Author Proof

®

Check for
updates

Memory Management Strategies in
CPU/GPU Database Systems: A Survey

Iya Arefyeva®™) | David Broneske, Gabriel Campero, Marcus Pinnecke,
and Gunter Saake

University of Magdeburg, Universitatsplatz 2, 39106 Magdeburg, Germany
{iia.arefeva,dbronesk, campero,pinnecke,saake}@ovgu.de

Abstract. GPU-accelerated in-memory database systems have gained a
lot of popularity over the last several years. However, GPUs have limited
memory capacity, and the data to process might not fit into the GPU
memory entirely and cause a memory overflow. Fortunately, this prob-
lem has many possible solutions, like splitting the data and processing
each portion separately, or storing the data in the main memory and
transferring it to the GPU on demand. This paper provides a survey of
four main techniques for managing GPU memory and their applications
for query processing in cross-device powered database systems.

Keywords: Cross-device query processing
GPU memory management + Divide-and-conquer + Mapped memory
Unified Virtual Addressing -+ Unified Memory

1 Introduction

In-memory database systems first were proposed in 1980s [7], and nowadays are
becoming more and more popular, as RAM sizes grow and prices are dropping.
The main copy of the data in these systems, in contrast to traditional disk-based
database systems, is stored in main memory and can be directly accessed by the
processor. Such design enables these systems to achieve significant performance
improvements due to higher memory access speed. This is especially important
in high-throughput applications which require fast response time.

Another emerging trend, that has gained a lot of attention of researchers
in recent times, is the usage of co-processors (e.g. GPUs) in database manage-
ment systems. Utilization of co-processor spans a range of system-related tasks,
such as query optimization or query execution. In fact, co-processors are applied
to accelerate both online analytical processing (OLAP) [3-5,9,11,15,18,20,23]
and online transaction processing (OLTP) [2,10]. Furthermore, there is ongo-
ing co-processor acceleration research [1,17] for the combination of these both
processing types, called hybrid transactional/analytical processing (HTAP).

However, GPU-accelerated computing involves a significant challenge: the
memory size of a GPU is limited to several gigabytes and is often smaller than
(© Springer Nature Switzerland AG 2018

S. Kozielski et al. (Eds.): BDAS 2018, CCIS 928, pp. 1-15, 2018.
https://doi.org/10.1007/978-3-319-99987-6_10

Author Proof

2 1. Arefyeva et al.

the data to process, while the main memory nowadays can consist of hundreds
of gigabytes. Storage of the whole data on the GPU can be very beneficial,
since it eliminates overheads introduced by transferring the data to the GPU
and back. Unfortunately, today’s device memory capacity is far too limited to
hold real-world databases completely. Even high-end GPUs like Nvidia Titan
Xp and Nvidia Tesla V100, released in 2017, have 12 GB and 16 GB of memory
correspondingly, which does not even come close to the amount of RAM that
can be installed on a server machine. Hence, there is the need for strategies
considering the fact that the database can only be partially moved to the GPU.

Usually, there is no shared memory between a CPU and a GPU, since their
memory spaces are physically separated. The data has to be transferred from
the host to the device memory over the PCI-E bus, whose bandwidth is much
smaller than the GPU memory bandwidth. This problem, however, is getting
less severe as bandwidths are getting higher. For instance, PCI-E 4.0, announced
in 2017, provides a bandwidth of 32 GB/s which is two times higher than the
bandwidth of PCI-E 3.0 (16 GB/s) that is likely installed on current machines.
PCI-E 5.0, which is planned to be released in 2019, is expected to further double
the bandwidth, reaching 64 GB/s.

We are optimistic that it is only a matter of time until both capacity limita-
tions and transfer bandwidth problems degenerate to insignificance due to advan-
tages in technological development. However, unless these issues are removed,
both must be considered for memory management in a heterogeneous database
system consisting of both CPU and GPU.

In the last decade, the research community suggested a variety of solutions
to face these issues, e.g. splitting data into chunks or storing it in pinned host
memory. In this paper, we survey the state of the art in GPU memory manage-
ment, providing insights into how different approaches attempt to approximate
an ideal GPU memory management model, that should be able to (i) allow for
GPU memory oversubscription, (ii) utilize the GPU efficiently by overlapping
transfers and computations, hence minimizing the idle time of the GPU (iii)
avoid unnecessary transfers via the PCI-E bus and (iv) keep the data coherent.

The remainder of the paper is structured as follows. Section 2 provides some
information about GPUs’ architecture and execution model, that is necessary
for understanding the rest of the paper. The existing basic approaches for GPU
memory management are described in Sect. 3 along with their advantages, dis-
advantages, and details of their implementations in different systems. Section 4
compares the approaches and discusses how their properties help to face differ-
ent challenges. Finally, Sect. 5 concludes the paper by summarizing the described
techniques.

2 Background

A CPU (central processing unit) usually consists of a few powerful cores that
share the same cache and control unit, and can handle a few software threads at
a time. CPUs are designed to execute an instruction on a single unit of data as

Author Proof

Memory Management Strategies in CPU/GPU Database Systems: A Survey 3

quickly as possible. They are well suited for tasks, that cannot be parallelized
and/or depend on each other.

In contrast, a GPU (graphics processing unit) is composed of several stream-
ing multiprocessors, each consisting of multiple cores. Therefore, a GPU is able
to handle multiple threads (sequences of instructions, that process one data ele-
ment at a time) simultaneously, in a SIMD fashion.

2.1 GPU Memory Types

Each thread, or work item, has its own registers and local memory that is visible
only to this thread. Threads are grouped into thread blocks or work groups, where
each thread block has its own shared memory that is visible to all threads within
a block and can be used for communication between threads. Blocks themselves
are grouped into a grid. In contrast to the other memory types, global, constant,
and terture memories are shared across all thread blocks. The number of threads
per block and blocks per grid is defined by the programmer.

The right choice of memory types can have a significant impact on the per-
formance and increase the speed of memory operations. However, the choice
between memory types has smaller impact on the problem of limited GPU
memory for co-processing. Therefore, in the techniques’ description in Sect. 3
we assume that global memory is used, unless specified otherwise.

2.2 SIMD-Fashioned Thread Execution

Threads are executed in warps - batches of 32 threads each - which fetch data
from memory together. To optimize executing behavior by exploiting spatial
locality of memory accesses, threads within a warp should access sequential
blocks of memory. This way, reads from global memory are performed in as few
transactions as possible. This access behavior is called coalesced memory access.
Moreover, to avoid a loss in performance, all threads in a warp should follow the
same path in case of if-else statements.

To sum up, CPUs are designed to perform a few complex tasks at a time,
and GPUs are good at performing one small task on many units of data. The
latter is referred to as data parallelism - the case when the same operation
is performed by threads on different units of data. OLAP queries are usually
well suited for the GPU processing style, since they require applying the same
operation to a lot of fields. For instance, ranking users visiting a website, grouped
by their residence, requires reading fields in every tuple of a table that stores the
visitors’ data. OLTP, however, runs many small and different tasks (e.g., small
insert, update, and delete operations), therefore usage of GPUs for OLTP might
be challenging. Additionally, OLTP queries, unlike OLAP ones, change the data,
and thus a good synchronization mechanism is required.

2.3 Programming and Execution Models of GPUs

A program executed on a GPU (device) is called a kernel, it performs operations
on one element of the data and forms a basic unit of parallelism. A kernel is

Author Proof

4 1. Arefyeva et al.

invocated by a CPU (host), but cannot be controlled by the CPU after the
invocation and cannot communicate with other kernels that are executed on the
GPU. In case of query processing, a data element can be represented by one
value of an attribute, by a tuple (in row-wise storage), a column (in column-wise
storage), or by a whole table. Obviously, the latter does not allow to exploit the
GPU efficiently, because it leads to a set of operations being performed by one
thread on a very large chunk of data.

A GPU needs to communicate with the CPU through the PCI-Express (PCI-
E) bus, whose bandwidth is much lower than the bandwidth of the GPU memory.
This difference limits the performance by causing a bandwidth bottleneck, and
often [8] data transfer takes much more time than processing of this data.

The data to process is either sent to the GPU prior to the kernel execution, or
the GPU directly accesses pinned CPU memory during the execution. In general,
there are two memory management models: programmer-managed GPU memory
and pinned host memory [12]. Programmer-managed GPU memory consists of
the following steps:

1. Allocating memory blocks of GPU, that are big enough to contain the input
and output data.

2. Transferring the data to GPU over the PCI-E bus.

3. Calling kernels that perform operations on the data.

4. After the execution is finished, transferring the output back to the host.

The memory blocks, allocated on the GPU, should be small enough to fit into
the device memory. In case the size of the data is larger than the GPU memory,
the data should be split into several blocks, that are small enough to not cause
a memory overflow.

Usage of pinned memory allows GPU to directly access the data in the main
memory, without the need to transfer all the data to the device prior to kernel
execution. Transfers to GPU are overlapped with the execution and performed
on-demand and implicitly, therefore the data size is limited only by the main
memory size. The two resulting memory management models are explained in
details in the next section.

The most popular frameworks for GPU programming are CUDA and
OpenCL. OpenCL (Open Computing Language) is an open standard for parallel
programming of heterogeneous systems and is supported by several platforms,
including Nvidia, AMD and Intel. CUDA is a parallel computing platform and
programming model which supports only Nvidia GPUs.

3 GPU Memory Management

As mentioned in the previous section, approaches used to manage GPU memory
can broadly be classified into the divide-and-conquer approach (Sect.3.1) and
usage of pinned CPU memory (Sect.3.2). Unified Virtual Addressing Sect. 3.3
and Unified Memory (Sect.3.4) extend these approaches by simplifying their

Author Proof

Memory Management Strategies in CPU/GPU Database Systems: A Survey 5

usage and, in case of Unified Memory, making data transfers transparent to the
user. This section describes these approaches and discusses their benefits and
drawbacks.

3.1 Divide-and-Conquer

The divide-and-conquer approach is used in systems like GPUQP [9] and
MultiQx-GPU [21] to manage GPU memory.

When a system is issued with a query (e.g., a selection), the data is split
into multiple chunks, which are sent to the GPU and processed there separately.
Once a chunk is fully transferred to the GPU, the kernel is started for this
chunk. After the kernel execution is finished for all the data elements, the result
for the processed chunk is copied back from the GPU global memory to the main
memory and is stored there until the results for all the chunks are returned. This
process is repeated for each of the chunks, and the memory, taken by previous
chunks and their results, is either overwritten or freed beforehand in order to
make enough space in the GPU memory for the new chunks. The process ends
when the execution is finished for all the chunks. All the partial results are then
merged in the main memory, e.g. the union of the results is performed.

Divide-and-conquer approaches can be divided into serial and asynchronous
processing. In serial processing a data chunk is transferred to the GPU, a query
is executed over this data, and the result is transferred back to the CPU. Then,
the next chunk is transferred and processed. Figurel illustrates the process of
transferring one data chunk and performing operations on it. As can be seen,
when processing occurs only after the whole chunk is transferred to the GPU, a
big amount of time is spent waiting for transfers, while the GPU remains idle.

Asynchronous processing, as shown in Fig.2, overlaps data transfers with
execution, so that data transfers occur when the kernel is executed. Overlapping
is possible on devices with compute capability >1.2, and devices with compute
capability >2.0 support bidirectional (host-to-device transfers and device-to-
host) simultaneous transfers occurring concurrently with computations?.

Execution |:| E

Fig. 1. Serial processing; the second chunk is transferred only after the result of the
processing of the first chunk is returned.

The degree of overlap and the achieved gain in performance depend on many
factors, including the complexity of the kernel, chunk sizes and the GPU used for

! OpenCL Best Practices Guide. Online at https://www.cs.cmu.edu/afs/cs/academic/
class/15668-s11/www/cudadoc/OpenCL_Best_Practices_Guide.pdf.

Author Proof

6 1. Arefyeva et al.

Execution ‘ ‘ ’ ‘ ‘

2| 2 AT
NEERY Y

Transfer

Fig. 2. Asynchronous processing; the transfer of a chunk is overlapped with the pro-
cessing of the previous chunk.

computations. The biggest gain in performance can be achieved for workloads,
where equal amount of time is spent for data transfer and data processing. In
some cases [3], asynchronous processing of data is reported to be not much
faster than serial transfers, however, in other cases [19,22] a better performance
is achieved, when transfers and executions occur concurrently. In fact, even in
the worst scenario, when no overlap at all occurs, the performance would be the
same as if the chunks were transferred and processed serially. Therefore, the rule
of thumb is to process the data asynchronously, as in the worst case there would
simply be no speedup compared to the serial processing.

Benefits and Drawbacks. Although divide-and-conquer is a simple and
straightforward approach, that allows to process the data resident in the fast
GPU memory, it has several drawbacks.

First of all, the size of a chunk should be big enough to utilize GPU efficiently,
but small enough to not cause a memory overflow. Selecting the right chunk size
or adjusting the current size considering the amount of available GPU memory
might be a difficult problem. Second, since the GPU works with a copy of the
data rather than with the original data stored in the main memory, explicit
synchronization is required when the data is changed.

Usage in DBMS. Ideally, the data should be split in a way that allows to utilize
the GPU efficiently, without keeping the GPU idle or producing unnecessary
intermediate results.

GPUQP [9] divides an operator into multiple independent suboperators, the
amount of memory used by a suboperator executing on GPU is limited by the
amount of available GPU memory. After the splitting, suboperators are executed
either on CPU or on GPU, and the results are merged on the CPU.

In MultiQx-GPU [21] a table is partitioned into data chunks that are then
passed from one operator to another. HippogriffDB [14] processes chunks asyn-
chronously and, like MultiQx-GPU, passes them between operators.

Overlapping Transfers and Executions in CUDA and OpenCL

In CUDA, to overlap kernel executions with data transfers, several streams
should be created using the cudaStream_t type. Then, the three following steps
are performed iteratively, where the number of iterations equals the number of
streams:

Author Proof

Memory Management Strategies in CPU/GPU Database Systems: A Survey 7

1. The cudaMemcpyAsync function is used to copy a data chunk to the device.
2. A kernel is launched.
3. The data is copied back to the host using the cudaMemcpyAsync function.

These steps can also be performed in three separate cycles, i.e. first all the IV
chunks are copied to the device, then the kernel is launched N times, and finally
the chunks are copied back to the device. The performance of the two options
might differ and depends on the utilized GPU. If the GPU has only one copy
engine, the first option might have the same performance as the serial processing,
because tasks are issued in the order, that does not allow to achieve any overlap.
Two copy engines allow to perform host-to-device and device-to-host transfers at
the same time, which leads to a high degree of overlap. For devices with compute
capability 3.5 both options lead to the same performance?.

The number of streams does not need to be too large. Shirabata et al. [19]
use three CUDA streams in order to efficiently overlap data transfers to the
device, kernel execution, and transfers back to the host. Wu et al. [22] report,
that the best performance is achieved while using two streams, and increasing
their number does not provide any additional gain in performance.

In OpenCL asynchronous processing is achieved by creating several command
queues. The main steps, when two command queues are used, are as follows:

1. The first chunk is transferred to the GPU using the c1EnqueueWriteBuffer
function for the first command queue.

2. A kernel for the first chunk is launched.

3. The second chunk is sent to the GPU using the c1EnqueueWriteBuffer func-
tion for the second command queue.

4. The kernel for the second chunk is launched.

5. The first chunk is copied back to the host using the c1EnqueueReadBuffer
function.

6. The second chunk is copied back to the host using the c1EnqueueReadBuffer
function.

3.2 Mapped Memory

By default, memory allocated on CPU is pageable, i.e., it can be swapped out
to the disk. GPU cannot access the data directly from pageable host memory,
which means that first a temporary page-locked (or pinned) host array must
be allocated, and the data should be copied to this array. Then the data is
transferred from the pinned array to the device memory.

When mapped memory is used, a portion of main memory is mapped onto
GPU, and this memory is then declared as pinned (i.e. guaranteed to be at
a certain location). A kernel then can directly access the pinned data in the
main memory, however, data transfers are still performed implicitly and are
automatically overlapped with kernel execution. The accessed data is transferred

2 How to overlap data transfers in CUDA C/C++. Online at https://devblogs.nvidia.
com/parallelforall /how-overlap-data-transfers-cuda-cc/.

Author Proof

8 1. Arefyeva et al.

directly to local memory of threads, as shown on Fig. 3, without using the GPU’s
global memory as an intermediate step.

By default, no guarantee of coherence is provided, e.g. the host can access
the content of the pinned memory, while the device processes it. This can be
beneficial when read-only operations are performed either by the CPU, the GPU
or by both devices, because no device has to wait until the other device finishes
the execution. However, it is necessary to ensure coherence when both the CPU
and the GPU change the data stored in the pinned memory.

‘ Execution ‘

/\ /\ /\ /\
/\/ \/ \/\

Fig. 3. Mapped memory; the data goes directly from the main memory to the GPU’s
local memory during the execution.

GPU registers /
local memory

GPU global memory

main memory

When a system receives a query, the kernel is simply run for all the data, as
if it was small enough for the GPU memory. The result can either be transferred
to a block of pinned memory or, if enough GPU memory is available, be stored
directly on the GPU and transferred to the main memory, when the execution
is finished.

Benefits and Drawbacks. Despite the benefits of mapped memory, its usage
does not always speed up the execution. Allocation and deallocation of pinned
memory is more expensive than simply copying the data, therefore usage of
mapped memory might not be beneficial for a small amount of data. Additionally,
transferring the data over the PCI-E bus takes more time than reading the data
from the GPU’s global memory. Therefore, usage of mapped memory is not
recommended when host memory is accessed repeatedly [16].

One must note that allocating pinned memory reduces the amount of phys-
ical memory available to the system, which might have negative impact on the
performance.

Mapped memory is used in the systems described in [3,23], and is reported
[3] to be faster than the divide-and-conquer approach. Additionally, [23] states,
that usage of mapped memory leads to higher transfer bandwidth compared to
the usage of pageable memory, because data is directly transferred using GPU
DMA engine without the overhead of being copied to a pinned buffer first.

Author Proof

Memory Management Strategies in CPU/GPU Database Systems: A Survey 9

Considering the properties of mapped memory, one can conclude, that its
usage is beneficial in cases, when the data is big enough, and a small portion of
it is accessed by the GPU without a lot of repetitions. If a lot of computations
need to be performed on the data, it is better to move it to the GPU memory.

Usage in DBMS. Due to the GPU processing style, the best performance can
be achieved if the data in the main memory accessed by GPU is coalesced. To
make writing the result of the execution back to mapped memory coalesced as
well, Bakkum and Chakradhar [3] use a two-step procedure:

1. The atomicAdd operation (an atomic operation, that is ensured to write a
value to the given location without any interference from other threads) is
used to give each thread of a block an area in shared memory, where it will
write the result. The number of rows that should be written to the result
block is counted, and a block of global memory is allocated for the result of
this thread block.

2. Each thread writes to the area assigned to it. The data is ensured to be
written to global memory by using the threadfence function and counting
the writes. When an area, allocated for a thread block, is filled with the output
data, each thread copies the data from this area to the mapped memory.

Mapped Memory in CUDA and OpenCL

In CUDA, pageable memory is allocated using the cudaMalloc function, the
data is then sent to the GPU using the cudaMemcpy function. A block of page-
locked memory is mapped into the address space of the device by using the
cudaMallocHost function. Since, in the case of mapped memory, there is no
explicit data transfer between the host and the device, calling cudaMemcpy is
not needed. The pointer to the block in the device memory can just be retrieved
using cudaHostGetDevicePointer and then used to access the data from within
a kernel.

In OpenCL, a block of pinned memory can be allocated by passing the
flag CL_MEM_ALLOC_HOST_PTR to the function clCreateBuffer instead of the
flag CL_MEM_COPY_HOST_PTR that is used for pageable memory. The functions
clEnqueueMapBuffer and clEnqueueUnmapMemObject are used to map a region
of the buffer object and unmap a previously mapped region correspondingly.

3.3 Unified Virtual Addressing

Unified Virtual Addressing (UVA) is supported by CUDA starting from the ver-
sion 4.0 and requires a Fermi-class GPU with compute capability 2.0 or higher.
This technique is used in Caldera [1] - a database engine for HTAP. UVA allows
to have identical host and device pointers for pinned host memory (Fig.4), so
that the pointers can be accessed from the GPU no matter where the data really
resides.

Author Proof

10 1. Arefyeva et al.

The location of the data is determined from the value of a pointer, therefore
explicitly requesting the device pointer with cudaHostGetDevicePointer is no
longer necessary. Copies from one device to another can be performed without
using the host (CPU) as an intermediate stage, data stored on one GPU can
directly be accessed by a different GPU. The CPU, however, still can not access
the data that resides on a GPU.

Benefits and Drawbacks. UVA, in general, has the same benefits and draw-
backs as mapped memory. The speed of memory accesses in UVA depends on
where the data resides: in the GPU or the main memory. Therefore, it would be
beneficial to store the most frequently accessed data in the GPU memory.

[OXOOOO OxFFFF]

CPU GPU

Fig. 4. Unified Virtual Addressing; the CPU and the GPU share the address space.

3.4 Unified Memory

CUDA 6.0 introduces Unified Memory (UM), which is supported starting with
the Kepler GPU architecture and requires compute capability 3.0 or higher.
UM further simplifies programming by automatically managing device memory
allocations and data transfers. The concept of UM is shown in Fig. 5. UM allows
to access the memory of both CPU and GPU using a single pointer and, unlike
UVA, initially allocates managed memory on GPU and automatically migrates
the allocated data between GPU and CPU. By default, the size of transferred
pages are the same as the OS page size (4 KB) [16]. A programmer, however, is
still able to manage memory allocations and data transfers explicitly.

To keep the data coherent, the host and the device are not allowed to oper-
ate on the same memory at the same time. As long as the GPU is execut-
ing a kernel, the CPU cannot access the managed memory, and an explicit
call of any of the functions, that guarantee that the execution is finished (e.g.
cudaDeviceSynchronize), is required.

Besides migrating the data, UM eliminates the necessity to create deep copies
of structures, that contain pointers, before passing them to the GPU. Addition-
ally, UM makes possible to share linked lists (lists, where each element contains a
pointer to the next and/or previous element) between CPU and GPU, whereas,
when pageable memory is used, passing a linked list to GPU requires complex
operations.

Author Proof

Memory Management Strategies in CPU/GPU Database Systems: A Survey 11

[Unified memory }

L L
AN,

CcPU [T ijj GPU
P

Fig. 5. Unified Memory; the data migrates to the device that accesses it.

Benefits and Drawbacks. A big disadvantage of UM used with CUDA 6.0 and
Kepler architecture is that is does not allow to oversubscribe the GPU memory:
the maximum amount of the memory, that can be allocated, is limited to the
smallest of the available device memories. CUDA 8.0 and the Pascal architecture
climinates this limitation, allowing to use the entire system memory.

UM simplifies memory management and provides the benefit of UVA: one
single pointer to the data. Memory accesses in UM are faster than in case of
UVA or mapped memory, because the data resides on the device that processes
it. However, overlapping transfers and executions has to be enabled by the pro-
grammer by using several streams.

Although UM makes programming easier, it does not always lead to a signif-
icant performance improvement [16], and, in some cases [13], is greatly outper-
formed by a non-UM approach, where the data is transferred to the GPU prior
to the execution.

3.5 Other Solutions

Some systems use the fallback strategy: if the data is too big for the GPU, it is
processed on the CPU instead. CoGaDB [5] stores table’s columns on the GPU,
but operators also require additional memory for their results and temporary
data. In case of memory overflow, CoGaDB first removes cached data from GPU
and then, if the available memory is still insufficient, aborts the operator and
processes the data on CPU. Clearly, aborting an operator is expensive, and there
are two alternatives: pre-allocate enough memory for the operator or wait until
enough GPU memory is available. The first option, however, might allocate more
memory that the operator actually needs, and therefore unnecessarily reduce
the amount of the available GPU memory. The second option might involve
significant waiting time, or the required amount of memory might never become
available.

Some other systems [11,15] store only some data on the GPU, e.g. the most
frequently or the most recently accessed columns. TripleID [6] minimizes the
GPU memory usage by storing identifiers instead of elements themselves and
avoiding storage of redundant data.

Another option is to compress the data [20]. Although even the compressed
data might still be too large for the GPU memory, compression allows for faster
data transfers [14].

Author Proof

12 1. Arefyeva et al.

4 Discussion

Table 1 contains a comparison of main characteristics of the divide-and-conquer
approach, mapped memory, UVA and UM. When selecting a technique that
would allow to achieve the best performance in a given case, it is important to
consider the following:

Data Location: The main copy of the data can either reside in main memory,
in the GPU memory, or be shared between both devices.

For the divide-and-conquer approach and mapped memory the data initially
resides in main memory. In case of the divide-and-conquer approach it is fully
transferred to the GPU for processing, while usage of mapped memory allows
to transfer the data only when it is accessed. In UVA the data can be stored in
both the main memory and the GPU memory, in UM the data is transferred to
and becomes resident on the device that accesses it.

Asynchronous Processing: Data chunks can be processed either sequentially
or asynchronously.

The divide-and-conquer approach allows to overlap data transfers and ker-
nel executions, with mapped memory and UVA (when the data is in the main
memory) it happens automatically. UM does not provide an overlap by default,
but allows it to be implemented by a programmer.

Explicit Allocations and Transfers: Generally, only the divide-and-conquer
approach requires explicit memory allocations and data transfers, e.g. the size
of a data chunk should be defined and enough memory for it should be allocated
on the GPU.

Synchronization: When the data is sent to the GPU for processing, and the
GPU changes the data, it is necessary to also apply these changes to the data
that resides in main memory.

Unlike other approaches, that work with only one copy of the data, the
divide-and-conquer approach requires synchronization.

Explicit Coherence Maintenance: The situation, when the CPU and the
GPU work with the same data at the same time should be avoided, because it
might lead to one of the devices processing data that is no longer valid.

The divide-and-conquer approach sends a copy of the data to the GPU, thus
this data cannot be changed by the CPU. UM blocks access to the data from
the CPU, while a kernel is being executed. Mapped memory and UVA require
the programmer to manually ensure the data coherence.

Unnecessary Data Transfers: Sometimes only a small part of a table is
accessed by a kernel, which removes the need to transfer all the data to the
GPU.

While with mapped memory, UVA and UM the accessed data is transferred
on-demand, the divide-and-conquer approach might suffer from transferring a
lot of data that is never accessed and therefore not needed.

Author Proof

Memory Management Strategies in CPU/GPU Database Systems: A Survey 13

Unified Address Space: UVA and UM allow the GPU to access the data using
one single pointer independently of the data’s physical location. The divide-and-
conquer approach and mapped memory do not provide such benefit.

Speed of Memory Accesses: The location of the data determines how quickly
this data can be accessed by a thread: when the data resides in the fast GPU
memory, the speed of memory accesses is much higher, than if it needs to travel
through PCI-E bus first.

The divide-and-conquer approach and UM use the fast GPU memory, since
the data accessed by the GPU is located in the GPU memory. Mapped memory
requires the data to be transferred over the PCI-E bus every time it is accessed,
which makes the access speed slow. In UVA the speed depends on the physical
location of the data.

Memory Oversubscription: Some approaches are able to automatically han-
dle situations, when the allocated memory is too big, without causing memory
overflow.

In case of mapped memory, no memory overflow can occur, since the data is
transferred only when accessed by a thread. UM, starting from CUDA 8.0, allows
to oversubscribe the GPU memory. Usage of the divide-and-conquer approach
and UVA (for the data in the GPU memory) requires to be aware of the GPU
memory size and adjust the data size accordingly.

Table 1. Comparison of the approaches

Divide-and- |Mapped |Unified Unified
conquer memory |Virtual Memory
Addressing
Data location Main Main Both Migrating
memory memory
Transfers and executions are overlapped |Yes Yes Yes No
Requires explicit allocations and transfers|Yes No No No
Requires synchronization Yes No No No
Requires coherence maintenance No Yes Yes No
Avoids unnecessary data transfers No Yes Yes Yes
Unified address space No No Yes Yes
Speed of memory accesses Fast Slow Depends on |Fast
data location
Allows for memory oversubscription No Yes No From
CUDA 8.0

5 Conclusion

As one might see, no technique for GPU memory management is the best ulti-
mately, and the choice of the right one for a particular application should be
influenced by multiple factors, e.g. the pattern and the type of access to the
data.

Author Proof

14 1. Arefyeva et al.

The divide-and-conquer approach is well suited for situations, when a table
either is not changed by the GPU (OLAP case) or is handled by the GPU
exclusively, else a synchronization mechanism would be necessary. However, it
requires explicit memory management.

Mapped memory is good for situations, when the data is big, each data
element is accessed only once and the accesses are coalesced. A lot of repeated
and/or uncoalesced accesses lead to a performance drop. The same applies to
UVA, when the GPU is working with data that is located in the main memory.

UM significantly simplifies the programming by removing the need to transfer
the data and maintain coherence explicitly. From the simplicity perspective, UM
surpasses other approaches. However, the performance might suffer in cases,
where the same data is accessed often by both the CPU and the GPU.

To the best of our knowledge, existing DBMS use only one of the approaches.
A mixture of several techniques (e.g. UM for frequently accessed and changed
data and the divide-and-conquer approach for historical data) could be used
to achieve the best possible performance. Therefore, there is a need for future
research that would investigate the usage of a hybrid approach in GPU-
accelerated DBMS.

Acknowledgment. This work was partially funded by the DFG (grant no.: SA
465/50-1).

References

1. Appuswamy, R., Karpathiotakis, M., Porobic, D., Ailamaki, A.: The case for het-
erogeneous HTAP. In: CIDR (2017)

2. Arefyeva, ., Broneske, D., Pinnecke, M., Bhatnagar, M., Saake, G.: Column vs. row
stores for data manipulation in hardware oblivious CPU/GPU database systems.
In: GvDB, pp. 24-29. CEUR-WS (2017)

3. Bakkum, P., Chakradhar, S.: Efficient data management for GPU databases. Tech-
nical report, High Performance Computing on Graphics Processing Units (2012)

4. Bakkum, P., Skadron, K.: Accelerating SQL database operations on a GPU with
CUDA. In: GPGPU, pp. 94-103. ACM (2010)

5. BreBl, S.: The design and implementation of CoGaDB: a column-oriented GPU-
accelerated DBMS. Datenbank-Spektrum 14(3), 199-209 (2014)

6. Chantrapornchai, C., Choksuchat, C., Haidl, M., Gorlatch, S.: TripleID: a low-
overhead representation and querying using GPU for large RDFs. In: Kozielski,
S., Mrozek, D., Kasprowski, P., Malysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS
2015-2016. CCIS, vol. 613, pp. 400-415. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-34099-9_31

7. DeWitt, D.J., Katz, R.H., Olken, F., Shapiro, L.D., Stonebraker, M.R., Wood,
D.A.: Implementation techniques for main memory database systems. In: SIG-
MOD, vol. 14, pp. 1-8. ACM (1984)

8. Gregg, C., Hazelwood, K.: Where is the data? Why you cannot debate CPU vs.
GPU performance without the answer. In: ISPASS, pp. 134-144. IEEE (2011)

9. He, B, et al.: Relational query coprocessing on graphics processors. TODS 34(4),
21 (2000)

Author Proof

Memory Management Strategies in CPU/GPU Database Systems: A Survey 15

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

23.

He, B., Yu, J.X.: High-throughput transaction executions on graphics processors.
VLDB 4(5), 314-325 (2011)

Heimel, M., Saecker, M., Pirk, ., Manegold, S., Markl, V.: Hardware-oblivious
parallelism for in-memory column-stores. VLDB 6(9), 709-720 (2013)

Kim, Y., Lee, J., Jo, J.E., Kim, J.: GPUdmm: a high-performance and memory-
oblivious GPU architecture using dynamic memory management. In: HPCA, pp.
546-557. IEEE (2014)

Landaverde, R., Zhang, T., Coskun, A.K., Herbordt, M.: An investigation of unified
memory access performance in CUDA. In: HPEC. pp. 1-6. IEEE (2014)

Li, J., Tseng, H.W., Lin, C., Papakonstantinou, Y., Swanson, S.: Hippogriff DB:
balancing 1/O and GPU bandwidth in big data analytics. Proc. VLDB Endow.
9(14), 1647-1658 (2016)

Mostak, T.: An overview of MapD (massively parallel database). Technical report,
MIT (2013)

Negrut, D., Serban, R., Li, A., Seidl, A.: Unified memory in CUDA 6: a brief
overview and related data access. Technical report, TR-2014-09, University of
Wisconsin-Madison (2014)

Pinnecke, M., Broneske, D., Durand, G.C., Saake, G.: Are databases fit for hybrid
workloads on GPUs? A storage engine’s perspective. In: ICDE, pp. 1599-1606.
IEEE (2017)

Pirk, H., Manegold, S., Kersten, M.: Waste not... efficient co-processing of relational
data. In: ICDE, pp. 508-519. TEEE (2014)

Shirahata, K., Sato, H., Matsuoka, S.: Out-of-core GPU memory management for
MapReduce-based large-scale graph processing. In: CLUSTER, pp. 221-229. IEEE
(2014)

Sitaridi, E.: GPU-acceleration of in-memory data analytics. Ph.D. thesis, Columbia
University (2016)

Wang, K., et al.: Concurrent analytical query processing with GPUs. Proc. VLDB
Endow. 7(11), 1011-1022 (2014)

. Wu, R., Zhang, B., Hsu, M.: GPU-accelerated large scale analytics. Technical

report, HPL- 2009-38, HP Laboratories (2009)
Yuan, Y., Lee, R., Zhang, X.: The Yin and Yang of processing data warehousing
queries on GPU devices. VLDB 6(10), 817-828 (2013)

