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Abstract

Most software systems are designed to provide custom func-
tionality using configuration options. Testing such systems is
challenging as running tests of a single configuration is of-
ten not sufficient, because defects may appear in other con-
figurations. Ideally, all configurations of a software system
should be tested, which is usually not applicable in prac-
tice due to the combinatorial explosion with respect to the
configuration options. Multiple sampling strategies aim to
reduce the set of tested configurations to a feasible amount,
such as T-wise sampling, random configurations, and user-
defined configurations. However, these strategies are often
not applied in practice as they require manual effort or a spe-
cialized testing framework. Within our tool FeatureIDE, we
integrate all aforementioned strategies and reduce the man-
ual effort by automating the process of generating and test-
ing configurations. Furthermore, we provide support for unit
testing to avoid redundant test executions and for variability-
aware testing. With this extension of FeatureIDE, we aim to
make recent testing techniques for configurable systems ap-
plicable in practice.

Categories and Subject Descriptors D.2.3 [Software En-
gineering]: Programming Environments; D.2.5 [Software
Engineering]: Testing and Debugging

Keywords T-Wise Sampling, Prioritization, Testing

1.

A configurable system enables customers to compose soft-
ware systems from a large set of configuration options (also
known as features). A feature is defined as an increment
in functionality recognized by customers [7]. While con-
figurable systems provide many advantages, such as reduc-
tion of development costs and time to market, they chal-
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lenge quality assurance [23]. Usually, testing a configurable
system includes creating configurations, building the corre-
sponding products, testing them by executing their test cases,
and using the results for debugging [28]. In practice, devel-
opers tend to test only one or a few configurations, as testing
all valid configurations only scales to configurable systems
with a small number of features [24].

Considering only a single configuration is not enough as
some defects may only appear in some configurations [16].
Ideally, all valid configurations of a software system should
be tested, especially for safety-critical systems. However,
testing all valid configurations is often not possible due to
the combinatorial explosion in the number of features and
due to limited testing resources. Several strategies have been
proposed to reduce the number of configurations that need to
be tested, such as generating a reduced, yet sufficient subset
of configurations [12, 18, 21, 31], random configurations,
or user-defined configurations. These strategies require te-
dious manual effort, such as configuring and generating the
software system as well as checking its validity. In addition,
they may require a specialized testing framework. As a re-
sult, these strategies are often not applied in practice. Hence,
automating the testing process is a necessary step to use the
testing resources wisely.

To automate the testing process, numerous sampling tools
have been introduced to create configurations while achiev-
ing a certain degree of coverage, such as MoSo-PoLiTe [29],
CASA [12], Chvatal [17], ICPL [18], and IncLing [1]. Fur-
thermore, Henard et al. introduce the PLEDGE tool to cre-
ate and prioritize products based on their dissimilarity [14].
Moreover, Biirdek et al. present a tool that systematically ex-
plores similarities among products to enhance the testing ef-
ficiency [10]. While the aforementioned tools show promis-
ing results, each of them focuses only on testing rather than
supporting the entire product-line development process.

We extended our tool FeatureIDE to automate the pro-
cess of creating configurations, building products, and test-
ing them by integrating the corresponding strategies. Fea-
tureIDE is an Eclipse framework for feature-oriented soft-
ware development [3, 32]. It incorporates tools for the im-
plementation of configurable systems into an integrated de-
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Figure 1. Support for testing with FeatureIDE: (1) source code of a program including two unit tests, (2) feature model defining
valid combinations, (3) JUnit view, (4) user-defined configurations, and (5) a set of generated sample products.

velopment environment [32]. The contributions of this paper
are as follows:

e Derivation of configurations using different techniques
namely, (a) deriving all valid configurations, (b) gener-
ating random configurations, (c) using user-defined con-
figurations, and (d) T-wise sampling.

e Generation of program variants independent of the pro-
gramming paradigm, such as preprocessors and feature-
oriented programming.

e Customization of product generation, such as adjusting
the maximum number of created configurations and the
order in which they are tested.

e Testing of generated program variants using JUnit and
derivation of configuration-aware test results.

e Support to avoid redundant test executions and to achieve
variability-aware testing.

2. Testing with FeatureIDE

In this section, we discuss the testing work-flow that we au-
tomated in FeatureIDE. We show a screen-shot of the Fea-
tureIDE perspective in Eclipse in Figure 1. In the following,
we explain each element and how it is integrated into Fea-
tureIDE for testing purposes. The single elements are as fol-
lows: At (1), we show the source code of the program that
we want to test, including two unit tests. At @ we show the
feature model that defines the variability of the program [6].
The folder configs at (4) shows three configurations that
are user-defined. The folder products at (5) shows gener-
ated sample programs that are used for testing. The result of
the tests for the configurations is shown in the JUnit view

at(3).
2.1 Developing Configurable Systems with FeatureIDE

Features in configurable software can have dependencies
among each other (e.g., one feature might require or ex-
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clude another one). To specify the dependencies of features,
FeatureIDE provides a feature model editor shown in Fig-
ure 1.(2). The feature model is the central part of projects in
FeatureIDE as it defines the variability of the systems that
is used for configuration [9, 27] and analyses (e.g., to detect
unused features or dead code) [30].

FeatureIDE supports the feature-oriented implementa-
tion of configurable software and is designed as an exten-
sible framework [32]. In particular, it supports a variety of
implementation mechanisms, such as feature-oriented pro-
gramming [7], aspect-oriented programming [19], prepro-
cessors [25], and runtime variability.

In our example, we show a configurable program using
the integrated preprocessor Antenna (cf. (1)). To configure
the system, the user can manually define configurations us-
ing the configuration editor of FeatureIDE [27]. In the exam-
ple of Figure 1, there are three user-defined configurations in
the folder configs at (4). Only one configuration can be ac-
tive at a time, which is then used to preprocess and compile
the source code of the src folder.

2.2 Derive Configurations

Product-based testing is a technique which generates and
tests individual products using an existing testing technique
for single systems. For product-based testing and analyses,
it is useful to automatically derive configurations from the
feature model, because it defines the variability. To automat-
ically derive configurations as well as to generate and test the
products, we provide a dialog in which the user can choose
how to derive the configurations. We show the dialog in Fig-
ure 2. In the following, we discuss the meaning of the op-
tions provided in the dialog.

Generation Strategy In FeatureIDE, we support several
strategies to provide configurations for testing, namely us-
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ing user-defined configurations, deriving all valid configura-
tions, using T-wise sampling, and randomly generating con-
figurations (cf. Figure 2).

User-defined configurations can be created manually us-
ing the integrated configuration editor [27]. These configu-
rations are contained in the folder configs (cf.@). Allvalid
configurations can be generated using an algorithm that ex-
ploits the tree structure of the feature model. Generating all
valid configurations only scales for systems with a small
configuration space. Alternatively, we provide a strategy to
generate a fixed number of random configurations. Based
on the satisfiability solver Sat4J [22], we provide a random
configuration generator. The method can efficiently generate
a large number of distinct random configurations.

Faults in configurable systems are often caused by inter-
actions of features [21]. T-wise sampling algorithms aim to
generate a minimal set of configurations that covers all in-
teractions among T features.

T-Wise Sampling Algorithms In FeatureIDE, we cur-
rently integrate four T-wise sampling algorithms, namely
CASA [12], Chvatal [11, 17], ICPL [18], and IncLing [1].
The interaction-bar can be used to specify the value for T.

e CASA [12] uses simulated annealing to derive config-
urations. Therefore, it is a non-deterministic algorithm
where a different number of configurations may be cre-
ated for the same configurable system in different runs.

e Chvatal [11, 17] is a heuristic algorithm proposed to
create configurations for configurable systems.

e ICPL [18] is based on the Chvatal algorithm with sev-
eral improvements, such as identifying the invalid fea-
ture combinations at an early stage. It generates the
T-wise covering array efficiently as it makes use of multi-
threading.
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e IncLing [1] is an algorithm that generates configurations
incrementally for pairwise sampling. Instead of provid-
ing the complete solution at the end, the algorithm pro-
vides the calculated configuration as soon as possible.
Thus, testing the configurations does not need to wait un-
til the sampling algorithm has finished.

Maximal Number Of Configurations The user can spec-
ify a threshold n for the maximum number of configurations
that should be tested. This option is available for all gen-
eration strategies. When generating all or a random set of
configurations at most n configurations are calculated. For
the strategy to use user-defined configurations, only the first
n configurations will be tested. For all T-Wise sampling al-
gorithms, we can limit the number of generated configura-
tion to n as well. Thus, a 100% T-Wise interaction coverage
might not be reached. As T-Wise algorithms typically cover
most interactions in the first configurations, it is still reason-
able to give a threshold for T-Wise sampling.

The generated configurations can be built into the prod-
ucts folder as shown in Figure 1.(2) or into a distinct Eclipse
project using the option create new project in Figure 2.

2.3 Ordering of Generated Configurations

Optimizing the order of test cases is a good strategy to
detect faults early. Therefore, the generated configurations
can be ordered using one of three different techniques (cf.2).
Each generation strategy outputs a list of configurations in a
certain order.

To improve the order in which configurations are tested,
we currently provide two greedy algorithms. The first one
is to order configurations by dissimilarity [2]. The algorithm
initially selects the configuration where the most features are
selected. Then it selects the configuration that is most dif-
ferent to all previously tested configurations. This process
is continued until all configurations are tested. The second
technique aims to optimize feature interaction coverage. For
this, the configuration that covers most feature interactions
that are not already covered by previous configurations is
selected. Again, this process is continued until all configura-
tions are tested, or all interactions are covered (i.e., the num-
ber of configurations to test may be smaller). Note that the
degree of the interaction coverage to order can be specified
using the interactions scroll-bar, whereas higher T require
more effort for ordering.

2.4 Test Configurations

The last step for testing the system is to execute the test
cases. So far, we integrated JUnit to execute tests for Java.
When selecting the check box called Run JUnit tests, test
cases are executed after each product is generated. As shown
in Figure 1.(1), it is only necessary to annotate the test cases
as known from JUnit.

To comprehend the results of testing multiple configura-
tions (i.e., to associate the faults with configurations and to



reproduce the fault), we provide a structured tree in the JU-
nit view as shown in (3). The root elements are the classes
that are tested with the configurations as direct children. The
leaf elements are the actual test cases. As known from the
JUnit view the stack trace of the failing test is shown when
selecting the element. Also, the location of the fault will be
opened when selecting the entry in the stack trace.

Faults are associated with configurations that cause the
defect. However, aggregated results that show, which tests
fail under which condition (i.e., a minimal feature selection)
would improve the comprehension of the faults [15, 26, 35].
For example, the test case festStartsWithHello in Figure 1
fails in all configurations where the feature Hello is not se-
lected. The integration of aggregated results is usually non-
trivial, especially when only a subset of all configurations is
tested. Thus, this improvement is subject to future work.

3. Beyond Product-Based Testing

Product-based testing allows the execution of test cases on
a set of configurations. In this section, we show how Fea-
tureIDE provides further strategies to improve testing con-
figurable systems by avoiding redundant test executions and
with support for variability-aware testing.

3.1 Avoid Redundant Tests

Multiple testing approaches aim to reduce the number of
tests to execute [20]. However, these approaches usually
require a specialized infrastructure or domain knowledge.
We propose a lightweight approach to improve the time to
test multiple configurations.

Unit test cases are usually designed to test a small part
of the program, such as single methods or classes. When
running the test case on multiple products it is unlikely to
get different results, especially if the test case is not affected
by variability. Thus, for product-based testing the test case
is executed redundantly multiple times causing unnecessary
overhead. Instead, the test case should rather be executed
only once.

To avoid redundant test executions, we provide a Java an-
notation for test classes called @NonInteracting. While
testing multiple configurations as discussed in the previ-
ous section, FeatureIDE will execute tests of an annotated
class only once. However, the user needs to decide manually
whether the test cases do not interact. In the example of Fig-
ure 1, the test cases of the class SingleRunTest are only
executed once as the JUnit view illustrates (cf. Figure 1.Q3)).

3.2 Variability-Aware Testing

Product-based analyses are most common in practice as
standard analysis techniques can be used for the analy-
sis of configurable systems. However, this strategy is ei-
ther unsound (i.e., it may miss faults that could be found
by testing other configurations) or does not scale to the
high amount of configurations to test. To analyze all con-
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figurations, variability-aware mechanisms have been pro-
posed [8, 13, 26, 31, 33, 34]. Variability-aware analyses ex-
ploit the fact that the analysis of two similar configurations
is also similar. Thus, these redundant calculations when an-
alyzing multiple configurations can be avoided. Variability-
aware analyses aim to execute these redundant parts only
once to reduce the overall effort to execute all configura-
tions.

Variability-aware testing requires a product simulator
(a.k.a. metaproduct) that represents all configurations [5,
33]. This simulator is a transformation of the system into
a program with runtime variability, which can simulate
all configurations. Currently, FeatureIDE only supports
variability-aware analysis for feature-oriented programming
with FeatureHouse [4, 5, 33]. The metaproduct can be gen-
erated via the project’s contextmenu (i.e., FeatureIDE —
FeatureHouse — Build Metaproduct). When building the
project the metaproduct will be generated instead of a single
configuration.

Different tools for variability-aware analysis require spe-
cial types of feature model classes (i.e., a standard Java class
that defines all features and valid combinations thereof).
To support these different tools, FeatureIDE enables the
user to choose between different model files. We support
variability-aware testing with VarexJ [26], model checking
with JavaPathfinder [13] and JPF-BDD [34], and theorem
proving with KeY [8]. The type of the model class can
be selected via the project’s properties (i.e., FeatureIDE —
Feature Project — Metaproduct Generation). In the future,
we aim to provide further support for other implementation
techniques, especially for runtime variability, to ease the ap-
plication of variability-aware testing and analyses.

4. Conclusions

Product-based testing of a configurable system involves cre-
ating configurations, generating the corresponding products,
and executing their test cases. Within FeatureIDE, we inte-
grate several strategies to automate the testing process. In
particular, we enable the user to define configurations, gen-
erate a random set of configurations, or generate a subset
of configurations using T-wise sampling algorithms. In ad-
dition, the user can optimize testing by reordering the gen-
erated configurations to detect faults earlier. Furthermore,
FeatureIDE provides support to avoid redundant execution
of test cases and variability-aware testing. With those inte-
grated strategies and algorithms, we aim to ease the testing
of configurable systems regardless the size and the nature of
those systems.
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