to two orders
of magnitude in comparison to accelerated scans, e.g., a scan
using single instruction multiple data (SIMD). About factor 18
can be achieved for Q6 on a Lineitem table of scale factor
s = 100, as visible in Fig. 1(c).

Elf is a tree structure combining prefix-redundancy elimina-
tion with an optimized memory layout explicitly designed for
efficient main-memory access. Since the upper levels represent
the paths to a lot of data, we use a memory layout that resembles
that of a column store. This layout allows to prune the search
space efficiently in the upper layers. Following the paths deeper
to the leaves of the tree, the node entries are representing lesser
and lesser data. Thus, it makes sense to switch to a memory
layout that resembles a row store, because a row store is
more efficient when accessing several columns of one tuple.
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Furthermore, our approach features a fixed search path as each
level belongs to one column and leads to a compression of the
original data due to the prefix-redundancy elimination.

In particular, we make the following contributions:

1) We introduce Elf, a novel main-memory index structure
for efficient multi-column selection predicate evaluation.

2) We develop improvements for our conceptual design to ad-
dress deteriorations of our tree-based structure additionally
enhancing its performance.

3) We conduct a comprehensive evaluation including a
micro benchmark and multi-column selection predicate
queries from the TPC-H benchmark showing the benefits
and limitations of our approach in comparison to state-
of-the-art approaches (e.g., BitWeaving [6] or Sorted
Projection [7]) and a sequential scan using SIMD.

4) We show that the assumed selectivity threshold from Das
et al. [5] does not hold for Elf – instead we can beat
accelerated scans for mono-column selection predicates
and for selectivities of up to 18% instead of 2%.

The remainder of the paper is organized as follows. Sec-
tion II starts with a definition of the problem of evaluating
multi-column selection predicates as well as a description of
redundancy elimination. In Section III, we explain details of
the implementation and optimization of our novel approach
named Elf for main-memory environments. In Section IV,
we extensively evaluate Elf’s performance against well-known
state-of-the-art competitors. In Section V, we briefly discuss
related approaches and, finally, we summarize our insights in
Section VI.

II. PRELIMINARIES

In this section, we explain our use case, which is the
evaluation of multi-column selection predicates. Furthermore,
we present the concept of prefix-redundancy elimination, a key
optimization of Elf.

A. Multi-column selection predicates
A multi-column selection predicate is defined for a set of

columns C of a table T with C ✓ T and |C| > 1. For each
column col 2 C, there is one of the following basic predicates
given: =, <,>,,�,BETWEEN. Column data and constants
in the predicate are numeric values either by definition of the
schema or due to order preserving dictionary encoding [8], [9].
For the remainder of the paper, we assume the latter case. As
a result, the predicate defines a (different) window on each
col and we can transform these predicates into one notation
and treat them in a uniform manner as defined in Table I. For
example, col = x, where x is a scalar value within this column,
is translated to the window [x, x], where x indicates the lower
and upper boundaries and both are included in the window. By
contrast, col < x defines a window where the lower boundary
is the domain minimum (min) of this column and x defines
the first value that is not included in the window. Notably, it
is possible to express 6= as two windows.

A multi-column selection predicate result R

mcsp

is a
position list containing the references of all tuples (Refs), which
can be used for subsequent operations like joins.

Definition II.1 (Result position list: R
mcsp

). Let Ref
i

denote
the tuple identifier of the i

th tuple (t
i

) in the data set. Moreover,

Predicate Window
= x [x, x]

< x [min, x) ⌘ [min, x� 1]

 x [min, x]

> x (x,max] ⌘ [x + 1,max]

� x [x,max]

 x and � y with x  y [x, y]

(BETWEEN)

TABLE I. COLUMNAR SELECTION PREDICATE TRANSLATION

let SAT
mcsp

(Ref
i

) be a Boolean function that is true, iff all
attribute values of t

i

for all columns are defined in the window
by query mcsp. Then, R

mcsp

is a list of identifiers such that
Ref

i

2 R

mcsp

, SAT
mcsp

(Ref
i

) = true.

The basic challenge of multi-column selection predicates
is that the selectivity of the overall query is often small, but
the selectivity for each column is high enough that a database
system would decide to use a scan for all columns. Thus, we
cannot use only one column that dominates the query and
use traditional indexes, like B-Trees, and then perform index
lookups for the remaining tuple identifiers on the other columns.
As a result, most used approaches are optimized column scans
that exploit the full speed of the processing unit due to the
cache-conscious columnar table layout [6], [10].

B. Prefix-redundancy elimination
An interesting concept that has been observed by Sismanis

et al. is prefix-redundancy elimination [11]. Prefix redundancies
occur whenever two or more dimension keys share a common
prefix. This is visible in the example data of Table II, where
tuple T

1

and T
2

share the same value in the first dimension.
We formalize this term in Definition II.2.

Definition II.2 (Prefix-redundancy). Let t
a

and t

b

be two tuples
over the same schema having n columns. Let ⇧ denote an
ordering of all n columns and let t[1] be the first and t[i] be
the i

th attribute value of some tuple t according to ⇧. Then,
we observe a prefix-redundancy regarding ⇧ in case 9k such
that 8i  k the attribute values of both tuples are equal, i.e.
t

a

[i] = t

b

[i] holds, for some k with 1  k  n. In this context,
the longest common path is the largest value k

max

for that we
observe a prefix redundancy between two tuples.

In [11], the authors use this observation to design a data
structure that stores a highly compressed version of the cube
operator. These high compression rates come mainly from
avoiding redundancies of the cube entries. Nevertheless, these
redundancies can also be found when considering multiple
columns in a multi-column selection predicate evaluation
scenario.

III. ELF INDEX STRUCTURE

Based on the insights from Section II, we design a novel
index structure for order-preserving dictionary-compressed
data or numeric data. The new index structure, called Elf,
is optimized for executing multi-column selection predicates in
main-memory systems. In the following, we first explain the
Elf’s basic design and the underlying memory layout. Then,
we introduce additional optimizations to counter deteriorations
due to sparsely populated subspaces and provide algorithms for
searching, building, and maintenance. Finally, we determine a
theoretical upper bound for its storage size and introduce our
heuristic for the column order.



A. Conceptual design
In the following, we explain the basic design with the

help of the example data in Table II. The data set shows four
columns to be indexed and a tuple identifier (TID) that uniquely
identifies each row (e.g., the row id in a column store).

C1 C2 C3 C4 ... TID
0 1 0 1 ... T1

0 2 0 0 ... T2

1 0 1 0 ... T3

TABLE II. RUNNING EXAMPLE DATA

In Fig. 2, we depict the resulting Elf for the four indexed
columns of the example data from Table II. The Elf tree struc-
ture maps distinct values of one column to DimensionLists
at a specific level in the tree. In the first column, there are
two distinct values, 0 and 1. Thus, the first DimensionList,
L

(1)

, contains two entries and one pointer for each entry. The
respective pointer points to the beginning of the respective
DimensionList of the second column, L

(2)

and L

(3)

. Note,
as the first two points share the same value in the first column,
we observe a prefix redundancy elimination. In the second
column, we cannot eliminate any prefix redundancy, as all
attribute combinations in this column are unique. As a result,
the third column contains three DimensionLists: L

(4)

, L
(5)

,
and L

(6)

. In the final DimensionList, the structure of the
entries changes. While in an intermediate DimensionList,
an entry consists of a value and a pointer, the pointer in the
final dimension is interpreted as a tuple identifier (TID).

1 2

0 1

0

Column C1

Column C2

(1)

(2) (3)

0  T3 0 T21 T1 

0 1
Column C3

Column C4
(7)

(5)

(8) (9)

0(4) (6)

Fig. 2. Elf tree structure using prefix-redundancy elimination.

The conceptual Elf structure is designed from the idea of
prefix-redundancy elimination in Section II-B and the properties
of multi-column selection predicates. To this end, it features
the following properties to accelerate multi-column selection
predicates on the conceptual level:

Prefix-redundancy elimination: Attribute values are mainly
clustered, appear repeatedly, and share the same prefix.
Thus, Elf exploits this redundancy as each distinct value
per prefix exists only once in a DimensionList to
reduce the amount of stored and queried data.

Ordered node elements: Each DimensionList is an or-
dered list of entries. This property is beneficial for equality
or range predicates, because we can stop the search in
a list if the current value is bigger than the searched
constant/range.

Fixed depth: Since, a column of a table corresponds to a level
in the Elf, for a table with n columns, we have to descend
at most n nodes to find the corresponding TID. This sets
an upper bound on the search cost that does not depend
on the amount of stored tuples, but mostly on the amount
of used columns.

In summary, our index structure is a bushy tree structure
of a fixed height resulting in stable search paths that allows
for efficient multi-column selection predicate evaluation on a
conceptual level. To further optimize such queries, we also
need to optimize the memory layout of the Elf approach.

B. Improving Elf’s memory layout
The straight-forward implementation of Elf is similar to data

structures used in other tree-based index structures. However,
this creates an OLTP-optimized version of the Elf, which we
call InsertElf. To enhance OLAP query performance, we use
an explicit memory layout, meaning that Elf is linearized into
an array of integer values. For simplicity of explanation, we
assume that column values and pointers within Elf are 64-bit
integer values. However, our approach is not restricted to this
data type. Thus, we can also use 64 bits for pointers and 32 bits
for values, which is the most common case.

1) Mapping DimensionLists to arrays: To store the node
entries – in the following named DimensionElements –
of Elf, we use two integers. Since we expect the largest
performance impact for scanning these potentially long
DimensionLists, our first design principle is adjacency of
the DimensionElements of one DimensionList, which
leads to a preorder traversal during linearization. To illustrate
this, we depict the linearized Elf from Fig. 2 in Fig. 3. The
first DimensionList, L

(1)

, starts at position 0 and has two
DimensionElements: E

(1)

, with the value 0 and the pointer
04 (depicted with brackets around it), and E

(2)

, with the value
1 and the pointer 16 (the negativity of the value 1 marks the
end of the list and is explained in the next subsection). For
explanatory reasons, we highlight DimensionLists with
alternating colors.

0 [04] -1 [16] 1 [08] -2 [12] -0 [10]

-1 -0 [14] -0 -0 [18]T1 T2

-0 T3

ELF[00]

ELF[10]

ELF[20]

0 91 2 3 4 5 6 7 8
(1) (2) (4)

(7) (5) (8) (3)

(9)

-1 [20]
(6)

Fig. 3. Memory layout as an array of 64-bit integers

The pointers in the first list indicate that the
DimensionLists in the second column, L

(2)

and
L

(3)

(cf. Fig. 2), start at offset 04 and 16, respectively. This
mechanism works for any subsequent DimensionList
analogously, except for those in the final column (C

4

). In the
final column, the second part of a DimensionElement is
not a pointer within the Elf array, but a TID, which we encode
as an integer as well. The order of DimensionLists is
defined to support a depth-first search with expected low hit
rates within the DimensionLists. To this end, we first
store a complete DimensionList and then recursively store
the remaining lists starting at the first element. We repeat this
procedure until we reach the final column.

2) Implicit length control of arrays: The second design
principle is size reduction. To this end, we store only values
and pointers, but not the size of the DimensionLists. To
indicate the end of such a list, we utilize the most significant
bit (MSB) of the value. Thus, whenever we encounter a



negative value1, we know we reached the end of a list (e.g., the
DimensionElement at offset 2). Note, in the final column,
we also mark the end of the list by setting the most significant
bit, allowing to store duplicates as well.

C. Storage optimizations
Considering the structure of Elf depicted in Fig. 2, we

can further optimize two conceptual inefficiencies: (1) since
the first list contains all possible values of the first column,
this list can become very large, resulting in an unnecessary
performance overhead and (2) the deeper we descend in Elf,
the sparser the nodes get, which results in a linked-list-like
structure in contrast to the preferred bushy tree structure. For
both inefficiencies, we introduce as solutions: a hash map for
the first column and MonoLists for single-element lists.

1) Hash map to deal with the first DimensionList: The
first DimensionList contains all distinct values of the first
column, including pointers that indicate where the next list
starts. As a result, we have to sequentially scan all these values
until we find the upper boundary of the window defined on the
first column. This, however, results in a major bottleneck and
renders the approach sensitive to the number of inserted tuples
instead of the number of columns. However, due to the applied
compression scheme and prefix redundancy elimination, the first
DimensionList has three properties that allow us to store
only the pointers in the form of a perfect hash map2. As keys
of the hash map, the dimension values are used and as the hash
map values, the pointer to the referenced DimensionList of
the second column is used. We now discuss the three properties
of the values in the first DimensionList that lead to a
perfect hash-map property.

Uniqueness. Due to prefix redundancy elimination within Elf,
all dimension values in every list are unique.

Denseness. Due to the order preserving dictionary compression
of the data, all integer values between 0 and the maximum
value max

0

of that column exist.
Ordering. By definition, all values within a

DimensionList are ordered.

As a result, the first DimensionList contains every
integer value of [0,max

0

], which are stored in an ordered
manner. We depict the resulting Elf for the first column with the
value range [0, 7] in Fig. 4 (upper part). The primary observation
is that we can compute the position of the pointer to the next
list by simply multiplying the value by 2 and incrementing the
result. Consequently, we could also omit the values and only
store the pointers, as shown in the lower part of the figure.
Hence, we can directly use the values as keys to the pointers of
the first column like in a hash map. In order to determine the
start and end points of a query window on the first column, we
take the query window and identify the respected pointers. This
way, we remove the deterioration of the first DimensionList
and furthermore, require only half of the storage space for it.
This also works in case the data is not dense. Then, we use a

1This visualization is not correct according to the definition of the two’s
complement, but allows us to visualize the end of the list while displaying the
original value. In our implementation, we use bit masks to set, unset, and test
the most significant bit to determine whether we reached the end of a list.

2With perfect hash map, we mean that we can represent the hash map as a
dense array, where the keys represent the array positions.

special pointer directly indicating that for this value there is
no data, effectively being a null pointer.

0 [P0] 1 [P1] [P2] 3 [P3] 4 [P4]ELF[00]
without 
hash map

0 91 2 3 4 5 6 7 8
(1)

2 5 [P5] 6 [P6] 7 [P7]

10 11 12 13 14 15

[P0] [P1] [P2] [P3] [P4]ELF[00]
with 
hash map

0 1 2 3 4 5 6 7
(1)

[P5] [P6] [P7]

Fig. 4. Hash-map property of the first DimensionList

2) MonoList: One-element list elimination: A main chal-
lenge of our data structure is that the lists get shorter the further
the search descends into an Elf. Notably, there is a level where
only one-element lists exist. That means, there are no more
prefix redundancies that can be exploited. We display this issue
for the TPC-H Lineitem table of scale factor 100 with all
15 attributes resulting in a 15-level Elf in Fig. 5. The plot
shows that at dimension 11 the prefix of each data item has
become unique and each data item is now represented with
its own path in the Elf. This leads to one linked list per data
item, where each entry is a DimensionList with only one
entry. The result of those one-element lists is that the remaining
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Fig. 5. Percentage of 1-element lists per dimension for the TPC-H Lineitem
table with scale factor 100

column values of each data item are scattered over the main
memory. Additionally, we need to store pointers to these values,
although branching is not necessary anymore. This phenomenon
destroys the caching performance and unnecessarily increases
the overall size of Elf. To overcome this deterioration, we
introduce MonoLists. The basic idea of MonoLists is that,
if there is no prefix redundancy, the remaining column values
of this tuple are stored adjacent to each other (similar to a
row-store) to avoid jumps across the main memory.

1 2

0 1
Column C1

Column C2

(1)

(2) (3)

 T2 T1 0

0   T3 1

Column C3

Column C4
(5) 0(4) +

0

01

Fig. 6. Elf with MonoLists (visualized as gray DimensionLists)

In Fig. 6, we depict the resulting Elf with MonoLists
shown in gray and in Fig. 7 the respective memory layout.
Note that a MonoList can start at different dimensions and



thus, this optimization totally removes the deterioration of one-
element lists. To indicate that there is a MonoList in the next
column, we utilize the most significant bit of the pointer of
the respective DimensionElement in the same way as we
mark the end of a DimensionList. Thus, we depict such
a pointer in the same way, by using a minus in front of the
pointer in Fig. 7. In the example, there are two MonoLists
for C

3

and C
4

and a third one covering C
2

, C
3

, and C
4

for T
3

.

In Fig. 7, we depict the optimized storage layout of the Elf
for the example data from Table II using the MonoList and
the hash map optimization. In comparison to the initial layout in
Fig. 3, we observe a decrease in storage consumption and better
adjacency of values in later columns. We give more insights
into worst case storage consumption in the Section III-F.

[02] -[12] 1 -[6] -2 -[9] 0 1ELF[00]

ELF[20]

0 91 2 3 4 5 6 7 8
(1) (2) (4)

T1
(5)

0

0 10 T2ELF[10]
(3)

0 T3

Fig. 7. Final memory layout of the Elf approach

D. Search algorithm
In the following, we present the algorithm to evaluate

a multi-column selection predicate within Elf, based on our
definition from Section II-A. The algorithm mainly consists of
two functions.

Result: L Resultlist
1 SearchMCSP(lower, upper){
2 L ;;
3 if (lower[0]  upper[0])then

// predicate on first column defined
// exploit hash-map

4 start lower[0]; stop upper[0];
5 else
6 start 0; stop max {C1};
7 end if
8 for (offset start to stop)do
9 pointer  Elf[offset];

10 if (noMonoList (pointer))then
11 SearchDimList (lower, upper, pointer, col 1, L);
12 else
13 L L+SearchML

(lower, upper, unsetMSB(offset), col 1, L);
14 end if
15 end for
16 return L;
17 }

Algorithm 1: Search multi-column selection predicate

The first function SearchMCSP, depicted in Algorithm 1,
is executed once in order to evaluate a multi-column selection
predicate. It returns a list L of TIDs for each tuple in accordance
with the multi-column selection predicate. Two arrays define the
multi-column selection predicate containing the lower and upper
boundaries of the (hyper) rectangle. Moreover, this function
evaluates the first DimensionList exploiting its hash-map
property (Line 3-5), in case C

1

is part of the multi-column
selection predicate. Otherwise, in case of a wildcard for this
column, the boundaries for evaluation are set to 0 and maximum
of Column C

1

. We have to check for each value whether the
next DimensionList is a MonoList. Based on this check,
we either call the function to evaluate a MonoList or a normal
DimensionList (Line 10-14). Note, the evaluation of a

1 SearchDimList(lower, upper, startlist, col, L){
2 if (lower[col]  upper[col])then
3 position startList;
4 while (notEndOfList (Elf[position]))do
5 if (isIn (lower[col], upper[col], Elf[position]))then
6 pointer  Elf[position + 1];

// start of next list in col+1
7 if (noMonoList (pointer))then
8 SearchDimList

(lower, upper, pointer, col + 1, L);
9 else

10 L L+SearchML (lower, upper,
unsetMSB(pointer), col + 1, L);

11 end if
12 else
13 if (Elf[position] > upper[col])then
14 return;// abort
15 end if
16 position position + 2;
17 end while
18 else

// call SearchDimList or SearchML with col + 1

for all elements
19 end if
20 }

Algorithm 2: Scan a DimensionList within an Elf

MonoList (SearchML) is straightforward, as the remaining
values are located beside each other in main memory including
a TID after the values. Hence, we do not depict this function.

The second function SearchDimList, depicted in Algo-
rithm 2, evaluates a predicate on a single DimensionList.
The function has two more input parameters besides the lower
and upper boundaries: It also needs the start offset of the current
DimensionList within the Elf (startlist) and the cur-
rent column (col). The start offset directly marks the position
of the first (and smallest) value in that DimensionList
(Line 3). In case there is a predicate defined on this column,
we start scanning the single values until we either reach the end
of the list (Line 17) or we find a first value that is larger than the
upper boundary of the query window. Remember that the values
are ordered, which allows us to abort the evaluation of that
particular list. Whenever we find a value within the predicate
boundaries, we propagate the evaluation of the multi-column
selection predicate to the child DimensionList (Line 5-12).
This results in a depth-first search, because we evaluate the
child DimensionList before evaluating the next value by
incrementing the position (Line 16). We decided on a depth-
first search to make use of the program stack and, as the first
column is handled by SearchMCSP, we benefit from the curse
of dimensionality as the sparsity of the created spaces results in
relatively low hit rates. Thus, on average, we are able to scan
large parts of a DimensionList located in a small cache
window without propagation to the next column. Consequently,
the Elf search algorithm is optimized for low selectivity-rate
workloads, as it is common for tree-based structures.

E. Building and maintaining an Elf
Building and maintaining an Elf is done in two different

ways. Due to space limitation, we do not explain the full
algorithms, but outline the general ideas of the build algorithm
and the insert, update, and delete operations on Elf. For further
details we refer to [12].

The initial build of Elf is executed as a bulk load, where
all data of the table is read to create the initial Elf with its



explicit memory layout. The build algorithm consists of a
step-wise multi-dimensional sort which is paired with a build
of all DimensionLists of the currently sorted dimension
using a preorder linearization. Notably, after sorting the first
dimension we can divide the index creation for each sub tree
into independent tasks allowing for parallel execution.

Due to Elf’s explicit memory layout, maintenance (i.e.,
insert, update, and delete) is not trivial, but still manageable.
Since Elf is designed for analytical scenarios, supporting
periodic inserts of new data, such as weekly or daily inserts,
are most important for us. Our solution consists of two parts.
First, new data is collected in the auxiliary data structure
InsertElf, which has the same conceptual design as a normal
Elf without the explicit memory layout and MonoLists. That
is, the DimensionLists are arrays in that we can insert
easily. The general idea is similar to delta stores in column-
oriented databases or to the ideas by Zhang et al. [13]: there
is one write-optimized InsertElf and one read-optimized Elf.
Whenever we have reached a specific threshold of changes, it
will become necessary to transfer the data from the InsertElf
to the Elf, which is a merge of both structures. The merge
algorithm works similar to merging two sorted lists of elements
as we can exploit the (same) total order in both, InsertElf and
Elf. Hence, if as much data has been inserted into the InsertElf
that a merge becomes necessary, we can efficiently combine
both structures with a complexity of O(Elf

size

+InsertElf
size

).

For deletion, we perform a lookup for the data item we want
to delete and store for each level the pointers when jumping to
a new DimensionList or a marker in case of a MonoList.
In case, we delete a duplicate data item, we just remove the TID
in the list of TIDs. Otherwise, we need to invalidate the path
that only belongs to the data item we want to delete. Assume,
we want to delete data item T

2

from Fig. 6. We know that in
DimensionList (2) a MonoList starts and thus invalidate
the pointer to that MonoList using a pre-defined error value.

Finally, updates are rare for analytical workloads, but
nevertheless possible within Elf. Generally, there is a large
amount of MonoLists (cf. Section III-C2). Updating a value
within a MonoList does not result in any problem, as we
just have to write the new value to the correct position. This
is possible as all values have the same size due to the applied
dictionary compression. Otherwise, an update is composed of
a delete and an insert as described above.

F. Worst case storage consumption
Storage consumption remains an important issue due to

limited main-memory capacities and better cache utilization
for smaller storage and index structures. We examine worst
case storage consumption to give an upper limit for our novel
structure to show its potential. For Elf, we can construct a worst
case scenario analytically. In the first DimensionList, worst
case means that there are only unique keys. Thus, there is no
prefix redundancy elimination resulting in k pointers to be
stored, where k is the number of points in the data set. Notably,
this does not cause any overhead compared to the normal
storage of values, because of the hash map property. For the
other columns, we have two cases:

1) We can perform a prefix reduction of the column value:
Then, we store the pointer to the next level and one value

representing m values, reducing the storage consumption
to 2/m.

2) We find a MonoList: Then, we need to store the attribute
values and the TID of the data item.

Worst case means that for each point, we immediately start
a MonoList after the first column, because with a prefix
reduction, we achieve a better storage consumption3. The worst
case leads to storage of one additional value per data item. The
additional value is the TID, which would not be stored in the
original row or column store representation as it is encoded
implicitly based on the offset from the beginning of the array.

As a result, the maximum storage overhead per data item
depends on the number of indexed columns n of the data set and
decreases with an increasing amount of columns (cf. Table III).
It is computed as follows: overhead(n) = (n+ 1)/n.

Number of columns 1 2 3 4 5 6
Storage overhead 2.00 1.50 1.33 1.25 1.20 1.17

TABLE III. UPPER BOUND STORAGE OVERHEAD

As this worst case is very unlikely, we expect even light
compression rates for most data sets. Hence, the actual storage
size of Elf is an analysis target in our evaluation section.

G. Selection of the column order
One important aspect of building an Elf is the order of

columns, because it influences search time as well as storage
consumption. To this end, we propose a simple heuristic that is
used to determine a column order. Currently, we work on a fully-
fledged cost model and first results are highly promising [14].

Due to the design of Elf, the first column should be the
most commonly used in the queries, e.g., a time dimension.
The following columns are sorted in ascending order of their
usage in queries and cardinality. Due to this heuristic and the
prefix reduction in the first columns, the data space is fast
divided into sparse regions. Hence, we benefit from an early
pruning of the search space.

IV. EMPIRICAL EVALUATION

We now conduct several experiments to gain insights into the
benefits and drawbacks of Elf. We start with a micro benchmark
that systematically evaluates the influence of parameters such
as query selectivity and queried columns on the response time.
In this evaluation, we are interested in the break-even points
regarding selectivity that indicate when a SIMD-sequential
scan becomes faster than our approach. To this end, we use an
artificial query load defined on the TPC-H schema with scale
factor 100. Another micro benchmark considers our MonoList
optimization and shows its benefits considering the storage
consumption of the resulting Elf.

In further experiments, we evaluate how far our artificial
results of the first experiments can be transferred to real-
world selection predicates, such as those from the TPC-H
benchmark queries. As competitors, we select three state-of-
the-art approaches, BitWeaving/V [6], Column Imprint [10],

3Nodes with two elements lead to the same storage consumption as a
MonoList due to the pointers. Both cases are equivalent for our worst case
consideration.



and Sorted Projection [7]. In addition, we compare our approach
to a columnar scan and an optimized SIMD-accelerated version
as a good baseline. We select the kd-Tree [15] as a well-known
classical multi-dimensional index structure with axis-parallel
splits natively supporting multi-column selection predicates.
As every indexing technique, we trade query performance for
initial build time [16]. Hence, we evaluate the tradeoffs of Elf
and its competitors regarding build times.

To ensure a valid comparison, all approaches are imple-
mented in C++ and tuned to an equal extent to allow for a
fair comparison. The code of our evaluation is provided on the
project website4. The result of a multi-column selection predi-
cate evaluation, is a position list as defined in Definition II.1.
We perform our experiments using a single-threaded execution
for all index structures on an Intel Xeon E5 2609 v2 (Ivy-Bridge
architecture) with 2.6 GHz clock frequency, 10 MB L3 cache,
and 256 GB RAM. Our SIMD optimizations are implemented
using SSE 4.2. In our evaluation, we present the response time
for the selection predicates of each considered TPC-H query.
For statistical soundness, we repeated every measurement 1,000
times and present the median as robust averages.

A. Experiment 1: Micro benchmark
In this experiment, we are interested in how well our

approach scales for different selectivities and for different
amounts of queried columns in Elf. Moreover, we are interested
in the break-even point when an optimized scan becomes faster
than our novel approach. So far, the break-even point for most
tree-based indexes in main-memory environments is stated to
be around 1 or 2 percent [5]. Finally, we want to gain insights
on the limiting factor: whether it is the overall selectivity or
the column order in an Elf.

To this end, we conduct several experiments on the
Lineitem5 table with scale factor 100. We select this table
to avoid biasing our results by, for instance, using uniformly
distributed synthetic data instead. To have a fair comparison
between the SIMD scan and Elf, we assume that the whole
table has to be indexed by Elf (e.g., because our workload
includes selections on all columns). Notably, smaller Elfs on a
reduced set of columns would further boost the performance,
but for this experiment we want to show a worst case scenario.

Altogether, we measure the response times for the com-
binations of selectivity � 2 [0.0003%, 50%] and last queried
column: l 2 {0, 1, 2, 3, 4}. In this context, a selectivity of 0.5%
means that 0.5% of the tuples of the Lineitem table are
retrieved. If last queried column is 3, then there is a predicate
defined on the columns 0, 1, 2, 3. For instance, we conduct one
measurement for the parameter combination (� = 1%, l = 1).
In this case, the selection predicate is defined on the first
column l_shipdate and the second one l_discount. The
associated SQL query is:

SELECT l_shipdate, l_discount FROM lineitem
WHERE l_shipdate BETWEEN c1 AND c2

AND l_discount BETWEEN c3 AND c4

4www.elf.ovgu.de
5This table takes about 72 GB of memory. Note, for a fair comparison, we

only use the order-preserving dictionary encoded data (with a size of ca. 33.5
GB) for all experiments and all competitors.

We substitute the values for constants like c1 with appropri-
ate values to achieve the desired combined selectivity, meaning
that the result contains 1% of the data. Note, we define multiple
windows having the same selectivity and repeat each of the
parameter configurations 100 times to achieve reliable results.
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Result interpretation: In Fig. 8, we depict the mean
response time for every evaluated parameter combination of
Elf (green plane) and the corresponding response time of a
SIMD sequential scan (blue plane).

As expected, we observe that the response times of the
SIMD sequential scan are very stable for varying selectivities.
For example, for the queries on two columns, the SIMD scan
requires 177ms for the lowest selectivity and 202ms for the
highest selectivity, which takes only 14 % more time. The
small differences result from the overhead for managing larger
results. In contrast, the number of searched columns has a
bigger impact on the runtime of the SIMD sequential scan. For
a selectivity of 10 %, the SIMD sequential scan takes 182ms

for one column and 289ms for five columns, leading to 58 %
increased response time.

For Elf, we observe a strong dependency of response time
and selectivity. As this is expected, the interesting insights are
the following:

Linear correlation of response time and selectivity:
The important point about this insight is that we have a
predictable increase in response time. This property allows
to define an upper border for the response time of a query.

Minor performance impact of column position:
This insight is to some extent surprising, as we expected
that the number of queried columns have a stronger
influence. However, a deeper investigation of the worst
case scenario strengthens this phenomenon: for instance,
assume there is a query that only defines a selection
predicate on the third column. In Elf, representing the
Lineitem table, we have a cardinality of 2,526 values
for the first dimension and 11 for the second one. This
means that, in the worst case, assuming that all value
combinations exist, we have to execute 27,786 additional
jumps in main memory due to wild cards in the first two
columns. Nevertheless, this number is negligible, if we



compare it to the total number of tuples in the table, which
is about 600 million.

Break-even point at higher selectivity than expected:
The break-even point is by one magnitude larger (10 %
to 20 % in contrast to 1 % to 2 %) than postulated in the
related literature. This fact reveals that using Elf does not
only result in performance gains over the baseline, but this
also holds for a selectivity exceeding 10 %, which is an
enormous value, that to the best of our knowledge has not
been observed so far. Furthermore, the more columns we
query, the higher the acceptable selectivity. While for one
queried column the break-even point is at 11 % selectivity,
it is at 18 % selectivity for five queried columns.

The results of our micro benchmark indicate that Elf is
superior to the SIMD sequential scan for predicates on several
columns and a low selectivity (i.e., small result sets). However,
the comparison does not take into account more elaborate index
structures such as BitWeaving with its ability to skip a search
early. Furthermore, our predicates are artificially generated with
selections on a prefix of all columns in an Elf. A deeper insight
into this brings Experiment 3 with real-world workloads from
the TPC-H benchmark.

B. Experiment 2: Impact of MonoLists on Storage Consumption
Although main memory capacities increase rapidly, efficient

memory utilization remains important, because it is shared
between all data structures (e.g., hash tables) of the database
system. In this micro-benchmark, we want to examine, first,
whether our worst case storage boundaries for Elf from Sec-
tion III-F hold. This upper bound, however, is quite pessimistic.
Thus, we are interested in empirical numbers of the storage
overhead for the TPC-H Lineitem table with scale factor 100.
Second, we are interested in how far this result is influenced
by the usage of MonoLists, because they are an essential
optimization for our Elf for multi-dimensional data.
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Fig. 9. Storage consumption for Lineitem table

In Fig. 9, we display the storage consumption of the
raw data, an Elf without using MonoLists and an Elf with
MonoList optimization. As visualized, the raw data consumes
about 36 GB, while the Elf without MonoList optimization
consumes 52.03 GB and the fully-optimized Elf consumes
25.55 GB of RAM. This is a remarkable result, because the Elf
is not only taking only 70 % of the original raw data storage
space, but we could also clearly improve a severe deterioration
of the conceptual Elf. In fact, the optimized Elf consumes only
half of the memory that the Elf without MonoLists consumes.
This can be explained by the high number of MonoLists
especially in deeper tree levels (c.f. Fig. 5). For instance, at
level 9, we encounter around 114 million MonoLists, that save

around 6 GB of pointers. Hence, the MonoList optimization
is worth using for sparsely populated spaces, because it does
not only save space, but also reduces the amount of cache lines
that have to be fetched to visit the TIDs. Notably, Elf stores the
whole data set, which means that we do not need to store the
data additionally. Thus, we can even save space when using
Elf as a storage structure, because all information is directly
available within the Elf.

C. Experiment 3: TPC-H queries and data
In the following, we conduct an experiment using selection

predicates from queries of the TPC-H benchmark [17], which
our competitors performed in a similar fashion [6], [10]6.
The main difference to our first experiment is that we do
not use synthetic query predicates, but predicates that reflect
real-world information needs common for analytical databases.
Consequently, the results of this experiment are better suited
to draw conclusions regarding real-world workloads. We select
queries having a multi-column selection predicate and additional
ones having a mono-column selection predicate, as summarized
in Table IV. Notably, the last column states where the columns
with a predicate are located within the Elf. The first column
number is 0 to emphasize that we can exploit the hash-map
property for this column. The column ColElf is also important
for Sorted Projections, because we create one Sorted Projection
per distinct prefix.

The queries having a mono-column selection predicate are
selected to explore the general applicability (and limitations)
of Elf for real-world workloads. To find answers regarding this
question, we select Query Q1, Q10, and Q14. The predicates
for Q1 and Q14 are defined on the first column. This means
that the main cost factor for this query is traversing cold data of
Elf in order to determine the respective TIDs. We choose these
two queries, because their selectivity differs significantly. By
contrast, the predicate for Q10 is defined on the fifth column,
which is a different scenario than in our micro benchmark,
where we only queried a prefix of the column order. In general,
we expect Elf performance to vary significantly across the three
queries, as they represent cases Elf is not designed for.

example � predicate columns ColElf
in %

Q1 98.0 l date 0
Q10 24.68 l returnflag 4
Q14 1.3 l date 0

Q6 1.72 l date, l discount, l quantity {0,1,2}
LQ19 1.4 l quantity, l shipinstr, l shipmode {2,5,6}
Q17 0.099 p brand, p container {1,2}
PQ19 0.083 p brand, p container, p quantity {1,2,3}
TABLE IV. QUERY DETAILS FOR MONO AND MULTI-COLUMN

SELECTIONS

Since the accelerated scans are sensitive to the number of
queried columns, we also include several multi-column selection
predicate queries on different tables. For Q19, we have two
multi-column selection predicates on two different tables. The
first is defined on the Lineitem table (as indicated by the L
prefix) and the second is defined on the Part table. We refer

6Other benchmarks, e.g., Starschema [18] or TPC-DS [19], could be used in
a similar fashion. However, due to the common use of the TPC-H benchmark,
we restrict our evaluation to this one.



to them as LQ19 and PQ19, respectively. Query Q6 works on
the Lineitem table and the predicates are defined on the first
three columns. By contrast, Q17 addresses the Part table and
the predicate is defined on the second and third column. Thus,
we cannot exploit the hash-map property here. In general, we
expect good results for all of these queries using Elf.

In the following, we depict the values for the selection
predicates of the TPC-H benchmark with its order-preserving
dictionary-compressed data of scale factor 100. We generate
1,000 random predicates according to the TPC-H specification
and compute the median response time to assure robust
measurements. Similar to our micro benchmarks, we include an
Elf that indexes the whole TPC-H table as a baseline. However,
since the maximum column index for all queries in Table IV is
6 (i.e., the seventh column), we also evaluate an Elf that only
indexes the first 7 columns. We refer to the reduced Elf as
Elf

7

in the following, named by the number of columns (incl.
TID) it contains. Note, we omit a detailed evaluation of the
update-optimized InsertElf, because its storage consumption
would exceed our available RAM (cf. Experiment 2) as it
omits MonoLists for better update performance. Moreover,
downgraded experiments show that its run times are higher by
a factor of 50 when indexing all columns and by a factor of 3
when indexing the first seven columns only.

1) Mono-column selection predicate queries: In Fig. 10,
we depict the results for the mono-column selection predicates
in a logarithmic plot. Overall, we observe high differences in
performance of Elf regarding the three queries in comparison
to the competitors. For Q1 returning 98% of the tuples of the
Lineitem table, Elf is clearly outperformed by all accelerated
scans. Even Elf

7

is slower than a columnar sequential scan,
although it can outperform Sorted Projection and kd-Tree. By
contrast, for Q10, where the selection column is only the fifth
column (remember that we start counting columns from 0),
using the Elf

7

results in a response time comparable to both
state-of-the-art approaches. However, the Elf containing all
columns is 79% slower than a columnar sequential scan, while
the difference between the state-of-the-art approaches and the
baseline (the columnar sequential scan) is quite small. For
instance, the columnar sequential scan requires 238ms whereas
the Column Imprint requires 161ms. Thus, the performance
gains for accelerated scans are around one third. Reasons for this
behavior are the high selectivity of Q1, the moderate selectivity
of Q10 and the fact that the selection predicate in Q10 is at
the fifth dimension. This forces Elf to follow a majority of
paths. Therefore, we cannot and do not intend to compete with
optimized full-table scans in this scenario. Notably, Elf

7

can
even slightly outperform all other approaches for query Q10.

In contrast to Query Q1 and Q10, our results for Query
Q14 indicate that our approach results in a clear performance
gain for both variants of Elf. The response time of the SIMD
sequential scan is 124ms. By contrast, the response time of the
Elf is 19ms and the Elf

7

requires 6.1ms. Consequently, our
results show a performance gain of more than a factor of 6 for
the Elf and about a factor of 20 for the Elf

7

. From our point
of view, this is a remarkable result, because our approach is
designed and optimized for multi-column selection predicates.
However, in the case of Query Q14, we benefit from the hash-
map property of Elf and the fact that the selection column is
the first level instead of the fourth level, as in Query Q10.
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Fig. 10. Query response times for mono-column TPC-H queries (s = 100)

Notably, Sorted Projection performs better than Elf but
worse than Elf

7

for all mono-column selection predicates. The
benefit of Elf is that the prefix redundancy elimination allows
to touch less memory locations than the Sorted Projections,
but skipping over the cold data diminishes this benefit. Thus,
only the Elf

7

outperforms the Sorted Projections. Furthermore,
we observe that the SIMD sequential scan implementation
performs well, even beyond our expectations. For the first two
queries, it is the fastest approach and for the third query the
third fastest behind the Elf variants. Moreover, our results show
that the SIMD sequential scan slightly outperforms state-of-the-
art approaches. However, recent results show that BitWeaving
is able to reach at least the same performance when using
SIMD [20] and we expect Column Imprints to behave in a
similar fashion. Finally, the two state-of-the-art approaches
always outperform the baseline and the kd-Tree by far.

2) Multi-column selection predicate queries: In contrast
to mono-column predicates, we observe Elf’s superiority for
all multi-column selection predicate queries in Fig. 11. In
particular, Elf delivers the fastest response times for every
query. Moreover, we observe a stable performance increase
between a factor of 2 and 4 when using Elf

7

as compared to a
full Elf. An in-depth analysis reveals that this correlates to the
difference in size of both variants. However, the performance
gain of our approach over the competitors varies widely. For
the Lineitem selection predicates of Query Q19(LQ19),
we observe the smallest performance gain compared to the
next fastest accelerated scan. These are BitWeaving and the
SIMD scan, requiring 526ms and 521ms, respectively. The
speed-up factor of the Elf (161ms) is 3.2 and considering
the Elf

7

(66.5ms) it is factor 7.9. By contrast, the largest
performance gain is measured for the queries with the smallest
result sizes, Q17 and PQ19 (cf. Table IV). It is in the order
of two magnitudes.

For these queries, our results reveal that we can fully
benefit from the properties of Elf. All multi-column selection
predicates have in common that they have a low accumulated
selectivity (< 2%). This is one important reason why our
approach outperforms all other competitors in this experiment.
Furthermore, the accelerated scans are scanning each column
separately, which does not scale for an increasing number
of involved columns. Notably, it would not scale to use an
optimized index structure per column (e.g., CSB-tree [21]),
because the selectivity for one column is still much higher than
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Fig. 11. Query response times for multi-column TPC-H queries (s = 100)

the accumulated selectivity of the whole query (cf. Fig. 1). In
these selections, the only competitor that shows an improved
performance compared to accelerated scans is Sorted Projection
although it cannot beat Elf.

According to our results, the performance gain also depends
on the column order. This is especially observable for Q6
and LQ19, which have a similar selectivity, but the selection
predicates are defined on different columns. In fact, to evaluate
LQ19, we have to traverse the Elf until the third column (the
first column with a predicate) in order to exclude further parts
of the tree. This explains the different speed ups of both queries.
Interestingly, the response times of Q6 (multi-column) and Q14
(mono-column), whose selectivities are similar, are comparable,
indicating the consistency and stability of our approach.

The results of this experiment reveal that the major cost
factor is the accumulated selectivity, as we achieve the largest
speed ups for the queries with the lowest selectivity. This is
consistent with the results from the mono-column selection pred-
icates and our micro benchmark. The additional improvements
using the Elf

7

also seem plausible as they directly correlate to
the difference in size between Elf and Elf

7

. Hence, determining
the required columns is an important factor to fully exploit the
potential of Elf.

For the other approaches, we observe that the state-of-
the-art approaches result in large speed ups compared to the
baseline. Moreover, BitWeaving clearly outperforms the SIMD
scan for Q17 and PQ19 and delivers comparable results for
LQ19. Only for Q6, we measure faster response times for
the SIMD scan. Nevertheless, Sorted Projection outperforms
all accelerated scans for the multi-column selection predicate
queries, reaching speed ups of factor five to even one magnitude.

On a more abstract level, we observe that all approaches
outperform the baseline, usually by several factors. This is
consistent with results from the literature. The only exception
is the remarkable performance of the SIMD sequential scan,
which we explain by additional optimizations from SIMD-
related publications [22], [23]. Moreover, this demonstrates
that an efficient implementation for accelerated scans is vital
and it also emphasizes the necessity for such approaches in
main-memory systems in general. In addition to that, we observe
a wide range of speed ups of most approaches compared to
the baseline, suggesting that different application scenarios
require different approaches as there does not seem to be a
one-size-fits-all solution.

D. Experiment 4: Build times
The purpose of the build time examination is to evaluate

whether a large build time is a counterargument for the
applicability of Elf.
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Fig. 12. Build time for Lineitem table of s = 100 TPC-H

In Fig. 12, we visualize the build times for the Lineitem
table with scale factor 100. The build time of the SIMD
sequential scan (92.72 s) is the time to allocate aligned memory
and copy the respective values from a row-based representation
into an aligned columnar layout in order to fully exploit SIMD
benefits. In comparison to the other approaches this build
time is negligible. We included this value to highlight that
using SIMD always entails a certain overhead compared to
normal sequential scans. In contrast to the build time of the
SIMD sequential scan, all other approaches need at least several
minutes up to half an hour for finishing the build. The next
fastest approach is BitWeaving, with a build time of 241.91 s.
Building the Sorted Projection approach requires 431.47 s. Thus,
it is about two times faster than building the Elf (769.09 s).
Therefore, we argue that build times are no counterargument
for the applicability of our approach, especially as we reach a
speed up of one order of magnitude for the query performance.
For instance, in analytic environments and other scenarios that
have low update frequencies, such an additional build time is
acceptable. Interestingly, the Elf

7

is the third fastest approach.
Note, Column Imprint and kd-Tree require more build time
than Elf.

E. Result summary
Based on the results of all our experiments, we have

empirically shown the superiority of our approach compared to
several strong competitors. However, the build times are still a
challenging factor for Elf, which currently makes our approach
sensitive for applications with high update and insert rates.

In comparison to a SIMD sequential scan, Elf performs
better for selectivities smaller than 11–18 % and the more
columns are queried, the higher the acceptable selectivity.
Moreover, we can show that our MonoList optimization
reduces the storage overhead by 50 % compared to an Elf
without MonoList and by 30 % compared to the raw data.
Furthermore, we show that our approach performs best for
low-selectivity workloads from non-synthetic queries such as
those from the TPC-H benchmark regardless of the location of
the queried column in the Elf. For those queries, we reach a
performance improvement of up to two orders of magnitude.



V. RELATED WORK

Accelerating the evaluation of selection predicates in main-
memory databases has become a vital task. We now review
different types of related approaches and point out the difference
regarding our approach.

A. SIMD scans
Current trends in main-memory databases show that opti-

mized full-table scans (e.g., using SIMD) are able to com-
pete with specialized index structures, because of the fast
access in main memory compared to traditional disk-based
approaches. Moreover, the sequential access pattern leads to
cache consciousness. Therefore, using SIMD to accelerate
database operations has gained much attention. In particular,
accelerating selection conditions using SIMD scans result in
high performance increases [22], [23], [24], [25], [26].

The first ideas of using SIMD in database selections by Zhou
and Ross aim at accelerating full-table scans [26]. Polychroniou
and Ross extend the work to AVX by using bloom filters [24]
and Sitaridi and Ross to GPUs [25]. Willhalm et al. use
compression and SIMD acceleration to speed up the scan
for single [22] and complex [23] predicates. The results and
insights of these publications are used in this paper to implement
our SIMD scan. Moreover, we use SIMD to improve the
Column Imprint competitor. Similarly, a recent publication
by Polychroniou et al. improves BitWeaving’s compression,
decompression, and scan algorithm using AVX2 [20]. Although,
all of these improvements result in an observable performance
increase, they all still face the same conceptual issue. For
multi-column selection predicate evaluation, we have to fully
scan multiple columns and cannot apply an early pruning as
performed by tree-based indexes.

A hybrid approach between scanning and indexing is
database cracking by Idreos et al., which creates an index
adaptively by sorting the data iteratively for each executed
selection [27], [28]. Recently, database cracking has been
improved using SIMD by Pirk et al. [29] and implemented as
a parallelized background job by Petraki et al. [30]. However,
this approach is also limited to single columns. Thus, each
column has to be indexed and evaluated separately.

B. Indexing approaches
In the area of main-memory indexing, making tree structures

optimized for caches has become essential. An early approach is
the T-tree by Lehman and Carey [31]. According to their results
this approach outperforms B-tree and AVL-tree. Currently,
cache-conscious B-trees by Rao and Ross [21] and adaptive
radix trees by Leis et al. [32] are promising index structures to
improve cache utilization for index searches. Furthermore, the
utilization of SIMD has become a topic in main-memory tree
structures, e.g., in the k-ary search tree by Schlegel et al. [33],
the Fast Architecture Sensitive Tree by Kim et al. [34], or the
Segmented Tree by Zeuch et al. [35].

All these index structures support efficient mono-column
predicate evaluation, but for each additional predicate on another
column, an additional index structure has to be built and also
searched. As a consequence, we argue that our approach is more
space and time efficient for multi-column selection predicate
queries.

The Data Dwarf [11] aims at storing a highly compressed
version of the cube operator by eliminating the artificially
created prefix and suffix redundancies of cube entries (i.e.,
grouping keys). However, the desired compression rates are
hardly reached in practice [36]. By contrast, we use existing
prefix-redundancies to exploit the full combined pruning power
of a multi-column selection predicate in order to speed-up
query evaluation.

C. Elf competitors

BitWeaving: BitWeaving is a bit-packing technique
originally proposed by Li and Patel [6]. The idea of BitWeaving
is to store the necessary bits (w.r.t. the given value range) of
several values into one processor word (with a typical size
of 64 bit). Hence, BitWeaving adapts the idea of SIMD even
for scalar registers to exploit data parallelism in computation.
Recent improvements are to use SIMD [20] and to add an
encoding to the data that exploits skew in the data and predicate
distribution [37]. For our evaluation, we execute the queries
for both variants, BitWeaving/H and BitWeaving/V, but only
take the fastest version as competitor for Elf (BitWeaving/V).

Column Imprint: A Column Imprint is a cache-
conscious secondary index structure for range queries [10].
The idea is to apply a coarse-grained filter (similar to a bloom
filter) indicating whether we can exclude a complete cache line
for a given query. To this end, the Column Imprint builds a
histogram over all values of a cache line and stores it in a
64-bit integer. The histogram is an equi-width histogram with
64 bins where a bit b = 1 means that at least one value of the
corresponding cache line is in the range of the given bin. For
evaluating selection predicates, we can use the histograms as
a pre-filter such that we only have to evaluate the values of
cache lines that definitely have a candidate w.r.t. the selection
predicate. As an improvement, Polychroniou et al. propose
novel vectorized designs based on advanced SIMD operations
for database operators, explicitly including scans on Column
Imprints [38]. We leverage their ideas into the variant pool of
Column Imprint implementations selecting the best variant as
competitor.

Sorted Projection: Sorted Projections are first introduced
in C-Store [7], but also available in Vertica [39]. They are a
simple yet powerful index that accelerates selections. For a
frequently used set of queried columns, we sort the columns
according to one attribute and add a column for the TIDs for
tuple reconstruction purposes. As a consequence, we can now
use binary search on the sorted column or compression tech-
niques to accelerate query processing. For our implementation,
we implement a sorted projection for each unique prefix of the
queried columns from Table IV.

VI. CONCLUSIONS AND FUTURE WORK

For domains like data warehousing or scientific computing
it is essential to efficiently reduce large data sets according
to a multi-column selection predicate. The result of such
queries, is then used as input for further operations like join-
processing or in-depth analysis (e.g., classifications). In contrast
to other state-of-the-art approaches, we aim at fully exploiting
the combined selective power of the predicate to efficiently
compute the query result. So far, most approaches aim at



exploiting the capabilities of modern CPUs for optimized full
table scans. Using the combined selective power, tree-based
indexing approaches seem promising even for main-memory
scenarios where such approaches are mostly not considered
today. To this end, we propose Elf, a tree-based index structure
for multi-column selection predicate queries featuring prefix-
redundancy elimination and a memory layout tailored to exploit
modern in-memory technology. In empirical studies, involving
synthetic queries as well as TPC-H queries and data, the results
indicate that our approach outperforms state-of-the approaches
up to a magnitude. We even reveal that our approach has
competitive performance for mono-predicate selections, in case
of low selectivity. On a more abstract level, the results reveal
that the query selectivity is the dominant cost factor. Our
approach is able to outperform state-of-the-art accelerated full-
table scans up to a selectivity of 18 %. So far, values around
2 % have been reported. This emphasizes the significance of
our contribution.

For future work, we examine the applicability of our
approach for additional database operations, especially joins.
Since the usage of Elf for groupings and aggregates are
intuitive, an efficient join processing using Elfs is currently
unknown. However, executing a partitioned join on several
Elfs or applying wide table approach seems promising in this
area [40], [41].
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PVLDB, vol. 6, no. 14, pp. 1654–1665, 2013.

[17] Transaction Processing Performance Council, “TPC benchmark H
(decision support),” Tech. Rep. 2.17.1, 2014.

[18] P. O’Neil, B. O’Neil, and X. Chen, “Star schema benchmark - Revision
3,” 2009.

[19] Transaction Processing Performance Council, “TPC benchmark DS,”
Tech. Rep. 2.1.0, 2015.

[20] O. Polychroniou and K. Ross, “Efficient lightweight compression
alongside fast scans,” in SIGMOD Workshop DaMoN. ACM, 2015.

[21] J. Rao and K. Ross, “Making B+-Trees cache conscious in main memory,”
in SIGMOD. ACM, 2000, pp. 475–486.

[22] T. Willhalm, Y. Boshmaf, H. Plattner, N. Popovici, A. Zeier, and
J. Schaffner, “SIMD-Scan: Ultra fast in-memory table scan using on-chip
vector processing units,” PVLDB, vol. 2, no. 1, pp. 385–394, 2009.

[23] T. Willhalm, I. Oukid, I. Müller, and F. Faerber, “Vectorizing database
column scans with complex predicates,” in VLDB Workshop ADMS,
2013, pp. 1–12.

[24] O. Polychroniou and K. Ross, “Vectorized bloom filters for advanced
SIMD processors,” in SIGMOD Workshop DaMoN. ACM, 2014.

[25] E. Sitaridi and K. Ross, “Optimizing select conditions on GPUs,” in
SIGMOD Workshop DaMoN. ACM, 2013, pp. 4:1–4:8.

[26] J. Zhou and K. Ross, “Implementing database operations using SIMD
instructions,” in SIGMOD. ACM, 2002, pp. 145–156.

[27] S. Idreos, M. Kersten, and S. Manegold, “Database cracking,” in CIDR,
2007, pp. 68–78.

[28] M. Kersten and S. Manegold, “Cracking the database store,” in CIDR,
2005, pp. 213–224.

[29] H. Pirk, E. Petraki, S. Idreos, S. Manegold, and M. Kersten, “Database
cracking: Fancy scan, not poor man’s sort!” in SIGMOD Workshop
DaMoN. ACM, 2014, pp. 4:1–4:8.

[30] E. Petraki, S. Idreos, and S. Manegold, “Holistic indexing in main-
memory column-stores,” in SIGMOD. ACM, 2015, pp. 1153–1166.

[31] T. Lehman and M. Carey, “A study of index structures for main memory
database management systems,” in VLDB, 1986, pp. 294–303.

[32] V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree: ARTful
indexing for main-memory databases,” in ICDE. IEEE, 2013, pp.
38–49.

[33] B. Schlegel, R. Gemulla, and W. Lehner, “K-ary search on modern
processors,” in SIGMOD Workshop DaMoN. ACM, 2009, pp. 52–60.

[34] C. Kim et al., “FAST: Fast architecture sensitive tree search on modern
CPUs and GPUs,” in SIGMOD. ACM, 2010, pp. 339–350.

[35] S. Zeuch, J.-C. Freytag, and F. Huber, “Adapting tree structures for
processing with SIMD instructions.” in EDBT, 2014, pp. 97–108.

[36] J. Dittrich, L. Blunschi, and M. Salles, “Dwarfs in the rearview mirror:
How big are they really?” PVLDB, vol. 1, no. 2, pp. 1586–1597, 2008.

[37] Y. Li, C. Chasseur, and J. M. Patel, “A padded encoding scheme to
accelerate scans by leveraging skew,” in SIGMOD. ACM, 2015, pp.
1509–1524.

[38] O. Polychroniou, A. Raghavan, and K. A. Ross, “Rethinking SIMD
vectorization for in-memory databases,” in SIGMOD. ACM, 2015, pp.
1493–1508.

[39] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi,
and C. Bear, “The Vertica Analytic Database: C-store 7 years later,”
PVLDB, vol. 5, no. 12, pp. 1790–1801, 2012.

[40] S. Baumann, P. Boncz, and K.-U. Sattler, “Bitwise dimensional co-
clustering for analytical workloads,” The VLDB Journal, pp. 1–26, 2016.

[41] Y. Li and J. M. Patel, “Widetable: An accelerator for analytical data
processing,” PVLDB, vol. 7, no. 10, pp. 907–918, Jun. 2014.


