pp- 1o/7-204, North Rolland, Amsterdam (1992)

Conceptual Modelling of Database Applications
Using an Extended ER Model

Gregor Engels”, Martin Gogolla*, Uwe Hohenstein®, Klaus Hiilsmann*!,
Perdita Lohr—Richter*, Gunter Saake*, Hans—Dieter Ehrich*

Technische Universitat Braunschweig
Informatik, Abt. Datenbanken,
Postfach 3329

W - 3300 Braunschweig, Germany

Dept of Computer Science, Leiden University
P.O Box 9512
2300 RA Leiden The Netherlands

+ Siemens AG, ZFE BT SE 33
Otto-Hahn-Ring 6
W - 8000 Miinchen 83, Germany

ABSTRACT

In this paper, we motivate and present a data model for conceptual design of structural and
behavioural aspects of databases. We follow an object centered design paradigm in the spir-
it of semantic data models. The specification of structural aspects is divided into modelling
of object structures and modelling of data types used for describing object properties. The
specification of object structures is based on an Extended Entity—Relationship (EER) model.
The specification of behavioural aspects is divided into the modelling of admissible database
state evolutions by means of temporal integrity constraints and the formulation of database
(trans)actions. The central link for integrating these design components is a descriptive logic—
based query language for the EER model. The logic part of this language is the basis for static
constraints and descriptive action specifications by means of pre- and postconditions. A tem-
poral extension of this logic is the specification language for temporal integrity constraints. We
emphasize that the various aspects of a database application are specified using several appro-
priate, but yet compatible formalisms, which are integrated by a unifying common semantic.

CR Categories and Subject Descriptors:

K. Hiillsmann’s work is supported by Deutsche Forschungsgemeinschaft under grant (En184/1)

H.2.1 [Database Management] Logical Design — Data models;
Schema and subschema.
H.2.3 [Database Management] Languages — Data description languages (DDL);
Data manipulation languages (DML);
Query languages.
D.2.1 [Software Engineering] Requirements/Specification — Languages.
D.2.10 [Software Engineering] Design — Methodologies.

General terms: Design, Languages, Reliability.

Additional Key Words and Phrases: Conceptual data model, conceptual database de-
sign, Entity—Relationship model, database evolutions, integrity constraints, query language,

transactions.

Contents

Abstract

1 Introduction

2 Conceptual Modelling — A Structured Approach

3 Modelling the Database — Structure & Access Operations

3.1 EER Model e
3.2 Datatypes e
3.3 Queries e e e e e e
3.4 Constraints on Database States

3.5 Elementary Operations. 0 e

4 Modelling the Database - Dynamic Behaviour & Applications

4.1 Constraints on Database Evolutions
4.2 Descriptive Specification of Database Transactions

4.3 Operational Description of Database Transactions

5 Conclusions and Future Work

References

Appendix

A Data-valued Attributes of Entities and Relationships

B Complete EER-Diagram

32
33
37
40

42

45

53

53

56

1 INTRODUCTION 1

1 Introduction

Since the early times of database systems the scenario of database applications has dramati-
cally changed. New applications like CAD, CASE [1, 2, 3, 4], office information systems [5] or
geoscientific databases [6, 7] need more sophisticated database functionalities. These appli-
cations typically require the administration of complex structured objects and need a larger
variety of data types such as geometric and temporal data types or data types for storing
visual or acoustic data.

Another point is that databases are increasingly used for integrating different applications.
For example a common database for air traffic applications could be accessed by such different
applications as flight scheduling, air traffic control, flight booking in travel agencies or the
maintenance of airplanes. Since such a database has to reflect more facets of the whole
application area than databases for the single applications, integration additionally not only
increases the size complexity of the database but also the structural complexity of single
entities in the database.

There has been a change from application specific databases to domain specific ones. These
changes have also caused a change in database design philosophy from a merely application
progam centered way to an object centered manner of database modelling. The task of the
database designer is not chiefly the modelling of databases specific for dedicated applications
but to reflect the structures of some real world part by a database used by a variety of
application programs. Consequently, the primary task of the database designer is to model
the properties of the real world objects in the domain of discourse and not the functionality
of the various application programs.

This attitude to database modelling has been accepted long before so—called object—oriented
data models became fashionable in the database research community. The main idea is that
the relevant real world objects are represented by corresponding objects in the database.
These objects are abstract entities with a fixed identification which can be inserted into or
removed from a database and which are often composed of other objects (complex objects).
They have properties (or attributes) which contain values of corresponding data types and
which can be used for an external, observable representation of objects. Data types themselves
may have simple or complex structures. For instance, a geographical object can be described
by as simple structured properties as its name over the data type string or by as complex
structured ones as its border represented by a polygon. Usually, such complex structures can
also be expressed as complex objects. Nevertheless, we think the distinction between objects
and data is essential, because not every complex structure also meets the intuitive concept
of an object.

The object centered way of designing the structure of databases had also consequences for
the design of database application programs or, more generally, database dynamics. Many
operations on a database are not specific for some particular program rather than for the
modelled objects and data structures. Consequently, these operations should be designed
together with the object and data types. Another aspect is that implicitly all possible evo-
lutions of a database contents are fixed by the design of the static structure of a database.
But, as some of these evolutions do not reflect possible evolutions of the real world, this set
has to be restricted to the set of admissible database evolutions. This is done in form of
so—called temporal integrity constraints. Indeed, this could also be done by integrating these
restrictions directly into database operation specifications. But a separate specification of

1 INTRODUCTION 2

these two aspects of database behaviour allows operation design to concentrate on the pure
functionality of operations and to avoid multiple considerations of the same constraints in
different operations.

Summarizing we can say that database design has to deal with increasingly complex struc-
tures and must take into account different aspects of databases. Apart from modelling the
static structure, database dynamics has to be modelled, too. To reduce the complexity of
this modelling task, there have been made a lot of efforts for developing appropriate design
methodologies. Generally, several design steps can be distinguished similar to software life
cycle models [8, 9].

1) Requirements analysis
2) Conceptual database design
3) Logical database design

4) Physical database design

The most demanding phase in this process is conceptual design whereas the later phases
are merely transformation steps. The conceptual schema is the first formalised description
of the database application. On the one hand it serves for discussions with the customer
about the system functionality. On the other hand it is the basis for further design steps re-
alizing this functionality on an existing database system. Consequently a conceptual schema
should be appropriate for both of these roles. For the customer, it is important that the
conceptual schema is easy to understand and represented by using suggestive and natural
modelling primitives. For subsequent design steps the specification should be highly descrip-
tive for achieving a maximum independence of implementation issues but yet be sufficiently
formalised. Therefore, conceptual schemas should have a formal semantics. A formal seman-
tics is also indispensible for obtaining reliable results from schema analysis such as consistency
checking but also for the verification of the logical database schema against the conceptual
one and, finally, for providing the semantical basis for query languages operating on the da-
ta model. Such a query language plays a central role in conceptual design. It provides the
necessary means to “talk about” database states which is essential for formulating static and
dynamic constraints as well as database manipulation actions.

A variety of approaches have been proposed to develop such a conceptual data model. An
overview can be found in [10, 11, 12]. Most of these approaches, however, neglect the dy-
namic aspects of databases. One of the first attempts was the Entity—Relationship (ER)
model introduced by Chen [13]. The basic modelling primitives of this approach are entity
types, relationship types and attributes. The ER model has gained a wide acceptance for
database modelling but the generality of its relationship concept has often been criticized.
This is because relationships subsumes several, semantically different relationship types such
as part—of-relationships, is—a-relationships, spezialisation/generalisation as well as associa-
tion to object sets. For modelling these aspects so—called semantic data models were developed
as for example SDM [14], IFO [15], IRIS [16] or TAXIS [17, 18]. But there have also been
approaches to enhance the ER model with additional abstraction principles [19, 20, 21, 22].

As already mentioned, a powerful query language is essential to successful database modelling.
A brief discussion of query languages for ER models leads us to the first proposals of [23] and

1 INTRODUCTION 3

[24]. They used the relationship concept for relieving the user from specifying complicated
joins. Later approaches for the ER model range from procedural languages [25, 26] over
descriptive ones like GORDAS [27, 19] to graphical languages like HIQUEL [28] or GQL/ER
[29].

Analogously, in the area of database (trans-)action specification descriptive and operational
approaches can be distinguished. Descriptive action specification languages are usually va-
rieties of pre/post—conditions [30, 31, 32] where preconditions are either evaluated in the
previous state or in the whole database history [33, 34]. Sometimes the notion of transition
is included explicitly in the specification logic in form of a modal operator [35, 36, 37, 38].
In the research community, descriptive, logic-based languages as the above have long been
preferred rather than procedural ones. Nevertheless, most recently the latter ones enjoy a
renaissance with the increasing interest in object oriented data models and specification
techniques [39]. They are also still indispensible for the final implementation of transactions,
although this has the unfavourable effect that a change of paradigm is necessary during the
action design. Nevertheless specification languages (which deserve this name) based on a pro-
cedural paradigm seem not yet available. One research direction in this area are database
programming languages, e.g. Pascal/R [40] or DBPL [41] providing traditional programming
languages with easy database access facilities. Current research in this direction addresses
persistence, typing and inheritance [42]. The major deficiency of these approaches with re-
spect to conceptual modelling is that they are still in the spirit of modelling database access
rather than the behaviour of database objects. The behaviour aspect, however, is stressed in
Petri-net approaches [43, 5, 44] also proposed for action modelling.

Another area are so—called fourth generation languages (4GL) often combining descriptive
and operational elements [45]. Also graph grammars have been proposed for database action
modelling [46].

Only few approaches allow for a separate specification of dynamic integrity constraints to de-
scribe admissible evolutions of databases. In [47, 48, 49] transitional assertions are discussed,
i.e. constraints restricting database state transitions. In [5] such constraints are integrated in-
to Petri—net based action specifications by special constructs. There also have been proposed
modal logic styles as [38, 36, 50] and temporal logic based languages as [35, 51, 33, 52, 53, 54].

The goal of this paper is to present a uniform framework for specifying all relevant aspects of
a conceptual database schema, i.e. data types, object structures, (trans)actions and dynamic
integrity constraints and to explain how these heterogeneous structures can be integrated.
The presented conceptual data model can be provided with a formal semantics. In this paper,
however, we rather aim to show the pragmatics of the approach and to demonstrate its
appropriateness for database modelling.

The rest of the paper is organized as follows: In chapter 2 we discuss the requirements
for conceptual design of database applications using a structured modelling approach. In
chapter 3 the concepts for modelling the static structures are outlined. Additionally, we
discuss the inherent integrity constraints and show how elementary database manipulation
actions can be automatically derived from these structures. We also present a query language
supporting the data model. Chapter 4 deals with modelling database dynamics. We present
a language for specifying dynamic integrity constraints and discuss a descriptive and an
operational way of specifying database actions.

2 CONCEPTUAL MODELLING - A STRUCTURED APPROACH 4

2 Conceptual Modelling — A Structured Approach

We did already mention that conceptual modelling of database applications consists of ad-
equately describing the relevant features of the application domain. The role of conceptual
design in the whole database design process makes high—level, descriptive, powerful, and
highly expressive modelling concepts necessary to describe static and dynamic aspects of a
database in a uniform way. This chapter is intended to point out which modelling concepts
are actually needed. We summarize the discovered requirements for conceptual data models
and give a first outline of the proposed modelling approach described in a more elaborate
way in the rest of this paper.

Conceptual specifications of database applications can easily reach a degree of complexity
which makes it necessary to structure them in an appropriate manner. This complexity has
several facets. On the one hand, it is a question of size complezity. This means that the size of
conceptual database schemas can make it difficult to handle them without a design methodol-
ogy which supports the development of large design documents. On the other hand, we have
the structural complezity of the modelled structures and concepts needed to adequately mod-
el an application. This structural complexity results from the semantical richness of typical
applications. It must be reflected by using adequate modelling concepts in the specification
framework and languages.

In the life cycle of a database application, the conceptual database schema is the contract
between future users of the application and its developers. To be appropriate for this role, a
language for conceptual modelling should have a formal semantics in an appropriate math-
ematical formalism. But because of the different groups of involved people, the language
should also be easy to learn and easy to use and should provide features suitable for the rele-
vant application scenarios. These language features should also be natural for the application
area. To avoid a complexity explosion of design documents, the language should have a high
descriptive power.

Apart from these general principles of language design, we have a special situation for
database applications concerning the structural complexity of the system to be described.
To describe complete database applications, we have to specify such different concepts like

e attribute values and operations on them

o database objects and their attributes

o relationships between objects, among them part—of and is—a relationships

e allowed database states (static integrity constraints)

e allowed evolutions of databases (temporal constraints)

o application specific database transactions

Having these complexity problems in mind, we can identify two contrary approaches to handle
the necessary modelling concepts in a conceptual modelling language:

2 CONCEPTUAL MODELLING - A STRUCTURED APPROACH 9

1) The first approach is to use one broad—spectrum language for all aspects of database
applications, for example an extension of usual first order logic. This choice immediately
leads to a conflict between the language design principle of handiness and the complexity
of the application area. Either there are only few language concepts with insufficient
expressive power or there are too many different modelling concepts in one language.
Specification documents tend to become unstructured and unreadable if no adequate
specification methodology is additionally provided.

2) The second approach is to use a family of independent languages for different basic
concepts of database applications (e.g., algebraic specification of data types, a semantic
data model for database objects, temporal logic for evolutions, etc.) which can solve the
problem of structuring documents as well as the availability of appropriate language
features. The first problem with this choice is the existence of a unifying semantics for
complete specification documents consisting of parts written in different languages. A
maybe even harder problem is that the basic concepts of database applications are not
independent from each other. Some concepts are usually needed by other concepts, for
example data types for describing database states etc.

We propose a compromise between these two approaches. A database application is structured
into some components according to the semantical concepts. For each of these components, we
choose a language appropriate for the real world concepts to be described. This combination
of languages has the following properties:

e All languages support a logic—based, descriptive style of conceptual modelling. On the
other hand, for all components the support of executability is considered in the choice
of the description formalisms.

e All languages are based on one uniform, formal semantics framework allowing consis-
tency checks across the components.

e In cases where it makes sense, language primitives are shared by different languages.

The main idea is that the languages use syntactically and semantically compatible formalisms
to support the desired properties of our specification languages.

A central component for describing a database application is, of course, the description of
the database structures itself called object component. The object component describes the
structure of objects to be stored in the database, their attributes and the relationships be-
tween objects together with the restrictions on database states expressed by static integrity
constraints. The description of the database structure is done in the framework of a semantic
data model derived from the well-known Entity Relationship model. Our Eztended Entity—
Relationship model (for short EER model) adds to the classical ER model new features like
complex objects, generalization hierarchies, etc. which are in detail described in section 3.1. A
well-defined data model has also to determine a query formalism (section 3.3) as well as the
basic update primitives (section 3.5). The query language presented in section 3.3 is also used
as a language to formulate static integrity constraints (section 3.4). All these sublanguages
together build the language for the object component having as semantical domain the set
of possible database states.

2 CONCEPTUAL MODELLING - A STRUCTURED APPROACH 6

The object component describes the possible states of a database. For example, the interpre-
tation of queries is changing from state to state. In contrast to this changing interpretation,
the basic data structures used as values for attributes have fixed semantics independent from
the current state. These values and the operations on them are described by means of abstract
data types in the data type component. An example are the geometric data types point and
lines together with operations on them. A data type itself can have a complex internal struc-
ture as, for example, the data type lines. A first hint whether a complex structure should
be modelled in the object component or as a data type is given by the following observation:
objects can be updated (without changing the object identity) which is not possible for da-
ta values. From a semantical point of view, the data component is the kernel of the object
component because data types are used as attribute domains as well as for query results.

Based on data type and object component, we have two components describing the dynam-
ic evolution of a database. These two components reflect two complementary viewpoints of
describing such applications: the first one, the evolution component, describes the tempo-
ral evolutions without referring to the modifying actions (see section 4.1). This description
style can be characterized as descriptive and data—oriented. The specification formalism is
a temporal logic extension of the constraint language from the object component; the used
semantical domain is the set of possible database state sequences.

The second component to describe application dynamics is the action component. In contrast
to the evolution component, the allowed application evolutions are described in terms of
the allowed actions modifying the database contents. The semantical domain for the action
component is the same as for the evolution component; in fact, the action component gives
an independent description of the same topic, namely the desired database state sequences.
In this paper, we present two languages to describe database actions, a descriptive one based
on pre- and postconditions in section 4.2 and a more operational one in section 4.3 where
complex actions are composed of the basic update primitives presented in section 3.5. The
language to describe pre- and postconditions is based on the query language (section 3.3).

From these considerations we can deduce a somehow natural structure of a database ap-
plication’s description as shown in figure 2.1. The three concentric circles depict different
layers of the semantical structure and also an inclusion hierarchy for the specified compo-
nents, for example the data type component is necessary for the description of all outer layers.

Figure 2.1: Components of a Database Application Description

In more detail, the three concentric circles of figure 2.1 stand for the different semantical
domains

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 7

e domain of values (printable data) - Data Type Component D
database states — Object Component O

e sequences of database states — Ewvolution & Action Component
(database behaviour) E & A

This layered structure describes the syntactical and semantical hierarchy of the different
specification parts. Object specifications refer to data type specifications whereas the database
evolutions and actions are expressed by referring to object and data specifications. However,
this does not mean that a specification document has to be built up strictly following these
layers. In fact, database design is rather an iterative and incremental process. Following an
object centered proceeding, designing (or augmenting) a database schema would begin with
modelling (some of the) object structures. During this process the other features as data
types and database behaviour are modelled around the object specifications.

Layered approaches to structure conceptual modelling formalisms are proposed among others
by [55, 56, 22, 34, 57, 58]. These approaches agree in structuring conceptual models according
to the handled semantic domains and specification logics, but differ in the number and the
separation of the used several layers. None of them captures completely the full spectrum of
the specification formalisms as presented in this paper.

Summarizing we can say that a complete specification of a database application comprises
structural as well as behavioural aspects of a database. In the subsequent chapters we call such
a complete specification a database schema. This is in contrast to most traditional approaches
usually denoting by schema what is called the object component in our terminology.

After having pointed out the main aspects of database design we will give a more detailed
discussion of the various specification components in the subsequent chapters. In chapter 3
we will present the specification formalisms for the structural part of a database specification.
Afterwards we will discuss the languages for specifying database behaviour in chapter 4.

3 Modelling the Database — Its Structure and Access Opera-
tions

This chapter is devoted to the modelling of the structural part of a database application.
This includes besides the description of the database structure, i.e., the object component of
a database schema, also the presentation of languages for querying and modifying database
states which are induced by the object and data type specifications.

The first section 3.1 describes the data model used for specifying the structure of database
states. We use an extended Entity—Relationship (EER) model basically offering as modelling
concepts objects (‘entities’) having attributes and participating in relationships. In contrast
to other data models, we clearly distinguish between persistent (abstract) objects on the one
side and (printable) values used as object properties on the other side. The description of
value domains using abstract data types is handled in section 3.2. A given schema in the
EER model induces languages for database queries, integrity constraints and basic database
modifications as being presented in the following sections 3.3 to 3.5.

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 8

3.1 EER Model

The chosen example deals with world—wide air traffic, a typical database application area and
often modelled to demonstrate certain modelling concepts. The ER diagram in the appendix
gives an overview of our air traffic world (ATW). For modelling the air traffic world, we start
with the identification and classification of the involved objects such as airplanes, passengers,
etc.. After having identified the relevant object types, we continue by investigating the object
properties, their attributes and the relationships between objects.

In the literature, many semantic data models have been proposed for the conceptual mod-
elling of complex databases. These data models provide rich concepts for expressing the
various structures in the different applications to be modelled. Among them, Chen’s Entity—
Relationship (ER) model [13] has been successfully used for describing the requirements of
later database users because of its ease of understanding and its convenience in representation.
It supports a style of conceptual modelling that does not depend on later implementation
but can easily be mapped into implemented data models like the relational one. However,
the generality of its relationship concept is often criticized. There are important relationships
in the real world that have a special and fixed meaning. For example, subset relationships
like specializations [59] cannot directly be modelled in the ER model. Since these concepts
are very important in the real world, they should directly be supported by corresponding
modelling concepts.

On the other hand, data models with a semantic hierarchy (cf. [10]) provide a lot of modelling
features, and thus possess a high expressiveness. TAXIS [17], SDM [14] , SHM+ [60], IFO
[15], and IRIS [16] are the most known ones. By summarizing their concepts, the following
main concepts can be worked out [61] :

o Aggregation, for formulating part—of or property-of relationships. For example, the staff
is a part of an airline company, while the name of the company or the head office are
properties of it.

e Association, which is sometimes also called grouping or cover aggregation, is used to
build sets of objects of an existing type.

e Specialization/generalization, to express subset or ISA relationships, e.g., each passenger
is a special person.

A more detailed description of these concepts as well as an overview over semantic data
models can be found in [10, 11, 12] .

We follow [19, 20, 21] and combine both approaches, i.e., we extend the ER model by ad-
ditional concepts. Our version of an ER extension, called EER model in the following, was
originally defined in [62] and slightly modified in [22]. Its main characteristics are:

¢ The EER model uses arbitrarily user—defined data types for attribute domains (see
section 3.3).

e [t supports all the concepts mentioned above. Thus, it possesses a high expressiveness.
On the other hand, the extensions are conform to the ER model.

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 9

Address : addr

PERSON Tel#: string
DateOfBirth : date

Figure 3.1: Entity type PERSON

¢ In contrast to many so—called “semantic” data models, the EER model possesses a for-
mal semantics [63, 64, 65]. This is very important, because data models without formal
semantics imply query languages and languages for specifying integrity constraints and
transactions which do not possess precisely defined semantics.

Our approach starts from Chen’s ER model [13]. Thus, the basic concepts are entity types,
relationship types, and (data—valued) attributes. We extend this model by

e type constructions in order to support specialization/generalization [59],
e object—valued attributes, which allow a general form of aggregation,
o multivalued attributes for describing association types, and

e several structural restrictions like cardinality numbers, key specifications, etc.

In the following, we want to explain these concepts in more detail by modelling an ATW (air
traffic world).

Entity types E:

Similar objects with common properties are summarized to entity types. As in the ER mod-
el, entity types are graphically represented by rectangles. Figure 3.1 shows the entity type
PERSON.

We formally express the semantics of entity types by a database state o yielding for each
entity type E a set of current instances. Thus, o (PERSON) represents the set of currently
existing instances of type PERSON. ¢(PERSON) can change in time, persons can be
inserted into or removed from the database.

Entities are abstract items and thus not printable. Only the properties of entities are printable,
and these are represented by the values of their attributes.

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 10

Attributes a:

Attributes describe the properties of an entity. Every attribute belongs to an entity type E
and possesses a domain d of values. We denote this fact by a:E — d. Each attribute a is
graphically represented by an oval that is connected with the type (rectangle) E and contains
a:d. Due to the nature of the domain d, we can distinguish several cases:

e data—valued attributes, if the domain of an attribute is a data type. This is the usual
case in the ER model. We can use as domains standard types like int or real as well as
non-standard data types like point or addr. The latter ones must be specified at the
data type component (see section 3.2). In figure 3.1, the entity type PERSON has the
attributes Name (with the data type string), Tel# (data type string), Address
(data type addr), and DateOfBirth (data type date).

o object—valued attributes, i.e., the attribute domain is an entity type. Consequently, the
attribute value is an instance of this type. In the EER diagram, object—valued attributes
are denoted by a ¢ O ’ symbol together with a connecting arc to the domain type.

e Both data— or object—valued attributes can be multivalued: An attribute value may
be a set or a list of values of the corresponding domain. Considering figure 3.2, Na-
tionality of PASSENGER is list— and data—valued, while PlaneCrew of NON-
STOP-FLIGHT is set— and object—valued. In contrast to sets, an element may occur
more than once in a list. Moreover, lists have their elements enumerated so that we can
reference them by their position number. Multivalued, data—valued attributes can be
modelled in other ER approaches like [19, 21], too.

By default, every attribute is optional, i.e., there need not exist values for the attribute.
Optional attributes may take the value “unknown”. For example, the telephone number
(Tel#) of a person may be unknown.

In comparison with other semantic data models, our notion of attribute supports the general
form of aggregation (like in SHM+, TAXIS, or SDM) completely since we can use data— and
object—valued attributes together. Furthermore, the combination of object- and multivalued
attributes allows us to model complex structured entity types [66, 6, 7, 67]. Many other ER
approaches do not directly support associations. However, we have resolved this problem
by the use of multi- and object—valued attributes. For example, we could have modelled
an association TOURIST-PARTY over PASSENGER by an entity type TOURIST-
PARTY with a set— and object—valued attribute Participants.

Let us have a brief look at the semantics of attributes. Each attribute a:E — d is interpreted
by a function o(a) that yields for each instance (entity) of o(E) a value of the attribute
domain, i.e., a data value, an entity, or a set resp. list of them.

Relationship types r(E4, ..., E,):

Relationship types are the usual form of aggregation in ER approaches. Relationship types are
aggregations of several entity types E,..., E, (n > 2). Thus, concrete entities of these types
form relationships in the world to be modelled. Figure 3.2 presents two relationship types

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 11

set(l) |st(1*) O

- Destination

HightType#

AIRPORT CONNECTION

Start

connects
directly
z
Occupationrate

SatelliteTown: B —
e (1,*) |:|

Figure 3.2: Relationships booked-for and connects-directly

shown as diamonds: a binary type (n = 2) booked-for between PASSENGER and NON-
STOP-FLIGHT and a ternary type (n = 3) connects-directly between AIRPORT
(twice) and CONNECTION. Please notice that the entity type AIRPORT participates
in this relationship twice. We can distinguish the different roles an airport plays in connects-
directly by means of rolenames. Thus, one airport is the Start point of a connection, and
the other one is the Destination.

The semantics of a relationship type r can be understood as a relation o(r) C o(E;) X ... X
o(E,). Each relationship (instance) is a tuple of entities of corresponding types.

Relationship types can also have attributes, like BookingDay of booked-for. However,
we only allow data—valued attributes because object—valued attributes should be modelled
by additionally participating entity types. The semantics o(a) of relationship attributes is
directly carried on from the one of entity type attributes.

Up to now we have extended the basic concepts of the ER model. Using these concepts,
aggregation and association can be modelled, but no subset or ISA relationships known as
specialization/generalization [59]. We introduce the concept of type construction for this
purpose.

Type construction:

A type construction can be regarded as a new classification of the entities from certain types.
Starting with already defined entity types I, (k = 1,...n,n > 1), called input types, the
new output types O;(j = 1,...,m,m > 1) are constructed by classifying the entities of the
input types newly in output types. Consider figure 3.3 where we present the general form of
type construction.

At the base line of the triangle, there are the already defined input types I,..., I, (n > 1).
The types Oy, ..., O,, (m > 1), connected with the opposite point of the triangle, are the
constructed output types. The following conditions must hold between the entities of the
input and the output types of one type construction and for nonconstructed entity types :

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 12

input typel 1 output typeO 1

input typel output typeO m

Figure 3.3: General form of type construction

(i) o(0,) Na(0,
E

0
(ili) o(E,) No(E,) =0 for p # q, E,, E, non—constructed.

Condition (i) means that all entities of output types O; are also instances of input types I,
but not all entities of input types have to be instances of output types due to the inclusion.
Consequently, the entities from the output types are not new entities, they already exist (in
the input types), but will now be seen in a new context (given by one of the output types).
Secondly, (ii) requires that the output types are disjoint; no entity (from any input type) may
occur in several output types. Finally, we demand by (iii) all non—constructed entity types,
i.e. entity types that are not output type of any type construction, to be disjoint. In other
words, type construction provides the only possibility to model subset relationships.

Given the above description of semantics, we now show the modelling of specializations and
generalizations. Let us therefore consider figure 3.4.

At first, a simple specialization PASSENGER of PERSON is defined. This is the case of
one input type PERSON (n=1) and one output type PASSENGER (m=1). Considering
(i) of above, we obtain the following semantic condition:

o(PERSON) D ¢(PASSENGER),
i.e. each passenger is a person, too. But the inverted direction does not hold.

In the same way, we have specified another specialization STAFF-MEMBER of PER-
SON that formally satisfies o(PERSON) 2 o(STAFF-MEMBER). Both constructed
types PASSENGER and STAFF-MEMBER are independent of each other. Especially, a
person can be a passenger as well as a staff member, i.e., c(PASSENGER) N ¢(STAFF-
MEMBER) = () need not hold in general.

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 13

Department /|1 GROUND FLIGHT
STAFF STAFF
_ MEMBER MEMBER AlternativeService
HealthCertificate

_ Passport#
: STAFF PASSENGER
engthOfService /"~ MEMBER | (Nationalit

le)
'e)

DateOfBirth

Figure 3.4: Type constructions

To achieve this disjointness, we use a type construction with several output types. In this
way, the disjoint specializations GROUND-STAFF-MEMBER and FLIGHT-STAFF-
MEMBER of STAFF-MEMBER are modelled. Due to (i) and (ii), we obtain the following
semantics:
oc(STAFF-MEMBER) 2 o (FLIGHT-STAFF-MEMBER)
U o (GROUND-STAFF-MEMBER),

o (FLIGHT-STAFF-MEMBER) N ¢ (GROUND-STAFF-MEMBER) = {
This corresponds to the disjointness condition of [11, 15].

Finally, we show how to express generalizations using type constructions with several input
types (n > 1,m = 1). For example, we would obtain a different effect if we altered the two
specializations (PERSON to PASSENGER and PERSON to STAFF-MEMBER) to a
generalization with the input types STAFF-MEMBER and PASSENGER and an output
type PERSON:

o(STAFF-MEMBER) U ¢(PASSENGER) 2 ¢(PERSON)

Now, we would only store persons that are either staff members or passengers. There are no
other persons of interest.

We see the general concept of type construction covers the known data abstractions gener-
alization or superclasses (n > 1,m = 1) and (possibly disjoint) specialization or subclasses
(n=1m>1).

The view of seeing specialization/generalization as a type construction suggests two syntactic
restrictions:

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 14

(i) Every constructed entity type has to be the result of exactly one type construction.

(ii) Every constructed type must not, directly or indirectly, be an input type of its own
construction, i.e., the directed graph consisting of all entity types as nodes and type
constructions as edges must be acyclic.

While the second condition is generally requested by all semantic data models, the first one
is sometimes omitted, as for instance in IFO and SDM.

Strictly related to specialization/generalization (or type constructions in our terms) is the
notion of inheritance. In the literature, an agreement is reached in the case of specializations.
Subtypes then inherit all the attributes from the supertype. Related to our EER model,
each staff member inherits the attributes of PERSON, and each flight staff member the
attributes of STAFF-MEMBER. Thus, we can refer to Name of PASSENGER or to
DateOfBirth of FLIGHT-STAFF-MEMBER. This is the usual way of inheritance in
semantic data models like IFO or SDM. Of course, naming conflicts can occur. In this case, we
have to use the corresponding (input) type names as prefix. This understanding of inheritance
can also be used for several output types.

But how about the general form of type construction, especially type constructions with sev-
eral input types, which attributes are now inherited? SDM proposes to inherit the attributes
common to all input types. However, attributes could have the same name, although they
have different meanings (homonyms). Otherwise, if all the attributes of all input types are
inherited, naming conflicts appear quite often. Particularly, synonyms in different input types
lead to several attributes in output types having the same meaning.

Therefore, we do not offer inheritance in the case of several input types. However, we can use
derived attributes (see later in this section) in order to carry on the attributes explicitly. In
our opinion it is more advantageous to leave the specification of inheritance to the user.

There are some further concepts that do not provide any modelling primitives but rather
structural restrictions on the possible database contents. Thus, they form a special case of
general integrity constraints (see section 3.4). Their frequent use just as their close relation
to modelling primitives advise us to offer explicit concepts with an explicit notation.

e We can give object-valued attributes more semantics than rather yielding an entity (or
a set resp. list of entities) of another type. Object—valued attributes establish references
which may be rather loose or very close. An example for the second case is the entity type
MAINTENANCE-SHED. A MAINTENANCE-SHED may only exist as one of
the Sheds of one unique AIRPORT and remains with this airport during the whole
time it exists. We say every entity of type MAINTENANCE-SHED is dependent on
the entity of type AIRPORT it is associated with. This kind of entity is also known
as the concept of weak entity already presented in [13]. Our graphical notation for
dependency is a broad connecting arrow (*) from the dominant entity type to
the dependent one. Dependency has also consequences on the way dependent objects are
identified. In general, object identity is modelled by key attributes as discussed later
on in this section. Since dependent objects only exist in the context of their parent
object it is sufficient to have a local key for identifying the dependent objects in their
context. For example the attribute Name of MAINTENANCE-SHED identifies
each maintenance shed within the set of all sheds belonging to one airport. This means

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 15

Airplanet

MAINTE- Airplanes: AIRPLANE
NANCE set O |
SHED

list (1*) d

-M TOWN
AIRPORT Satellite Town™
Set(1,%) O

Figure 3.5: Different kinds of object—valued attributes

different maintenance sheds may have the same name unless they do not belong to the
same airport. For a global identification of a dependent object, the dominating object,
i.e. the values of its key attributes, must be specified additionally to the local key.

Another consequence of dependency is that sets of dependent objects dominated by
different entities are always disjoint. Disjointness may also be a desired property of
non—dependent object—valued attributes. For example, the sets of airplanes of different
maintenance sheds are disjoint, i.e. no airplane can be maintained at several sheds. This
is expressed by an arrow (’ O— ’) between the object-valued attribute Airplanes of
MAINTENANCE-SHED and the entity type AIRPLANE.

Possibly non—disjoint and non—-dependent object—valued attributes are finally described
by a line instead of an arrow, as can be seen for the attribute SatelliteTown of AIR-
PORT. Here, the same town may be one of the satellite towns of different, neighbouring
airports.

With respect to dependency we require pure hierarchies. Thus, cycles are not allowed
just as sharing of dependent types is not possible. These requirements are not necessary
for “normal” object—valued attributes, which specify non—-dependent references.

Please notice the effect of dependent attributes on update propagation. If we want
to insert an entity of a dependent type, we also have to update the corresponding
attribute of an entity of the “parent” type. Similarly, the deletion of an entity from the
“parent” type requires the deletion of all dependent entities from the “child” types (cf.
section 3.5).

e Non—-multivalued attributes can be specified as keys. Key attributes are mandatory.
Key attribute values identify entities in their types. For example, Name and DateOf-
Birth are the key attributes of PERSON, graphically marked by a broad dot (‘e’).
This means that different people must not have the same name and the same date of
birth. Similar to dependency, object—valued key attributes must not form a cycle. It
is important that only non-constructed entity types (that are not output of any type

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 16

construction) can have keys. The entities in constructed types inherit their identity
from the corresponding entity in the input types.

We have a special effect for dependent types: As mentioned before, dependent entities
are identified by their own key attributes and the ones of their parent entity. For ex-
ample, several maintenance sheds may have the same name, provided they belong to
different airports. Consequently, the key attributes of MAINTENANCE-SHED are
composed of those of AIRPORT and its own ones. However, dependent entity types
need not have any own key attributes, as it is in case of the entity type TIME-TABLE.

By summarizing, non—constructed and non—dependent entity types must have key at-
tributes, whereas dependent entity types can have some, but constructed types must
not have them.

e Type constructions can be constrained to the semantics
n m
U o(lk) = U a(0;),
k=1 7j=1

graphically denoted by a ‘=’ symbol inside the triangle. This means that every entity
of an input type must occur in one of the output types. This allows us the spec-
ification of covered specializations known from IFO, ECR [19], or SDM. For exam-
ple, STAFF-MEMBER is partitioned into GROUND-STAFF-MEMBER. and
FLIGHT-STAFF-MEMBER.

e Finally, we can specify derived information that is not explicitly stored, but can be
computed from other stored information [19].

Example 3.6: We can compute the pilot of a non stop flight nsf, assuming (s)he is
the first one in the plane crew list, by

nsf.Pilot < nsf.PlaneCrew][1]

Please note that the attribute Pilot would not be stored at all; if we refer to it, it will
automatically be computed corresponding to the above rule. We can use the full power
of our query language, presented in section 3.3, for the specification of rules.

Example 3.7: A more complex example computes the occupation of a non stop flight
nsf by counting bookings:

nsf.Occupation + cnt(select bf
from bf in booked-for
where b NON-STOP-FLIGHT = nsf)

Derived attributes like Occupation are graphically denoted by a dotted line.

The concept of derivation generally provides an easier access to information. Instead
of explicitly computing the desired information by a query, we can simply refer to
Occupation of NSF. However, the computation is still done but now implicitly during
the execution of the rule. Thus, the effect of derivation is very similar to the views in
relational database systems. Indeed, derived attributes provide a more powerful tool
for specifying views. Entity types, relationship types, and type constructions can be
specified as derived as well. There are a lot of useful applications.

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 17

A quite often but not explicitly defined relationship is flies between AIRLINE-COM-
PANY and NON-STOP-FLIGHT: A concrete instance holds iff an airline company
has chartered an airplane (via chartered) and this airplane is assigned to the non stop
flight. This flies could have been defined derived.

Automatic or predicate-defined partitions, known from SDM, can be modelled by
derived type constructions. In our example, we could model the specializations of
STAFF-MEMBER into GROUND-STAFF-MEMBER and FLIGHT-STAFF-
MEMBER as derived using the JobTitle attribute of STAFF-MEMBER. Thus,
the job title ‘Pilot’ implies the membership to FLIGHT-STAFF-MEMBER, while
the title ‘Mechanic’ indicates a ground staff member, and so on.

Note that rules do not generate mew objects but only further properties of existing
objects, e.g. the property of being a FLIGHT-STAFF-MEMBER. Finally, derived
attributes play an important role for inheritance in case of type constructions with
several input types. As mentioned above, inheritance must here be specified explicitly.
The use of rules enables us to rename attributes, to unify attributes from different input
types, etc.

3.2 Data types

Data types constitute the domain of printable data in a database application. For instance,
data types are used for the definition of attribute domains of entity or relationship types. But,
in our approach a data type is not only a collection of values. A data type is characterized also
by the way these values are used. Therefore, a data type consists of a set of values together
with functions and relations defined on them. Values are instances of a certain data sort and
the functions and relations are named by data operations and data predicates.

The most simple data types are data sorts like nat, int, real (for natural, integer and decimal
numbers, resp.) together with data operations like +, *, etc. and data predicates like =, <,
<, etc. These numerical types are examples of standard data types which are frequently used
and therefore supported by our framework. We also include boolean values (data sort bool),
single characters (data sort char), strings of characters (data sort string) together with
appropriate operations and predicates. The names of these data types and their operations
are determined by a data type signature:

sorts nat, int, real, ...
operations + : int X int — int ; ...
predicates < : int X int ; ...

The semantics o associates sets, functions and relations with the given names. But unlike
the interpretation of (e.g.) entity and relationship types the semantics of data types does not
change in time, but is fixed once for all database states, for example o(int) := Z .

In addition to these predefined standard data types, also application—dependent data types
can be defined. In our example, data types like date, point, or line occur as attribute domains
for the attributes DepartureDay of NON-STOP-FLIGHTS, Location of AIRPORT,
resp. Route of NON-STOP-FLIGHT.

In the literature, various styles for the description of data types are proposed. Among them
are

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 18

(i) descriptive approaches, for instance, by means of algebraic equations [68, 69] which are
quite implementation independent,

(ii) constructive approaches, for instance by use of predefined type constructors [70, 71] or
even

(iii) programming language-like type definitions with procedures being very close to imple-
mentation.

As an example for (i), we sketch the definition of the data types point and line, which consist
of a data type signature together with a set of equations to define the meaning of operations
and predicates.

Example 3.8:

sorts point, line
operations make-point : real x real — point;
x-coord, y-coord: point — real;
make-line : point — line;
add-point : point x line — line;
point-dist : point x point — real;
length : line — real; ...
variables x, y : real ; pl, p2 : point ; 11, 12; line
equations x-coord(make-point(x,y)) = x
y-coord(make-point(x,y)) =y
point-dist(p1,p2) = sqrt(exp (x-coord(pl) - x-coord(p2), 2) +
exp (y-coord(pl) - y-coord(p2), 2))
length(make-line(pl)) = 0
length(add-point(p2, makeline(pl))) = point-dist(p1, p2)
length(add-point(p2, add-point(p1,11))) = point-dist(p2,pl)+
length(add-point(p1,11))

The operation sqrt computes the square root, exp stands for exponentiation, and + and <
for the usual addition and comparison of decimal numbers. All are imported from the data
type real.

Our constructive approach to data type definitions is based on four data type construc-
tors. These are the data type constructor set(<type>) to define sets of a certain <type>,
list(<type>) for lists, record(<type; >,...,<type, >) for cartesian products, and
bag(<type>) for multisets (or bags for short). The difference between sets and multisets
is, that multisets can contain multiple occurrences of the same value. There are numerous
operations and predicates associated with these constructed types.

For example, for every data type constructed by set(<type>) we have the following opera-
tions and predicates with the usual semantics:

Operations for set(<type>) :
cnt: set(<type>) — int; /+* counts the number of elements */

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 19

insert: <type> x set(<type>) — set(<type>);
delete: <type> x set(<type>) — set(<type>);
union: set(<type>) x set(<type>) — set(<type>);

Predicates for set(<type>) :
is-empty: set(<type>);
in: <type> x set(<type>);
= : set(<type>) x set(<type>);

Other operations and predicates for other data type constructors will appear later in this
section and will be explained there.

All type constructors can be used in a totally orthogonal way, e.g. we allow
record(set(int),list(...)), set(record(...)), etc.

As an example for the use of these data type constructors, we sketch a very simplified defini-
tion of the data type date. As usual, this data type is constructed as cartesian product of day,
month, and year. This is described by use of the record—constructor. Implicitly associated
projection operations _.i to select the i—th component of a value of this type can then be
used to define the meaning of projection operations day, month, and year. Based on these,
further operations can be defined like monthdiff to compute the number of months between
two dates.

Example 3.9:

sorts date = record(int, int, int)
operations day, month, year : date — int;
daydiff : date x date — int;
monthdiff : date x date — int;
predicates before : date x date;
variables d, d1, d2 : date;
equations day(d) = d.1
month(d) = d.2
year (d) =d.3
monthdiff(d1, d2) = abs(12 x (year(dl) - year(d2)) +
abs(month(dl) - month(d2))

Another class of operations not mentioned above are so—called aggregation functions as for
example sum, maz, min, avg. These aggregates are defined for types which are constructed
by list, bag, or set and yield as result a single value of the argument type of the construction.
In contrast to the operations mentioned earlier, aggregation functions require appropriate
functions and predicates defined for the argument type, e.g. sum and avg need a +-operator,
max and min need comparison predicates < or >.

In principle, data types could be specified in a pure algebraic way without using explicit data
type constructors. But, data type constructors are indispensible for determining the type of
a query result, because, in general the result type is not specified explicitly in the conceptual
schema. For example, the result type of a query may be something like bag(record(string,

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 20

int)). The type of a query result determines which operations are allowed on it. These are
the predefined operations associated with the corresponding type constructors.

To support optional attributes and incomplete information via null values, there is a spe-
cial value in every (interpretation of) a single data sort representing “undefined”[63]. The
predicate ¢s null defined for every data type allows to test on definedness.

Finally, we shortly discuss the role of data types in the conceptual modelling process: We
allow suitable data types for every application; thus we are close to “real world” in the names
for data sorts and their operations and predicates. Our approach supports abstraction: single
items stand for complex structures (e.g. variables or terms of sort circle, lines). Queries use
data types as result items; thus entities can be “observed” only by means of data types and
(later we will see in more detail that) the structure of query results depends on the data type
constructors.

3.3 Queries

The EER model which is presented in section 3.1, provides powerful constructs for modelling
real world information structures. This ensures that the relevant information about real world
states can be mapped to database states in a natural way. Besides this also a powerful query
language is indispensible for database modelling. It provides the necessary means to “talk”
about database states when specifying (static) integrity constraints (cf. section 3.4), derived
information (cf. section 3.1) and allowed dynamic database behaviour (cf. chapter 4).

Up to now a lot of ER query languages have already been developed. Nevertheless, we defined
a new language because almost all of them are based upon different, specific variants of the ER
model. Furthermore, only few of these languages possess a formal mathematical semantics.

First proposals are CABLE [23] and [24]. They showed how the relationship concept can be
used for avoiding the formulation of joins, which seems to be imperative but tiresome in re-
lational query languages. On the other hand, both languages are of restricted expressiveness.
In the meantime, a great variety of more powerful languages exist. Starting with procedural
languages [25, 26], more and more descriptive ones like GORDAS [27, 19] have been devel-
oped. In order to support easy query formulation, some approaches like ERROL [72] try to
give their language the flavour of natural language sentences. For the same purpose, some
graphical approaches like HIQUEL [28], GQL/ER [29], or a graphical variant of GORDAS
[73] have been proposed. Certain database browsers [74] can also be seen as query languages
for ER models. Being less powerful than other approaches they are rather aimed at the class
of casual users than at sophisticated ones. Finally, more recent approaches take into account
further concepts extending the ER model. LAMBDA [75] allows the retrieval of structured
documents, whereas DESPATH [76] supports subtypes and hierarchy relationships. CERMo-
QL [77] is based upon an object—oriented extension of the ER model, and [66, 6, 78] present
a language for geoscientific applications.

Among the various database languages, SQL is probably the best known approach. It is the
standard language in relational database systems and has successfully been adapted for NF?
data models (cf. HDBL [79, 80, 81] or SQL/NF [82]). Thereby the language has gained more
orthogonality by taking into account Date’s critique [83].

We follow these approaches and propose an SQL-like query language for our EER model.
Due to the rich expressiveness, we obtain a powerful, high—level, and completely orthogonal

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 21

language. However, by describing the language, we have attached great importance to rigorous
formal semantics [63, 64, 65, 84].

Our language supports all concepts of the EER model, e.g., relationships, object—valued
attributes, attributes of relationships, and type construction. Furthermore, we have incorpo-
rated concepts that are established in contemporary languages like arithmetic and aggregate
functions or explicit control over null values and duplicates. Especially the handling of set—
valued terms allows nesting and unnesting, known from the NF? model [85, 86], and a clean
and sound use of aggregate functions.

Analogous to relational SQL [87], our language uses a select-from—where block:

select <term;>,...,<term,>
from <variable; > in <range;>,...,<variable,> in <range,>
where <formula>

We recognize the basic concepts of SQL, namely:

e a list of target terms <term;>,...,<term,>, which compute the desired information,
e 3 qualifying <formula>, and

e 3 list of declarations, each one of the form <variable> in <range>, declaring variables
for their use in the terms or in the formula.

But in contrast to SQL, we do without a group—by or having clause. This does not cause any
restriction w.r.t. the functionality of the language, however, it is of benefit to the orthogonality
of the language.

The formal semantics and nearly all language features are based on an EER calculus [63, 64,
65]. The calculus will not be explained here. Nevertheless, we emphasize all constructs of the
language are defined on mathematically precise foundations.

[84] presents a formal mapping of query language to the calculus. Let us illustrate the syntax
and informally the semantics by means of a simple query:

Example 3.10: “Airplanes that are not airworthy”

distinct select a.PlaneModel
Jfrom a in AIRPLANE
where not a.Airworthy

The target list contains one term a.PlaneModel applying the attribute PlaneModel to the
variable a. The variable a itself is declared in the from-—clause: a in AIRPLANE means
that a is bound to the set of currently (in the state o) existing airplanes; we say the range of a
is AIRPLANE. The built—in function distinct is used to suppress duplicates. If we omitted
distinct, the result would contain duplicate plane models. The formula a.Airworthy is a
bool-valued term which only selects the airworthy airplanes.

Since the attributes PlaneModel and Airworthy can clearly be related to the range ATR-
PLANE, we can omit the variable a in both terms, thus resulting in simply PlaneModel
and Airworthy. Furthermore, there is no need for explicitly introducing the variable ‘a’ by
a declaration so that we can omit the part ‘a in’, too.

We now summarize the rules for building terms:

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 22

e Variables like a (of type AIRPLANE) or bf (of type booked-for) are the elementary
form of terms. Every variable must be declared in an appropriate declaration, denoting
a finite range (for the details see [65]) e.g., a in AIRPLANE or bf in booked-for,
in the from—part.

e By using variables x, we can build terms x.a if a is an attribute of an entity or rela-
tionship type and x has exactly this type. For example, a.PlaneModel is a correct
term, but a.Name is not a syntactically correct term because Name is not an attribute
of AIRPLANE. Please note that we are able to refer to relationship attributes. For
example, bf.BookingDay yields the booking day of an instance of type booked-for,
i.e., the day a passenger books a flight. Any object- or multivalued attribute can be
used. Thus, a.DateOfMaintenance is a term yielding the list of dates of the airplane
a. Concatenations defining access paths are also possible. Assuming Pilot is an object—
valued attribute Pilot: NON-STOP-FLIGHT—-PERSON, nsf.Pilot.Name com-
putes the name of the pilot of the given flight nsf.

e Having data—valued terms, data operations can be applied. Since nsf.Route is a term
of the sort line, the length of such a route can be computed by length(nsf.Route).
Similarly, arithmetical operations like ‘+’ or ‘exp’ (’power of’) are applicable.

e There are a lot of built—in functions. distinct eliminates duplicates as shown above in
example 3.10. Furthermore, special functions are offered to handle lists: [i] selects the
i—th element of a list, where the variable ‘i’ can be bound to the set of currently used
indices computed by ind. For example, a.DateOfMaintenance[1] computes the first
date of maintenance of the airplane a, while ind(a.DateOfMaintenance) yields the
set {1,2,3,...,k} of list indices (where k is equal to cnt(a.DateOfMaintenance)).
Finally, ent, sum, min, maz, and avg are the usual aggregate functions.

e Any subquery of the form select-from—where is a special kind of multivalued term.

e Special concepts are related to the EER model, especially type construction and rela-
tionships. Having a variable x related to a relationship type, we can select the partic-
ipant E; of a concrete relationship by x.E;. In this way, bf. NON-STOP-FLIGHT
computes the flight of an instance of type booked-for. If E; participates more than
once in a relationship rolenames must be used to select the participant. Furthermore, we
can trail subset hierarchies given by type constructions. For example, sm.PERSON
converts the staff member sm into the person she/he really is (in the sense of type
construction). Now, we can formulate sm.PERSON.Name in order to compute the
name of this person. Similarly, sm.GROUND-STAFF-MEMBER converts the staff
member sm into a ground staff member. However, if the staff member is rather a flight
staff member than rendering service on the ground, the result will be the null value
‘undefined’ (we have null values for object types, too). Please note that the first form,
i.e., sm.PERSON, makes an implicit inheritance (explained later) explicit.

We now present some applications of terms. The next example uses a subquery as a target
term as well as a range. Thus, we obtain a nested query as known from the NF? model [86]:

Example 3.11: “For each plane model the set of planes”

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 23

select model, (select a.Plane#
Jrom a in AIRPLANE
where a.PlaneModel = model)
from model in distinct (select al.PlaneModel
from al in AIRPLANE)

Let us recall the intuitive semantics given above. Thus, this query binds the variable model
to the finite set of current airplane models, and computes for each of the models the bag
of plane numbers belonging to it. The missing where formulas are assumed to be true. The
result then looks like

{ (modell, {{ I].Ol’l ,nOl’g,. .y nOl,kl }),(modeb, { no2,1,n0272,. . n02’k2 }}), e }}

As mentioned in section 3.2, the result type of a query is constructed from defined data types
using data type constructor instantiations. The result type of query 3.11 is given by

bag (record (string, bag (record (int))))

Please note that the variable model declared in the outer part is still valid in the inner
select—from—where—block. However, the variable al cannot be used outside its block.

In this query, we have used a select-from—where term as the range for the variable model.

Indeed, besides entity and relationship types, we can use any multivalued term as a range,

especially subqueries. Furthermore, ranges can be united by using the form <range,;> union
. unton <range,>. In any case, every variable is bound to a finite value set.

Example 3.12: “Airline companies together with the names of their staff members.”

select ac.Name, sm.Name
Jfrom sm in ac.Staff, ac in AIRLINE-COMPANY

Here, we use the set—valued term ac.Staff, yielding the set of staff members of an airline
company, as a range for the variable sm. However, the evaluation of this term depends on
the variable ac. Thus, both declarations must be seen together: We first bind ac to an airline
company, and then sm to a staff member of this company.

In this query, we are confronted with ‘inheritance’ for the first time. We see that we can refer
to a staff member’s Name although Name is not an attribute of STAFF-MEMBER.
This is possible because STAFF-MEMBER inherits the Name attribute from PERSON.
In order to make inheritance explicit, we can also use the long form sm.PERSON.Name
applying the conversion PERSON:STAFF-MEMBER—PERSON. Inheritance happens
even in case of several type constructions. Thus, GROUND-STAFF-MEMBER inherits
the attributes of PERSON and STAFF-MEMBER. Please note that no inheritance occurs
in the other direction: We have to explicitly state p.STAFF-MEMBER.JobTitle to refer
to the job title of a person. In a similar way, the participation in relationships is inherited in
the direction of the type construction.

Since the use of aggregate functions is different from that in SQL [87], we present an example
for aggregates:

Example 3.13: “For each plane model the number of planes”

select al.PlaneModel, cnt (select a2.Plane#

Jrom a2 in AIRPLANE

where a2.PlaneModel = al.PlaneModel)
Jrom al in AIRPLANE

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 24

In principle, this query is very similar to example 3.11. However, here we compute for each
airplane al the plane model and the number of planes of the same model. Consequently, the
result contains duplicates. The argument of an aggregate function can be any multivalued
term. Beside subqueries, we can therefore use multivalued attributes as well. For example, cnt
(a.DateOfMaintenance) computes the number of maintenances existing for the airplane
a, as DateOfMaintenance is a list—valued attribute.

The next example demonstrates the use of formulas:
Example 3.14: “Names of airline companies which have chartered only ‘new’ airplanes.”

select ac.Name
Jrom ac in AIRLINE-COMPANY
where forall a in AIRPLANE :
ac chartered a implies a.YearOfConstruction>1985

We can see the use of the quantifier forall, of the standard predicate ‘>’, and of the rela-
tionship predicate chartered, the last one requiring that the airline company has chartered
the airplane a. There are further possibilities for the construction of formulas:

e Any boolean—valued term is also a formula. In example 3.10 we have already used the
term a.Airworthy in this way.

e Besides the standard data predicates like ‘=’ or ‘>’, we can also apply predicates that
are defined for corresponding user—defined data types. For example, circle-cut(cl,c2)
expresses that two circles have points in common.

e Relationship types can be used as predicates to “join” the participating entity types.
However, this is done without join equations known from the relational model.

e There are some predefined predicates like ¢s null and in. The first one tests for the null
value ‘undefined’ whereas the second one represents the element—of relation for sets,
bags and lists.

e By using the logical connectives and, or, not, implies, new formulas can be built.

e Similarly, there are the well-known quantifiers exists (3) and forall (V), however in
the form { exists | forall } <variable> in <range> : <formula>.

We allow an infix notation for binary predicates, no matter whether they are data predicates,
relationships or predefined. This increases the readability of formulas. However, their usual,
long prefix form can also be used, e.g., chartered(ac,a) or >(YearOfConstruction,1980).

Let us now study some more complex examples describing queries that occur quite often in
the air traffic’s world.

Example 3.15: “Every direct connection from Hamburg to London”

select c.Flight Type#, c.OccupationRate

Jrom c in CONNECTION

where exists apl in AIRPORT, ap2 in AIRPORT, t1 in TOWN, t2 in TOWN :
(t1.Name=‘Hamburg’ and t2.Name=*‘London’ and
t1l in apl.SatelliteTown and t2 in ap2.SatelliteTown and
connects-directly(c, Start:apl, Destination:ap2))

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 25

connects-directly is again a relationship predicate. Since AIRPORT participates twice,
we have to use the rolenames Start and Destination to make the corresponding role of an
airport in the query explicit.

We now present some examples which make full use of aggregate functions to compute the
number of occurences, maxima, percentages, etc.

Example 3.16: “All non stop flights that are booked up”

select nsf.Flight#
from nsfin NON-STOP-FLIGHT
where sum(select a.NoOfSeats
Jrom a in AIRPLANE
where a assigned-to nsf) = cnit(select pa
from pa in PASSENGER
where pa booked-for nsf)

Example 3.17: “The airline companies with the mazimal number of agencies”

select ac.Name
Jrom ac in AIRLINE-COMPANY
where ent (select ap from ap in AIRPORT where ac has-agency ap) =
mazx(cnt (select ap from ap in AIRPORT
where exists ac in AIRLINE-COMPANY : ac has-agency ap))

In contrast to relational SQL our query language allows functional compositions of aggregate
functions. The possibility to use subqueries in the output list of a query allows a structured
output of query results. Subqueries are allowed on every level of nesting. This enables an easy
way of grouping data in an orthogonal way and to avoid the less powerful and complicated
group-by construct known from SQL.

The purpose of this language is not only limited to the formulation of queries. We can
also make use of it for the formulation of static and dynamic integrity constraints. These
constraints will be discussed in the following sections.

3.4 Constraints on Database States

One important requirement for a database schema is to be capable of describing the relevant
information about the real world by some database state. Our EER model provides powerful
modelling constructs for capturing real world information structures so that relevant infor-
mation about real world states can be mapped to database states in a natural way. But since
an EER schema merely describes the structure, it does not say everything about

a) which database states correspond to possible real world states.

So, for instance, our sample schema admits values for the LengthOfService attribute
of STAFF-MEMBER exceeding the age of that PERSON (which is derivable from
the DateOfBirth).

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 26

b) which possible information is actually relevant for the application.

For example, it is not clear from the sample schema which NON-STOP-FLIGHTSs
are actually stored. So it is possible to require every flight ever taking place to be stored
or only those ones remaining to be scheduled in the future.

c) the way data concerning real world is mapped to a database state and vice versa.
For example, the BookingDay of the booked-for relationship may refer to the day
the passenger made her/his request for some flight or to the day the request was ac-
knowledged by the airline company.

Particularly b) and c¢) are a great source of faults and misunderstandings because different
persons might have different interpretations of a database schema. For this reason, it is
particularly important for conceptual design that the specification of database structures not
only consists of the definition of possible database states but also of assertions to emphasize
desired states. Usually, these assertions are called (static) integrity constraints.

With the appeareance of database systems with more powerful, descriptive and logic oriented
data models and query languages, like relational database systems, it became apparent that
descriptive specification of the desired database states was necessary. It was recognised that
integrity constraints can be specified within the same notational framework. Consequently,
it is commonly aggreed upon that database integrity should be managed and ensured by the
database management system itself [88, 89]. However, up to now there seems to be no database
system providing full support of arbitrary integrity constraints. So the burden of ensuring
database integrity is still left to the application programmer or the accidental database user.
Nevertheless, it is well accepted that specification of integrity constraints is an important
task of conceptual database design [90, 91, 92, 93, 94].

Most results on integrity constraints concern relational [95, 96, 97] and, as an offspring there-
of, deductive databases [98, 99, 100, 101, 102]. Some key words in this area are key con-
straints, referential integrity, cardinality requirements, type integrity, and redundancy. In our
framework, most of these constraint classes can directly be expressed as schema inherent
constraints. Our data model directly supports primary keys. Referential integrity is captured
by the concept of relationship and object—valued attributes. Type integrity is covered by the
possibility of using arbitrary user—defined data types as attribute domains. Redundancy can
be avoided by the concept of derived information.

But although a large class of constraints can be expressed by means of our data model we still
need some mechanism for specifying further constraints. We therefore propose a language for
specifying constraints is based on the query language presented in the previous section. A
static constraint may be any closed formula allowed in the query language, i.e. any formula
whose variables are bound by one of the variable quantifiers (exists or forall). The above
requirement that the LengthOfService attribute of STAFF-MEMBER. must not exceed
the age of the corresponding PERSON is formulated as follows:

Example 3.18: “A staff member’s LengthOfService cannot exceed his/her age”

forall sm in STAFF-MEMBER :
sm.LengthOfService < (year(today) - year(sm.PERSON.DateOfBirth))

Let us remind you that there are built-in operations like today : — date yielding the
current date and data operations like year : date — int. Please note, the above is a purely

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 27

descriptive characterization of the desired database states. In this case it restricts the value
of two attributes, namely LengthOfService of entity type STAFF-MEMBER and Date-
OfBirth of PERSON. Nothing is said about the way to achieve this formula being true in
all database states.

The set of all integrity constraints determines the admissible database states. A database state
is admissible if and only if all (static) integrity constraints evaluate to true in the database
state. The set of all admissible states is denoted by Y. which is a subset of the set of all
possible states 3 allowed by the pure EER schema.

In our model every attribute is optional by default, i.e., there need not exist values for the
attribute. If one wants to exclude this optionality, this is done by an explicit constraint like
Jorall p in PERSON : p.Name ¢s not null which requires that a person’s name is not
allowed to be undefined. This kind of constraints also has a graphical representation in the
diagram: solid lines stand for non-optional attributes and lines broken by a circle represent
optional ones. For instance, the attribute Tel# is an optional attribute of PERSON.

Another class of explicit integrity constraints denoted in the EER diagram are cardinalities.
Each entity type E participating in a relationship type r can be restricted by cardinality
numbers (min, max), min € N, , max € N U{x}. A concrete entity of type E can participate
in at least ‘min’ and at most ‘max’ relationships of type r. The asterisk () denotes infinitely
many times, i.e., no upper bound. Some important cases quite often occur:

e (0,%) is the default case meaning no restriction. A passenger, i.e. an instance of type
PASSENGER, has-booked-for none, one or several non stop flights.

e (1,%) is used to express mandatory memberships in relationship types. In the example
every airline company must offer at least one connection, i.e. it must participate in at
least one entry in the relationship type offers.

e (0,1) requires that an entity participates in at most one concrete relationship. For
instance, every non stop flight has at most one airplane assigned-to it.

e Finally, a connection belongs-to exactly one non stop flight due to the specification
(1,1).

Multivalued attributes can also have cardinalities restricting the number of elements in the
set resp. list. For example, the PlaneCrew of a NON-STOP-FLIGHT must consist of
at least one person. Please notice the special effect resulting from the optionality of this
attribute: there may be currently no crew, i.e., the crew is “unknown”; however, if there
exists a crew, it must possess at least one member.

As mentioned above, our data model involves schema inherent constraints. For instance, spec-
ifying Name and DateOfBirth as key attributes for PERSON is equivalent to demanding;:

forall p1, p2 in PERSON :
(pl.Name=p2.Name and pl.DateOfBirth=p2.DateOfBirth)
implies pl = p2

The following example demonstrates that not only simple attributes can be used in constraints
but also complex expressions involving data operations as well as attributes.

Example 3.19: “A flight staff member is at most 50 years old”

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 28

forall fsm in FLIGHT-STAFF-MEMBER :
(year(today) - year(fsm.STAFF-MEMBER.PERSON.DateOfBirth))<=50

3.5 Elementary Operations

Up to now, we have described how the static structure of a database can be modelled. Using
the concepts of our EER model, an EER diagram fixes the possible structure of objects
and their interrelations in a database. But, the specification of the static structure of a
database by an EER diagram is only a first step in modelling a database. A database is not
a dead, unchangeable read—only memory of objects, but an alive, often changing storage,
where objects can be inserted, deleted or updated. It is clear that all these modifications
have to regard the restrictions of the object structure specified by the EER diagram. This
means more formally that each modification has to be a transition of a possible database
state o of ¥ into another possible database state ¢’. Such transitions of ¥ x ¥ can further
be subdivided into elementary transitions, which only modify one database object and its
consistent embedding in the database structure, and into complex transitions, which may be
considered as sequences of elementary transitions.

All elementary transitions are implicitly fixed by the specification of the static structure
of a database. They can automatically be derived from an EER diagram and described by
so—called elementary operations.

These elementary operations are in turn composed of basic operations. Such basic operations
describe the modification of exactly one database object. In contrast to elementary opera-
tions, this local modification may cause a (temporary) violation of the database structure
demanded by the EER diagram. All basic operations are also implicitly given for each object
or relationship type.

To summarize the different classes of update operations, we show the hierarchy of operations
in figure 3.20. Example 3.21 shows the signature of some of the most basic insert resp. delete
operations for our running example.

complex operations application specific (see subsection 4.3)

scope: database-state

elementary operations schema—dependent generated
‘ scope: database-object and its consistent embedding

basic operations schema—dependent generated
scope: database-object

Figure 3.20: Hierarchy of database modifications

Example 3.21: For our running example, the signature of some of these basic insert resp.
delete operations have the following form:

(bl) basic-insert-entity-PERSON (Name : string, DateOfBirth : date) :
PERSON

basic-delete-entity-PERSON (p : PERSON)

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 29

(b2) basic-insert-relship-booked-for (pa : PASSENGER,
nsf : NON-STOP-FLIGHT) : booked-for

basic-delete-relship-booked-for (bf : booked-for)

All insert operations are functions which yield as result a modified database state, and,
additionally, a reference to the inserted instance (or object) of an entity or relationship type.
All key attributes of an entity type are mandatory, and, therefore, occur as formal parameters.
The other attributes are optional and could be set by subsequent update operations (see
below).

All delete operations as well as the insertion of a relationship instance only require references
to objects as actual parameters to denote the database objects which are relevant for the
execution of this operation.

In case of type constructions, already existing objects are inserted into resp. removed from
the set of instances of an output entity type.

Example 3.22: Examples of such basic operations are:

(b3) basic-insert-construct-PERSON-STAFF-MEMBER (p : PERSON) :
STAFF-MEMBER

basic-delete-construct-STAFF-MEMBER (sm : STAFF-MEMBER)

At last, update operations are needed for the modification of attributes resp. object—valued
attributes:

(b4) basic-update-attr-PERSON.Address (p : PERSON, Address : addr)

basic-update-attr-booked-for.PriceReduction (bf : booked-for,
pricereduction : real)

basic-update-objattr-NON-STOP-FLIGHT.Schedule
(nsf : NON-STOP-FLIGHT, tt : TIME-TABLE)

After the manipulation of a single database object by a basic operation, the new database
state may not be a possible one, i.e. not a member of X. In this case, additional manipulations,
known as update propagations in the literature [103], are necessary to result in a possible
database state. Minimal sequences of basic operations leading to a possible database state
are the elementary operations. It depends on the structure of the database, specified by the
EER diagram, which basic operations have to be contained in an elementary operation. Let
us illustrate this by some examples:

In our running example, each instance of type PERSON is identified by the two key at-
tributes Name and DateOfBirth. Therefore, insertion of a person means to check whether
the key attribute values are unique, and to create an object of type PERSON with these
key values.

This insert operation becomes more complex, if an instance of a constructed entity type or
of a dependent entity type has to be inserted. For example, in case of a staff member, it has
to be ensured that this staff member already exists as person in the database. Otherwise,
this person has to be inserted in a previous step. As STAFF-MEMBER is input type of a
partition, it also has to be decided whether (s)he is a GROUND-STAFF-MEMBER or
FLIGHT-STAFF-MEMBER.

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 30

All entity types affected by an insert operation form a subgraph of the given EER diagram.
This subgraph exactly describes the scope of interest for this operation. Therefore, we call it
the propagation subgraph. In the first example, it only consists of the entity type PERSON.
For the insertion of a STAFF-MEMBER it has the shape depicted in figure 3.23.

GROUND FLIGHT
STAFE STARF
MEMBER MEMBER
STAFF
MEMBER

AN

.M PERSON

ateOfBirth

Figure 3.23: Propagation subgraph for STAFF-MEMBER

The parameter list of the corresponding elementary operation contains the reference to the
person, to be specialized to a staff member, and the decision how to partition:

elem-insert-construct-PERSON-STAFF-MEMBER (p : PERSON,
part : (IS-GSM, IS-FSM))
Besides elementary operations, read operations are provided to access single instances of an
entity or relationship type. These read operations have as parameters key attributes for the
identification of an instance of an entity type and yield as result a reference to an object:

fetch-entity-PERSON (name : string, DateOfBirth : date) : PERSON

In case of dependent entity types, the insertion of an instance of a dependent type implies
an update of the corresponding attribute of the “parent” type. For instance, each object
of type TIME-TABLE belongs to a certain non stop flight. Therefore, elementary insert
operations for object—valued attributes need the reference to a corresponding “parent” object
as parameter:

elem-insert-objattr-TIME-TABLE (nsf : NON-STOP-FLIGHT)

The corresponding propagation subgraph, describing the scope of interest for this insertion,
is depicted in figure 3.24.

The execution of this insert operations consists of the creation of a new object of type TIME-
TABLE, and an update of the attribute Schedule of the corresponding NON-STOP-

3 MODELLING THE DATABASE - STRUCTURE & ACCESS OPERATIONS 31

Flight# FLIGHT €] | TIME TABLE

Figure 3.24: Propagation subgraph for component insertion.

FLIGHT (cf. (b4)).

The effort for the deletion of a database object is similar to the effort in case of the inser-
tion of a database object, because the context of the instance has to be updated, too, to
yield a possible database state. This means, for example, that, if this instance participates
in a relationship or is the value of an object—valued attribute of another database object,
these memberships or references also have to be removed. Let us illustrate elementary delete
operations by two examples:

Deletion of a NON-STOP-FLIGHT means the deletion of an instance of this entity type
together with its dependent object of type TIME-TABLE, and the deletion of participations
of this non stop flight in the relationships belongs-to, assigned-to, and booked-for. The
propagation subgraph for this operation can be found in figure 3.25.

.@ N PERSON / C : PASSENGER
- 71
Airplane# DateOfBirth
AIRPLANE

assigned_to
~ PlaneCrew:
~ list (1,%) [

(1,2) _| NON STOP
epartureTime

CONNECTION =/ R

: TIME TABLE DepartureDay

@ ArrivalDay

Figure 3.25: Propagation subgraph for deletion of a NON-STOP-FLIGHT

i@

Schedule [}

i

While the deletion of a non stop flight doesn’t affect a lot of other instances in the database,
the deletion of a person may have great influence on the current database state. As in real
life, it depends on how active this person was which parts of the current database state have
to be updated. For instance, if this person also was a ground staff member, (s)he has to
be removed from the staff list of an airport, its maintenance sheds, and possibly of airline
companies. The corresponding propagation subgraph in figure 3.26 contains all entity and
relationship types which possibly are affected.

As mentioned in section 3.1, all data—valued non—key attributes as well as non—dependent
object—valued attributes are optional. They are not part of the update propagation opera-
tions of an elementary insert operation. They have to be set by separate elementary update
operations. In case of atomic entity types, these update operations have the same signature

4 MODELLING THE DATABASE - DYNAMIC BEHAVIOUR & APPLICATIONS 32

GROUND FLIGHT
X STAFF STAFF
WorkingHours MEMBER MEMBER
I
o
l LengthOfService_D— MEMBER
edlthCertificate

MAINTE-
NANCE
SHED PASSENGER

I Staff:
set(1,*) O C [
AIRLINE T
booked_for
COMPANY

revson
AIRPORT : NON STOP @
FLIGHT o rigms D

Figure 3.26: Propagation subgraph for deletion of a PERSON

as basic update operations (cf. (b4)). All dependent objects are only accessible by their par-
ent objects. For example, operations to update the attribute values of a time table need the
reference to the corresponding non stop flight:

elem-update-objattr-TIME-TABLE.ArrivalDay
(nsf : NON-STOP-FLIGHT ,arrivday : date)

None of the elementary operations regard any cardinality constraint, which might be con-
tained in an EER diagram. Cardinality constraints as well as other explicit integrity con-
straints have to be enforced during the execution of complex operations (cf. section 4.3).
This procedure yields the advantage that elementary operations do not contain cycles of
sequences of basic operations, which usually is the main reason for the update propagation
problem discussed in the literature (cf. [103]). In our case, it is possible to determine all
relevant information for the execution of an operation in advance and to deliver it as actual
parameters to an elementary operation.

4 Modelling the Database — Its Dynamic Behaviour And Ap-
plications

In conceptual database design not only the information structures but also the desired
database behaviour must be specified. The way a database evolves is determined by the
sequence of database states cqo,0205... the database runs through, also called ewvolution.
Specifying the desired database behaviour can be done in different ways. One way is to re-
strict the possible state sequences to admissible ones by means of so—called temporal integrity
constraints. Temporal constraints allow to decide whether a given database sequence is ad-
missible or not but do not say anything about how to obtain such a state sequence. Another
way to specify database behaviour is to model the relevant activities changing the real world
by database actions changing the database.

4 MODELLING THE DATABASE - DYNAMIC BEHAVIOUR & APPLICATIONS 33

For conceptual database design we propose a combination of these two approaches. The dis-
tinction between temporal integrity constraints and actions allows action design to concen-
trate on the pure functionality of actions without taking into account whether the resulting
state sequences are admissible. On the other hand admissibility can then be achieved by
providing the database management system with a central integrity monitoring facility or
by integrating constraints in database actions during further design steps after conceptual
design.

This chapter deals with the specification of temporal integrity constraints and database ma-
nipulations. For specifying temporal constraints we follow a descriptive, logic oriented ap-
proach based on temporal logic (section 4.1). Sections 4.2 and 4.3 deal with the specification
of database actions. In a similar way an EER diagram should reflect the relevant information
structures of the application area, the modelled database modifications should be a reflection
of the relevant activity structures. This requires appropriate modelling primitives for the de-
sign of database actions. On the one hand, it should be possible to model atomic real world
activities in a descriptive way merely concentrating on the results of the activities than on
low level database manipulations. On the other hand complex real world activities are com-
posed of several atomic ones and hence require operational concepts for action modelling.
We believe both approaches are justified in conceptual database design and present both a
language for descriptive action specification based on pre/post conditions (section 4.2) and a
language for operational specification (section 4.3) based on elementary operations (compare
section 3.5).

4.1 Constraints on Database Evolutions

The most simple class of constraints on database evolutions are static constraints. Static con-
straints allow any sequence of database states which do not violate the constraints. However,
in general admissibility of some state within some sequence also depends on earlier states
in database evolution. We can subdivide the constraints resulting from such dependencies
into transitional constraints expressing dependencies between successive states and the more
general class of arbitrary temporal constraints to express dependencies on the whole histo-
ry. This section mainly addresses the more general kind of constraints and discusses some
relations to the other ones.

Similar to static constraints, temporal constraints have different roles in database specifica-
tions. So, we have constraints reflecting restrictions in the application area itself such as “a
FLIGHT-STAFF-MEMBER must work for some period as a copilot before she/he can
become a pilot”. Other constraints arise from the intended meaning of stored data. So, for
example, it is not clear from our sample EER schema whether the DateOfMaintenance
attribute of an AIRPLANE refers to the previous maintenance dates or to the dates of the
following maintenances. As already pointed out for static constraints, it is very important to
resolve such ambiguities. In this case, we can do this, for example, by adding the temporal
constraint “after a maintenance, DateOfMaintenance contains the date of that mainte-
nance”. Another role of temporal constraints is to assure that historical information stored
in the database corresponds to the actual evolution of the database. So for example in our
air traffic database the BookingDay of a booked-for relationship has to correspond to the
date the booking actually took place, i.e. the date the relationship was inserted.

Some typical temporal constraints are listed in the following example.

4 MODELLING THE DATABASE - DYNAMIC BEHAVIOUR & APPLICATIONS 34

Example 4.1:

1) The LengthOfService of a GROUND-STAFF-MEMBER may not decrease.

[\

The Miles of an AIRPLANE may not decrease.

w

)
)
) An ATRPLANE must sometime be assigned to a NON-STOP-FLIGHT.
)

4) A NON-STOP-FLIGHT must have an AIRPLANE assigned to it before it can

take place.

5) An ATIRPLANE must be maintained at least every 6 months, i.e. before the maximum
date in the set DateOfMaintenance is more than 6 months ago.

6) An AIRPLANE must be maintained at least every 500000 miles, i.e. before its current
Miles differ more than 500000 from the Miles value at the last maintenance.

7) During the last two weeks before the departure of a flight, a deposit of 100 DM must
exist for every booking.

8) During the last week before the departure of a flight, the full price must be paid for
every booking.

9) A new PASSENGER, i.e., a passenger booking his/her first flight, must pay the full
price at the booking day.

10) An AIRPLANE’s DateOfMaintenance contains the dates of its past maintenances.

11) A NON-STOP-FLIGHT must not be deleted from the database.

There have been proposed a variety of styles for the specification of admissible database
behaviour. Important directions in this area are transitional assertions [47, 48, 49] and Petri
net approaches [43, 104, 5, 105]. Another important direction is to specify long term behaviour
in a descriptive, logic oriented way. The work in this direction was much inspired by the
approaches in [106, 107, 108] proposing modal and temporal logic for program construction
and verification. To this area belong action logic and modal logic proposed in [38, 36, 37, 50],
obligations/permissions [109] and our approach which is along the lines of [35, 51, 33, 52, 110,
111, 53, 54, 32, 58] using a temporal logic framework for specifying and monitoring temporal
constraints.

Our language for specifying temporal constraints is a temporal extension of the language for
static constraints presented in section 3.4. In addition to usual constructs to build up formu-
las, we have so—called temporal connectives like the nexttime operator next, the unbounded
temporal quantifications always and sometime as well as the bounded quantifications al-
ways ... before... and sometime... before. ... If such a formula contains free variables it
must be preceded by a variable declaration part var ({varid) : (type)), ..., ((varid) : (type))
for the free variables. Free variables are assumed to be implicitly universally quantified. We
do not allow any explicit variable quantification in front of a formula containing temporal
connectives.

Informally speaking, an always formula is valid for a state sequence if the subformula pre-
ceded by always is valid in every state. To be exact, the subformula must be valid in any

4 MODELLING THE DATABASE - DYNAMIC BEHAVIOUR & APPLICATIONS 35

suffix of the state sequence, i.e. in any subsequence beginning at any state. This is because
the subformula in turn may be a temporal formula and hence must be evaluated on state
sequences. Analogously, we can say a sometime formula is valid if the subformula preceded
by sometime is valid in some suffix of the sequence. Similarly, validity of the other temporal
connectives can be informally defined.

We should waste some words about the meaning of (implicit) universal variable quantification
in the context of temporal logic. Universal quantification means the formula must become
valid for all objects of the corresponding type during their lifetime, i.e. between their insertion
and deletion. In this context, a formulation like “... the first state...” reads as “... the first
state the referenced objects exist ...” and not “... the first state the database exists ...”.

Our language for temporal constraints contains the language for static constraints as a sublan-
guage. But note that formulations of static constraints in this sublanguage (static formulas)
have another meaning when interpreted as constraints on database evolutions. Such formulas
are already valid for a state sequence iff they are valid for the first state. Formulas without
any temporal operator are valid if they are valid in the first state (i.e. o¢) of the corresponding
state sequence. Static constraints however must be valid in every state of a state sequence.
In formulations of temporal constraints, this property must explicitly be expressed in the
formula. Thus a temporal logic formulation of a static constraint has the form always (
static formula). As an example, we formulate constraint 7) of example 4.1 in our language
for temporal constraints:

Example 4.2: “During the last two weeks before the departure of the flight a deposit of 100
DM must exist for every booking.”

var (bf : booked—for)
always (daydiff(bf. NON-STOP-FLIGHT.Schedule.DepartureDay, today)< 14
implies bf.Account >= 100.0)

To illustrate further temporal connectives we continue with an alternative formulation of this
constraint.

Example 4.3:

var (bf : booked-for)
(sometime bf.Account > 100.0

before daydiff(bf. NON-STOP-FLIGHT.Schedule.DepatureDay, today)<14)
or (bf.Account > 100.0)

Note, that sometime ... before ... is one dyadic temporal connective. The constraint is
satisfied if a deposit is paid before the deadline (14 days before the departure) or if it is paid
when booking the flight (which is also possible after the deadline).

If it is sure that no passenger will ever get her/his money back, which certainly is, this formula
is equivalent to the formula in example 4.2.

FExample 4.3 is a nice illustration of the fact that temporal logic formulations of static con-
straints can occasionally be monitored more efficiently than the formulations as static con-
traints. For the second formulation of the booking constraint, only those entries in booked-
for must be monitored which still don’t have fulfilled the sometime condition whereas the
formulation as static constraint requires all entries to be monitored.

4 MODELLING THE DATABASE - DYNAMIC BEHAVIOUR & APPLICATIONS 36

Also transitional constraints can be expressed in this temporal framework. This can be done
using the temporal operator nmext which relates successive database states. The temporal
logic formulation of transitional constraints has the following form:

always ((static formula 1) implies next (static formula 2))

We now illustrate the meaning of nested temporal formulas. We will do this by stepwise
elaborating the temporal logic formulation of constraint 6) in example 4.1 (“An AIRPLANE
must be maintained at least every 500000 miles”). We can reformulate this constraint as:

“whenever an airplane is released from maintenance in the next state, it must sometime have
another maintenance before it will have flown another 500000 miles”.

In “temporal pseudo code” this can be formulated as follows:

Example 4.4:

var (a : AIRPLANE), (m : integer)

always (Airplane a released from maintenance in the next state with a.Miles = m
implies
after release another maintenance of a before a.Miles > m +500000)

One might wonder why a constraint only imposing restrictions on the behaviour of airplanes
needs a second variable m of type integer. The reason is that the current value of the
attribute a.Miles must be compared with the value at the last maintenance. The only way
to do this in temporal logic is to “bind” the old value to an additional variable and to compare
in the subsequent the current value with that variable.

Filling in the unspecified parts of our constraint leads to the complete temporal logic for-
mulation in example 4.5. We assume to have a predefined predicate in-maintenance for
extracting from a database state whether an airplane is currently maintained.

Example 4.5:

var (a : AIRPLANE) (m : integer)

always ((in-maintenance(a) and m = a.Miles and not next in-maintenance(a))
implies
next (sometime in-maintenance(a) before a.Miles > m-+500000))

If we had designed AIRPLANE to contain an Attribute for string the mileage at the last
maintenance this restriction could also be templated as a static constraint saying that the
current value of Miles must not exceed this historical value by more than 500000 miles. In
this case, however, another dynamic constraint was neccessary to ensure that the historical
mileage corresponds to the mileage at the last maintenance.

Another interesting example is constraint 11) in example 4.1. It says NON-STOP-FLIGHTSs
must not be deleted. A first idea to formulate this constraint could be the formula:

var (nsf : NON-STOP-FLIGHT)
always (exists nst’ in NON-STOP-FLIGHT: nsf’=nsf)

4 MODELLING THE DATABASE - DYNAMIC BEHAVIOUR & APPLICATIONS 37

But remember that formulas are evaluated only during the lifetime of the referenced objects.
Thus the above formula states, that an nsf’ must exist as long as nsf exists. This is of
course always true; we only need to define nsf’ to be identical to nsf. However, for detecting
violations of the constraint we have to check whether nsf is deleted. This is not possible
if the NON-STOP-FLIGHTS are referred to in the formula itself. For giving a correct
formulation of the constraint we exploit the property that object keys provide a unique,
state independent object identification. The key of the object class NON-STOP-FLIGHT
consists of the single attribute Flight# . State independent object identification by keys has
the effect that NON-STOP-FLIGHTSs with the same Flight# in different states are all
the same object. For ensuring that no flight is ever deleted we only have to assure that after
its insertion always a flight with the same Flight# exists.

Example 4.6:

“NON-STOP-FLIGHTSs must not be deleted.”
var (key : string)
always ((exists nsf in NON-STOP-FLIGHT:
nsf.Flight# = key)
implies
always (exists nsf in NON-STOP-FLIGHT:
nsf.Flight# = key)
)

Temporal constraints can also be represented graphically by some kind of finite state au-
tomata. Such automata are called transition graphs and can be automatically derived from
the temporal logic formulations of constraints. Let us illustrate this by the constraint “An
airplane must sometime be maintained” which has the following temporal logic formulation:
sometime in-maintenance(a). During database evolution we can distinguish two different
situations for an AIRPLANE. Either the maintenance has already taken place or it has not.
An ATRPLANE a switches in some database state from the latter situation to the former if
the non—temporal formula in-maintenance(a) is true. This can be generalized for arbitrary
temporal logic formulas. For every temporal formula there can be distinguished a finite set of
different situations each of which characterized by a temporal formula to become valid in the
subsequent future and transitions between these situations characterized by non—temporal
formulas. So, temporal constraints can be represented equivalently by some kind of finite
state machines, so—called transition graphs, with non—temporal formulas as transition condi-
tions [54, 58]. In fact transition graphs are the basic tool for monitoring temporal constraints
at database runtime.

4.2 Descriptive Specification of Database Transactions

The dynamic evolution of a database is induced by a sequence of actions modifying the
database contents. In the database area, such actions are called transactions. Database trans-
actions are integrity preserving transitions between database states. This means, that for a
given transaction t the semantics [t] is a relation

[t] C X. x X,

4 MODELLING THE DATABASE - DYNAMIC BEHAVIOUR & APPLICATIONS 38

There are different paradigms to describe database state transitions in a data model. For
early design steps, one can use a logic—oriented, descriptive style which describes the effects
of a transaction in an abstract manner. Typically, descriptive specifications have as formal
semantics the set of all functions satisfying the given abstract description. A descriptive
formalism using pre- and postconditions will be presented in this section. If the database
designer wants to fix one determined state transition function, s/he can use an operational
style of describing transactions as presented in the next section 4.3.

Several frameworks for descriptive transaction specification are proposed in the related liter-
ature. If we look at a database state as a value of a complex data type, we can use algebraic
specification of abstract data types to specify database transactions, too. In this description
framework a transaction is handled as a function on complex values [112, 113, 114, 115, 116].
Besides the problem of correctly specifying functions on complex structured domains as
database states typically are, this approach neglects the logic-oriented view on database
states evolved for the discussion of queries and constraints.

The framework of pre- and postconditions [30, 31] states for each transaction a precondition
evaluated in the current state and a postcondition which must be valid in the state resulting
from the transaction execution. As proposed by [30, 31], we allow several pre- and postcondi-
tions for one transaction to structure the specification while distinguishing several situations
by different preconditions. Additionally, we can give an enabling condition to restrict the
states where the execution of the transaction is allowed.

A transaction specification has the general form:

transaction (name) ((parameters)):
[var (variables) ; |
[on (enabling condition) ; |
{ pre (precondition) ;
post (postcondition) ; }+

where the last two syntactic categories can be repeated to have a list of (precondition)s and
(postcondition)s for one transaction. All three conditions are formulas of the EER query
language already used to describe static integrity constraints in section 3.4. The introduced
(variables) and formal (parameters) can occur free in these conditions. The newly introduced
variables are implicitly universally quantified for the pre- and postconditions. The var and
on clauses are optional.

To illustrate the use of pre- and postconditions, we look at a few examples for descriptive
transaction specifications. The first modelled transaction is the transaction DeleteAirplane
which removes an airplane from the database.

Example 4.7:
transaction DeleteAirplane (plane# : string):

pre lirue;
post not exists a in AIRPLANE: a.Airplane# = plane# ;

For the transaction DeleteAirplane we simply state that after the execution of the trans-
action there does not exist an airplane with the key value plane# anymore. We have no

4 MODELLING THE DATABASE - DYNAMIC BEHAVIOUR & APPLICATIONS 39

enabling condition; and as a precondition the formula ¢rue. The parameter plane# is used
inside the postcondition like a free variable of type string.

Please note two features (or problems) of using pre- and postconditions for transaction spec-
ification: Firstly, additional changes necessary for maintaining database integrity are not
specified explicitly. For example, we may have to update the object—valued attributes and
relationships involving the type AIRPLANE to guarantee integrity. Secondly, the transac-
tion specification describes the desired changes only. From a logical point of view, we do not
specify what happens to database elements not mentioned explicitly in the conditions.

Both effects arise due to the fact that we want to describe the desired database changes only
without worrying on (desired or undesired) side effects. We have two implicit rules to handle
this situation:

The consistency rule is the implicit rule that each transaction has to obey the integrity
constraints [31].

The frame rule is the implicit rule that a transaction effect should be somehow minimal
in terms of changed information[31, 117].

In the following, we assume that our descriptive specifications are used as verification con-
ditions for implementing transactions only. A transaction is correct w.r.t. such a verification
condition if it satisfies the given conditions — even if it additionally produces a lot of junk.
Therefore, we do not worry about frame rules. For using such specifications for example al-
so for rapid prototyping, we would have to find a mechanism to support the generation of
suitable frame rules.

As an example for the use of the enabling condition, we give a refinement of the transaction
specification DeleteAirplane additionally forbidding the deletion of an airplaine while there
are still bookings for future flights with this airplane.

Example 4.8:

transaction DeleteAirplane (plane# : string):
on not exists nsf in NON-STOP-FLIGHT:
(exists a in AIRPLANE: a.Airplane# = plane# and
assigned-to(a,nsf)
and nsf.Occupation > 0
and daydiff(nsf.Schedule.Arrivalday, today) > 0)
pre true;
post not exists a in AIRPLANE: a.Airplane# = plane# ;

The introduction of explicit enabling conditions allows to distinguish two different situations
appearing in transaction design. The first situation is that a transaction should have no ef-
fect in several cases, i.e. the database state remains unchanged after the transaction. This is
modelled by the cases where no precondition is valid, or by a postcondition ¢rue (assuming a
suitable frame rule!). The other case is that a transaction is undefined under certain circum-
stances which is expressed by the use of enabling conditions. Of course, that can be modelled
by a postcondition false, too, but we prefer to make this important case explicitly modelled
by special language features.

4 MODELLING THE DATABASE - DYNAMIC BEHAVIOUR & APPLICATIONS 40

The semantics of a transaction specification with fixed parameter values is a relation between
admissible database states, i.e., it describes for a given current database state the set of
transitions not violating the transaction specification. A comprehensive discussion of the
semantics of pre- and postconditions as transaction specification can be found in [32, 118].
For a given state ¢ in 3. and a given substitution of the formal parameters with values, the
semantics of a transaction specification can be sketched as follows:

A transaction is applicable in a state o iff there exists a substitution of the free variables
with current values or objects in ¢ such that the enabling condition becomes valid in o.
For a given transaction t, the subset ¥, pjeq(t) € X¢ denotes the set of states where
t is enabled.

A transition from state o to o' is correct w.r.t. a transaction specification iff for all
substitutions of the free variables with current values or objects in o € ¥ pled(t) the
validity of the precondition in ¢ implies the validity of the postcondition in ¢’'.

As mentioned before, the action specifications and the behavior specifications by temporal
integrity constraints are complementary specifications of the same structures, namely the
desired database state sequences. To bring both specification techniques together, we can
interpret action specifications using pre- and postconditions as temporal logic specifications
replacing the mext operator by a set of action—specific next operators. This is similar to
introducing action modalities like in [37, 38]. The semantics of the next operator is then
equivalent to the disjunction of the action—specific next operators. These relations between
the specification formalisms can be used to prove consistency and completeness of combined
specifications (see [58] for first ideas in this direction).

4.3 Operational Description of Database Transactions

The preceding section presented a language following a descriptive, logic—oriented style for the
specification of database transactions. The main characteristics of descriptive specifications
is that they only determine the intended effect of a transaction without prescribing how this
effect is achieved. Therefore, descriptive specifications are a suitable means for early design
steps to describe the dynamic behaviour of a database in an abstract, application—oriented
manner. But, at the end of the design process, an executable, system—oriented description
of database transactions is required to yield an efficient realization of a database application
system. In addition, an executable specification of database transactions facilitates a rapid
prototyping of the specification and supports a database designer to compare the specified
dynamic behaviour with her/his intention.

In this section, we present a language for an operational, executable style of describing
database transactions t. This enables a database designer to fix a determined state tran-
sition function [t] : £, — X, for each desired database transaction. This language forms a
subset of a usual database programming language (cf. [40, 45]), as it focusses on database
aspects, but neglects the support of the description of a sophisticated user dialogue.

It is a procedural language, containing assignment statements, procedure calls and the usual
control structures like if-then-else, while, for, repeat as main language constructs to de-
scribe the control flow. Data—valued variables can be declared to keep values of attributes

4 MODELLING THE DATABASE - DYNAMIC BEHAVIOUR & APPLICATIONS 41

or as auxiliary variables. Object—valued (single— or set—valued) variables can be introduced
to store references to database objects. These (sets of) references can be retrieved from the
current database by appropriate queries.

The language is based on the framework of elementary operations which automatically guar-
antees all model inherent integrity constraints to be fulfilled. (cf. section 3.5). They are the
basic constituents of complex actions, i.e., procedures describing the effect of database trans-
actions in a deterministic, executable style. As complex actions change the database only by
means of elementary operations, it is guaranteed that they describe transitions from ¥ into
3. But preservation of explicit integrity constraints is not ensured.

In order to ensure that the execution of a complex action is also a transition of ¥, into X,
i.e., that all explicit integrity constraints are preserved, additional operations are needed. One
possibility is to integrate appropriate code into the action specification during action design.
The other possibility is to ensure integrity by means of an additional integrity monitor. Its
task is to check after action execution whether explicit static or temporal integrity constraints
have been violated. If the monitor detects a violation, the complex action is rejected and the
database is rolled back to the previous state. In this case no further design activity is necessary
for guaranteeing integrity.

Let us illustrate now the language by an example. It is an operational description of the
transaction specified by pre—/post—condition in the previous section (example 4.8).

The example describes the deletion of an airplane, which should be forbidden if there are still
bookings for future flights with this airplane:

Example 4.9:

transaction DeleteAirplane (plane# :string)
objects a : AIRPLANE;
flights : set of NON-STOP-FLIGHT;
begin

a := fetch-entity-AIRPLANE (plane#);

if defined (a) then
/* an airplane a with the number ‘plane#’ exists */
flights := (select nsf

from NON-STOP-FLIGHT
where assigned-to (a, nsf) and
nsf.Occupation > 0 and
daydiff (nsf.Schedule.ArrivalDay, today) > 0);
iof flights = { } then
elem-delete-entity-ATRPLANE (a)
else
error-message (“ still bookings for flights with this airplane)

end

else
error-message (“ airplane does not exist ”)

end

end

The transaction contains two object variables. The variable a is used to keep a reference to the
airplane. It is retrieved by the read operation fetch-entity-AIRPLANE with the values of

5 CONCLUSIONS AND FUTURE WORK 42

all key attributes as parameters. The variable flights is an object— and set—valued variable to
store the result of an object—valued query which yields all non stop flights which are intended
to use the current airplane. The elementary operation elem-delete-entity-AIRPLANE
deletes the airplane and removes this instance from all participations within corresponding
relationships or object—valued attributes. At the end of the execution of the whole complex
action, it is checked whether any integrity constraint has been violated. For instance, if the
airplane to be deleted is the last airplane in the FleetOfAircraft of an airline company,
the whole complex action is rejected because of the cardinality constraint set(1,x) at the
attribute FleetOfAircraft at AIRLINE-COMPANY.

5 Conclusions and Future Work

The goal of this paper was to present a uniform framework for specifying all relevant aspects
of a conceptual database schema, and to explain how these heterogeneous structures can be
integrated. We presented a conceptual data model which is capable of tackling these tasks.
We showed its pragmatics and demonstrated its appropriateness for database modelling by
discussing an extensive sample application.

Database design has to deal with increasingly complex structures and must take into account
different aspects of databases. Apart from modelling the static structure, database dynamics
has to be modelled, too. To reduce the complexity of this modelling task, there have been
made a lot of efforts for structuring the design process. In proposed database design life
cycle models, conceptual design is the most demanding phase since its task is to yield the
first formal description of the application. This description is formulated in some conceptual
data model. In contrast to traditional approaches, our conceptual model incorporates static
as well as dynamic aspects in a uniform semantical framework. Its static parts comprise the
specification of data types used as domains for attributes and the specification of object
structures based on an extended Entity—Relationship model.

Database dynamics is modelled by two complementary approaches. Temporal integrity con-
straints restrict possible database state sequences to admissible ones whereas the possible
database manipulations are modelled by database (trans)actions. For the specification of
temporal constraints we propose a temporal logic as specification language. For database
(trans)actions we discuss two different approaches. The first one describes (trans)actions in
a descriptive manner based on pre-/post-conditions. The second one allows a procedural ac-
tion modelling by composing complex operations of so—called elementary ones. Elementary
operations are the minimal database changes which respect all schema inherent integrity con-
straints. They are implicitly specified with the specification of the static part of a database
and, therefore, can automatically be generated from this description of the static part.

The central link between these components is a powerful query language for the EER model.
This language is the basis for specifying static and temporal integrity constraints as well as
database transactions.

The presented conceptual data model is provided with a formal mathematical semantics,
which has been described elsewhere [65, 58]. Here, we concentrated on pragmatic aspects of
our data model.

Nevertheless, let us make some remarks on the syntactical and semantical integration of the
various design components. Both the data type component and the object component define

5 CONCLUSIONS AND FUTURE WORK 43

structures (types) on which certain functions and predicates are defined. For example, the
data type component may contain a function sqrt yielding the square root of a real number or
a predicate < on integers. Similarly, the object component may contain an object type NON-
STOP-FLIGHT with a function Price yieldin g the price of a flight, a function Schedule
yielding the TIME-TABLE for the argument NON-STOP-FLIGHT, and for instance a
predicate belongs-to which is defined on NON-STOP-FLIGHTs and CONNECTIONS.

Usually, these functions and predicates are called the database signature. In combination with
a query language they are the only way to access the contents of a database.

The syntactical difference between the two components is that functions and predicates in
the data type component may only involve data types whereas a function or predicate defined
in the object component may refer to object types as well as to data types. In fact, functions
yielding instances of a data type as for example Name are the only way for an external (e.g.
printable) representation of the properties of an object.

The main differences between the data type and object component are on the semantics level.
The semantics of the data type component is fixed for the whole life time of the database, i.e.
the sets of instances of the data types as well as the meaning of the functions and predicates
is fixed for all the time.

This is not the case for the object component. On the one hand the domain of an object
type may change, i.e. objects get inserted or deleted. On the other hand the meaning of the
functions and predicates may change in time, e.g. the Price of a NON-STOP-FLIGHT
may change. In other words, a database usually has different states. The instances of an object
type are abstract entities with a state independent identity (they change their properties but
not their identity).

The semantics of the remaining parts of a specification, i.e., static integrity constraints,
the evolution component and the action component is defined in terms of the semantics of
database states. Static integrity constraints are specified in form of first order formulas over
the database signature. Based on the semantics of functions and predicates, the semantics of
first order formulas can be defined as usual. The admissible database states are then those
ones which satisfy all static integrity constraints. In the evolution component the allowed
database behaviour is specified by temporal integrity constraints. Temporal constraints are
formulated in a temporal logic extension of the language for static constraints. The semantical
domain for our temporal logic is the set of all finite and infinite database state sequences.
The semantics of temporal formulas is defined by interpreting the temporal logic operators
by appropriate quantifications over the states in the state sequences.

Similarly the pre— and post—conditions characterizing the descriptive specification of database
transactions can be evaluated in successive database states. Pre— and post—conditions char-
acterize all pairs of states whose first component fulfills the pre—condition and whose second
component provides the post—condition. This relation determines the valid state transitions
according to a specification. Note, this view point basically relies on the fact that a database
signature consists of a couple of functions and predicates and on the strict distinction between
data type and object component.

More formally speaking we have the following hierarchies of logics and models:

The semantics of the datatype component is defined by an algebra [68].

5 CONCLUSIONS AND FUTURE WORK 44

The semantics of the object component is defined by the set of all database states. A
database state is an algebra containing a finite interpretation structure for the object
component on the one hand and additionally the algebra for the datatype component
[119, 63, 65]. The meaning of the query language SQL/EER and the language for static
constraints is then given in the usual way interpreting them as formulas of a predicate
calculus.

The semantics of temporal logic is defined on sequences of finite and infinite database
states as described formally in [120, 58]

The semantics of descriptive action specifications can be found in [32]. It is defined on
database state transitions, i.e., on pairs of successive database states.

The semantics of the operational action specification cannot be completely formalized in terms
of the semantics at the object and data type component. Therefore in [46] an operational
semantics based on graph grammars is proposed.

The conceptual data model presented in this paper was the basis for several research activi-
ties at Braunschweig Technical University. One of them is the database design environment
CADDY (Computer—Aided Design of Non-Traditional Databases) [121], where a set of in-
tegrated tools for conceptual database design has been realized. The current prototype of
this environment provides editing, analysing, and prototyping tools for all concepts of the
described conceptual data model. In detail, there are graphical resp. textual syntax—directed
editors for the design of EER diagrams, data type specifications, integrity constraints, queries
and actions specifications. As a prerequisite for a rapid prototyping of the designed schema,
the EER schema can automatically be transformed into a relational one. Afterwards, a proto-
typing database is installed on a relational database system and filled with test data. A query
interpreter and a graphical database browser enable a descriptive or navigating access to the
prototyping database. All these tools enable a database designer to test the designed database
schema already in terms of the conceptual database schema, i.e., in early design steps. CAD-
DY is implemented in a workstation environment under UNIX and the X window system
in the programming language C. The running prototype was successfully demonstrated at
several conferences and other places.

Another implementation of our EER model has been described in [122]. There, the model
and the complete, original calculus [63, 65] is translated into the logic programming language
Prolog. In contrast to CADDY, no emphasis has been put on a user—friendly interface. The
system basically consists of a set of compilers written in Prolog which translate data specifica-
tions, schema definitions, queries, and data—manipulation statements into Prolog programs.

Further extensions of the presented approach are possible. One could think of taking over the
idea of graphical design also to action or query specification. This is in fact subject to part
of our current research activities.

Up to now we have investigated techniques for describing real world properties in an appro-
priate way by means of a conceptual model. So far we concentrated on the language issues
including their semantics. Future research will have to address design methodologies, too.

Acknowledgements:

REFERENCES 45

We like to thank our (former) colleagues Leonore Neugebauer, Karl Neumann and Udo Lipeck
for their contributions to the presented modelling approach and the students currently or
formerly working within our group.

References

[1] Bancilhon, F. ; Khoshafian, S. A Calculus for Complex Objects. Proc. 5th ACM PODS,
Cambridge (Mass.) (53 — 59), 1986.

[2] Karl, S. ; Lockemann, P.C. Design of Engineering Databases: A Case for More Varied
Semantic Modelling Concepts. Information Systems, Band 13, Nr. 4, (335 — 358)., 1988.

[3] Encarnacao, J.L. ; Lockemann, P.C. (Eds.):. Engineering Databases: Connecting Islands
of Automation Through Databases. Spinger—Verlag, Berlin, 1990.

[4] Dittrich, K. ; Gotthard, W. ; Lockemann, P.C. DAMOKLES — A Database System for
Software Engineering Environments. In Proc. Int. Workshop Advanced programming
enviroments, Conradi, R. et al. (eds.). LNCS 244, Springer Verlag, Berlin (353-371),
1987.

[5] Oberweis, A. ; Lausen, G. On the Representation of Temporal Knowledge in Office
Systems. C. Rolland, M. Leonard and F. Bodard (Eds.), Proc Conf on Temporal
Aspects of Information Systems (TAIS-87), North Holland (131-145), 1988.

[6] Lipeck, U.W. ; Neumann, K. Modelling and Manipulating Objects in Geoscientific
Databases. Proc. 5th ERA Conf. (P.P. Chen ed.) (67 — 86), 1986.

[7] Lohmann, F. ; Neumann, K. A Geoscientific Database System Supporting Cartogra-
phy and Application Programming. Proc. of the 8th British National Conference on
Databases; Brown, A / Hitchcock, P. (eds.). Pitman, London , (179-195), 1990.

[8] Mayr, H.C. ; Dittrich, K.R. ; Lockemann, P.C. Datenbankentwurf. Datenbank—
Handbuch (P.C. Lockemann, J.W. Schmidt, eds.). Springer Verlag, (481-557), 1987.

[9] Elmasri. R.A. ; Navathe, S.B. Fundamentals of Database Systems. Ben-
jamin/Cummings Publ., Redwood City , 1989.

[10] Brodie, M.L. On the Development of Data Models. On Conceptual Modelling — Per-
spectives from Artificial Intelligence, Databases, and Programming Languages (Brodie,
M.L., Mylopoulos, J., Schmidt, J.W. (eds.)) (19-47), 1984.

[11] Hull, R. ; King, R. Semantic Database Modeling: Survey, Applications, and Research
Issues. ACM Computing Surveys 1987, Vol. 19, No. 3 (201 — 260), 1987.

[12] Peckham, J. ; Maryansky, F. Semantic Data Models. ACM Computing Surveys , Vol.
20, No. 3 (153 — 189), 1988.

[13] Chen, P.P. The Entity—Relationship Model — Towards a Unified View of Data. ACM
Transactions on Database Systems , Vo 1. 1, No. 1 (9 - 36), 1976.

REFERENCES 46

[14]

[15]

[16]

[20]

[21]

[22]

[23]

[24]

Hammer, M. ; McLeod, D. Database Description with SDM: A Semantic Database
Model. ACM Transactions on Database Systems, Vol. 6, No. 3 (351 — 386), 1981.

Abiteboul, S. ; Hull, R. IFO — A Formal Semantic Database Model. ACM Transactions
on Database Systems , Vol. 12, No. 4 (525 — 565), 1987.

Lyngbaek, P. ; Kent, W. A Data Modeling Methodology for the Design and Imple-
mentation of Information Systems. K.R. Dittrich, U. Dayal (ed.), Proc. of the Int.
Workshop on Object—Oriented Database Systems, Pacific Grove (California) (6 — 17),
1986.

Mylopoulos, J. ; Wong, H.K.T. Some Features of the TAXIS Data Model. Proc. 6th
VLDB, Montreal (Canada) (399 — 410), 1980.

Nixon, B. (ed.):. TAXIS’84: Selected Papers. Technical Report CSRG-160 Dept. of CS,
U. of Toronto, 1984.

Elmasri, R.A. ; Weeldreyer, J. ; Hevner, A. The Category Concept: An Extension to
the Entity—Relationship Model. Data & Knowledge Engineering , Vol. 1 (75 — 116),
1985.

Makowski, J.A. ; Markowitz, V.M. ; Rotics, N. Entity—Relationship Consistency for
Relational Schemes. G. Ausiello, P. Atzeni (eds.), Proc. International Conference on
Database Theory ICDT, Springer LNCS 243 (306 — 322), 1986.

Teorey, T.J.; Yang, D. ; Fry, J.P. A Logical Design Methodology for Relational Databas-
es Using the Extended Entity—Relationship Model. ACM Computing Surveys 1986, Vol.
18, No. 2 (197 — 222), 1986.

Hohenstein, U. ; Neugebauer, L. ; Saake, G. ; Ehrich, H—D. Three-Level Specifica-
tion Using an Extended Entity—Relationship Model. R.R. Wagner, R. Traunmdiiller,
H.C. Mayr (eds.), Informationsbedarfsermittlung und —analyse fiir den Entwurf von

Informationssystemen. Informatik—Fachberichte Band 143, Springer Verlag (58 — 88),
1987.

Shoshani, A. CABLE: A Language Based on the Entity—Relationship Model. Re-
port UCID-8005, Computer Science and Applied Mathematics Department, Lawrence
Berkeley Laboratory, Berkeley (California) , 1978.

Poonen, G. CLEAR: A Conceptual Language for Entities and Relationships. W. Chu,
P.P. Chen (eds.), Centralized and Distributed Systems. IEEE Computer Society, Silver
Springs (Maryland) 1980 (194 — 215), 1978.

Campbell, D.M. ; Embley, D.W. ; Czejdo, B. A Relationally Complete Query Language
for an Entity-Relationship Model. Proc. 4th ERA Conf. (P.P. Chen ed.) (90 - 97), 1985.

Demo, B. ; DiLeva, A. ; Giolito, P. An Entity—Relationship Query Language. A.
Sernadas, J. Bubenko, A. Olive (eds.), Proc. IFIP Work. Conf. on TFAIS 1985, Sitges
(Spain) (19 — 32), 1985.

Elmasri, R.A. ; Wiederhold, G. Gordas: A Formal High-Level Query Language for the
Entity—Relationship Model. Proc. 2nd ERA Conf. (P.P. Chen ed.) (49 — 72), 1981.

REFERENCES 47

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Ursprung, P. ; Zehnder, C.A. HIQUEL: An Interactive Query Language to Define and
Use Hierarchies. Proc. 3rd ERA Conf. (P.P. Chen ed.) (299 — 314), 1983.

Zhang, 7.Q. ; Mendelzon, A.O. A Graphical Query Language for Entity—Relationship
Databases. Proc. 3rd ERA Conf. (P.P. Chen ed.) (441 — 448), 1983.

Veloso, P.A.S. ; Furtado, A.L. Towards Simpler and Yet Complete Formal Specifica-
tions. A. Sernadas (ed.), Proc. IFIP WG 8.1 Conference on ”Theoretical and Formal
Aspects of Information Systems” TFAIS 1985, (175 — 189), 1985.

Lipeck, U.W. Stepwise Specification of Dynamic Database Behaviour. C. Zaniolo (ed.),
Proc. International ACM SIGMOD-RECORD Conference on Management of Data
1986, Washington D.C. (387 — 397), 1986.

Lipeck, U.W. Zur dynamischen Integritit von Datenbanken: Grundlagen der Spezifika-
tion und Uberwachung. Habilitationsschrift, TU Braunschweig 1988, Also: Informatik—
Fachberichte 209, Springer Verlag 1989.

Kung, C.H. A Temporal Framework for Database Specification and Verification. VLDB
1984 (91 — 99), 1984.

Sernadas, A. ; Sernadas, C. ; Ehrich, H.—D. Object—Oriented Specification of Databases:
An Algebraic Approach. P.M. Stocker, W. Kent (eds.), Proc. 10th Int. Conf. on VLDB
1987, Brighton (107 -116), 1987.

Sernadas, A. Temporal Aspects of Logical Procedure Definition. Information Systems
5, 1980 (167 — 187), 1980.

Golshani, F. ; Maibaum, T.S.E. ; Sadler, M.R. A Modal System for Database Speci-
fication and Query Language Support. M. Schkolnik, C. Thanos (eds.), Proc. 9th Int.
Conf. on Very Large Data Bases 1983, Florence (Italy) (331 — 339), 1983.

Khoshla, S. ; Maibaum, T.S.E. ; Sadler, M. Database Specification. T.B. Steel, R.
Meersmann (eds.), Proc. IFIP Conference on Data Semantics DS-1, Albufeira (Portu-
gal) (141 — 158), 1985.

Fiadeiro, J. ; Sernadas, A. Specification and Verification of Database Dynamics. Acta
Informatica 25, (625 — 661), 1988.

Kim, W. ; Lochovsky, F.H. Object-Oriented Concepts, Databases, and Applications.
ACM Press Frontier Series. Addison Wesley Publ. Reading (Mass.) , 1989.

Schmidt, J.W. ; Mall, M. Pascal/R Report. Bericht Nr. 667, Fachbereich Informatik,
Universitat Hamburg, 1980.

Schmidt, J.W. ; Eckhardt, H. ; Mall, M. DBPL-Report. DBPL-Memo 111-88, Fach-
bereich Informatik, Universitdt Hamburg , 1988.

Hull, R. ; Morrison, R. ; Stemple, D. Proc. 2nd Int. Workshop on Database Program-
ming Languages. Morgan Kaufman Publ., San Mateo , 1989.

REFERENCES 48

[43]

[44]

[45]

[46]

[47]

[48]

[53]

[54]

[55]

[56]

Richter, G. ; Durchholz, R. IML-inscribed Petri-Nets. Proc. IFIP Working Conference
on Comparative Review of Information System Design Methodologies (T.W. Olle, A.A.
Verijn-Stuart, eds.) North-Holland, Amsterdam , (335-368), 1982.

Kappel, G. Schrefl, M. Object/Behaviour Diagrams. T7th Int. Conference on Data
Engineering, Kobe (Japan), April (8-12) , 1991.

Martin, J. Fourth Generation Languages. Vol. I. Prentice-Hall, Englewood Cliffs ,
1985.

Engels, G. Elementary Actions on an Extended Entity-Relationship Database. Proc.
Workshop on Graph Grammars and Their Application to Computer Science, Bremen
1990. LNCS 532, Berlin, Springer Verlag 1991, (344-362) .

Eswaran, K.D. ; Chamberlin, D.D. Functional Specification of a Subsystem for Data
Base Integrity. VLDB 1975 (48-68), 1975.

Vianu, V. Dynamic Constraints and Database Evolution. Proc. 2nd ACM SIGACT-
SIGMOD Symp. on Princ. of Database Systems (Atlanta), ACM, New York 1983,
389-399, 1983.

Vianu, V. Dynamic Functional Dependencies and Database Aging. Journal of the ACM
34, 1,(28-59), 1987.

Wieringa, R. ; Meyer, J.—J. ; Weigand, H. Specifying Dynamic and Deontic Integrity
Constraints. Data & Knowledge Engineering, Vol. 4 No. 2 , (157-191), 1989.

Castilho, J.M.V. de ; Casanova, M.A. ; Furtado, A.L. A Temporal Framework for
Database Specification. Proc. Int. Conference on Very Large Databases, (280-291),
1982.

Ehrich, H.-D. ; Lipeck, U.W. ; Gogolla, M. Specification, Semantics and Enforcement
of Dynamic Integrity Constraints. U. Dayal, G. Schlageter, L.H. Seng (eds.), Proc. 10th
Int. Conf. on Very Large Data Bases, Singapore (301 — 308), 1984.

Lipeck, U.W. ; Ehrich, H-D. ; Gogolla, M. Specifying Admissibility of Dynamic
Database Behaviour Using Temporal Logic. A. Sernadas (ed.), Proc. IFIP WG 8.1
Conf. Theoretical and Formal Aspects of Information Systems (145 — 157), 1985.

Lipeck, U.W. ; Saake, G. Monitoring Dynamic Integrity Constraints Based on Temporal
Logic. Information Systems , Vol. 12, No. 3 (255 — 269), 1987.

Schiel, U. ; Furtado, A.L. ; Neuhold, E.J. ; Casanova, M.A. Towards Multi- Level and
Modular Conceptual Schema Specifications. Information Systems , Vol. 9, No. 1 (43 —
57), 1984.

Carmo, J. ; Sernadas, A. A Temporal Logic Framework for a Layered Approach to
Systems Specification and Verification. C. Rolland, F. Bodart, M. Levard (eds.), Proc.
IFIP TC 8 WG 8.1 Working Conference on Temporal Aspects of Information Systems.
Sophia—Antipolis (France) 1987 (31 — 46), 1987.

REFERENCES 49

[57]

[58]

[59]

[60]

Saake, G. Conceptual Modeling of Database Applications. Proc. 1st Workshop, Infor-
mation Systems and Artificial Intelligence: Integration Aspects (D. Karagiannis, ed.)
Ulm 1990. LNCS 474 Springer Verlag, (213-232), , 1991.

Saake, G. Descriptive Specification of Database Object Behaviour. Data & Knowledge
Engineering, North-Holland, Vol.6, No.1, (47-74), 1991.

Smith, J.M. ; Smith, D.C.P. Database Abstractions: Aggregation and Generalization.
ACM Transactions on Database Systems , Vol. 2, No. 2 (105 — 133), 1977.

Brodie, M.L. ; Ridjanovic, D. On the Design and Specification of Database Transactions.
On Conceptual Modelling — Perspectives from Artificial Intelligence, Databases, and
Programming Languages (Brodie, M.L., Mylopoulos, J., Schmidt, J.W. (eds.)) (277 —
306), 1984.

Schrefl, M. ; Tjoa, A M. ; Wagner, R.R. Comparison Criteria for Semantic Data Models.
Proc. International Conference on Data Engineering 1984, Los Angeles (California) (120
~ 125), 1984.

Hohenstein, U. ; Neugebauer, L. ; Saake, G. An Extended Entity—Relationship Model
for Non—Standard Databases. Proc. ”Workshop iiber Relationale Datenbanken” (A.
Heuer, ed.). Lessach (Austria), Technical Report TU Clausthal-Zellerfeld Nr. 86-3,
(185 — 211), 1986.

Hohenstein, U. ; Gogolla, M. A Calculus for an Extended Entity—Relationship Model
Incorporating Arbitrary Data Operations and Aggregate Functions. Proc. 7th ERA
Conf. (P.P. Chen ed.) (129 —-148), 1988.

Hohenstein, U. Ein Kalkul fur ein erweitertes Entity—Relationship-Modell und seine
Ubersetzung in einen relationalen Kalkiil. Dissertation. TU Braunschweig , 1990.

Gogolla, M. ; Hohenstein, U. Towards a Semantic View of an Extended Entity—
Relationship Model. ACM Transactions on Database Systems, (369 — 416), 1991.

Ramm, I. ; Neumann, K. ; Lipeck, U.W. ; Ehrich, H.-D. Eine Benutzerschnittstelle fir
geowissenschaftliche Anwendungen. Technische Universitat Braunschweig, Informatik—
Berichte Nr. 85-08, 1985, 1985.

Neumann, K. ; Lohmann, F. ; Ehrich, H.-D. An Experimental Geoscientific Database
System. To appear in Proc. Int. Coll. on Digital Maps in Geosciences, Wiirzburg 1989.
Geologisches Jahrbuch A122, Hannover , 1991.

Ehrig, H. ; Mahr, B. Fundamentals of Algebraic Specification I — Equations and Initial
Semantics. Springer, Berlin , 1985.

Ehrich, H-D. ; Gogolla, M. ; Lipeck, U.W. Algebraische Spezifikation Abstrakter Da-
tentypen — Eine Einfithrung in die Theorie. Teubner Verlag, Stuttgart , 1989.

Cohen, B. ; Harwood, W.T. ; Jackson, M.I. The Specification of Complex Systems.
Addison-Wesley (Reading) , 1986.

REFERENCES 50

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[83]

[84]

[85]

Loeckx, J. Algorithmic Specifications: A Constructive Method for Specification of Ab-
stract Data Types ACM TOPLAS, Vol. 9 (1987), pp. 664-685, 1987.

Markowitz, V.M. ; Raz, Y. ERROL: An Entity—Relationship, Role Oriented Query
Language. Proc. 3rd ERA Conf. (P.P. Chen ed.) (329 — 345), 1983.

Elmasri, R.A. ; Larsen, J.A. A Graphical Query Facility for ER Databases. Proc. 4th
ERA Conf. (P.P. Chen ed.) (236 — 255), 1985.

Kuntz, M. ; Melchert, R. Ergonomic Schema Design and Browsing with More Semantics
in the Pasta—3 Interface for E-R DBMS. ERA 89 (263 — 278), 1989.

Velez, F. LAMBDA: An Entity—Relationship Based Query Language for the Retrieval
of Structured Documents. Proc. 4th ERA Conf. (P.P. Chen ed.) (72 — 81), 1985.

Roesner, W. DESPATH: An ER Manipulation Language. Proc. 4th ERA Conf. (P.P.
Chen ed.), 1985.

Schiefer, B. ; Rehm, S. Eine Anfragesprache fiir ein strukturell-objektorientiertes
Datenmodell. T. Harder (ed.), Proc. of the GI/SI-Fachtagung ”Datenbanksysteme in
Biiro, Technik und Wissenschaft”. Zirich 1989, Informatik—Fachbericht 204, Springer
Verlag (373 — 388), 1989.

Neumann, K. Eine geowissenschaftliche Datenbanksprache mit benutzerdefinierten ge-
ometrischen Datentypen. Dissertation, TU Braunschweig , 1988.

Pistor, P. ; Andersen, F. Designing a Generalized NF Model with an SQL-Type Lan-
guage Interface. Proc. 12th International Conference on Very Large Data Bases 1986,
Kyoto (Japan) (278 — 285), 1986.

Pistor, P. ; Traunmiiller, R. A Database Language for Sets, Lists and Tables. Informa-
tion Systems 1986, Vol. 11, No. 4 (323 — 336), 1986.

Saake, G. ; Linnemann, V. ; Pistor, P. ; Wegener, L. Sorting, Grouping, and Dupli-
cate Elimination in the Advanced Information Management Prototype. P.M.G. Apers,
G. Wiederhold (eds.), Proc. 15 Int. Conference on Very Large Databases VLDB’89,
Amsterderdam 1989 (307 — 316).

Roth, M.A. ; Korth, H.F. ; Batory, D.S. SQL/NF: A Query Language for Non—-1NF
Relational Databases. Information Systems , Vol. 12, No. 1 (99 — 114), 1987.

Date, C.J. A Critique of the SQL Database Language. Proc. International ACM
SIGMOD-RECORD Conf. on Management of Data , Vol. 14, No. 3 (8 — 54), 1984.

Hohenstein, U. ; Engels, G. Formal Semantics of Entity—Relationship-Based Query
Language. Proc. of the 9th Int. Conf. on the Entity—Relationship Approach, Lausanne
(177-194), 1990.

Jaeschke, G. ; Schek, H.—J. Remarks on the Algebra of Non First Normal Form Rela-
tions. Proc. 1st ACM Symposium on Principles of Database Systems 1982, Los Angeles
(California) (124 — 138), 1982.

REFERENCES o1

[86] Schek, H.—J. ; Scholl, M.H. The Relational Model with Relation—Valued Attributes.
Information Systems 1986, Vol. 11, No. 2 (137 — 147), 1986.

[87] Date, C.J. The SQL Standard. Addison—Wesley, Reading (Massachusetts) , 1987.

[88] Stonebraker, M. Implementation of Integrity Constraints and Views by Query Modifi-
cation. SIGMOD 1975 (65-78), 1975.

[89] Astrahan, M.M. ; et al. System R: A Relational Approach to Database Management.
TODS 1 (97-137), 1976.

[90] Bernstein, P.A. ; Blaustein, B.T. ; Clarke, E.M. Fast Maintenance of Semantic Integrity
Assertions Using Redundant Aggregate Data. VLDB (126-137), 1980.

[91] Cremers, A.B. ; Domann, G. AIM, An Integrity Monitor for the Database System
INGRES. VLDB (167-170), 1983.

[92] Bertino, E. ; Apuzzo, D. Integrity Aspects in Data Base Management Sytems. Proc.
IEEE Trends and Applications Conference, Making Database Work, (43-52), 1984.

[93] Abiteboul, S.; Vianu, V. Transactions and Integrity Constraints. Proc. ACM Principles
of Database Systems , (193 — 204), 1985.

[94] Qian, X. ; Wiederhold, G. Knowledge—based Integrity Constraint Validation. VLDB
(417-425), 1986.

[95] Hammer, M.M. ; McLeod, D.J. Semantic Integrity in a Relational Database System.
VLDB (25-47), 1975.

[96] Nicolas, J-M. Logic for Improving Integrity Checking in Relational Data Bases. Acta
Informatica, 18, (227-253), 1982.

[97] Weber, W. ; Stucky, W. ; Karszt, J. Integrity Checking in Deductive Database Systems.
Information Systems 8 (125-136), 1983.

[98] Nicolas, J.-M. ; Yasdanian, K. Improving Integrity Checking in Deductive Databases.
Logic and Databases, H. Gallaire / J. Minker (eds.), Plenum Press, New York (325-
344), 1978.

[99] Bry, F. ; Manthey, R. Checking Consistency of Database Constraints: A Logical Basis.
VLDB (13-20), 1986.

[100] Decker, H. Integrity Enforcement on Deductive Databases. Proc. 1st Int. Conference
on Expert Systems, L.Kerschberg (ed.) (271-285), 1986.

[101] Kowalski, R. ; Sadri, F. ; Soper, P. Integrity Checking in Deductive Databases. Proc.
19th Int. Conference VLDB, (61-69), 1987.

[102] Lloyd, J.W. ; Sonnenberg, E.A. ; Topor, R.W. Integrity Constraint Checking in Strat-
ified Databases. Journal of Logic Programming 4 (331-344), 1987.

[103] Scheuermann, P. ; Schiffner, G. ; Weber, H. Abstraction Capabilities and Invariant
Properties Modelling in the Entity—Relationship Approach. Proc. 1st Int. Conf. on the
Entity—Relationship Approach (P.P. Chen ed.) (121 - 140), 1979.

REFERENCES 52

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

Lausen, G. ; Németh, F. ; Oberweis, A. ; Schonthaler, F. ; Stucky, W. The INCOME
Approach for Conceptual Modelling and Prototyping of Information Systems. Proc.
First Nordic Conf. on Advanced Systems Engineering (CASE 89), 1989.

Eder, J. ; Kappel, G. ; Tjoa, A M. ; Wagner, R.R. BIER: The Behaviour Integrated En-
tity Relationship Approach. Proc. 5th int. Conf. on the Entity—Relationship Approach
(P.P. Chen ed.) (147 — 166), 1986.

Manna, Z. ; Pnueli, A. The Modal Logics of Programs. 6th Colloquium on Automata,
Languages and Programming, H.A. Maurer (ed.), LNCS 71, Springer Verlag, Berlin
1979, (385-409), 1979.

Manna, Z. ; Pnueli, A. Verification of Concurrent Programs: The Temporal Framework.
The Correctness Problem in Computer Science (R.S.Boyer et al., eds.). Academic Press
London 1981, (215-273), 1981.

Manna, Z. ; Wolper, P. Synthesis of Communicating Processes from Temporal Logic
Specifications. ACM Vol.6, 68-93., 1984.

Fiadeiro, J. ; Sernadas, C. ; Maibaum, T. ; Saake, G. Proof-Theoretic Semantics of
Object-Oriented Specification Constructs. North-Holland, Amsterdam, 1990.

Hilsmann, K. ; Saake, G. Theoretical Foundations of Handling Large Substitution Sets
in Temporal Integrity Monitoring. Acta Informatica 28, (365-407) , 1991.

Hilsmann, K. ; Saake, G. Representation of the Historical Information Necessary
for Temporal Integrity Monitoring. Proc. 2nd Int. Conference Extending Database
Technology, Venice , 1990.

Ehrig, H. ; Kreowski, H.J. ; Weber, H. Algebraic Specification Schemes for Database
Systems. S.B. Yao (ed.), Proc. 4th VLDB, West-Berlin (427 — 440), 1978.

Casanova, M.A. ; Veloso, P.A.S. ; Furtado, A.L. Formal Database Specification — An
Eclectic Perspective. PODS 1984, (110 — 118), 1984.

Stemple, D. ; Sheard, T. Database Theory for Supporting Specification—-Based Database
System Development. Proc. 8th Int. Conference on Software Engineering. 1985 (43 —
49), 1986.

Furtado, A.L. ; Neuhold, E.J. Formal Techniques for Data Base Design. Springer
Verlag, Berlin , 1986.

Qian, X. ; Waldinger, R. A Transaction Logic for Database Specifications. Proc.
SIGMOD . (243 — 250), 1988.

Brown, F.M. (ed.). The Frame Problem in Artificial Intelligence. Proc. of the 1987
Workshop, Los Altos, Morgan Kaufman Publ. , 1987.

Lipeck, U.W. Transformation of Dynamic Intergity Constraints into Transactiv spec-
ifications. Proc. 2nd. Conf. on Database Theory (M. Gyssens et al., eds.) LNCS 326,
Springer Verlag 1988,(322 — 337).

APPENDIX 53

[119]

[120]

[121]

[122]

A

Ehrich, H.-D. ; Drosten, K. ; Gogolla, M. Towards an Algebraic Semantics for Database
Specification. R.A. Meersman, A.C. Sernadas (eds.), Proc. IFIP 2.6 Work. Conference
on Database Semantics 'Knowledge & Data’ (DS-2), Albufeira (Portugal) 1986 (119 —
135), 1986.

Lipeck, U.W. Zur dynamischen Integritat von Datenbanken: Grundlagen der Spezifika-
tion und Uberwachung. Habilitationsschrift, TU Braunschweig 1988, Also: Informatik—
Fachberichte 209, Springer Verlag 1989.

Engels, G. ; Hohenstein, U. ; Hiillsmann, K. ; Lohr-Richter, P. ; Ehrich, H-D. CAD-
DY: Computer—Aided Design of Non—Standard Databases. N. Madhavji, H. Weber,

W. Schéfer (eds.), Int. Conference on System Development Environments & Factories.
Berlin, May 1989.

Gogolla, M.,Meyer, B. ; Westerman, G.D. Drafting Extended Entity—Relationship
Schemas with QUEER. Proc. 10th Int. Conf. on the Entity—Relationship Approach,
San Mateo (CA), 1991.

Data-valued Attributes of Entities and Relationships

NON-STOP-FLIGHT Flight# string key

(nsf)

Charter? bool
Price real+
Occupation nat derived

(No. of extensions of “booked-for” in which the nsf object takes part)

TIME-TABLE DepartureTime time

(tt) ArrivalTime time
DepartureDay date
ArrivalDay date
Route line
CONNECTION Flighttype# string key
(c) NoOfExtensions nat derived

(No. of extensions of ¢ in “belongs-t0”)
Occupationrate real+ derived

(2 Occupation of a connection per year)

(X NoOfSeats per assigned airplane)

A DATA-VALUED ATTRIBUTES OF ENTITIES AND RELATIONSHIPS

AIRPLANE Airplane# string key
(a) AirplaneModel string
CrewSize nat
NoOfSeats nat

YearOfConstruction year
DateOfMaintenance list(date)

Miles real+

Airworthy bool
ATRLINE-COMPANY Name string key
(ac) Trademark graphic

HeadOffice string

AIRPORT Name string key
(ap) Location point key
Hotel set(string) optional

NoOfPassengers nat
NoOfArrivals nat

Kind { domestic, continental, intercontinental }
TOWN Name string key
(t) Location circle

Country string

NoOfInhabitants nat

PERSON Name string key
(p) Address addr

DateOfBirth date key

Tel# string optional
PASSENGER Passport# string
(pa) Nationality list(string)
STAFFMEMBER JobTitle string
(sm) LengthOfService nat

FLIGHT-STAFF-MEMBER RoutineExamination date
(fsm) HealthCertificate bool
AlternativeService string optional

GROUND-STAFF-MEMBER Department string

(gsm) WorkingHours nat
MAINTENANCE-SHED Name string key
(ms) MaxCapacity nat

Cost real+

o4

A DATA-VALUED ATTRIBUTES OF ENTITIES AND RELATIONSHIPS

has-agency
shuttle-service

booked-for

NoOfStaff
Timetable
BookingDay

PriceReduction
Account

nat
table
date

real+
real+

95

B COMPLETE EER-DIAGRAM

B Complete EER-Diagram

GROUND
STAFF
MEMBER

MAINTE-

NANCE
SHED

Location

Staff:
st(1*) O

Airplanes:
set []

Caaporseis >

%

STAFF
MEMBER

K PASSENGER
A =
'

AIRLINE
COMPANY

(1)

Al

RPORT

Destination

TOWN

()

set(Lr) O

FleetOfAircraft:

chartered

FLIGHT
STAFF
MEMBER

offers

CONNECTION

;

PERSON
BookingDay
Account
booked_for
NoOfSeats
AIRPLANE _
|Gz
assigned_to
(0.1)
S PlaneCrew:
~ list (1,%) O
(11) | NONSTOP
FLIGHT
Schedule []

T

TIMETABLE

PriceReduction

56

| >

ArrivalDay

