Control and Cybernetics

vol. XX (XXXX) No. X

A Framework for Cost based Optimization of Hybrid CPU/GPU
Query Plans in Database Systems'

by
Sebastian BreB', Ingolf Geist', Eike Schallehn', Maik Mory', Gunter Saake!

! Otto-von-Guericke University Magdeburg, Universititsplatz 2, D-39106 Magdeburg
{bress,geist,eike,maik.mory,saake } @iti.cs.uni-magdeburg.de

Abstract: Current database research identified the use of computa-
tional power of GPUs as a way to increase the performance of database
systems. As GPU algorithms are not necessarily faster than their CPU
counterparts, it is important to use the GPU only if it will be beneficial for
query processing. In a general database context, only few research projects
address hybrid query processing, i.e., using a mix of CPU- and GPU-based
processing to achieve optimal performance. In this paper, we extend our
CPU/GPU scheduling framework to support hybrid query processing in
database systems. We point out fundamental problems and propose an
algorithm to create a hybrid query plan for a query using our schedul-
ing framework. Additionally, we provide cost metrics, which consider the
possible overlapping of data transfers and computation on the GPU. Fur-
thermore, we present algorithms to create hybrid query plans for query
sequences and query trees.

1. Introduction

Graphics Processing Units (GPUs) are specialized processors designed to support graph-
ical applications. GPUs have advanced capabilities of parallel processing and have
more computing power than CPUs nowadays. Using GPUs to speed up generic applica-
tions is called General Purpose Computation on Graphics Processing Units (GPGPU).
In particular, parallelizable applications benefit from computations on the GPU [43].

Current research focuses on the acceleration of database systems by using the GPU
as co-processor [7, 22, 23, 41, 45]. GPUs are utilized for accelerating query processing
like relational operations [7, 13, 17, 22, 23, 24, 31, 40, 41, 42], XML path filtering [38],
online aggregation [36], compression [3, 14] and scans [8] as well as query optimiza-
tion, e.g., GPU based selectivity estimation [5, 25].

IThis paper is an extended version of previous work [11]. This is the author’s version of the work.
It is posted here for your personal use. Not for redistribution. The definitive version was published in:
Sebastian BreB3, Ingolf Geist, Eike Schallehn, Maik Mory, and Gunter Saake. A Framework for Cost based
Optimization of Hybrid CPU/GPU Query Plans in Database Systems. Control and Cybernetics, 41(4):715—
742,2012.



2 Sebastian BreB, Ingolf Geist, Eike Schallehn, Maik Mory, Gunter Saake

However, the data transfer between CPU and GPU memory introduces a large
overhead leading to a better performance of CPU algorithms for relatively small data
sets [19]. Therefore, typical plans for a database query consists of a combination of
GPU and CPU algorithms. We call such a query plan a hybrid query.

We have to solve many problems to find a hybrid query plan that allows an efficient
usage of the GPU as co-processor during database query processing. Therefore, we
need a hybrid query optimizer [26] to construct a good hybrid query plan. The opti-
mizer uses a cost model, which includes GPU and CPU costs. Scheduling operations
to GPU or CPU increase the search space for an optimizer. Hence, we have to reduce
the search space by using two-step approaches or other heuristics.

In previous work, we presented a self-tuning decision model, which distributes
database operations response time minimal on CPU and GPU processing units [10].
The model is a black box approach that computes estimated execution times for algo-
rithms using statistical methods and observed execution times. So far, we only con-
sidered single operations. In this paper, we will present an extension how a hybrid
query plan with low response time is constructed from a logical query plan using the
scheduling framework.

This paper is an extended version of prior work [11]. It summarizes our decision
model [9, 10] and our cost estimation approach for hybrid query plans for effective
GPU co-processing in relational DBMS [11]. Current GPUs support concurrent pro-
cessing and data transfer, which can reduce the overall execution time [2, 39]. There-
fore, we contribute a new cost metric for the computation of query response time as-
suming concurrent processing of database operations and data transfer on the GPU is
possible. Furthermore, we extend our optimization algorithms from query sequences
(query plan as sequence of operations) to query trees (query plan as operator tree).

The remainder of the paper is structured as follows. First, we present the necessary
background in Section 2.1. In Section 2.2, we discuss basic problems that occur dur-
ing the processing and optimization of hybrid queries. We introduce our used notation
in the following Section 3. We give a short overview of the decision model in Sec-
tion 4 and present an approach for the construction of sequential hybrid query plans
in Section 5. Afterwards, we present our extended cost metrics and algorithms that
consider possible concurrency of data transfer and computation on GPU side in Sec-
tion 6 and utilize them in a new heuristic, which we describe in section 7. In Section §,
we generalize our concepts from query sequences to query trees. The paper closes
with a discussion of related work in Section 9, a discussion of future research steps in
Section 10, and a conclusion in Section 11.

2. Preliminaries

In this section, we provide a brief overview over graphics processing units and chal-
lenges for hybrid query processing.



A Framework for Cost based Optimization of Hybrid CPU/GPU Query Plans in Database Systems 3

grouping groupingcru |
|copY(GPU—*CPU) |
m Tlpu
| L
‘ < Pipelining on GPUs?
> Pepu I
/ \ / \ _ — |= Concurrent Kemel Invocation?
—_ —
(o) g OGpu - OGru - |
T| |T _I|_copy(cpu—»GPU)‘"___%_.CS?X(.?}TS."%F,’_: |
! 2 ! 2 T .. Concurrent Copying?
logical query plan hybrid query plan | problems

Figure 1. Example: hybrid query plan and problems of hybrid query processing

2.1. Graphics Processing Units

Graphics Processing Units (GPUs) are specialized processors that are designed to sup-
port graphical applications. In contrast to the CPU, the GPU is optimized for through-
put, which is achieved by massively parallel execution using large numbers of threads.
Furthermore, the GPU is optimized for numerical computation, but control flow state-
ments brake the performance of an GPU algorithm. Hence, not all applications benefit
from GPU co-processing [43].

A GPU can only process data that resides in the GPU memory. Hence, data has to
be transferred from CPU main memory to the GPU memory before processing on the
GPU. After the GPU processed the data, the result has to be transferred back into the
CPU memory [39]. The copy operations introduce an overhead, which can lead to a
higher total execution time of a GPU algorithm compared to its CPU counterpart, even
if the execution on the GPU is faster than on the CPU [19].

2.2. Challenges for Hybrid Query Processing

The main problem of hybrid query processing is to use the GPU only if it is beneficial
for the performance of a query. The physical optimization process in database query
processing should be revised to enable an effective usage of the GPU to increase the
performance of database systems. It is difficult to generalize query processing from
pure CPU based processing to a hybrid CPU/GPU solution. One possible approach
estimates the execution times of all algorithms for an operation, choosing for each
operation in a query the algorithm with the lowest expected costs.

If a GPU algorithm is selected, then additional communication costs will be in-
curred depending on the data storage location [19]. We discuss two common ap-
proaches.

First, a cost based optimization by pruning the optimization space and comparing
the costs of candidate query plans. Therefore, we need to create a set of hybrid query
plan candidates and then choose the plan with lowest costs. To keep the overhead low,
we have to reduce the optimization space while keeping promising candidates. Hence,



4 Sebastian BreB, Ingolf Geist, Eike Schallehn, Maik Mory, Gunter Saake

we need a cost model that can compute the cost of a hybrid query plan in consideration

of data storage location and possibly parallel data transfer and data processing. We

discuss our cost metrics in Section 6 and discuss a cost based optimization algorithm

for query sequences in Section 7.

Second, a greedy strategy which computes exactly one hybrid query plan. Consid-
ering the growth of the optimization space, the overhead of a cost based approach is
likely to be high. Hence, we present a greedy approach in Section 5 for query sequences
and in Section 8 for query trees.

The greedy strategy introduces lower overhead wheras the cost based approach is
likely to find a query plan with lower cost. Figure 1 illustrates how a hybrid query plan
is created from a logical query plan. Note the necessary copy operations, if the opti-
mizer decides to change the processing device (CPU/GPU). We identify five problems:
Pipelining Challenge Modern GPUs can enqueue kernels and concurrently process

them, but the inter-kernel communication is undefined [39]. Hence, a regular
pipelining between two GPU algorithms is not possible. However, it is possible
to integrate two operations into one kernel. In this case, several kernels are
combined and compiled together at run-time, if OpenCL is used [26].

Execution Time Prediction Challenge Database operations can be executed in par-
allel, e.g., in Figure 1, where two selections can be processed concurrently. The
concurrent processing of kernels is possible for current GPUs [39], but it is hard
to predict the influence on execution times.

Copy Serialization Challenge Concurrent copy operations in the same direction are
not allowed [39]. As Figure 1 illustrates, concurrent data transfer occurs in query
plans. Hence, the copy operations have to be serialized, and the following selec-
tions have to be serialized as well. A possible approach is the combination of
the two data streams in one copy operation and reorganize the data in the GPU
memory. In this way, the PCle Bus is better utilized.

Critical Query Challenge Since the number of concurrent kernel executions (16 by
current NVIDIA GPUs [39]) and the PCle Bus bandwidth are limited, not every
query benefits from the GPU. Thus, a heuristic is needed, which chooses “critical
queries” that first benefit from the GPU usage and second have a certain degree
of “importance”, because some queries require higher performance than others.

Optimization Impact Challenge A further problem is the estimation how the execu-
tion of one query influences the performance of another hybrid query. We do not
consider this problem here and address it in future work.

3. Notation

Let O be a database operation and let APy = {Ay,..,A;} be an algorithm pool for
operation O, where each algorithm A; in the algorithm pool is executable either on the
CPU or the GPU. The model assumes that the performance of an algorithm depends on
the input data set D, which abstracts the features of the real data set. This means a data
set contains all statistical information of the represented real data set. Examples are the
data size, the data distribution, or the selectivity, if a selection operation is performed



A Framework for Cost based Optimization of Hybrid CPU/GPU Query Plans in Database Systems 5

on the data. Note that for the selection, the selectivity has to be estimated according
to the operations parameters. Examples of selectivity estimation can be found in [5,
16, 25]. Let T, (A, D) be the estimated and T}, (A, D) be the measured execution time
of algorithm A for a data set D. Let MPL4 be a measurement pair list containing all
current measurement pairs (D, T4 (A, D)) of algorithm A.

A data set D is partitioned in n parts P;, where the parts are disjoint (P, N P; =0
with i # j) and complete (D = Py UP,U---UP,). The parts have to be disjoint, because
otherwise the same data has to be processed more than once. Overlapping parts also
lead to wrong results. The partitioning has to be complete, because otherwise it cannot
be guaranteed that the complete data set D is processed. Note that the definition allows
that a data set D is a part P of itself (P = D AP C D). The times to copy a part P;
completely from the CPU main memory to the GPU memory or vice versa are denoted
as Tepy(P;) and T.,y(P;), respectively. The estimated time an algorithm A needs to
process a part P, is TcomP(B,A). The result of an operation O for an input part P, is
denoted as Pyegyr ;i = O(F;). Let NG(P;) (not in GPU RAM) be a function that returns
1, if and only if, a part is not stored in the GPU RAM. Let FR(Pyeg; ;) (final result) be
a function that returns 1, if and only if, the resulting part Py, ; is a final result.

We now introduce query sequences and query trees. A logical query sequence
0OSjoe = 010, --- 0y, is a sequence of operations to be executed. Then, OS;ypriq 1s a
hybrid sequence query, if each operation in QS,, is replaced with an algorithm A.
Each algorithm uses either the CPU or the GPU. A logical query tree QTj, is the result
of a logical query optimization using a traditional database optimizer. A hybrid query
tree QTjyypriq is constructed from Q7;,, by assigning to each node in Q7;,, an algorithm.
In the case of GPU algorithms, necessary copy operations are inserted in the query tree.
Table 1 summarizes the notation.

4. Decision model

In this section, we provide a brief overview of our decision model, which we introduced
in previous work [9, 10].

4.1. Overview

Every year, new features are introduced in GPUs. Hence, it become more and more
complex to create analytical cost models to estimate the execution time of a GPU algo-
rithm, which was done by, e.g., Baghsorkhi et al. [6], He et al. [22], Hong et al. [27],
Kothapalli et al. [33], Schaa et al. [44] and Zhang et al. [47].

Furthermore, a GPU algorithm is not necessarily faster than its CPU counter part,
mainly due to the overhead of data transfers [19]. To decide on the algorithm with
lowest execution time, we introduced a self-tuning decision model [9, 10] and observed
significant performance improvements depending on the workload. Since the decision
model is a central component of our framework, we will provide a brief summary.

Our model uses a learning based approach, to counter the problem of increasing
complexity for analytical cost models. The basic idea is to observe the execution be-



Sebastian BreB, Ingolf Geist, Eike Schallehn, Maik Mory, Gunter Saake

Table 1. Used Notation

Symbol | Description

D Data set

A Algorithm

o Operation

APy Algorithm pool for O

T.4(A,D) Estimated execution time of A for D
Teat(A,D) Measured execution time of A for D
P Part i of data set D

Presultﬁi = O(PI)
NG(F,)

FR(Presult,i)

Result part

Function, returns true if and only if
P is stored in GPU RAM
Function, returns true if and only if

Presul i 18 not processed by the GPU anymore

OSiog Logical query sequence
OShybrid Hybrid query sequence
OTog Logical query tree
OThybria Hybrid query tree

havior of algorithms and deduce estimated execution times from past measured execu-
tion times. Hence, an algorithm is the central component of abstraction. The model
learns the characteristic execution time curve of an algorithm for a specific data set D.

Let O be an Operation and APy = {Ay,..,A,} an algorithm pool, which contains
all available algorithms to execute O. Note that each algorithm uses either the CPU
or the GPU, but not both. He et al. discovered that no significant performance gain
can be achieved by processing the same operation on both processing units by dividing
the operation into two parts, where one part is processed on the CPU and the other
on the GPU [22]. By choosing an algorithm that uses a certain processing unit, the
corresponding operation is processed by the CPU or the GPU.

Be T,y (D,A) the estimated and Ty, (D,A) the measured execution time of an algo-
rithm that processes a data set D. A measurement pair MP = (D, Ty, (D,A)) is a tuple
of a data set D and T, (D,A) the measured execution time of an algorithm A.

4.2. Architecture

An incoming operation O is passed to an algorithm pool which passes all available al-
gorithms to process O to an estimation component. The estimation component has the
data set D that is to process as additional input parameter and derives estimated exe-
cution times for each available algorithm for the specified data set D. These estimated
execution times are then passed to a decision component, which decides on the optimal
algorithm by using a user specified optimization criterion OC. Note, that the execu-
tion time Ty, (D,A;) of the selected algorithm A; is measured and is inserted in the



A Framework for Cost based Optimization of Hybrid CPU/GPU Query Plans in Database Systems 7

operation O dataset D optimization criterion
A, ¢ Test(A1,D),
Az ----- Test(AZrD):---:
algorithm pool | A, estimation component | Test(A,,D) —
CPU GPU —> [MPLL] --. [MPLy] --- [MiPLa] —>| decision component
MP:(DrTreal(Ai)) X
1

Figure 2. Overview of the decision model

measurement pair list of A; together with the features of the data set D. The feedback
loop enables our model to refine future estimations by collecting measurement pairs.
Figure 2 summarizes the architecture of our model.

4.3. Estimation Component

To enable the estimation component to compute estimated execution times without us-
ing analytical cost models, we have to specify three parameters for each algorithm:
(1) a statistical method, (2) an approximation function Fj4 (D), which is dictated by the
statistical method, and (3) a measurement pair list M PL4, which contains recent obser-
vations of the algorithms execution. Our model updates the approximation function of
an algorithm by applying the assigned statistical method to the measurement pair list
of the algorithm. More details are available in previous work [10].

4.4. Decision Component

The decision component currently supports only response time as possible optimization
criteria OC. Hence, our model tries to select the algorithm for execution that has the
lowest execution time. We implemented the response time criteria by selecting the
algorithm that is most likely to be the fastest. Therefore, we let the model choose the
algorithm with the lowest estimated execution time to execute operation O.

5. Constructing Hybrid Query Sequences

We present a greedy approach to construct a hybrid query sequence using our decision
model. The approach does not guarantee optimal results, but introduces only a low
overhead. We assume for simplicity that a logical query sequence is a sequence of
operations QS;,e = 0107 ---0,. We construct a hybrid query sequence by choosing
for each operation O; in 0S;,, the response time minimal algorithm, which leads to a
hybrid query sequence QSjypriq. Depending on whether an algorithm uses the CPU or
GPU, the operation is executed on the corresponding processing unit. Let CA(D,O)
be a function, which chooses the fastest algorithm A for a given data set D and an
operation O. It uses the function 7,5 to compute the estimated execution times for the
algorithms. T,y considers the time needed to copy data to and from the GPU memory
in the case a GPU algorithm is selected. Hence, CA(D, O) chooses a GPU algorithm



8 Sebastian BreB, Ingolf Geist, Eike Schallehn, Maik Mory, Gunter Saake

only, if the execution time of a CPU algorithm will be higher than the execution time
of a GPU algorithm and the needed data transfer times together. Let CAS(A) be a
function that returns an algorithm sequence needed to execute algorithm A. In case of
a CPU algorithm, CAS(A) returns A. In the case of a GPU algorithm, CAS(A) returns a
sequence of three algorithms. The first is A.p,y (D), which copies the input data from the
CPU RAM to the GPU RAM (host to device). The second is A; gpy (D) that processes
the data set D on the GPU. The third is Acpyp(Dyesuir,i), Which transfers the result set
back to the CPU RAM (device to host). In case of a CPU algorithm, operation O; is
substituted by A; cpy (D).

T, (D.A ifA=A
Test(DaA) _ est( 5 ) 1 ' CPU (1)
Tost (Acpy(D)A(D)Acpyb(Dresuir))  otherwise
CA(D,O) = A with T, (D,A) = min{T,4(D,A)|A € APy} 2)
A(D ifA=A
cas(a) = 44P) na=Acy 3)
Acpy(D)A(D)Apyp(Dreguir)  otherwise

We formalize our approach in Algorithm 1. In lines /-6, we construct the optimal
query sequence using the functions CA(D,O) and CAS(A) of our decision model by
choosing the best expected algorithm for each operation in the query. The algorithm
leads to two succeeding copy operations in different directions, when two succeeding
operations are executed on the GPU. This unnecessary copy operations are removed by
the algorithm in lines 7—11.

Algorithm 1 Construction of QSj,y5i¢ from QS;,, with Greedy Algorithm

Input: 0S;,, = (01,D");-++;(0,,D")
Output: OSpypria =A1-+-Am

12 OSpypria =0
2: for O; in 0S),, do
32 A=CA(D",0)
AS =CAS(A)
append AS t0 OSyyprid
end for
. for A;in QShybrid do
if (A,’ = Acpyb (D) and A,‘+1 = Acpy (D)) then
delete A;A;1 1 from QShybrid
10:  end if
11: end for

° X DN

Example: For the following example, we omit the data sets in the algorithm notation.
We consider selections (S), projections (P), joins (J), and groupings (G). The query plan



A Framework for Cost based Optimization of Hybrid CPU/GPU Query Plans in Database Systems 9

Table 2. Example execution times of algorithms for the given example data sets
Processing unit | Og | Oy | Op | Og | Ocpy | Ocpyp
CPU 1 5 5 2 3 3
GPU 3 2 1 7 - -

from Figure 1 as query sequence is written like this: OgOsO;0pO¢. The following
hybrid query sequence is the result of the first loop in algorithm:

As.cPuAs,cPuAcpyAs GPUApybAcpyAPGPUA cpybAG.cPU

After the removal of unnecessary copy operations in the second loop of the algorithm,
the final result is

As.cPuAs,cPuAcpyAs.GPUAPGPUA cpybAG.cPU

Since the decision model decided to use a GPU algorithm in two cases, we can assume
that the response time of the hybrid plan is smaller than the time of the pure CPU plan.

Discussion of the greedy algorithm: Our proposed algorithm is not guaranteed to
generate an optimal hybrid query sequence in all cases for this problem. Execut-
ing a single operation on the GPU might be more expensive than using the CPU.
However, executing a sequence of operations on the GPU may be faster than exe-
cuting them entirely on the CPU. We consider for the cost computation no concur-
rent copying and processing and hence, sum up the times of all algorithms in a plan
to compute the execution time of a query sequence. In this example, we will use
the execution times shown in Table 2. Consider the query sequence OsOs0O;0pO¢
and assume the algorithm processes Oy. Then Toq (AcpyAsgruAcpy) is greater than
Tost(Ascpy) B+2+3 =8 >5) and the algorithm decides for the CPU algorithm for
the Join. However, if the algorithm had considered O; and the successor Op, then
it would have seen that T, (AcpyAJ,GPUAP,GPUAcpyb) is less than T, (AJ,CPUAP,CPU)
B+2+14+3=9<5+5), so the usage of the GPU algorithms for the join and the
projection would result in a cheaper query sequence. Since the algorithm only chooses
locally optimal solutions and does not look forward in the query sequence, it cannot
consider the possibility that the selection of a slower algorithm could lead to a faster
query sequence, because it cannot foresee the copy operation optimization. However,
the algorithm is able to create a promising candidate, for evolutionary or randomized
optimization algorithms.

6. Cost Metric for Computation of Response Time for Query Se-
quences

The use of concurrent GPU kernel execution and data transfer using page locked host
memory [39] mitigates the negative impact of expensive copy operations. In order to



10 Sebastian BreB, Ingolf Geist, Eike Schallehn, Maik Mory, Gunter Saake

enable an optimizer to use this technique, cost metrics for computation of total and
response times of a query have to be developed. For this, we extend our concept using
sequential data transfer and GPU computation to parallel data transfer and GPU com-
putation. To the best of our knowledge, concurrent kernel execution and data transfer
of the GPU is not considered in cost metrics in prior work. Ili¢ et al. report that they
take into account the overlapping of computation and communication [29]. The authors
claim that the performance approximations can accurately model the real and improved
performance of the GPU. However, they did not describe their metrics in [29]. Hence,
we provide the necessary metrics in this paper.

The input of the cost formulas are the estimated executions times of algorithms
for a given data set and device. The estimation component of our decision model
provides these times. To learn and improve the estimations, the real execution times of
every algorithm in a query plan are collected and added as measurements pairs to the
estimation component.

6.1. Extension of Existing Metrics

We now extend the sequential metrics. In general, a GPU can only process a data
set, if it is completely stored in the GPU RAM. However, in a database context we
can mitigate this restriction by partitioning the data set. That allows parallel copying
and processing of different parts. Partioning is possible for operations like selection,
projection, and aggregation. AS the GPU RAM is comparably small compared to the
CPU RAM, it is beneficial to concurrently transfer data to the GPU, process the data
on the GPU, and copy processed data back to the CPU RAM.

Traditional approaches [22, 33, 44] model the cost of a database operation O by
using the GPU algorithm Agpy as follows. The execution time of a GPU algorithm
is the sum of the time needed to copy the input data from the CPU RAM to the GPU
RAM (T, (D)), the time to process the data set D (T;omp(D,A)), and the time needed
to transfer the result data from the GPU RAM back to the CPU RAM (T..y5 (Dreguir))-

Tost (DaA) = Tcpy (D) + Tcomp (DaA) + Tcpyb (Dresult) (€]

The equation (4) does not consider the capability of GPUs to concurrently transfer
data between CPU and GPU RAM and to process data on the GPU. Since the relative
time for copying data compared to the execution time of the GPU kernel increases with
more processing power of the GPU [19], such a fixed cost metric could lead to the
decision to use the CPU, while the GPU would have been faster if the concurrent data
copying and processing would have been considered. Hence, this metric is not suitable
for the cost computation of a single operation and a query, respectively.

For the new cost metric, we assume that the data is partitioned or can be quickly
partitioned. Furthermore, the new metric distinguishes between final results (result of
a query) and intermediate results. If data is processed on the GPU and the result is an
intermediate data set, then this data can be processed by the next operation on the GPU



A Framework for Cost based Optimization of Hybrid CPU/GPU Query Plans in Database Systems 11

without the necessity of transfer data from the CPU RAM to the GPU RAM. If some
data is still missing, e.g., the second table needed for a join, then this data has to be
copied from the CPU to the GPU RAM.

For example, consider the selection on a table T that is followed by a join with a
second table Ty, denoted as J(T1,T;). If the selection is performed on the GPU, then
the join J(T¢,T2) can be processed without any additional copying cost if T and T,
are located in the GPU RAM. If T, is not yet in the GPU RAM, it has to be copied
from the CPU RAM. If the data is partitioned, the GPU can start the join processing
after the first part of T, arrived in the GPU RAM. This principle was used by Pirk
et al. [41], too. However, caching of intermediate results would only be possible, if
there is enough space available in the GPU RAM. For large data sets, it is possible
that an execution of an operation needs the whole GPU RAM, or even a partitioning
of the input data becomes necessary, if the whole data set does not fit in the GPU
RAM. Therefore, the physical constraints of the hardware have to be considered during
optimization process. We now extend the traditional metrics for total and response time
computation considering partitioning and concurrent data transfer.

6.2. Computation of Total Execution Time

For total execution time computation, we extend the metric in Equation (4) to the par-
titioning approach. We do not consider partitioning time, because we assume it is
negligible. A data set D is partitioned into n parts P;,Ps,...,P,. This results into the
Equation (5) for total execution time of a GPU algorithm:

Tcomp (PlaA)

n
i=1

Ttotal(DaA) = (i Tcpy(Pi) NG(R)) +
+

Y T (O(P)) -FR<0<B->>> )

The total execution T;,,, time consists of the sum of the execution times of each
part. Thereby, we consider the location of a part. If a part P; is located in the GPU
RAM, the transfer time 7., (P;) - NG(P,) is zero (NG(P;) = 0). Equally, if the result is
not final and reused in a later operation, the data will not be copied back. That means,
T.pys(O(F;)) - FR(O(P;)) is zero in this case.

6.3. Computation of Response Time for Single Operations

Equation 5 does not consider the concurrent execution of data transfer to and from
GPU RAM and processing on the GPU. The steps that can be done concurrently are
not considered in the metric 5. Let the data set D be partitioned into Py, P>, ..., P,. The
algorithm A processes D on the GPU. The GPU algorithm starts the processing of D
directly after the first part P; has been completely transferred into the GPU RAM. The
corresponding result P, 1 is either transferred back to the CPU RAM or kept in the



12 Sebastian BreB, Ingolf Geist, Eike Schallehn, Maik Mory, Gunter Saake

GPU RAM if it will be needed in a subsequent operation. After this initialization step,
the execution time of subsequent processing parts P11 is the maximum time of the data
transfer of the following part P, to GPU RAM, the computation of the part Py, or
transfer back of the last part P; to the CPU RAM. We summarize this in the function

maX(max(Tcpy (Pi+2) y Tcomp (Pi+1 7A) 3 Tcpyh (Presult,i) )

Besides the initialization step, we also have to process serially the last part, i.e., the
GPU processing of part P, and the data transfer of P ,. Furthermore, we will in-
clude the location of a part into the basic formula by using the function NG(P;) and
FR(Pesuiri)- If a part is already in the GPU RAM (NG = 0), we do not have to transfer
it. If a result is not a final result (FR(Pyesur,;) = 0), we keep the data in the GPU RAM.

Equation(6) summarizes all concepts and provides the computation of the response
time of an algorithm A for a partitioned data set D = P{P;--- P,.

Tresp(D,A) = Tepy(P1) - NG(F) +max(Tepy(Py) - NG(F), Teomp (P1,A)) (6)
n—2
+ max(Tpr(PiJrZ) NG(Pt)a 7;:omp (Pi+1 7A)7 Tcpyb (Presult,i) 'FR(Presult,i))
i=1
+ max(Tcamp (P,,,A), Tcpyb (Pnfl) 'FR(Presult,i)) + Tcpyb (Pn) : FR(Presult,i)

We now discuss the usage of the response time metric for the selection of the re-
sponse time minimal sequential query plan in consideration of concurrent copying and
processing.

6.4. Computing the Response Time of a Hybrid Query Sequence

The estimated costs Ty (QShybria) of a hybrid query OSpypriq is the sum of all es-
timated execution times 7,y (A) for each algorithm A in OShypria With respect to con-
current copying and processing if A is a GPU algorithm. The costs correspond to the
response time of the operation sequence. Algorithm 2 outlines the computation of the
response time. If a data transfer and a computation are concurrently processed, the
flags FR (copy back to host in parallel) or NG (copy to device in parallel) are set to
true or false. The flags are evaluated by the functions FR(P) and NG(P), where P is a
part. Depending on the values, the data transfer time is part of the overall sum or not.

6.5. Data Partitioning

We now address challenges for data partitioning, which have to be resolved. To be
able to utilize metrics from this Section, we have to support efficient partitioning of
the data. We could use common partitioning schemes like range or hash partitioning.
The problem is to choose the size of the parts. Larger parts mean less parts, which lead
to better PCle bus utilization but also to higher latency, before processing can start.
Hence, it is not a trivial task to create a partition, which results in minimal processing



A Framework for Cost based Optimization of Hybrid CPU/GPU Query Plans in Database Systems 13

Algorithm 2 Computation of response time for hybrid query sequence

Input: OS;ypria
OUtPUt: Tresponse of QShybrid

1: time=0

2: for A; € QShybrid do

3:  if A; == copyOperation then
4 continue

5. endif

6 ifA;_| == A.py then

7

8

9

A;_1.DNG=1
else
: A;_1.D.NG=0
10:  end if
11: ifA,'_H == Acpyb then
12: Aiy1.D.FR = 1
13:  else
14: Aiy1.D.FR=0
15:  end if
16:  time = time + Tyesponse (Ai)
17: end for

time. Furthermore, data needs to be partitioned, if the data set is larger than the avail-
able GPU RAM. Note that some operations cannot be processed independently, e.g.,
sorting operations. A system can presort data parts, but the final sorting order must be
determined by a global merge step on the whole data set. If multiple GPUs are avail-
able, it is beneficial to use them for query processing. If the data is already partitioned,
the parts of the data set D can be distributed on a GPU and processed concurrently,
which is likely to significantly decrease the query response time. We address this issue
in future work.

7. The 2-Copy-Operation Heuristic

We already discussed that the greedy hybrid query sequence construction algorithm
is not optimal. Therefore, we present an optimization algorithm that uses the new cost
metrics presented in Section 6 and that allows only two data transfers in a sequence.
The refined approach is based on the observation of Gregg et al. that copy operations
have significant overhead [19] and GPU algorithms are often faster. Hence, it is very
likely that an optimal hybrid query sequence contains a minimum of copy operations.
Therefore, we allow maximal two copy operations in one hybrid query sequence. That
means, all hybrid query sequences of the form

Ay cpuAacru - AicPUAcpyAir1,GPU - " Aj,GPUAcpyA j+1,cPU -+ - AncPU (7



14 Sebastian BreB, Ingolf Geist, Eike Schallehn, Maik Mory, Gunter Saake

Algorithm 3 Construction of OS},y4i¢ from 0S,, using Two Copy Heuristic

Input: QSlog = (OlaDl);' o ;(Onan)
Output: O0S;ypria = A1+ An

1. Tuinimal resp —

2 OShybria =0

3 QShybrid min =0

4: for i =;i < [QSj0g|;i+ + do

s: for j=;j <|OSipe| —i:j+ + do

6: OShybria =create_hybrid_query sequence _candidate(QS;o4, 1, j)
T if T;’esp(QShybrid ) < Tninimal resp then
8 Tinimai resp — Tresp(QShyhrid)

9: QShybrid min — QShybrid
10: end if
11:  end for
12: end for
13: return QShyhrid min

where j > i,n>i>1,n> j>1 are allowed. The allowed set of sequences also
includes pure CPU plans as well as pure GPU plans. The 2-Copy-Operation heuristic
reduces the optimization space from exponential in number of operations to quadratic
in number of operations. Since the algorithms has to create a query plan for each point
in the reduced optimization space, our optimization algorithm has cubic complexity in
the number of operations, see Algorithm 3.

After initialization of local variables (lines 1-3), the algorithm traverses the opti-
mization space using two nested loops. The algorithm tests all combinations of posi-
tions of data transfer algorithms (Acpy,Acpys). That means, it varies the position and
length of the GPU part

AcpyAi1,6PU -+ Aj.GPUAcpyy = SubPlancgpy (i, j)

of the hybrid query sequence. The first loop varies the position of
SubPlangpy (i, j) in the query plan where as the second loop varies the length of
SubPlangpy (i, j) (lines 4-5). For every GPU sequence, the corresponding candidate
plan is constructed by executing Algorithm 4 (line 6). The algorithm computes the
response time of the candidate. The candidate is the current result, if and only if, the
estimated response time of the query plan is lower than all previous observed candidate
plans (lines 6-9). The response time is computed by Algorithm 2 that we introduced
in Section 6. We consider possible concurrent data transfers and computation in this
way. After completion of the loops, the minimal found hybrid query sequence plan is
returned (line 13).

As already mentioned, Algorithm 4 creates a candidate plan for a logical query
sequence and the position position and length



A Framework for Cost based Optimization of Hybrid CPU/GPU Query Plans in Database Systems 15

Algorithm 4 Create hybrid query sequence candidate

Input: 0Sj,, = (01,DY);---;(0,,D"), position, gpu_sequence_length
Output: OSjypriq =A1-+-An

12 OSnypria =0
2: for O; in 0S;,, do
3:  if i<position or i>position+gpu_sequence_length then

4 A= CAcpy(D',0)
5. else

6: A =CAgpy (l)i7 O)
7. end if

8:  AS=CAS(A)

9:  append AS to OSpypria
10: end for

11: //delete redundant copy operations
12: for A; in OSjypriq do
13: if (A; = Acpyb (D) and A,‘+1 = Acpy(D)) then

14: delete A;A;4 from QShybrid
15:  endif
16: end for

17: return OSpypria

gpu_sequence_length of the GPU part of the query. First, the algorithm initializes the
candidate plan (line 1). Second, the algorithm traverses the logical query plan chooses
a GPU algorithm for operation O; if i is greater than or equal the start position position
of the GPU part and less than or equal the start position of the GPU part plus the length
of the GPU part. Otherwise, a CPU algorithm is selected (line 3—7). Note that the
functions CAcpy (D', 0) and CAgpy (D,0) choose the best available CPU and GPU
algorithm, respectively, using our decision model. In the next step, the function CAS
is called and the returned algorithm sequence is added to the hybrid query sequence.
As in Algorithm 1, the use of the function CAS may lead to redundant copy operations
that have to be removed from the hybrid query plan (line 12—16). In the last step, the
constructed candidate plan is returned (line 17).

Note that the 2-Copy-Operation heuristic is not guaranteed to find the response
time minimal query plan. If the optimal plan uses more than two copy operations,
the heuristic chooses a suboptimal plan. The 2-Copy-Operation heuristic considers the
investigation of sequences of operations. In contrast, the greedy algorithm only uses lo-
cal decisions. Therefore, it is more likely that the 2-Copy-Operation heuristic produces
better hybrid query sequences than the greedy approach. However, the algorithm has a
cubic time complexity compared to the linear time complexity of the greedy approach.
Furthermore, the 2-Copy-Operation heuristic creates a quadratic number of candidate
hybrid query sequences, while the greedy approach creates exactly one query sequence.
We will investigate in future work, under which conditions, which algorithm is better.



16 Sebastian BreB, Ingolf Geist, Eike Schallehn, Maik Mory, Gunter Saake

8. Extension: Query as Tree of Operations

We extend our discussed concepts and algorithms to support query trees using se-
quences as building blocks.

8.1. Optimization Problem for Query Trees

Similar as for query sequences, we have to remove redundant copy operations from
a query tree. Therefore, we adapt our algorithms for sequences to trees. A tree node
node is a 7-tuple (id, name, parent, left, right, A, D), where id is the unique identifier
of the node, name is the name of the node, parent, left, right are the parent node, left
and right child and A is the algorithm executed by the node (or Operation O for logical
query tree). D is the result data set, after the algorithm of the node was executed.

For simplicity, we assume that neither the Critical Query Challenge, nor the Opti-
mization Impact Challenge of the discussed challenges in Section 2.2 occur for a hybrid
query tree. If the Copy Serialization Challenge or the Execution Time Prediction Chal-
lenge occur in a query tree, we can create the corresponding query sequence, because
the operations in a query sequence are processed sequentially.

8.2. Constructing Hybrid Query Trees

To optimize query trees, we redefine the functions CA(D, O) and T, (A, D) and modify
our algorithms.

Let CA(D, O) be a function, which chooses the fastest algorithm A for a given data
set D and an operation O. It uses the function 7, to compute estimated execution
times for algorithms. 7.5 considers the time needed to transfer data to and from the
GPU RAM in the case of a selected GPU algorithm. Hence, CA(D, O) chooses a GPU
algorithm only, if the execution time of a CPU algorithm is greater than the execu-
tion time of a GPU algorithm plus the time needed for the data transfers. Note that
we can have two data transfers from the CPU to the GPU RAM, because we allow
binary operations. Hence, they are considered in Equation (8). The CAS function is
replaced by the function CST (node) (create sub tree), which returns a sub tree needed
to execute algorithm A on the chosen processing device. In case of a CPU algorithm,
CST (node) returns a node where A is the selected algorithm. In the case of a GPU
algorithm, CST (node) returns a sub tree with tree levels. Depending on whether the
Operation O is unary or binary, level 2 contains one node or two nodes, which execute
copy operations from the CPU RAM to the GPU RAM using the A, algorithm. The
computation node is stored in level 1 and does the actual processing. It has the nodes
in level 2 as its child nodes. If the computation node executes a unary operation, then
the preceding copy node is the left child. The parent of the computation node is stored
in level 0, which executes a copy operation from the GPU RAM to the CPU RAM us-
ing the A,y algorithm. Figure 3 displays an example subtree. Note that computation
nodes are either white or gray, where white nodes denote a GPU algorithm and a gray
node a CPU algorithm.



A Framework for Cost based Optimization of Hybrid CPU/GPU Query Plans in Database Systems 17

Acpyp(node.D) performs computation on CPU

performs computation on GPU
Agpu(node.left.D,node.right.D)

00

N\ copies data from the
- - \ ] CPURAM to the GPU RAM
Ve AN ~ —~
\ \ :..“---..u... .
- /} - /} copies data back from the
Agy(node.leftD) Ay (node.right.D) ...~ GPURAMtothe CPURAM

Figure 3. Example: generated subtree by algorithm 5

T, (node.D,A) if A =Acpy

T, (node.left.D,Acpy)

Too(node,A) = { +Test (node.right D, Acpy) ®)
+T,y (node.left.D,

nOde.right.D,AGpU)

+To5(node.D,Acpyp) otherwise

CA(node,0) = A with T,y (node,A) = min{ T,y (node,A)|A € APp} 9)

We adapt Algorithm 1 for trees as follows. We stick to the principle to choose a
GPU algorithm only, if it is faster than a CPU algorithm including the copy overhead.
However, we have to implement the function CST (node), which replaces CA(D, O), in
algorithm 5. The algorithm returns the passed node (line 25), if it executes a CPU algo-
rithm and constructs a subtree including copy operations for a node executing a GPU
algorithm (lines 2-23). The algorithm takes care of creating the nodes and integrate
them in the tree by updating the node pointers of node, the child nodes of node and the
parent node of node.

Algorithm 6 constructs a hybrid query tree plan from a logical query tree plan
using the CST (node) algorithm 5. First, the logical query tree is copied to a working
copy, which will contain the final hybrid query tree (line 1). Second, the algorithm
calls the getLevelorder function, which returns a queue that contains all nodes of the
hybrid query tree. For each node in the queue, the algorithm calls decision model’s
CA function, which returns the algorithm with lowest expected execution time and
assigns the algorithm to the current node (lines 3—4). Afterwards, the algorithm uses
the function CST (node) to get an appropriate subplan. Since CST (node) creates and
integrates the subplan automatically into the hybrid query tree, the algorithm can ignore
the return value.

After the algorithm created an initial hybrid query tree (lines 1-6), it has to remove
redundant copy operations from the plan (lines 7-16). It, therefore, traverses the tree



18 Sebastian BreB, Ingolf Geist, Eike Schallehn, Maik Mory, Gunter Saake

Algorithm 5 ConstructSubtree(node)

Input: Treenode : node

Output: Q,,(Tree) forGPUalgorithminnode
1: if node.A==Agpy then
2:  leftchild = createNode(node.left.D,A.py)

3:  leftchild.parent=node

4:  leftchild.left=node.left

5:  if node.left!=NULL then

6: node.left.parent=leftchild

7. endif

8:  node.left=leftchild

9:  if node.right!=NULL then
10: rightchild = createNode(node.right.D.A.py)
11: rightchild.parent=node
12: rightchild.right=node.right
13: node.right.parent=rightchild
14:  endif

15:  node.right=rightchild
16:  newparent = createNode(node.D.A.pyp)
17:  if node.parent.left!=node then

18: node.parent.left=newparent
19: else

20: node.parent.right=newparent
21:  end if

22: newparent.parent=node.parent
23:  node.parent=newparent

24:  return newparent

25: else

26:  return node

27: end if

and deletes copy nodes if the current node uses a Ay, algorithm and the current nodes
parent uses a Apy algorithm. We use the convention that if a node has a single child
node, the child node is the left child of the node. Hence, the algorithm updates the
left pointers of the parent and child nodes of the copy nodes (line 10-11). Afterwards,
the copy nodes are deleted (line 13—14). As a last step, the algorithm returns the con-
structed hybrid query tree (line 17). Figure 4 illustrates the algorithm for an example
logical query tree.

For a hybrid query tree constructed by algorithm 6, the following three assertions
have to be fulfilled. First, a white and a gray node must not be directly connected,
there has to be at least one copy operation between them. Second, no redundant copy
operations may occur in the plan. Third, at the end of the queries execution, the result
data has to be in the CPU RAM. If assertion one or three are not fulfilled, the query



A Framework for Cost based Optimization of Hybrid CPU/GPU Query Plans in Database Systems 19

Algorithm 6 Construct hybrid query tree for logical query tree
1: QThybrid = QTlog
2: queue = getLevelorder(QTypriq)
3: for all node in queue do

node.A= CA(node.left.D,node.right.D, O)

5 tmp = ConstructSubtree(node)

6: end for

7: for all node in QT},ypriq do

8

9

N

if node.A==A_,,; and node.parent. A==A, then
/lupdate pointer

10: node.parent.parent.left=node.left

11: node.left=node.parent.parent

12: //delete unneccessary copy operations
13: delete node.parent from QTj,ypriq

14: delete node from QT},ypria

15:  endif

16: end for

17: return OTjypria

plan is not executable. If only assertion two is not fulfilled, the plan is executable, but
unlikely to be beneficial with respect to the response time optimization criterion.

8.3. Estimating the Response Time of Query Trees

We now modify our algorithms to be able to perform the cost computation for a hybrid
query tree. The basic idea is to use the algorithm for the sequence queries to compute
the response time of a hybrid query tree.

For simplicity, we disallow concurrent executions of operations on the GPU, be-
cause of the Execution Time Prediction Challenge. Additionally, we forbid concurrent
copy operations in one direction, because of the Copy Serialization Challenge. Since
the decision model already assigned estimated execution times for each algorithm in
the hybrid query tree, we only need to find the critical path in the plan. Therefore, we
have to create a sequence query for every possible path from the root node to one of
the leave nodes of the hybrid query tree, which is done in Algorithm 7. We apply our
extended algorithm, which considers the overlapping of data transfer and computation,
to each created path. The path with the highest response time dictates the lower bound
of the response time of the hybrid query tree.

The upper bound is computed by turning the hybrid query tree into a hybrid query
sequence and compute its response time. Then, the database optimizer can decide to
use a hybrid query plan for execution or to use a different plan, e.g., a CPU only query
tree. Note that our cost estimation algorithm can be used with other algorithms that
construct hybrid query trees from logical query trees.



20 Sebastian BreB, Ingolf Geist, Eike Schallehn, Maik Mory, Gunter Saake

i Acpyn(node5.D)

Agpy(nodeb.left.D,node.right.D)

\} Acpy(nodeb.right.D)

oyp(noded.D) Acpy(nodeb.left.D)

Agpy(noded.left.D)

_ Acpy(node7 left.D)
\} Aupy(noded right.D)

\\/‘f\

Acpyp(node3.D)

Agpy(node3.left.D,node.right.D)

7 N\ N
I Acpy(node3.left.D) \ ) \ ) Acpy(node3.right.D)
~

T/ N~
| Awlrode10) @ Agpy(node2.left.D)

IACDy(node1 left.D)

Agpu(node1 left.D)

Figure 4. Example: cosntructing hybrid query tree

9. Related Work

In this section, we will discuss related work. We discuss query optimization in a gen-
eral context, other hybrid scheduling frameworks, learning based execution time esti-
mation, and GPU co-processing.

9.1. Query Optimization

Optimization in parallel database systems has similar tasks as optimization of GPU co-
processing: optimizing the response time and scheduling operations to resources [12].
Most approaches follow the two-phase optimization approach [28]. First, the database
optimizer creates a best sequential query plan. Second, an additional optimizer al-
locates the operators to the parallel resources to minimize the response time [21].
Thereby, communication costs [20] and different kinds of shared resources [15] have to
be taken into account. Lanzelotte et al. noticed the enlarged search space and the prob-



A Framework for Cost based Optimization of Hybrid CPU/GPU Query Plans in Database Systems 21

Algorithm 7 Computation of response time for hybrid query tree

Input: OTypria
OUtPUt: Tresponse of QThybrid

1: Tresponsez_‘x’
2: for all node in QT},riq.getLeaves() do
3:  path = computePath(root,node)

4:  time = computeResponseTime(path) //considers concurrent data transfer and

computation
5 if time>T,5ponse then
6: Tresponse=time
7 end if
8: end for

9: return Tiesponse

lem of not optimal sub-plans during dynamic programming style enumeration [35].
The authors showed that randomized search approaches during optimization have a
good performance for parallel database systems. Our approach is also based on the
two-phase model. We schedule a seriell plan between GPU and CPU. Intra-operator
parallelism is covered by the self-adaptive model [10], [9]. We focus on the commu-
nication costs between main memory and device memory in this work. We also have
to consider the special situation that a GPU is a co-processor, and we do not have a
symmetric system. For scheduling, adapted deterministic and randomized approaches
are compared.

The parallelization of queries using threads of multi-core systems is also related [34].
Krikellas et al. used several greedy and dynamic programming approaches to schedule
an operator tree on different threads to minimize the response time. Their approach
is based on a symmetric environment and does not have to consider communication
costs.

9.2. Hybrid Scheduling Frameworks

Ili¢ et al. showed that large benefits for database performance can be gained if the
CPU and the GPU collaborate [29]. They developed a generic scheduling framework
[30], which is a similar approach to ours, but does not consider specifics of query
processing. They applied their scheduling framework to databases and tested it with
two queries of the TPC-H benchmark. However, they do not explicitly discuss hybrid
query processing.

Augonnet et al. develop StarPU, which can distribute parallel tasks on heteroge-
neous processors [4]. Both frameworks are extensible and have to be investigated to
which degree they can be customized, so they can be used in a database optimizer. The
biggest difference to our decision model is that it is tailor made for use in a database
optimizer, so it provides, e.g, no tasks abstractions.



22 Sebastian BreB, Ingolf Geist, Eike Schallehn, Maik Mory, Gunter Saake

9.3. Learning based Execution Time Estimation

Akdere et al. examined how analytical workloads can be modeled [1]. Their approach
can estimate execution times for single operations as well as queries and is based on
feature extraction. Matsunaga et al. develop the PQR2 method, an approach to esti-
mate the resource usage of applications [37]. The approach can be used for execution
time estimation, but needs several milliseconds to compute one estimation. This prop-
erty makes it difficult to use the PQR2 method in a database optimizer. In contrast,
we utilize the least squares method of the ALGLIB! for execution time estimation and
observed execution times below 50 microseconds [10]. Zhang et al. use the “’transform
regression technique” to estimate the execution time of XML queries [46]. Their ap-
proach allow a self-tuning optimizer similar to ours, but our goals and used statistical
methods differ.

9.4. GPU Co-processing

Current research investigates the use of GPUs for database operations [7, 22, 41, 45].
Walkowiak et al. discuss the usability of GPUs for databases [45] and show the applica-
bility on the basis of an n-gram based text search engine. He et al. present the concept
and implementation of relational joins on GPUs [23] and of other relational operations
[22].

Pirk et al. develop an approach to accelerate indexed foreign key joins with GPUs
[41]. The foreign keys are streamed over the PCle bus while random lookups are
performed on the GPU. Furthermore, Pirk introduces a new approach for GPU Copro-
cessing, which decomposes data bitwise. The approach uses the GPU to process a low
resolution version of the input data in a GPU preselection phase and then executes the
CPU refinement phase, where the final results are computed by eliminating false posi-
tives from the result list [40, 42]. Hence, their approach tries to utilize CPU and GPU
equally, similar to our approach. However, our model balances the load on operation
level.

Kerr et al. present an approach that can select a CPU or a GPU implementation
[32]. In contrast to our decision model, their model decides for a CPU/GPU algorithm
statically, whereas our decision model can do it dynamically. However, the model of
Kerr et al. does not introduce overhead at runtime.

Bakkum et al. develop a concept and implementation of the SQLite command pro-
cessor on the GPU [7]. The main target of their work is the acceleration of a subset of
possible SQL queries. Govindaraju et al. present an approach to accelerate selections
and aggregations with the help of GPUs [18].

He et al. developed a research prototype, which implements relational operations
on CPU and GPU, respectively [22]. They presented a co-processing scheme that as-
signs operations of a query plan to suitable processing devices (CPU/GPU). He et al.
developed a cost model, which computes estimated execution times of single GPU
algorithms in consideration of copy operations. They used a two-phase optimization

"http://www.alglib.net/



A Framework for Cost based Optimization of Hybrid CPU/GPU Query Plans in Database Systems 23

model for queries. In the first phase, a relational optimizer creates an operator tree. In
the second phase, the optimizer decides for every operator whether an operation is ex-
ecuted on GPU, CPU, or concurrently on both. He et al. proposed an exhaustive search
strategy for small plans and a greedy strategy for large plans for the second phase.
Since they used a calibration based method on top of an analytical cost model, their
approach works currently for relational databases only, whereas our approach is more
general and works with arbitrary algorithms, e.g., for XML databases. Our approach is
also more general because the black-box self-adaptive mode allows the consideration
of different load situations. From this research, we conclude that a GPU is an effective
co-processor for database query processing.

Heimel created the prototype Ocelot by implementing GPU algorithms of com-
mon relational operations in MonetDB [26]. He developed basic decision heuristics
for choosing a processing unit for query execution. However, he did not consider
hybrid query plans, where the CPU and the GPU are used to execute a query. Fur-
thermore, Heimel identified two query optimizer problems. First, it is a necessity to
have cost metrics, which enable the comparison of CPU and GPU algorithms. Second,
the search space is bigger since placement of query plans (and hence operations) have
many possibilities. Hence, he pointed out the need for a hybrid query processor and
optimizer.

10. Future Work

To address the problem of parallel processing of different queries, we will present a
heuristic that will decide which database queries can benefit most from using the GPU,
because not all queries can benefit from GPU co-processing.

An alternative approach to deal with parallelism within and between queries would
be to allow both by default, and let the GPU schedule parallel requests on its own. As
pointed out in Section 2.2, execution times will be harder to estimate and the benefit for
single queries will decline. Nevertheless, our self-learning cost-estimation will adjust
to this and can find a balance, because estimated execution times will increase due to
concurrency situations. Furthermore, only queries benefiting most from a GPU-based
execution will be executed as hybrid queries based on our described decision model.
This approach has to be carefully evaluated.

Since our algorithm does not generate an optimal plan in all cases, other solutions
have to be considered. Another approach to find the cheapest query plan would be
to generate a candidate set of hybrid query plans, and apply our cost metrics to each
of them and then choose the cheapest plan for execution. The possible benefit and
overhead of this according approaches will be examined in future work. Furthermore,
we will implement our framework in our prototype, which is a column oriented GPU
accelerated DBMS.



24 Sebastian BreB, Ingolf Geist, Eike Schallehn, Maik Mory, Gunter Saake

11. Conclusion

In this paper, we pointed out common problems that occur during the optimization of
hybrid query processing and need to be addressed to allow an effective co-processing
by the GPU during database query processing.

Furthermore, we provided a simple algorithm for constructing a good hybrid query
sequence for a given logical query sequence using our scheduling framework and ex-
tended the algorithms and concepts for hybrid query trees. Additionally, we discussed
cost metrics which consider concurrent processing and data transfer on GPU side to al-
low the optimizer to compute more realistic estimations for the response time of hybrid
query sequences/trees.

12. Acknowledgement

The work in this paper has been partially funded by the German Federal Ministry of Ed-
ucation and Science (BMBF) through the Research Program under Contract No. FKZ:
13N10817. We thank Mario Pukall, Siba Mohammad as well as the reviewers of the
Second ADBIS workshop on GPUs In Databases for helpful feedback and discussions.

References

[1] M. Akdere and U. Cetintemel. Learning-based Query Performance Modeling and
Prediction. International Conference on Data Engineering (ICDE), pages 390—
401, 2012.

[2] AMD Corporation. AMD Accelerated Parallel Processing OpenCL Programming
Guide, rev1.3f edition, Dec 2011. page 81.

[3] W. Andrzejewski and R. Wrembel. GPU-WAH: Applying GPUs to Compress-
ing Bitmap Indexes with Word Aligned Hybrid. In International Conference on
Database and Expert Systems Applications: Part Il (DEXA (2)), pages 315-329,
2010.

[4] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU: a unified plat-
form for task scheduling on heterogeneous multicore architectures. Concurrency
and Computation: Practice & Experience, 23(2):187-198, Feb. 2011.

[5]1 D. R. Augustyn and S. Zederowski. Applying CUDA Technology in DCT-Based
Method of Query Selectivity Estimation. In Second ADBIS workshop on GPUs
In Databases (GID), pages 3—12. Springer, 2012.

[6] S.S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W.-m. W. Hwu. An
Adaptive Performance Modeling Tool for GPU Architectures. SIGPLAN Not.,
45:105-114, Jan. 2010.

[7]1 P. Bakkum and K. Skadron. Accelerating SQL database operations on a GPU
with CUDA. In 3rd Workshop on General-Purpose Computation on Graphics
Processing Units, GPGPU 10, pages 94-103. ACM, 2010.

[8] F. Beier, T. Kilias, and K.-U. Sattler. GiST Scan Acceleration using Coproces-



A Framework for Cost based Optimization of Hybrid CPU/GPU Query Plans in Database Systems 25

sors. In Eighth International Workshop on Data Management on New Hardware,
DaMoN ’12, pages 63-69. ACM, 2012.

[9] S. BreB, E. Beier, H. Rauhe, E. Schallehn, K.-U. Sattler, and G. Saake. Au-
tomatic Selection of Processing Units for Coprocessing in Databases. In /6th
East-European Conference on Advances in Databases and Information Systems
(ADBIS), pages 57-70. Springer, 2012.

[10] S. BreB}, S. Mohammad, and E. Schallehn. Self-Tuning Distribution of DB-
Operations on Hybrid CPU/GPU Platforms. In Grundlagen von Datenbanken
(GvD), pages 89-94. CEUR-WS, 2012.

[11] S. BreB, E. Schallehn, and I. Geist. Towards Optimization of Hybrid CPU/GPU
Query Plans in Database Systems. In Second ADBIS workshop on GPUs In
Databases (GID), pages 27-35. Springer, 2012.

[12] S. Chaudhuri. An Overview of Query Optimization in Relational Systems. In
Symposium on Principles of Database Systems (PODS), pages 34-43. ACM,
1998.

[13] G. Diamos, H. Wu, A. Lele, J. Wang, and S. Yalamanchili. Efficient Relational
Algebra Algorithms and Data Structures for GPU. Technical report, Center for
Experimental Research in Computer Systems (CERS), 2012.

[14] W. Fang, B. He, and Q. Luo. Database Compression on Graphics Processors.
Proceedings of the VLDB Endowment (PVLDB), 3:670-680, September 2010.

[15] M. N. Garofalakis and Y. E. Ioannidis. Parallel Query Scheduling and Optimiza-
tion with Time- and Space-Shared Resources. In 23rd International Conference
on Very Large Data Bases, VLDB *97, pages 296-305. Morgan Kaufmann Pub-
lishers Inc., 1997.

[16] L. Getoor, B. Taskar, and D. Koller. Selectivity estimation using probabilistic
models. In International Conference on Management of Data, SIGMOD ’01,
pages 461-472. ACM, 2001.

[17] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha. GPUTeraSort: High Perfor-
mance Graphics Coprocessor Sorting for Large Database Management. In SIG-
MOD International Conference on Management of Data, SIGMOD 06, pages
325-336. ACM, 2006.

[18] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and D. Manocha. Fast Compu-
tation of Database Operations using Graphics processors. In SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’04, pages 215-226. ACM,
2004.

[19] C. Gregg and K. Hazelwood. Where is the data? Why You Cannot Debate CPU
vs. GPU Performance without the Answer. In Proceedings of the IEEE Inter-
national Symposium on Performance Analysis of Systems and Software, ISPASS
"11, pages 134-144. IEEE, 2011.

[20] W. Hasan. Optimization of SQL Queries for Parallel Machines, volume 1182 of
Lecture Notes in Computer Science. Springer, 1996.

[21] W. Hasan, D. Florescu, and P. Valduriez. Open Issues in Parallel Query Optimiza-
tion. SIGMOD Record, 25(3):28-33, 1996.

[22] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V. Sander.



26 Sebastian BreB, Ingolf Geist, Eike Schallehn, Maik Mory, Gunter Saake

Relational Query Coprocessing on Graphics Processors. ACM Trans. Database
Syst., 34:21:1-21:39, 2009.

[23] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and P. Sander. Re-
lational Joins on Graphics Processors. In SIGMOD International Conference on
Management of Data, SIGMOD ’08, pages 511-524. ACM, 2008.

[24] B. He and J. X. Yu. High-Throughput Transaction Executions on Graphics Pro-
cessors. Proceedings of the VLDB Endowment (PVLDB), 4(5):314-325, 2011.

[25] M. Heimel and V. Markl. A First Step Towards GPU-assisted Query Optimiza-
tion. In Third International Workshop on Accelerating Data Management Systems
Using Modern Processor and Storage Architectures (ADMS’12), 2012.

[26] Heimel, M. Investigating Query Optimization for a GPU-accelerated Database.
Master’s thesis, Technische Universitit Berlin, Electrical Engineering and Com-
puter Science, Department of Software Engineering and Theoretical Computer
Science, October 2011.

[27] S.Hong and H. Kim. An Analytical Model for a GPU Architecture with Memory-
level and Thread-level Parallelism Awareness. SIGARCH Comput. Archit. News,
37:152-163, June 2009.

[28] W. Hong and M. Stonebraker. Optimization of Parallel Query Execution Plans in
XPRS. Distributed and Parallel Databases, 1(1):9-32, 1993.

[29] A. 1lié, F. Pratas, P. Trancoso, and L. Sousa. High Performance Scientific Com-
puting with Special Emphasis on Current Capabilities and Future Perspectives,
chapter High-Performance Computing on Heterogeneous Systems: Database
Queries on CPU and GPU, pages 202-222. 10S Press, 2011.

[30] A. Ili¢ and L. Sousa. CHPS: An Environment for Collaborative Execution on
Heterogeneous Desktop Systems. International Journal of Networking and Com-
puting (IJNC), 1(1), 2011.

[31] T. Kaldewey, G. Lohman, R. Mueller, and P. Volk. GPU Join Processing Revis-
ited. In Eighth International Workshop on Data Management on New Hardware,
DaMoN 12, pages 55-62. ACM, 2012.

[32] A. Kerr, G. Diamos, and S. Yalamanchili. Modeling GPU-CPU Workloads and
Systems. In 3rd Workshop on General-Purpose Computation on Graphics Pro-
cessing Units, GPGPU 10, pages 31-42. ACM, 2010.

[33] K. Kothapalli, R. Mukherjee, M. S. Rehman, S. Patidar, P. J. Narayanan, and
K. Srinathan. A Performance Prediction Model for the CUDA GPGPU Plat-
form. In International Conference on High Performance Computing (HiPC),
pages 463—472. IEEE, 2009.

[34] K. Krikellas, M. Cintra, and S. Viglas. Scheduling threads for intra-
query parallelism on multicore processors. Technical Report EDI-
INF-RR-1345, University of Edinburgh, School of Informatics, 2010.
http://www.inf.ed.ac.uk/publications/report/1345.html.

[35] R. S. G. Lanzelotte, P. Valduriez, M. Zait, and M. Ziane. Invited project re-
view: Industrial-strength parallel query optimization: issues and lessons. Inf.
Syst., 19(4):311-330, 1994.

[36] T. Lauer, A. Datta, Z. Khadikov, and C. Anselm. Exploring Graphics Processing



A Framework for Cost based Optimization of Hybrid CPU/GPU Query Plans in Database Systems 27

Units as Parallel Coprocessors for Online Aggregation. In International Work-
shop on Data warehousing and OLAP, DOLAP ’10, pages 77-84. ACM, 2010.

[37] A.Matsunaga and J. A. B. Fortes. On the Use of Machine Learning to Predict the
Time and Resources Consumed by Applications. In International Conference on
Cluster Cloud and Grid Computing, pages 495-504. IEEE, 2010.

[38] R. Moussalli, R. Halstead, M. Salloum, W. Najjar, and V. J. Tsotras. Effi-
cient XML Path Filtering Using GPUs. In VLDB - Workshop on Accelerating
Data Management Systems Using Modern Processor and Storage Architectures
(ADMS), 2011.

[39] NVIDIA. NVIDIA CUDA C Programming Guide. http://developer.
download.nvidia.com/compute/DevZone/docs/html/C/doc/
CUDA_C_Programming_Guide.pdf, 2012. pp. 30-34, Version 4.0,
[Online; accessed 1-May-2012].

[40] H. Pirk. Efficient Cross-Device Query Processing. Proceedings of the VLDB
Endowment, 2012.

[41] H. Pirk, S. Manegold, and M. Kersten. Accelerating Foreign-Key Joins using
Asymmetric Memory Channels. In VLDB - Workshop on Accelerating Data Man-
agement Systems Using Modern Processor and Storage Architectures (ADMS),
pages 585-597, 2011.

[42] H. Pirk, T. Sellam, S. Manegold, and M. Kersten. X-Device Query Processing
by Bitwise Distribution. In Proceedings of the Eighth International Workshop on
Data Management on New Hardware, DaMoN ’ 12, pages 48-54. ACM, 2012.

[43] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to General-
Purpose GPU Programming. Addison-Wesley Professional, Ist edition, 2010.

[44] D. Schaa and D. Kaeli. Exploring the Multiple-GPU Design Space. In Interna-
tional Symposium on Parallel&Distributed Processing, IPDPS °09, pages 1-12.
IEEE, 2009.

[45] S. Walkowiak, K. Wawruch, M. Nowotka, L. Ligowski, and W. Rudnicki. Explor-
ing Utilisation of GPU for Database Applications. Procedia Computer Science,
1(1):505-513, 2010.

[46] N. Zhang, P. J. Haas, V. Josifovski, G. M. Lohman, and C. Zhang. Statistical
Learning Techniques for Costing XML Queries. In International Conference on
Very Large Data Bases, VLDB ’05, pages 289-300. VLDB Endowment, 2005.

[47] Y. Zhang and J. D. Owens. A Quantitative Performance Analysis Model for GPU
Architectures. Computer Engineering, pages 382-393, 2011.



