Transitive Dependenciesin Transaction Closur es*

Kerstin Schwarz Can Tirker Gunter Saake

Otto-von-Guericke-Universitat Magdeburg
Institut fur Technische und Betriebliche Informationssysteme
Postfach 4120, D-39016 Magdeburg, Germany

E-mail: {schwarz|tuerker|saake}@iti.cs.uni-magdeburg.de

Abstract

Complex applications consist of a large set of transactions
which are interrelated. There are different kinds of de-
pendencies among transactions of a complex application,
e.g. termination or execution dependencies which are con-
straints on the occurrence of significant transaction events.
In this paper, we analyze a set of (orthogonal) transac-
tion dependencies. Here, we do not follow traditional ap-
proaches which consider advanced transaction structures
as a certain kind of nested transactions. We introduce the
notion of transaction closure as a generalization of nested
transactions. A transaction closure comprises all transac-
tions which are (transitively) initiated by one (root) transac-
tion. By specifying dependencies among transactions of a
transaction closure we are then able to define well-known
transaction structures like nested transactions as well as
advanced activity structures, e.g. workflows, in a common
framework. In particular, we consider the transitivity prop-
erty for all kinds of transaction dependencies discussed in
this paper. Thus, we are able to conclude how two arbi-
trary transactions are transitively interrelated. This issue
is fundamental for understanding the entire semantics of a
complex application.

Keywords; transaction closure, termination dependen-
cies, object visibility constraints, transaction compensation,
transitive dependencies.

1 Introduction

Complex applications such as business processes or CSCW
consist of sets of transactions which are interrelated. Trans-
actions in these applications may be long-lived, may need
to cooperate, or may require access to different autonomous
databases. Furthermore, there are constraints on the execu-
tion order and the occurrence of termination events of re-
lated transactions, e.g. a certain transaction may only com-
mit if another transaction fails. Thus, the complexity of

*This research was partially supported by the German State Sachsen-
Anhalt under FKZ 1987A/0025 and 1987/2527R.

such advanced applications is often so high that it is dif-
ficult to state how an application will behave if certain parts
(transactions) fail. Here, a means is required for assisting
the application designer to conclude which kinds of effects
a certain transaction (transitively) has on other transactions.

The ACTA meta-model [3, 4] is a step in this direction
by providing a framework for specifying advanced transac-
tion models, e.g. nested transactions, Split transactions, and
Sagas. For all these transaction models special dependen-
cies are introduced (see [1] for a general discussion on spec-
ifying and enforcing intertransaction dependencies). ACTA
allows to formally define dependencies among transactions.
However, the current set of dependencies defined in ACTA
requires some extensions in order to be usable as a gen-
eralized framework for describing and classifying arbitrary
transaction models, particularly complex activity models.

Our goal is to find a (minimal) set of (orthogonal) fun-
damental transaction dependencies which are applicable ac-
cording to real-world application semantics. For that, we in-
vestigate termination dependencies which are constraints on
the occurrence of abort and commit events of related trans-
actions and analyze how these dependencies can be com-
bined. We show that there are some combinations which
are not applicable. Thereafter, we investigate how these de-
pendencies are influenced by different object visibility con-
straints and the concept of transaction compensation. In
particular, we consider the transitivity property for all kinds
of transaction dependencies discussed in this paper. Thus,
we are able to derive the exact relationship between two
arbitrary transactions. This issue is essential to detect not
explicitly specified relationships among transactions.

Moreover, we introduce the notion of a transaction clo-
sure [13] as a generalized transaction structure consisting
of a set of transactions which are (transitively) initiated by
the same (root) transaction. Well-known advanced transac-
tions such as nested transactions [12], flexible transactions
[6], or ConTracts [15] can be seen as transaction closures
with special dependencies among the transactions of this
closure. A nested transaction, for example, is a transaction
closure where the subtransactions must not leave the scope
of its initiating transaction. In contrast to nested transac-
tions, transaction closures can be used as a foundation for
describing activity models [5] or workflow models [8].

The concepts of a transaction closure and of transaction
dependencies with their transitivity properties are formally
defined by using the ACTA framework. Thus, we are able
to detect failures and contradictions in the specification of a
transaction closure during the design process. Furthermore,
the influence of transitive dependencies on a transaction clo-
sure can be simulated. This may help to detect superfluous
parts (transactions) of a transaction closure definition, e.g.
transactions which never can be committed due to transitive
abort dependencies.

In summary, the concept of transaction closure together
with the specified set of dependencies provide the basis for
an assistance tool. Such a tool may help to understand the
entire semantics of a complex application and thus it may
support the design of better and more efficient applications.

The paper is organized as follows. In Section 2, we
discuss the so-called termination dependencies which deal
with valid combinations of termination events of related
transactions. Execution dependencies are the topic of Sec-
tion 3. In Section 4, the influence of object visibility con-
straints on termination dependencies is investigated. There-
after, in Section 5, the effect of compensation aspects on ter-
mination dependencies is considered. The concept of trans-
action closure is introduced in Section 6. The exemplary
application of transaction closures, especially the derivation
of transitive dependencies in transaction closures, is shown
in Section 7. Finally, the paper is concluded by an outlook
on future work.

2 Termination Dependencies

Investigating constraints on the occurrence of the signifi-
cant termination events commit and abort leads to different
termination dependencies. In case of two transactions ¢;
and ¢;, there are four possible combinations of termination
events:

(1) both transactions abort (a¢;, at;)

(2/3) one transaction commits whereas the other one aborts
(a’ti’ Ctj)/(cti’ atj)
(4) both transactions commit (cy,, ;)

Obviously, constraints on the occurrence of these events
lead to at most sixteen dependencies. Under the assumption
that a transaction may be forced to abort but not to commit,
the number of possibly reasonable termination dependen-
cies is reduced to at most eight. This is due to the fact that
the abortion of both transactions is considered as valid event
combination for all dependencies. The termination event
combinations of the eight dependencies are represented in
Table 2. A (/) denotes that the corresponding termination
event combination is valid. Otherwise, in case of (-) the
event combination is not allowed to occur.

We identify five of the eight dependencies as applicable
according to real-world application semantics. The remain-
ing three combinations of termination events are inappli-
cable according to real-world application semantics. The

Lt |t [1]2]38]4[5[6[7]8]
ag; at:\/\/\/\/\/\/\/\/
Qag; Ctj—\/___\/\/\/
e Lo [— | — |V = V[V]V
a oy |—1—1—1VIVIVI=IV

Table 2. Termination Event Combinations

combination where only the abortion of both transaction is
valid (see the first dependency in Table 2) makes no sense
because in this case no transaction is allowed to commit. In
other words, if transactions are only allowed to abort, they
do not need to be executed. The next two combinations are
also not reasonable because in these cases always one of the
related two transactions is not allowed to commit, indepen-
dently of the termination event of the other transaction (see
the second and third dependencies in Table 2).

After having discussed the non-reasonable termination
event combinations, we will now formally define the termi-
nation dependencies which are based on reasonable termi-
nation events combinations. For our definitions we use the
ACTA formalism [3, 4], including the fundamental depen-
dency definitions such as the abort dependency and exclu-
sive dependency and the notion of a history of transactions
(in the following formulas denoted as H).

Abort Dependency (t; ADt;). If transaction t; aborts,
then transaction ¢; has to abort, too:

aborty; € H = aborty, € H

Exclusive Dependency (t; EDt;). If transaction ¢; com-
mits, then transaction ¢; has to abort:

commity; € H = (beging, € H = abort;, € H)

As an extension of the dependencies specified in ACTA, we
define the transitive closure property for all dependencies.
In doing so, we are able to analyze the influences of depen-
dencies among transactions which are only indirectly inter-
related by further transactions.

A dependency between two transactions ¢; and ¢; which
requires that both transactions either abort or commit to-
gether is called vital-dependent.

Definition 1 (Vital-Dependent) Two different transactions
t; and ¢; are vital-dependent for each other iff both trans-
actions are (transitively)' abort dependent on each other:

vital_dep(t,-,tj) = ((tz AD tj) A (tj AD tz)) \%
(Ftr, : vital_dep(t;, ty) A vital_dep(ty,t;))

The vital-dependent dependency is (as the name suggests) a
combination of the dependencies vital and dependent.

1Because of space restrictions we cannot attach the proof of the transi-
tivity property in the appendix. Therefore, please refer to [14].

| t: | t; || vital_dep(t;,t;) | vital(ts,t;) | dep(ti,t;) | exc(ts,t;) | indep(ti,t;) |
at; at; \/ \/ \/ \/ \/
at; | Ct; —_ _ \/ \/ \/
Cti (ltj e \/ — \/ \/
u | ¢y v v v — v

Table 1. Reasonable Termination Dependencies between two Transactions ¢; and ¢;

Definition 2 (Vital) A transaction ¢; is vital for another
transaction ¢; iff ¢; is (transitively) abort dependent on ¢;:

vital(t;, t;) & (t; ADt;)V
3ty = (vital_dep(t;, tr) A vital(ty,t;)) V
(vital(t;, tr) A vital dep(te,t;)) V
(vital(t;, ty) A vital(tg,t;)))

Thus, the vital dependency between two transactions ¢; and
t; concerns the case where the abortion of transaction t;
leads to the abortion of transaction ¢;. In contrast to the
vital dependency, a dependent transaction ¢; has to abort if
transaction t; aborts. Thus, the termination event of one
transaction is necessary for an acceptable outcome accord-
ing to the semantics of the application. This is the vital and
dependent, respectively, transaction ¢;. In contrast, the re-
sults of transaction ¢; are not essential for the application.

Definition 3 (Dependent) A transaction ¢; is dependent on
another transaction ¢; iff ¢; is (transitively) abort dependent
on tj:

dep(ti, tj) & (ti AD tj) \%

(3t : (vital_dep(t;, tr) A dep(ti,t;)) V
(dep(t;, tr) A vital_dep(ty,t;)) V
(dep(ti, tx) A dep(tk,t;)))

A completely different dependency is the exclusive depen-
dency. Here, only one of the transactions is allowed to finish
successfully. This dependency may be useful in real-time
applications where two alternative transactions are executed
in parallel and the results of the one which finishes first are
accepted and the other one is aborted after that.

Definition 4 (Exclusive) Two different transactions ¢; and

t; are exclusive for each other iff both transactions are

(transitively) exclusive dependent on each other:

(t: EDt) N (t; EDL)) V

(Fty, : (vital_dep(t;, tr) A exc(ty,t;)) V
(exc(ti, tr) A vital_dep(ty,t;)) V
(dep(ti, tr) A emc(ty, t;)) V
(GHS'C(ti, tk) A /Uital(tka J)))

exc(t;,t;) &

Our fifth dependency concerns the case where each combi-
nation of transaction termination events is valid. Therefore,
the involved transactions are denoted as independent. Con-
currently executed transactions without any constraints on
the execution order and termination events are independent.

Definition 5 (Independent) Two different transactions ¢;
and t; are independent if all termination event combina-
tions of ¢; and t; are allowed. This case is denoted as
indep(t;, t;).

The termination event combinations of the dependencies
defined so far are summarized in Table 1.

After having a closer look on the definitions above, we
can conclude that a vital dependency between transactions
t; and t; (vital(t;,t;)) is equivalent to the dep(t;,t;) de-
pendency between transaction ¢; and ¢; and vice versa. In
other words, transaction ¢; is vital for ¢; if and only if ¢;
is dependent on ¢;. In contrast, the other dependencies are
symmetrical (by definition).

Theorem 6 The following relationships hold for termina-
tion dependencies between two transactions ¢; and ¢;:

vital_dep(t;, t;) = wital_dep(t;,t;)
vital(t;,t;) = dep(tj,t;)
exc(ti, t;) = exc(ty,t;)
indep(t;,t;) = indep(t;,t;)

A conclusion which directly follows from Theorem 6 is that
either vital or dependent is not required because these de-
pendencies can be substituted by each other. This obser-
vation is true if we do not consider combinations of termi-
nation dependencies with other kinds of dependencies. As
we will see in Section 4, the combination of termination
dependencies with object visibility constraints leads to dif-
ferent results for vital(¢;,t;) and dep(t;, t;). Therefore, we
explicitly distinguish these two termination dependencies.

The following example shall clarify the derivation of
transitive dependencies.

Example 7 Let t1, t2, t3, and t4 be transactions which are
connected by the following dependencies:

vital_dep(t1,t2) A dep(ta,t3) A vital(t1,ts)

This scenario is depicted in Figure 1 where the arrows de-
note the direction of the abort dependencies. For example,
t1 —> t4 means that the abortion of transaction ¢, leads
to the abortion of ¢4. Hence, the termination dependencies
(used in this example) are illustrated as follows:

vital(t;,t;) correspondsto t; — t;
dep(t;,t;) correspondsto t; «—t;
vital_dep(t;,t;) correspondsto t; «— t;

dep(T4,T2)

dep(T1,T3)
Q) 7. |
) “y, o vielT2T)
2y

. . <
vital(T3,T1) éeQ(\‘L

dep(T4,T3)
vital(T3,T4)

Figure 1. Derived Termination Dependencies

From our dependency definitions and Theorem 6 we can
now derive the following transitive dependencies among the
transactions t1, to, t3 and t4:
vital _dep(ti,t2) A vital(t1,t4)
= vital dep(ta, t1) Avital(t;,t4) = wvital(ta,ts)

= dep(ts, t2)

vital_dep(tl, tg) A dep(tg, t3) = dep(tl, t3)
= U’I:tal(t;;, tl)

vital(ts, t1) A vital(t1,t4) = vital(ts,t4)
= dep(ts, t3)

In Figure 1, these transitive dependencies are represented
by the dashed arrows.

3 Execution Dependencies

In general, there are also constraints on the significant
events begin, commit and abort, respectively, of a set of
transactions. We distinguish the following kinds of execu-
tion dependencies: sequential (as generalization of sequen-
tial after abort and sequential after commit) and parallel.

For specifying these dependencies we require the follow-
ing fundamental dependencies defined in ACTA:

Serial Dependency (t; SDt;). A transaction ¢; cannot be-
gin executing until transaction ¢; either commits or
aborts:

(beging, € H) = ((commity; — beging,) V
(aborts; — beging,))
Begin-on-Abort Dependency (¢; BADt;). A transaction

t; cannot begin its execution until transaction ¢;
aborts:

(beging, € H) = (abort;; — beginy;)

Begin-on-Commit Dependency (¢; BCDt;). This depen-
dency denotes that a transaction ¢; cannot begin ex-
ecuting until transaction ¢; commits:

(beging, € H) = (commit;; — beginy,)

Using this fundamental dependencies we are able to define
several execution dependencies. First, we specify the gen-
eral sequential dependency.

Definition 8 (Sequential) A transaction ¢; is sequential de-
pendent on another transaction ¢; iff ¢; is (transitively) se-
rial dependent on ¢;:

seq(ti,t;) = (t; SDt;)V

(3t = seq(ti, tr) A seq(tr, t;))

The sequential dependency can be further refined. A trans-
action can be allowed to start only after the abortion or after
the commit, respectively, of another transaction.

Definition 9 (Sequential-Abort) A transaction ¢; is se-
quential-abort dependent on another transaction ¢; iff ¢; is
(transitively) begin-on-abort dependent on ¢;:

seq-a(t;,t;) &= (t; BAD¢t;)V
(3tr, : seq-a(ts, tr) A seq(tr,t;))

Definition 10 (Sequential-Commit) A transaction ¢; is
sequential-commit dependent on another transaction ¢; iff
t; is (transitively) begin-on-commit dependent on ¢;:

seq-c(ti,t;) &= (t; BCDt;) v
(Fty, - seqc(ts, ti) A seq(ty,t;))

In contrast to sequential executed transactions, a parallel
transaction starts before the termination of another one. We
define a begin-before-terminate dependency to specify the
parallel dependency.

Begin-before-Terminate Dependency (t; BBT t;).
A transaction ¢; cannot terminate (commit or abort)
until transaction ¢; begin executing:

(e€ H) = (beging — €),where

€ € {commity,,aborty, }

Definition 11 (Parallel) A transaction ¢; is parallel for an-
other transaction ¢; if and only if both transactions are
begin-before-terminate dependent on each other:

par(t,-, tj) = (tz’ BBTtJ) A (tj BBth)

4 Object Visibility Constraints

In this section, we investigate the effects of object visibility
constraints on termination dependencies. Object visibility
is of major concern in the context of isolated and atomic
transaction executions. In general, there are two ways how
to deal with the results of a transaction:

1. The results of a transaction are made visible to only
one transaction, e.g. in a closed nested transaction
model the effects of a subtransaction are made visible
to only the parent transaction (in case of a commit of
the subtransaction).

| t; | t; || vital_depd(t,-,tj) | vitald(ti,tj) | depd(ti,tj) | emcd(ti,tj) | indepd(ti,tj) |

Qt; at; \/ \/ \/ \/ \/
ag; | Ciy — — ag; — Cy; A, —> Gy ag;, —> Cy;
Ct; at; — \/ —

Ci; | Ciy Ci; — Ciy Ci; — Ci; Ci; — Ciy — Ci; — Ciy

Table 3. Combining Termination Dependencies with the Delegating Property

2. All effects of a transaction are made visible to all
other transactions with the commit of the transaction.

In the first case, a transaction delegates the responsibility
for committing or aborting its effects to another transaction.
This delegation operation is defined as follows:

Definition 12 (Delegate) A delegating transaction ¢; dele-
gates the responsibility for committing or aborting its ac-
cess set to another transaction ¢; (called the receiving
transaction) by using the operation delegatey;[t;]. After
delegate,,[t;) the access set of ¢; includes the access set
of tj.

A delegating transaction can only delegate its access set to
an active (non-terminated) transaction. In other words, the
termination of the delegating transaction must precede the
termination of the receiving transaction. So, the receiving
transaction has to wait for the termination of the delegating
transaction to commit. To enforce this order of termination
events, we define the following commit-on-termination de-
pendency.

Commit-on-Termination Dependency (¢; CTDt;).
A transaction ¢; cannot commit until transaction ¢;
either commits or aborts.

commit;, € H = ((commit;; — commity;) V

(aborty; — commity,))

The definitions of the delegate operation and of the commit-
on-termination dependency enable us to define the delegat-
ing dependency.

Definition 13 (Delegating) A transactiont; is a delegating
transaction from the viewpoint of another transaction ¢; iff
t; is (transitively) commit-on-termination dependent on ¢;
and ¢; (transitively) delegates its access set to ¢;:

del(ti,t;) = ((t;CTDt;) A
(commit,, € H < delegatey,[t;] € H)) V
(Eltk : del(t,’, tk) A del(tk, tj))

A transaction which makes all its effects visible to all other
transactions with its commit is called a releasing transac-
tion. In other words, a releasing transaction does not dele-
gates its access set to another transaction; the access set is
released for all other transactions.

Definition 14 (Releasing) A transaction ¢; is a releasing
transaction from the viewpoint of transaction ¢; if the access
set of ¢; is visible with the commit of ¢;.

Definition 15 (Combined Dependencies) Combining the
termination dependencies introduced in Section 2 with the
delegating dependency leads to the following dependencies:
vital_depq(ti,t;) &
vitaly(t;, tj) =
depq(ti t;) &
ewcd(ti, tj) =
indepd(ti, tj) =

del(t;,t;) A vital_dep(t;, t;)
del(t;, t;) A vital(t;,t;)
del(tz-, tj) A dep(tz-, tj)
del(t,’,t]‘) A emc(t,-,tj)
del(ti, t]‘) A indep(ti, tj)

Table 3 summarizes the effects of the combined dependen-
cies on the possible combinations of termination events.
Comparing Table 1 and 3, we can see that the delegating
property influences the second and the last row of Table 1,
i.e., all valid combinations of termination events where the
receiving transaction ¢; commits. These termination event
combinations are restricted by the constraint that the com-
mit of the delegating transaction must precede the commit
or abort, respectively, of the receiving transaction. The
reason for this restriction is that the delegating property
bases on the commit-on-termination dependency which de-
termines a given termination order.

In Table 3 we further see that there is a difference be-
tween the dependencies vitalq(t;, t;) and depq(t;, t;). Be-
cause of the commit-on-termination dependency, these de-
pendencies cannot be used interchangeable. In contrast to
the basic termination dependencies, the termination order
of the transactions is fixed by the delegating dependency:

Theorem 16 For two transactions ¢; and ¢; the following
dependency relationships hold:

vital_depq(t;,t;) # wital_depq(t;,t;)
vitald(ti, tj) ;_é depd(tj, ti)
exca(ti t;) # excalt),ti)
indepq(ti,t;) # indepq(t;,t;)

5 Influence of Transaction Compensation on
Termination Dependencies

In the previous section, we saw that the delegating depen-
dency put further constraints on the termination dependen-
cies. In this section, we will see that the termination depen-
dencies can be weakened when transaction compensation is

supported. Transaction compensation is the ability to se-
mantically undo the effects of a transaction ¢; by a compen-
sating transaction comp,, to achieve semantic atomicity. If
there exists such a compensating transaction compy; for a
transaction ¢;, ¢; is denoted as compensatable. Obviously,
the aspect of compensation makes only sense for releasing
transactions.

The basic termination dependencies defined in Section 2
base on the abort dependency and the exclusive dependency,
respectively. If transaction compensation is considered,
these dependencies are weakened to the weak-abort depen-
dency? and the weak-exclusive dependency, respectively.

Weak-Abort Dependency (¢; WAD¢;). If transaction ¢;
aborts and transaction ¢; commits, then the commit
of t; precedes the abort of ¢; and the compensating
transaction comp,, of t; has to commit, too.

(aborty, € H) =
(commiit;, — aborty,

((commity, € H) =
N (Commitcompti € H)))

In contrast to an abort dependent transaction, a weak-abort
dependent transaction can commit without waiting for the
commit of the other transaction. In case the other transac-
tion aborts, the “committed” effects of the weak-abort de-
pendent transaction are semantically undone by executing a
compensating transaction.

Weak-Exclusive Dependency (t; WED t;). If both trans-
actions ¢; and t; commit, then the compensating
transaction of ¢; (compy,) or of t; (compy;) has to
commit, too.

(commit;; € H) =
((commiteomp,, € H)

((commit,, € H) =
V (commiteomp,, € H)))

In comparison to the exclusive dependency, the weak-
exclusive dependency only demands that (at least) one of
the compensating transactions of the related transactions ¢;
and ¢; must be committed in case both ¢; and ¢; commit.
Thus, the case where both transactions can commit is al-
lowed under the restriction that one of these transactions is
compensatable.

By using the weakened versions of the abort dependency
and the exclusive dependency, we now redefine the termi-
nation dependencies under the consideration that the related
transactions are compensatable (at least one of them).

For the symmetrical dependency vital_dep(t;,t;) be-
tween two transactions ¢; and ¢; we have to distinguish three
cases:

o Ifonly ¢; is compensatable, the corresponding depen-
dency is denoted as vital_dependent 4.

o Ifonly t; is compensatable, the corresponding depen-
dency is denoted as vital _dependent,,. .

2Please note that our definition of the weak-abort dependency differs
from the weak-abort dependency (t; WD t;) defined in [4].

o If both transactions ¢; and t; are compensat-
able, the corresponding dependency is denoted as
vital_dependentys.

Definition 17 (Vital-Dependenty) Two different transac-
tions ¢; and t; are vital-dependenty on each other iff
both transactions are (transitively) weak-abort dependent
on each other:
vital_depe(ti,t;) = ((t; WADE;) A (t; WADE;)) V
(3t - (vital_depe(ti,tr) A vital_depy(ti,t;)))
Definition 18 (Vital-Dependent) Two different transac-
tions ¢; and ¢; are vital-dependent4 on each other iff ¢; is
(transitively) weak-abort dependent on ¢; and ¢; is (transi-
tively) abort dependent on ¢;:
m'tal_dep< (ti, tj) = ((tz WAD tj) A (tj AD tz)) \Y
(3t : (vital_dep4(ti, tr) A vital_dep(ty,t;)) V
(vital_depy (t;, tr) A vital_dep4(ti,t;)))
Definition 19 (Vital-Dependent,.) Two different transac-
tions ¢; and ¢; are vital-dependent,. on each other iff ¢; is
(transitively) weak-abort dependent on ¢; and ¢; is (transi-
tively) abort dependent on ¢;:
vital_depy. (t;, tj) & (t; AD tj) A (tj WADt;) vV
(Fty, : (vital_dep(t;, tr) A vital_depy (tk,t;)) V
(vital_depy (ti, ty) Avital_depe (tr,t;)))
Definition 20 (Vital,) A transaction ¢; is vital, for an-
other transaction ¢; iff ¢; is (transitively) weak-abort de-
pendent on ¢;:
vitaly (ti,t;) & (t; WADt;) V
(Fty, : (vital(t;, tr) A vital_depy (t,t;)) V
vital_depq(ti, tr) A vitaly (tg,t;)) V
vitaly (t;, tr) A vital_depe(ti,t;)) V
vital_dep(t;, ty) A vitaly (tk,t;)) V
vital(ti,tk) A vital,(tk,tj)) \%
vitaly (ti, tr) A vitaly (t,) V
vital_depy (t;, tr) A vitaly (tg,t;)) V
(vital_depe (ti, tr) A vitaly (tr,t;)))
Definition 21 (Dependent4) A transaction ¢; is depend-
ent¢ on another transaction ¢; iff ¢; is (transitively) weak-
abort dependent on ¢;:
d€p<(ti,tj) = (t WADt)V
(Fty : (vital_dep4(ti,t

(
(
(
(
(
(

k) A dep(tr,t;)) V
(dep4(ti, tr) A vital_depy (tk,t;)) V
(vital_depe (ti, tr) N depq(tr,t;)) V
((ti, tr) A vital_dep(ty,t;)) V
(dep4(ti,tr) A dep(ty,t;)) V
(dep<(tisti) A depq(tr,t;)) V

((ti, tr) A vital_dep4(tr,t;)) V
(dep4(ti,tr) Avital_depy(ty,t;)))

| ti | t; || vital_depe(ti,t;) | vital depq(ti,t;) | vital_depy (ti,t;) |
at; Qg \/ \/
ag; | ¢t ct; = ag; A Ceompy, — ct; — ag; A Ceompy,
ct; | ay; cy; = ag; N Ccomps;, | Cti = 04 A Ccompy,
Ct; Ct; \/ \/

Lt [t; | wvitaly(ts,t;) | dep4(ti,t;) | exce(ti,t;) |
ag; atj \/ \/ \/
ag; | Ct; Ct; = ag; A Ccompy, \/ \/
ct; | ay N Ct; = at; A Ceomp, N
Ct; Ctj \/ Ccompti \ ccomptj

Table 4. Relaxed Termination Dependencies

Definition 22 (Exclusivey) A transaction ¢; is exclusivey
for another transaction ¢; iff ¢; is (transitively) weak-
exclusive dependenton ¢;:

exce(ti, t;) & (tL; WEDt;)V
(Fty, : (vital_dep (i, tr) N exc(ty,t;)) V
(exc(ts, tr) A vital_depy (tr,t;)) V
(exc(ti, tr) Awvitaly (tg,t;)) V
(dep4(ti,tr) N exc(ty,t;)) V
(vital_depy (ti, tr) N exce(tr,t;)) V
(exce (t;, tr) A vital_depe(tr,t;)) V
(vital_depy (t;, tr) N exce (tr,t;)) V
(exce(ti,tr) A vital_dep4(tr,t;)) V
(
(
(
(
(
(
(

exce (ti, tr) A vital_dep(ty,t;))
vital_dep4(ti, tr) N exce (tr,t;)) V
exce(ti, tr) A vitaly (tg,t;)) V
exce (ti, tr) A vital_depy (tr,t;)) V
dep(ti, tr) A exce(ty,t;)) V
dep4(ti,tr) A exce(ty,t;)) V
(exce(ts, tr) Avital(tr,t;)))

)
)
)
)
vital _dep(ts, tr) A exce (te,t;)) V
V
)

Table 4 gives an overview over the termination dependen-
cies in combination with the compensation aspect. Com-
paring Table 4 with Table 1, all disallowed fields (-) of
the basic termination dependencies are replaced by a con-
straint on the termination order (—) of the correspond-
ing transactions (except of two fields in vital_dep ¢(t;,t;)
and vital_depy. (t;, t;), respectively). This is caused by the
weak-abort and weak-exclusive dependencies.

From the Definitions 17 to 22, we can derive the follow-
ing theorem.

Theorem 23 The following relationships hold for depen-
dencies between two transactions ¢; and ¢;:

vital_depy(ti,t;) = wvital_depy(t;,t;)
vital_depy (t;,t;) = vital_dep4(t;,t;)

Jcompy; : Acompy, : vitaly (t;,t;) = dep(tj,t;)

Acompy, : Icompy; : vital(t;, t;) = depq(tj,ts)

Jcompy; : Icompy, : vitaly (ti,t;) = depq(t),ts)
exce(ti,t;) = exce(t;,t;)

6 Transaction Closures

Traditionally, advanced transaction models base on the idea
of nesting transactions. A nested transaction [12] is a trans-
action consisting of smaller transactions called subtransac-
tions. These subtransactions are initiated within a transac-
tion. The initiating transaction is called parent. A subtrans-
action itself may consist of smaller subtransactions, i.e., a
nested transaction forms a transaction tree. However, activ-
ity models [5] or workflow models [11] require a more gen-
eral framework for describing a set of related transactions.
The same holds for execution models of active database sys-
tems [10].

Therefore, we have introduced the notion of a transac-
tion closure [13] as a generalized transaction structure. A
transaction closure consists of a set of transactions which
are transitively initiated by the same (root) transaction,
i.e., there are parent-child relationships between transaction
pairs of a transaction closure. The transactions of a trans-
action closure are further interrelated by the dependencies
discussed in the previous sections. For example, a subtrans-
action in a transaction closure may leave the scope of its
parent transaction. By using transaction closures (in con-
nection with the various dependency types) we have a uni-
form framework for describing traditional as well as ad-
vanced transaction models, particularly activity and work-
flow models. A closed nested transaction [12], for example,
is a transaction closure where the subtransactions are vital-
dependent or vital for their parents including the delegating
property (vital_depq(t;,t;) or vitaly(t;,t;)).

For the formal definition of the notion of a transaction
closure we require some basic definitions.

Definition 24 The following self-explanatory functions and

predicates describe general relationships between a trans-
action and its initiator:
parent(t;,t;) = (t;isparentoft;)
root(t;) := (t; hasno parent)
ancestor(t;,t;) = (parent(t;,t;)V
(3tr, : ancestor(t;, try) A parent(ty,t;))
The relationship between the initiation of two transactions
can be expressed by a begin dependency.

Begin Dependency (t; BDt;). A transaction ¢; can be ini-
tiated only if transaction ¢; is already initiated.

beging, € H = (beging; — beging,)

Definition 25 (Transaction Closures) Suppose tc, and
te,, denote two (different) transaction closures and let ¢; and
t; be two transactions:

1. Transactions of two different transaction closures are
always independent:
Vt; € tem, Vtj € ten, tem # te, :indep(ti, t5)
2. Each transaction closure has exactly one® root trans-
action: Vic,, : 't; € tey, : root(t;)
3. Each non-root transaction has exactly one parent
transaction:
Vicm : Vit € tem @ —root(t;) =
(A't; € tem = parent(ts, t;))

4. Each transaction closure is acyclic:
Vienm : At; € ten, : ancestor(t;, t;)

5. The initiation of a transaction must follow the initia-

tion of the parent:
Vicm : Vit € tem @ —root(t;) =
(3t; € tem = parent(t;, t;) A (t; BDt;))

6. Each transaction ¢; of a transaction closure is con-
nected to one of its subtransaction ¢; by exactly one
termination dependency:

Vicy, : Vt; € tey, : 3t € tey, = parent(t;, t;) =

((vital_dep(t;, t;) A —wital(t;, t;) A ~dep(ti, t;)
A—exc(t;,t;) A —~indep(t;,t;)) V

(—wital_dep(t;, t;) A vital(t;, t;) A —dep(ti,t;)
A—exc(t;,t;) A —indep(t;,t;) V

(—wital_dep(t;, t;) A —wital(t;, t;) A dep(ts,t;)
A—exc(ti, t;) A —indep(ti, t;) V

(—vital _dep(t;, t;) A —wital(t;, t;) A ~dep(ts,t;)
Nexc(ti, t;) A —indep(t;,t;) V

(—wital_dep(t;, t;) A —wital(t;, t;) A ~dep(t;, t;)
A—exc(ti, t;) Aindep(t;, t;)))

3The symbol 3! stands for “it exists exactly one”.

For the sake of readability, we have disregarded
the combined dependencies, e.g. vitalq(t;,t;), and
vitaly (t;,t;). Obviously, two transactions of a trans-
action closure may be interrelated by one of these
combined dependencies.

7. The execution order dependency between transac-
tions is acyclic: Ve, : At; € ten, : seq(t;, t;)

7 Application of Transaction Closures

The following example illustrates the application of trans-
action closures. In particular this example shall show how
to deal with transitive dependencies in transaction closure.
The transaction closure in our example can be considered as
a workflow with special dependencies among the different
transactions. Especially, there are transactions which are
executed outside the scope of the initiating transaction.

Example 26 Let ¢y, to, 3, t4, t5, te, t7, tg, and tg be trans-
actions of a transaction closure with the root transaction ¢; .
The transaction t,, t3, and t4 are subtransactions of the root
transaction and connected by the following dependencies:

vital _dep(ty,t2) A dep(t1,t3) Avitaly (t1,t4)

Furthermore, t5 and tg are subtransactions of transaction
to, t7 is a subtransaction of transaction ¢z, and tg and tg
are subtransactions of transaction ¢4. These subtransac-
tions are connected to their parent transactions by the fol-
lowing dependencies:

vital(ta, t5) A dep(ta, te) A exc(ts, t7) A
indep(ts, tg) A vital_depe(ts,t9)

The transactions t4, tg, and tg are compensatable. Further-
more, execution order dependencies are defined among the
transactions of the closure. In the following we state the
sequential dependencies:

seqc(ta, ts) N seqc(tys,t3) A seq-a(ts,ts)

The transaction ¢4 is executed after the commit of transac-
tion t5 and transaction ¢3 after the commit of t4. Moreover,
transaction tg is only executed after the abortion of trans-
action tg. All other transactions are executed in parallel.

Our example transaction closure is illustrated in Fig-
ure 2. The arrows between transactions denote the direc-
tion of the abort dependencies like in Figure 1. Addition-
ally to the symbols used in Figure 1, we now introduce the
following symbols for the dependencies exclusive and inde-
pendent:

exc(ti, t;)
indep(t;, t;)

corresponds to
correspondsto t; —t;

From our dependency definitions and Theorems 6 and 23
we can now derive the transitive dependencies in the un-
derlying transaction closure. We are also able to investigate

compensatable
transaction

seq_c(T2T4)

exc(T3,T7) | () dep(T1T3)
3 ey

seti:a['I:G,/TS)

Figure 2. Example of a Transaction Closure

the influence of the abortion of a certain transaction on the
whole closure. In the following we discuss some interesting
cases. We start with the consideration of transactions ¢,
t5, and tg. We know that ¢ is vital for ¢; and dependent on
tg. From this basic dependencies we can derive that ¢5 is
transitively dependent on transaction t4:

’l)ital(tg, t5) A dep(tg, t6)
= dep(ts, t2) A dep(t2, ts)

Hence, the abortion of transaction ¢4 leads to the abortion
of the parent ¢, and the sibling ¢5. In contrast, the abortion
of t5 has no influence on the other transactions. Concerning
the whole transaction closure, an abortion of ¢ leads to an
abortion of all other transactions except ¢3, t7, and ts.

Transaction tg is independent of its initiating transaction
and, thus, it is transitively independent of all other transac-
tions of the transaction closure. From this follows that an
abortion of another transaction of the closure has no influ-
ence on tg and that the abortion of g is without any effects
on the other transactions. For example, the transaction tg
may continue executing after the termination of its parent
transaction t4. Thus, transaction tg may leave the scope of
its parent transaction.

Transaction t; is exclusive for its parent t3. Conse-
quently, ¢ is transitively exclusive for the transactions #1,
t2, and t5 and transitively exclusivey for the transactions
t4 and tg which are compensatable:

dep(t1,t3) A exc(ts,tr

- dep(t5 , te)

= exc(ty,tr)

vital_dep(ty,ta) A exc(ty, tr

= vital_dep(ta, t1) A exc(ty, t7) = exc(ta,tr)

)
(t1,t2) (t1,t7)
(ta, 1) (t1,t7)
vital (t2,t5) A exc(ta, t7)
= dep(ts, ta) A exc(ta,t7) = exc(ts,tr)
exc(ti, tr) Avitaly (t1,ts)
(t1,ta)
(ta;to)

= exc(tr, t1) Avitaly (1,4 exce(tr,ts)

Il

exce(tr,ts) A vital _depe(ts,te exce(tr,t9)

Transaction tg is independent of transaction ¢ for the rea-
son discussed above. Furthermore, the transaction tg is
transitively independent of ¢7. The dependency between the
transactions tg and ¢, is vital, because transaction tg is
compensatable (see Theorem 23). Due to the vital depen-
dency, transaction tg may commit and ¢, abort. On the
other hand, the exclusive dependency between ¢, and ¢, al-
lows that ¢ aborts and transaction ¢t commits. In this case,
both transactions ¢ and ¢ commit. Thus, the transitive de-
pendency between tg and ¢; cannot be exclusive.

exce(tr,ta) Nindep(tsa,ts) = indep(tr,ts)

dep(ta, t) N exc(ta, t7)
= vitaly (g, t2) A exc(te, t7) = indep(ts, t7)

The subtransactions ¢, t3, and ¢4 of the root transaction ¢;
are connected by the following transitive dependencies:

vital_dep(t1,t2) Avitaly (t1,t4)

= vital_dep(ta,t1) A vitaly (t1,t4)
vital_dep(t1,t2) A dep(ty,t3)

)

)

)

(= wvitaly (t2,ts)
(
= vital _dep(ta, t1) A dep(ty,ts
(
(

= dep(ta,t3)
dep(ty1,t3) Avitaly (t1,t4

= m'tal(t3, tl) A m'tal, t1,t4 — Uital;(t;;, t4)
Finally, we show the derivation of a transitive execution de-
pendency. Due to the fact that transaction ¢4 is sequential-
commit dependent on transaction ¢, whereas transaction
t3 is sequential-commit dependent on transaction tg4, t, is
transitively sequential-commit dependent on ¢3.

seq_c(ta,ta) N seqc(ts,t3) = seq_c(ta,ts3)

Example 26 showed that the abortion of a transaction may
lead to the abortion of parts of the closure. Dependen-
cies between two arbitrary transactions may be complex
and sometimes not obvious. The influence of transaction
abortion on a transaction closure can be simulated by the
transitive dependencies. This may help also to detect un-
necessary parts of a transaction closure definition. In the
following example we illustrate a dependency specification
which is contradictory.

Example 27 Let t; and t; be two transactions which are
connected by an exclusive dependency and suppose that
transaction ¢; is sequential-commit dependent on ¢;:

exc(ti, t;) N seq_c(t;,t;)

The sequential-commit dependency requires that the initi-
ating of transaction ¢; follows the commitment of trans-
action ¢;. However, the combination of this execution de-
pendency with the exclusive dependency implies that trans-
action t; always has to be aborted. Due to the exclusive
dependency, the commit of ¢; leads to the abort of ¢;. In
case t; aborts, transaction ¢; is not started because of the

sequential-commit dependency. In other words, the execu-
tion of transaction ¢; makes no sense. Consequently, either
the specification of such a transaction is superfluous or a
failure happens during the transaction closure design pro-
cess. Such failures are hints for the transaction designer
that there are dependencies which are incorrect according
to the real-world applications semantics.

8 Conclusions and Outlook

Nested transaction structures do not provide an adequate
platform for various complex applications, e.g. for appli-
cations which are based on activity or workflow models.
In this paper, we have presented a generalized framework
for describing and classifying related transactions in a uni-
form way, independent of how complex they are interre-
lated. The concept of transaction closures extends the con-
cept of nested transactions, for example, allowing detached
transactions in such transaction closures. Detached trans-
actions [2] are modeled as subtransactions which are inde-
pendent of the initiating transaction. Such subtransactions
may leave the scope of the initiating transaction. By putting
further constraints on such kinds of transactions we can
also model different types of detached transactions, e.g. de-
tached but causally dependent transactions. This extensions
are especially relevant for applications of active databases,
federated databases, and mobile computing.

In particular, our framework supports the automatic
derivation of transitive dependencies. This issue is impor-
tant to get a grasp of the entire semantics of a complex ap-
plication. By this way, it is possible to conclude how two
(arbitrary) transactions are interrelated. For instance, the
application designer can estimate which parts (transactions)
of the application are concerned by an abortion of a certain
transaction. Thus, failures or redundancies in the applica-
tion specification can be detected during the design phase.
This would help to develop less failure-prone applications.

Our future work will focus on the aspect of the en-
forcement and implementation of transaction dependencies.
Here, we will attempt to adopt the methods proposed in
[7, 9] to our framework and provide some extensions to cap-
ture the transitive properties of transaction dependencies.

Acknowledgements: We are grateful to Stefan Conrad for
useful remarks.

References

[1] P.C. Attie, M. Singh, A. Sheth, and M. Rusinkiewicz. Spec-
ifying and Enforcing Intertask Dependencies. In S. Baker,
R. Agrawal, and D. Bell, eds., Proc. 19th Int. Conf. on \Very
Large Data Bases, pp. 134-145, Morgan Kaufmann, 1993.

[2] A.P.Buchmann. Active Object Systems. In A. Dogac, M. T.
Ozsu, A. Biliris, and T. Sellis, eds., Advances in Object-
Oriented Database Systems, pp. 201-224, Springer, 1994.

[3] P. K. Chrysanthis and K. Ramamritham. A Formalism for
Extended Transaction Models. In G. M. Lohmann, A. Ser-
nadas, and R. Camps, eds., Proc. 17th Int. Conf. on Very
Large Data Bases, pp. 103-112, Morgan Kaufmann, 1991.

[4] P. K. Chrysanthis and K. Ramamritham. Synthesis of Ex-
tended Transaction Models Using ACTA. ACM Transaction
on Database Systems, 19(3):450-491, September 1994.

[5] U. Dayal, M. Hsu, and R. Ladin. A Transaction Model for
Long-Running Activities. In G. M. Lohmann, A. Sernadas,
and R. Camps, eds., Proc. 17th Int. Conf. on Very Large Data
Bases, pp. 113-122, Morgan Kaufmann, 1991.

[6] A.K.Elmagarmid, Y. Leu, W. Litwin, and M. Rusinkiewicz.
A Multidatabase Transaction Model for InterBase. In
D. McLeod, R. Sacks-Davis, and H.-J. Schek, eds., Proc.
16th Int. Conf. on Veery Large Data Bases, pp. 507-518, Mor-
gan Kaufmann, 1990.

[7] D. Georgakopoulos, M. Hornick, and P. Krychniak. An Envi-
ronment for the Specification and Management of Extended
Transactions in DOMS. In H.-J. Schek, A. P. Sheth, and
B. D. Czejdo, eds., Proc. 3rd Int. Workshop on Research |s-
suesin Data Engineering: Interoperability in Multidatabase
Systems, pp. 253-257, IEEE Computer Society Press, 1993.

[8] D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview
of Workflow Management: From Process Modeling to Work-
flow Automation Infrastructure. Distributed and Parallel
Databases, 3(2):119-153, April 1995.

[9] A. Geppert and K. R. Dittrich. Rule-Based Implementation
of Transaction Model Specifications. In N. W. Paton and
M. H. Williams, eds., Rules in Database Systems, Proc. 1st
Int. Workshop, pp. 127-142, Springer, 1994.

[10] M. Hsu, R. Ladin, and D. R. McCarthy. An Execution Model
For Active Data Base Management Systems. In C. Beeri,
J. W. Schmidt, and U. Dayal, eds., Proc. 3rd Int. Conf. on
Data and Knowledge Bases: Improving Usability and Re-
sponsiveness, pp. 171-179, Morgan Kaufmann, 1988.

[11] M. U. Kamath and K. Ramamritham. Correctness Issues in
Workflow Management. Distributed Systems Engineering,
3(4), December 1996.

[12] J.E.B. Moss. Nested Transactions: An Approach to Reliable
Distributed Computing. MIT Press, Cambridge, MA, 1985.

[13] K. Schwarz, C. Tirker, and G. Saake. Analyzing and For-
malizing Dependencies in Generalized Transaction Struc-
tures. In Proc. of the Int. Workshop on Issues and Appli-
cations of Database Technology (IADT' 98), July 6-9, 1998,
Berlin, Germany, 1998. To appear.

[14] K. Schwarz, C. Tirker, and G. Saake. Derived Transaction
Termination Dependencies: An Algorithm for Computing
Transitivity Rules. Preprint 7, Fakultét fur Informatik, Uni-
versitat Magdeburg, February 1998.

[15] H.Wadchter and A. Reuter. The ConTract Model. In A. K. EI-
magarmid, ed., Database Transaction Models for Advanced
Applications, pp. 219-263, Morgan Kaufmann, 1992.

