A Survey on Modeling Techniques for Formal Behavioral
Verification of Software Product Lines

Fabian Benduhn
University of Magdeburg
Magdeburg, Germany
fabian.benduhn@ovgu.de

Thomas Leich
METOP GmbH
Magdeburg, Germany
thomas.leich@metop.de

ABSTRACT

As software product lines are increasingly used for safety-critical
systems, researchers have adapted formal verification techniques
such as model checking and theorem proving to cope with compile-
time variability. While the focus of the ongoing debate lies on the
verification mechanisms itself, it becomes increasingly difficult for
researchers to maintain an overview about the various accompany-
ing modeling techniques. We survey existing approaches as a first
step towards a unifying view on variability mechanisms in formal
modeling techniques for product lines. We illustrate the approaches
by means of a running example to illustrate their commonalities and
differences.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification—
modeling, variability; D.2.2 [Software Engineering]: Design
Tools and Techniques

General Terms
Design, Languages, Verification

Keywords

Software Product Lines, Variability, Survey, Modeling, Verification

1. INTRODUCTION

Today, software systems must often be developed in a large va-
riety of variants to meet the requirements of different customers.
Software product line engineering is a paradigm of software de-
velopment in which multiple products that share a common set of
development artifacts are developed simultaneously [16l48]]. Each
product of a product line is considered as a combination of fea-
tures [3]. A feature is a user-visible characteristic of a software

%?IEI%ISHSI %13t]o make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

VaMoS ’15, January 21 - 23 2015, Hildesheim, Germany
Copyright 2015 ACM 978-1-4503-3273-6/15/01. .. $15.00
http://dx.doi.org/10.1145/2701319.2701332

Thomas Thim
University of Magdeburg
Magdeburg, Germany

tthuem@ovgu.de

Malte Lochau
TU Darmstadt
Darmstadt, Germany
malte.lochau@es.tu-
darmstadt.de

Gunter Saake
University of Magdeburg
Magdeburg, Germany

saake@ovgu.de

Software product lines are increasingly used for the development
of safety-critical and mission-critical systems in which software er-
rors may have consequences that cannot be tolerated [61} |8]. For
single-system engineering, the use of formal specification and veri-
fication techniques has emerged as an approach to establish correct-
ness properties [12]. A challenge of ongoing research is to adapt
formal verification techniques to cope with the variability of soft-
ware product lines [S9,154].

In general, a verification technique consists of a formalism to model
the behavior of the system, an accompanying formalism to de-
scribe desired behavioral properties, and a well-defined mechanism
to check the model against the specification. In recent years, re-
searchers have adopted established verification techniques to cope
with the variability of product lines [59].

So far, the literature focuses on handling the variability in the veri-
fication mechanisms rather than on the modeling and specification
formalisms. A number of surveys include an overview of such tech-
niques to some degree, but none of them focuses primarily on for-
mal modeling [54}[1,131,159]. In a survey on analysis techniques for
product lines that includes formal verification, Thiim et al. identify
the need for a survey of the accompanying modeling and specifica-
tion techniques for future research [59].

In recent years, several approaches to model the behavior of prod-
uct lines have been proposed. Each of these approaches has been
developed rather independently from each other, being tailored to-
wards a specific verification technique. Despite their differences,
they share certain common principles regarding the handling of
variablity. We give an overview of existing formal, bevavioral mod-
eling techniques for software product lines. We exemplify different
mechanisms to cope with variability by means of a running exam-
ple to emphasize their commonalities. We see this as a first step to-
wards a unifying view on variability mechanisms in formal, behav-
ioral modeling techniques that may help to take advantage of their
commonalities. Our results show that many existing approaches
share commonalities and can be divided into a small number of
categories with individual advantages and disadvantages.

2. BACKGROUND

Similar to single-system verification, a significant part of the mod-
eling techniques for product lines are based on transition systems
(TS). Thus, we give a brief introduction to transition systems.

)

inactive) (aborted) (done

activate cor Tabort commit T finish
running ready committed)

Figure 1: One product from the transaction product line.

TSs are a widely used formalism to model systems [6, 35]. A TS
can be seen as a directed graph in which nodes represent program
states and edges represent transitions between states. Edges can be
labeled with names of actions to describe the behavior related to the
execution of the transition. We give the following simple definition
adapted from Baier and Katoen [6]:

A (labeled) transition system T.SE] is a tuple (S, Act, —, I) where

S is a set of states,

Act is a set of actions,

—C 8§ x Act x S is a transition relation,
1 C Sis a set of initial states.

A TS describes all possible executions of a system. An execution
starts in some initial state sop € /. In each step of execution, the
system evolves according to the transition relation. The outgoing
transitions of a state determine the next possible steps of execu-
tion. Figure [T] shows an example of a TS of an transaction sys-
tem. A transaction starts in the state inactive. After activation it
reaches the state running, in which it performs operations on the
database. When the end of transaction (EOT) is reached, the trans-
action either gets aborted or committed depending on whether the
performed operations preserve the consistency of the database.

So far, we have seen how systems can be modeled with TS. Such
TS are often used for model checking [6,[11]. In model checking,
the states of a TS are systematically explored to check whether the
system fulfills certain properties. For this purpose, it is neccessary
to express such properties formally. This is typically done by us-
ing special logics with semantics defined over TS such as Linear
Temporal Logic (LTL) and Computation Tree Logic (CTL) [6].

3. MODELING TECHNIQUES FOR SOFT-
WARE PRODUCT LINES

The specific characteristic of product-line models is that multiple
products that share large parts of their behavior but differ in others
must be developed simultaneously. Thus, modeling techniques that
include a notion of variability have been proposed in the literature.
In this survey, we focus on modeling techniques for formal, behav-
ioral verification of software product lines. We present annotation-
based modeling techniques for product lines in Section and
composition-based modeling techniques for product lines in Sec-
tion

3.1 Annotation-Based Modeling

In annotation-based modeling techniques, parts of a model are an-
notated with information about their mapping to products of the
product line. The set of products is typically refered to by means
of feature expressions, i.e., by logical expression over the set of
features. An important class of annotation-based formalisms are
variants of TSs, which are often used for model checking of soft-
ware product lines. Common to the formalisms based on TSs is

178 is called finite if S and Act are finite.

inactive lock

w lockedDB

running

EOT

(ready
1un|ock w‘it

commi
(unlockedDHcommitted)

abort finish

(reschedule@

reschedule

finish

aborted

Figure 2: Family-TS of the transaction product line.

that variability is encoded by adding specific labels on transitions
of a system. When modeling a product line with a TS, each prod-
uct of a product line differs in the set of reachable states and the
set of transitions to reflect behavioral differences. Commonalities
between products manifest in transitions that are common to some
or even to all products.

Family-TS. The most basic approach to use a TS for the modeling
of product-lines, to which we refer to as Family-TS, is to include
all transitions of all products into a single TS. This approach has
been discussed by Fischbein et al., mainly to motivate the develop-
ment of further extensions [25]. In this basic approach, no explicit
labels to express variability are required. The implicit meaning of a
transition 7 can informally be seen as: There is at least one product
that includes transition 7'.

A Family-TS can be used to reason about a limited set of proper-
ties. Consider the case of reachability, i.e., the question whether a
certain target state 7 is reachable from a source state S. If state T is
not reachable from state S in the Family-TS, we can conclude that
this property holds for all products of the product line. However,
if state T is reachable from state S, we cannot conclude that this
property holds for any particular product. The reason is that we do
not know whether all involved transitions are contained in a given
product, i.e., there is no explicit information about the mapping be-
tween transitions and products. The Family-TS in Figure[2]contains
all transitions from all products of the transaction product line. As
there is no transition from state done to state running, we can con-
clude that successfully terminated transitions are not rescheduled
and executed again.

Modal Transition Systems. To include more information about
the mapping between transitions and products of a product line,
Fischbein et al. proposed to use Modal Transition Systems
(MTS) [25]. An MTS is a TS in which a transition is either manda-
tory (must) or optional (may). Again, all transitions of all products
are included in a single MTS, but the additional labels reveal more
information about the mapping between transitions and products.
Informally, the meaning of a must-transition is that the transition
is contained in all products, and the meaning of a may-transition is
that the transition is contained in at least one but not all products.

In Figure 3] we show an MTS for the transaction product line.
If we consider the example of reachability, there are now more
cases, in which we can reason about properties of products. The

inactive lock

, activate

must

---------- » may

rescheduled
abortl,.";x commi
reschedule ‘,/" (UnlockedDB)‘ """" (committed)

finish

fmlsh
done

Figure 3: Modal Transition System (MTS) of the transaction
product line.

path from state running to state committed contains only must-
transitions. We can conclude that state committed is reachable from
state running in all products of the product line. The path between
state lockedDB and state committed includes exactly one may-
transition. We can conclude that there exists at least one product
in which this is true because a may transition is included in at least
one product. However, if there are two or more may-transitions on
a path, we cannot conclude anything about the path in products be-
cause we do not know whether there exists a product that contains
all involved transitions.

A similar formalism, in which MTS are specified based on I/O-
automata has been proposed independently [36]. Variability is
also achieved by distinguishing between must-transitions and may-
transitions. A variant of these variable I/O-automata has been pro-
posed to model individual domain artifacts, i.e., the product line is
composed of a set of domain artifacts and each artifact is annotated
with variability information [38].

Generalized Extended Modal Transition Systems. Generalized
extended modal transition systems (GEMTS) have been proposed
as a generalization of MTS [24]. In GEMTS, the modal annota-
tions are applied to hyper-transitions, i.e., transitions to multiple
states. Intuitively, this can be seen as a set of transitions with the
same source. The informal meaning of a may-transition is that each
product contains a certain number n of the annotated transitions.
Analogously, a must transition means that each product contains at
most n of the annotated transitions. The value of the number #» must
be defined additionally for each hyper-transition. While GEMTS in
this sense are more expressive as MTS, they do not overcome the
general limitation that relationships between individual annotations
cannot be expressed.

In Family-TS, MTS, and GEMTS, the information about the map-
ping is not completely embedded into the model, which is their
main limitation. For instance, this manifests in whether model
checking algorithms are able to pinpoint specific products that vi-
olate a given property [14]. In MTS and GEMTS, specific labels
express whether a certain transition is contained in all products or
not. However, from such a model we cannot conclude the exact set
of products that is target of the mapping. To overcome this limita-
tion for analysis purposes, it is possible to enrich the specification
technique for properties with additional variability information by
using a specific logic [5].

inactive Locking

lockedDB

}
J

Rescheduling

(reschedulecD

NonLocking

Locking

running

C ready
lLocking%

Lockin
(unlockedDHcommitted)

ocking Locking

Rescheduling

NonLocking

aborted

Figure 4: Featured Transition System (FTS) of the transaction
product line. The action labels are as usual but have been omit-
ted for simplicity.

Featured Transition Systems. Featured Transition Systems (FTS)
have been proposed by Classen et al. [15]. The initial idea of FTS
is to label each transition of an TS with a feature, directly constitut-
ing a mapping between the transition and this feature. The mean-
ing of a transition T labeled with feature F' can informally be read
as: Transition 7 is contained exactly in those products that contain
feature F. In Figure[d we show an FTS for the transaction product
line. As each transition can be labeled with only one feature, we
have to introduce a separate feature NonLocking as an alternative to
feature Locking. Otherwise, products containing feature Locking,
would still contain transitions that circumvent the locking mecha-
nism, e.g., inactive — running.

The main advantage of FTS is that the information of the mapping
between transitions and products is completely revealed [[15]. Con-
sider the reachability property. If a path leads from the source state
S to the target state T, we can conclude that this path is contained in
exactly the products that contain all features that are used as transi-
tion labels on this path. However, FTS are limited by the set of pos-
sible mappings that can be expressed: Each transition is mapped to
only one feature. To overcome this limitation, Classen et al. have
extended FTS by allowing transitions to be labeled with feature
expressions [19} [18} 14} 122]]. In this case, we can replace feature
NonLocking, by labeling the transitions with the logical negation
of feature Locking, i.e., with —Locking. By doing so, we associate
this transition with all products that do not contain feature Locking.
In the remainder of the paper, we denote this variant of Featured
Transition Systems as FTS.

The language fPromela has been proposed as an input language
for FTS for the SNIP model checker, an FTS-based adaption of
the SPIN model checker [13]. Figure [5] shows an example of an
fPromela model. A transaction is modelled as a process. A spe-
cial type features is used to declare the set of features as variables.
Inside the process transaction, guarded statements are used to an-
notate parts of the code with its mapping to features. In contrast
to Promela, these guarded statements are denoted by keyword gd
rather than keyword i £. The statements lockDB() and unlockDB()
are only executed if feature Locking is present. The SNIP model
checker interprets the model as an FTS, i.e., for the feature vari-
ables all possible values (true and false) are considered to reason
about all products. In an approach similar to FTS, I/O Automata are
annotated with a mapping to an orthogonal variability model [37].

1
2
3
4

5
6
7
8
9

typedef features {
bool Locking;
bool Rescheduling;

s
features f;

proctype transaction ()
{

gd :: f.Locking — lockDB();
performOperations ()
gd :: f.Locking — unlockDB();

Figure 5: Example of composition-based Annotations in

fPromela

Adaptive Featured Transition Systems. In Dynamic Software
Product Lines (DSPLs), the set of features may change at run-
time [27] in dependence of the environment. To model DSPLs,
Adaptive Featured Transition Systems (A-FTS), have been pro-
posed [17]]. In contrast to FTS, A-FTS consider variability of both
the system and of its environment by distinguishing between sys-
tem features and environment features. System features can be
fixed or adaptable. Environment features can change over time, and
can be observed by the system to initiate reconfigurations. This
is achieved by enabling or disabling system features. The main
technical difference between FTS and A-FTS, is that the transition
relation is given as a function that defines which transitions exist,
to which products they belong, and the current state of the system
configuration and environment configuration. However, the princi-
ple to use feature expressions to map transitions to products is the
same.

Featured Timed Automata. Featured Timed Automata (FTA) are
a variant of FTS for real time systems [20]. In a real-time SPL,
features cannot only change behavior but also make changes to so
called timing constraints for actions. In Timed Automata (TA), this
is reflected in the use of clock constraints, that define timing prop-
erties for actions such as the minimum or maximum time required
for execution. FTA extend Timed Automata by support to annotate
clock constraints with feature expressions to establish a mapping to
features.

State Diagram Variability Analysis Models. State Diagram Vari-
ability Analysis (SDVA) models have been proposed as an exten-
sion of FTS with means to express hierarchical sub-models to struc-
ture the model of a product line [23]]. This is achieved by the ability
to refine states of a model by defining separate submodels.The se-
mantics of SDVA models are defined over FTS that are derived by
flattening the hierarchical structure of the model.

Other Approaches. The idea to annotate state transitions has also
been applied to Petri nets [45]. Feature Petri Nets have been pro-
posed to model the behavior of product lines and for context-aware
test models [46, 50]. In Feature Petri Nets, the mapping between
parts of the model and products is established in the same way
as in FTS, i.e., by labeling transitions with feature expressions.
As a Petri net can be transformed to a TS, they can be seen as a

Feature Base

(inactive

i activate

E

Feature Locking Feature Unlocking

LockedDB UnlockedDB

Figure 6: Example of composition-based TS based on Fisler et
al.

.......... » Variation Point

(aborted) (done)
x
OoT

K Sbort A finish

committed)

commit,

ready

higher-level modeling formalism that supports a more convenient
way of modeling for certain classes of systems. Similarly, process-
algebraic approaches have been proposed [60} 151} 30]. PL-CCS is
a modeling technique based on Milner’s calculus of communicat-
ing systems (CCS) that has been enriched with a variant operator
as a means to implement variability [51} 130]. Simple hierarchi-
cal variability modeling (SHVM) has been proposed in which each
variation point of a hierarchical model is mapped to exactly one
feature [S3]]. The limitation of the mapping to target single features
provides benefits for compositional verification [53[]. In the mod-
eling language FLan, the mapping from model to sets of products
is not achieved by means of annotations but given implicitely by
treating features as first class entitie [58]]. In FLan, variability of
processes can be defined by using special operators, e.g., to expres
alternativity.

3.2 Composition-Based Modeling

So far, we have presented annotation-based modeling techniques.
In the following, we present composition-based approaches, in
which the product line is decomposed into separate modules rep-
resenting features that can be composed to derive products.

Composition-Based TS. In Figure [f] we exemplify a technique
for composition-based modeling based on TS, initially proposed
by Fisler et al. [26} |39} 140, 41]]. In this technique, a product line
is modelled as a base feature with a number of additional feature
modules. Intuitively, the base feature can be seen as a TS with
special transitions that serve as extension points. At these fixed
locations, feature modules can be plugged in to extend the behav-
ior of the model. Each feature module is modelled as a partial
TS with special input and output states. In the example, feature
Locking consists of a single state. In our example, this feature can
be plugged in between state inactive and state running of the base
model. A limitation of this approach is that feature modules cannot
crosscut the base model, i.e., a feature can only be plugged in as
a whole at a given location. Thus, we have to extract the unlock-
ing functionality of feature Locking into a separate feature module.
Feature Unlocking can be plugged in between state ready and state
aborted, or between state done and state committed.

In Figure[7] we show a similar approach in which feature modules
are successively added to a base system. The transitions between
states of different features are explicitely defined [42]]. Thus, each
feature can have multiple incoming and outgoing transitions to ar-
bitrary states of the base system. This allows us to incorporate both
state lockedDB and state unlockedDB in a single module. How-
ever, this approach does not allow to replace transitions. Thus, the
transition between state running and state ready of the base feature

Feature Base @ = s » Incoming/Outgoing Transition|

(inactive) aborted) (done

= : —
activate cor Tabort‘:“ commit T finish
running ready “}—(committed)"g

1 Feature Locking ™,

)

LockedDB | { UnlockedDB |54

Figure 7: Example of composition-based TS based on Liu et al.

is included in all products. To avoid this, we would have to extract
these transitions into a separate feature NonLocking that must be
included if feature Locking is not selected.

Cordy et al. propose a similar composition-based technique, in
which the base system is modeled as a TS and feature modules
as special transtition systems called TS+ [21]. A TS+ is a transi-
tion system with activation conditions that express the states of the
base system from which the feature module can be reached, and
return conditions that define the set of states into which the feature
module may return to the base system.

Finite State Machines with Variability. In research regarding
evolution of product lines, Finite State Machines with Variablity
(FSMv) have been proposed [44]. FSMv considers for each fea-
ture a model of its requirements (FSMr) and a model of its design
(FSMd). The purpose of this composition-based approach is to sup-
port an open-world assumption of product lines in which previously
unknown features may be added to a product line.

Using Conventional Decomposition Mechanisms. A simple tech-
nique to composition-based modeling that has been proposed in
the literature is to use a conventional modeling language known
from single-system engineering and use the existing modulariza-
tion mechanisms to encapsulate features.

This technique has been investigated in the case of abstract state
machines (ASM) [9]. The existing decomposition mechanisms of
ASM have been explored regarding their capability to encapsulate
features [28| [7]. These development methods apply the idea of
stepwise refinement to formal models: an abstract model is succes-
sively refined to a more concrete model, and finally to executable
code. The existing modularization mechanisms have been shown to
be sufficient to modularize features for a model of Java 1.0 and its
implementation on the JVM together with correctness proofs [7].

Similarly, a feature-oriented extension of Event-B has been pro-
posed in the literature [28}|561149]. In this line of research, the con-
ventional Event-B composition mechanisms have been explored re-
garding their capabilities to implement and compose features. The
difference to the work on ASMs is that a mapping between features
and modules has been explicitely considered. We consider both ap-
proaches as composition-based modeling techniques, as each fea-
ture is encapsulated in a single module. A limitation of this ap-
proach is that they support only one dimension of decomposition,
which does not allow to express features that crosscut the dominant
decomposition structure of a system [S7]].

For the detection of feature interactions, the modeling language

Promela has been used to model the behavior of features [10].
However, these features can only be inserted at fixed locations in
the base program.

Feature-Oriented Extensions of Modeling Languages. The idea
to extend an existing modeling language with means to modular-
ize features has been applied to modeling techniques. A feature-
oriented extension of the formal modeling language Alloy called
FeatureAlloy has been proposed by Apel et al. [4]. The main pur-
pose of FeatureAlloy is to bridge the gap between problem space
and solution space by means of an abstract model of the product
line. A FeatureAlloy model is capabable to encapsulate the behav-
ior of crosscutting features. However, the refinement of models us-
ing multiple levels of abstraction as supported by ASM or Event-B
has not been considered.

The language fSMYV is an extension of the input language for the
NuSMYV model checker and semantically based on FTS. Notable is
that fSMV is a composition-based language with semantics based
on an annotation-based formalism. Similarly, Modal Sequence Di-
agrams (MSD) have been proposed, in which each feature is encap-
sulated into a separate module and translated to annotation-based
SMV model for model checking purposes [29] .

Other Approaches. Delta Modeling is an approach in which a
product line is decomposed into a core product and a set of delta
modules [43} 32} |52]]. Delta modules encapsulate modifications
that can be applied to the core product to derive other products
of a product line. For instance, DeltaCCS is a delta-oriented ex-
tension to Milner’s process calculus CCS. Variability is achieved
by decomposing the model into a core process and a set of delta
modules that encapsulate change directives based on term rewrit-
ing semantics [43]]. A main difference to the previously discussed
feature modules is that delta modules can not only add but also re-
move parts of a model. A further related line of research in which
composition-based models have been proposed is aspect-oriented
software development [55| 47, [2, 34]]. These approaches also rely
on a TS for the base system and further transition systems to model
features. The difference to the previously presented approaches is
that the considered variability is limited. That means that the aim
is to modularize features, but different combinations of features are
not considered. Instead, it is typically assumed that all features
are included in the product. Despite the fact that these approaches
do not focus on variability, it is still possible that different com-
binations of features are woven into a system to derive different
products.

3.3 Discussion

In various lines of research, several formalisms and languages to
model the behavior of product lines have been proposed. De-
spite their differences, these approaches can be divided into two
main categories regarding their handling of variability: Annotation-
based techniques and composition-based techniques. In the follow-
ing, we briefly discuss the commonalities and differences of these
techniques and their potential limitations.

Annotation-based techniques have in common that the behavior of
all products of a product line is modeled in a single model where
individual parts are annotated with information about variability.
Individual annotation-based modeling techniques differ in the char-
acteristics of the annotations used to represent variability. Some
techniques allow to define the mapping between modeling artifacts
and products by explicitly referencing features or feature expres-

sions. Other techniques allow to express notions of variability such
as optionality or alternativity to represent the variability of a prod-
uct line without including information about the mapping in terms
of features, i.e., they do not establish a mapping to an explicit vari-
ability model. A potential limitation of existing annotation-based
modeling techniques is that they are mainly intented to be used as a
foundational representation for analyses rather than as a tool to be
used by practicioners. A potential problem is that a single model for
a product line may easily become to large to be handled efficiently,
especially in the presence of variability annotations. For future re-
search, we suggest to investigate this assumption and potential con-
cepts to improve the usability of annotation-based approaches, e.g.,
by introducing concepts for decomposition of a large model into
smaller parts.

The commonality of composition-based techniques is that the be-
havior of individual features is encapsulated into separate mod-
ules that may be composed to assemble desired products. Indi-
vidual approaches mainly differ in the characteristics of the com-
position mechanism. Again, there are approaches that are mainly
intended as underlying formalism for verification based on TS or
I/O-automata. We have identified the expressiveness of feature
modules as a potential limitation in these approaches. For instance,
in many approaches features can perform changes only to prede-
fined locations in the base system. We raise the question whether
such mechanisms of feature modularization are expressive enough
to express a notion of feature refinement as known from imple-
mentation techniques. For composition-based modeling, there also
exist approaches based on higher-level modeling languages that are
intended to be more suitable as a means for practicioners to model
product lines. A simple approach is to use existing modeling tech-
niques for single systems and map parts of a model to features that
can be aggregated to generate products. This approach has been
shown to be sufficient in some cases, but it is limited to one di-
mension of decomposition, i.e., they cannot be used to modular-
ize crosscutting features. To overcome this limitation, composi-
tion mechanisms known from implementation techniques for prod-
uct lines have been applied to modeling languages. We propose to
bridge the gap between these higher-level composition-based mod-
eling languages and the formalims based on transition systems to
benefit from both the usability and possibility of efficient analysis.

4. CONCLUSION

We have presented a survey of formal modeling techniques for
product lines to give an overview of existing approaches that can
serve as an introduction for researchers who want to develop new
techniques. Our results show, that many existing approaches share
commonalities regarding the handling of variability. We distinguish
between annotation-based and composition-based techniques and
exemplify them by means of a running example to illustrate their
differences. The current scientific debate primarily centers around
verification mechanisms rather than modeling techniques. We see
our work as a first step towards a unifying view on variability mech-
anisms in formal modeling techniques and eventually for all kind of
software artifacts. We think that a unified view also helps to under-
stand the differences of individual approaches. In future work, the
survey should be extended by comparing in more detail the expres-
siveness, the complexities, the requirements of tool support, and
the performance of different modeling techniques.

5. ACKNOWLEDGMENTS

This work has been partially funded by the German Federal Min-
istry of Education and Research (011S14017A, 011S14017B).

References
[1] M. Alférez, A. Moreira, and J. Aratjo. Evaluating Scenario-
Based SPL Requirements Approaches — The Case for Mod-
ularity, Stability and Expressiveness. Requirements Engineer-
ing, pages 1-22, 10 2013.

[2

—

K. Altisen, F. Maraninchi, and D. Stauch. Aspect-oriented
Programming for Reactive Systems: Larissa, a Proposal in the

Synchronous Framework. Science of Computer Programming
(SCP), 63(3):297-320, Dec. 2006.

[3] S. Apel, D. Batory, C. Kistner, and G. Saake. Feature-
Oriented Software Product Lines: Concepts and Implemen-
tation. Springer, Berlin, Heidelberg, 2013.

[4

—

S. Apel, W. Scholz, C. Lengauer, and C. Késtner. Detecting
Dependences and Interactions in Feature-Oriented Design. In
Proc. Int’l Symposium Software Reliability Engineering (IS-
SRE), pages 161-170, Washington, DC, USA, 2010. IEEE.

[5

—

P. Asirelli, M. H. ter Beek, A. Fantechi, and S. Gnesi. A Com-
positional Framework to Derive Product Line Behavioural
Descriptions. In Proc. Int’l Symposium Leveraging Applica-
tions of Formal Methods, Verification and Validation (ISoLA),
pages 146161, Berlin, Heidelberg, Oct. 2012. Springer.

[6

—

C. Baier and J.-P. Katoen. Principles of Model Checking
(Representation and Mind Series). The MIT Press, 2008.

[7] D. Batory and E. Borger. Modularizing Theorems for Soft-
ware Product Lines: The Jbook Case Study. J. Universal
Computer Science (J.UCS), 14(12):2059-2082, 2008.

[8

—

D. Beuche. Composition and Construction of Embedded Soft-
ware Families. PhD thesis, University of Magdeburg, Ger-
many, 2003.

[9] E.Borger and R. F. Stark. Abstract State Machines: A Method
for High-Level System Design and Analysis. Springer, Secau-
cus, NJ, USA, 2003.

[10] M. Calder and A. Miller. Feature Interaction Detection by
Pairwise Analysis of LTL Properties—A Case Study. Formal
Methods in System Design, 28(3):213-261, 2006.

[11] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Check-
ing. MIT Press, Cambridge, Massachussetts, 1999.

[12] E. M. Clarke and J. M. Wing. Formal Methods: State of
the Art and Future Directions. ACM Computing Surveys,
28(4):626—643, Dec. 1996.

[13] A. Classen, M. Cordy, P. Heymans, A. Legay, and P.-Y.
Schobbens. Model Checking Software Product Lines with
SNIP. Int’l J. Software Tools for Technology Transfer (STTT),
14(5):589-612, 2012.

[14] A. Classen, M. Cordy, P-Y. Schobbens, P. Heymans,
A. Legay, and J.-F. Raskin. Featured Transition Systems:
Foundations for Verifying Variability-Intensive Systems and
Their Application to LTL Model Checking. IEEE Trans. Soft-
ware Engineering (TSE), 39(8):1069-1089, Aug. 2013.

[15] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F.
Raskin. Model Checking Lots of Systems: Efficient Verifi-
cation of Temporal Properties in Software Product Lines. In
Proc. Int’l Conf. Software Engineering (ICSE), pages 335—
344, New York, NY, USA, 2010. ACM.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison-Wesley, Boston, MA, USA,
2001.

M. Cordy, A. Classen, P. Heymans, A. Legay, and P.-Y.
Schobbens. Model Checking Adaptive Software with Fea-
tured Transition Systems. In Proc. Workshop Assurances for
Self-Adaptive Systems (ASAS), pages 1-29, Berlin, Heidel-
berg, 2013. Springer.

M. Cordy, A. Classen, P. Heymans, P.-Y. Schobbens, and
A. Legay. ProVeLines: A Product Line of Verifiers for Soft-
ware Product Lines. In Proc. Int’l Software Product Line
Conf. (SPLC), pages 141-146, New York, NY, USA, 2013.
ACM.

M. Cordy, A. Classen, G. Perrouin, P.-Y. Schobbens, P. Hey-
mans, and A. Legay. Simulation-Based Abstractions for Soft-
ware Product-Line Model Checking. In Proc. Int’l Conf. Soft-
ware Engineering (ICSE), pages 672-682, Piscataway, NJ,
USA, 2012. IEEE.

M. Cordy, P.-Y. Schobbens, P. Heymans, and A. Legay. Be-
havioural Modelling and Verification of Real-Time Software
Product Lines. In Proc. Int’l Software Product Line Conf.
(SPLC), pages 66—75, New York, NY, USA, 2012. ACM.

M. Cordy, P.-Y. Schobbens, P. Heymans, and A. Legay. To-
wards an Incremental Automata-Based Approach for Soft-
ware Product-Line Model Checking. In Proc. Int’l Workshop
Formal Methods and Analysis in Software Product Line Engi-
neering (FMSPLE), pages 74-81, New York, NY, USA, 2012.
ACM.

M. Cordy, P.-Y. Schobbens, P. Heymans, and A. Legay. Be-
yond Boolean Product-Line Model Checking: Dealing with
Feature Attributes and Multi-Features. In Proc. Int’l Conf.
Software Engineering (ICSE), pages 472-481, Piscataway,
NJ, USA, May 2013. IEEE.

X. Devroey, M. Cordy, G. Perrouin, E.-Y. Kang, P.-Y.
Schobbens, P. Heymans, A. Legay, and B. Baudry. A Vi-
sion for Behavioural Model-Driven Validation of Software
Product Lines. In Proc. Int’l Symposium Leveraging Applica-
tions of Formal Methods, Verification and Validation (1SoLA),
pages 208-222, Berlin, Heidelberg, 2012. Springer.

A. Fantechi and S. Gnesi. Formal Modeling for Product Fam-
ilies Engineering. In Proc. Int’l Software Product Line Conf.
(SPLC), pages 193-202, Washington, DC, USA, 2008. IEEE.

D. Fischbein, S. Uchitel, and V. Braberman. A Foundation
for Behavioural Conformance in Software Product Line Ar-
chitectures. In Proc. Int’l Workshop Role of Software Archi-
tecture for Testing and Analysis (ROSATEA), pages 3948,
New York, NY, USA, 2006. ACM.

K. Fisler and S. Krishnamurthi. Modular Verification of
Collaboration-Based Software Designs. In Proc. Europ. Soft-
ware Engineering Conf./Foundations of Software Engineer-
ing (ESEC/FSE), pages 152-163, New York, NY, USA, 2001.
ACM.

H. Gomaa and M. Hussein. Dynamic Software Reconfigu-
ration in Software Product Families. In F. van der Linden,
editor, PFE, volume 3014 of Lecture Notes in Computer Sci-
ence, pages 435—444. Springer, 2003.

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

[37]

(38]

(39]

[40]

[41]

A. Gondal, M. Poppleton, and M. Butler. Composing Event-
B Specifications: Case-Study Experience. In Proc. Int’l Sym-
posium Software Composition (SC), pages 100-115, Berlin,
Heidelberg, 2011. Springer.

J. Greenyer, A. M. Sharifloo, M. Cordy, and P. Heymans. Effi-
cient Consistency Checking of Scenario-Based Product-Line
Specifications. In Proc. Int’l Conf. Requirements Engineer-
ing (RE), pages 161-170, Piscataway, NJ, USA, Sept. 2012.
IEEE.

A. Gruler, M. Leucker, and K. Scheidemann. Modeling and
Model Checking Software Product Lines. In Proc. IFIP Int’l
Conf. Formal Methods for Open Object-Based Distributed
Systems (FMOODS), pages 113-131, Berlin, Heidelberg,
2008. Springer.

M. Janota, J. Kiniry, and G. Botterweck. Formal Methods in
Software Product Lines: Concepts, Survey, and Guidelines.
Technical Report Lero-TR-SPL-2008-02, Lero, University of
Limerick, May 2008.

E. B. Johnsen, R. Hihnle, J. Schifer, R. Schlatte, and M. Stef-
fen. ABS: A Core Language for Abstract Behavioral Specifi-
cation. In Proc. Int’l Symposium Formal Methods for Compo-
nents and Objects (FMCO), pages 142—164, Berlin, Heidel-
berg, 2012. Springer.

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson. Feature-Oriented Domain Analysis (FODA) Feasi-
bility Study. Technical Report CMU/SEI-90-TR-21, Software
Engineering Institute, 1990.

S. Katz. Aspect Categories and Classes of Temporal Proper-
ties. Trans. Aspect-Oriented Software Development, 1:106—
134, 2006.

R. M. Keller. Formal Verification of Parallel Programs.
Comm. ACM, 19(7):371-384, July 1976.

K. G. Larsen, U. Nyman, and A. Wasowski. Modal I/O Au-
tomata for Interface and Product Line Theories. In Proc. Eu-
rop. Conf. Programming (ESOP), pages 64-79, Berlin, Hei-
delberg, 2007. Springer.

K. Lauenroth, A. Metzger, and K. Pohl. Quality Assurance in
the Presence of Variability. In Intentional Perspectives on In-
formation Systems Engineering, pages 319-333, Berlin, Hei-
delberg, 2010. Springer.

K. Lauenroth, K. Pohl, and S. Toehning. Model Checking of
Domain Artifacts in Product Line Engineering. In Proc. Int’l
Conf. Automated Software Engineering (ASE), pages 269—
280, Washington, DC, USA, 2009. IEEE.

H. Li, S. Krishnamurthi, and K. Fisler. Interfaces for Modular
Feature Verification. In Proc. Int’l Conf. Automated Software
Engineering (ASE), pages 195-204, Washington, DC, USA,
2002. IEEE.

H. Li, S. Krishnamurthi, and K. Fisler. Verifying Cross-
Cutting Features as Open Systems. In Proc. Int’l Sympo-
sium Foundations of Software Engineering (FSE), pages 89—
98, New York, NY, USA, Nov. 2002. ACM.

H. Li, S. Krishnamurthi, and K. Fisler. Modular Verification
of Open Features Using Three-Valued Model Checking. Au-
tomated Software Engineering, 12(3):349-382, July 2005.

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

J. Liu, S. Basu, and R. Lutz. Compositional Model Checking
of Software Product Lines Using Variation Point Obligations.
Automated Software Engineering, 18(1):39-76, 2011.

M. Lochau, S. Mennicke, H. Baller, and L. Ribbeck.
DeltaCCS: A Core Calculus for Behavioral Change. In
T. Margaria and B. Steffen, editors, Proc. Int’l Symposium
Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA), pages 320-335, Berlin, Heidelberg, Oct.
2014. Springer.

J.-V. Millo, S. Ramesh, S. N. Krishna, and G. K. Narwane.
Compositional Verification of Software Product Lines. In
Proc. World Conf. Integrated Formal Methods (iFM), pages
109-123, Berlin, Heidelberg, 2013. Springer.

T. Murata. Petri Nets: Properties, Analysis and Applications.
Proceedings of the IEEE, 77(4):541-580, Apr. 1989.

R. Muschevici, D. Clarke, and J. Proenca. Feature Petri Nets.
In Proc. Int’l Workshop Formal Methods and Analysis in Soft-
ware Product Line Engineering (FMSPLE), pages 99-106,
Lancaster, UK, Sept. 2010. Lancaster University.

T. Nelson, D. D. Cowan, and P. S. C. Alencar. Supporting
Formal Verification of Crosscutting Concerns. In Proc. Int’l
Conf. Metalevel Architectures and Separation of Crosscutting
Concerns, pages 153-169, London, UK, 2001. Springer.

K. Pohl, G. Bockle, and F. J. van der Linden. Software
Product Line Engineering: Foundations, Principles and Tech-
niques. Springer, Berlin, Heidelberg, Sept. 2005.

M. Poppleton. Towards Feature-Oriented Specification and
Development with Event-B. In Proc. Int’l Working Conf.
Requirements Engineering: Foundation for Software Quality
(REFSQ), pages 367-381, Berlin, Heidelberg, 2007. Springer.

G. Piischel, R. Seiger, and T. Schlegel. Test Modeling for
Context-aware Ubiquitous Applications with Feature Petri
Nets. In Proc. Workshop Model-based Interactive Ubiquitous
Systems (MODIQUITOUS), 2012.

H. Sabouri and R. Khosravi. Efficient Verification of Evolv-
ing Software Product Lines. In Proc. Int’l Conf. Fundamen-
tals of Software Engineering (FSEN), pages 351-358, Berlin,
Heidelberg, 2012. Springer.

H. Sabouri and R. Khosravi. Delta Modeling and Model
Checking of Product Families. In Proc. Int’l Conf. Fun-
damentals of Software Engineering (FSEN), pages 51-65,
Berlin, Heidelberg, 2013. Springer.

I. Schaefer, D. Gurov, and S. Soleimanifard. ~Composi-
tional Algorithmic Verification of Software Product Lines. In
Proc. Int’l Symposium Formal Methods for Components and
Objects (FMCO), pages 184-203, Berlin, Heidelberg, Nov.
2010. Springer.

I. Schaefer, R. Rabiser, D. Clarke, L. Bettini, D. Benavides,
G. Botterweck, A. Pathak, S. Trujillo, and K. Villela. Soft-
ware Diversity: State of the Art and Perspectives. Int’l J.
Software Tools for Technology Transfer (STTT), 14:477-495,
2012.

H. Sipma. A Formal Model for Cross-Cutting Modular Tran-
sition Systems. In Proc. Workshop Foundations of Aspect-
Oriented Languages (FOAL), 2003.

[56]

[57]

(58]

(591

[60]

[61]

J. Sorge, M. Poppleton, and M. Butler. A Basis for Feature-
Oriented Modelling in Event-B. In Proc. Int’l Conf. Abstract
State Machines, Alloy, B and Z (ABZ), pages 409—409, Berlin,
Heidelberg, 2010. Springer.

P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr. N De-
grees of Separation: Multi-Dimensional Separation of Con-
cerns. In Proc. Int’l Conf. Software Engineering (ICSE),
pages 107-119, New York, NY, USA, 1999. ACM.

M. H. ter Beek, A. L. Lafuente, and M. Petrocchi. Combin-
ing Declarative and Procedural Views in the Specification and
Analysis of Product Families. In Proc. Int’l Workshop Formal
Methods and Analysis in Software Product Line Engineering
(FMSPLE), pages 10-17, New York, NY, USA, 2013. ACM.

T. Thum, S. Apel, C. Kistner, 1. Schaefer, and G. Saake. A
Classification and Survey of Analysis Strategies for Software
Product Lines. ACM Computing Surveys, 47(1):6:1-6:45,
June 2014.

M. Tribastone. Behavioral Relations in a Process Algebra for
Variants. In Proc. Int’l Software Product Line Conf. (SPLC),
pages 82-91, New York, NY, USA, 2014. ACM.

D. M. Weiss. The Product Line Hall of Fame. In Proc. Int’l
Software Product Line Conf. (SPLC), page 395, Washington,
DC, USA, 2008. IEEE.

	Introduction
	Background
	Modeling Techniques for Software Product Lines
	Annotation-Based Modeling
	Composition-Based Modeling
	Discussion

	Conclusion
	Acknowledgments

