Information Systems —

Correctness and Reusability.

Workshop IS-CORE 91, ESPRIT BRA WG 3023,

London, September 1991.

Selected Papers.

Gunter Saake, Amilcar Sernadas (eds.)

September 1991

Preface

The IS-CORE project is a research initiative concentrating on fundamental research in
the field of information systems design. The acronym IS-CORE stands for “Information
Systems — COrrectness and REusability”. The project addresses issues in the areas
formal methods in software engineering, computational logics, object-oriented languages,
databases, and knowledge representation.

The goal of [S-CORE is to explore the theoretical and methodological foundations
of information systems design and development. To this end, the working group ad-
dresses topics rarely addressed so far in information systems design, among them full
incorporation of dynamic aspects, static and dynamic integrity, formal design methods
strongly backed by a sound theory, and design in the large issues like modularization and
parametrization. The IS-CORE working group favours an object-oriented approach to
achieve these goals, regarding an information system as a society of interacting objects.

Research in the IS-CORE action is supported by the ESPRIT II BRA program as a
working group and started in September 1989. The following research partners and their
groups cooperate in the IS-CORE project :

e Prof. Dr. Amilcar Sernadas, INESC Lisbon (P) (coordinator)

e Prof. Dr. Hans-Dieter Ehrich, Technical University of Bra.unsch“lreig (D)
e Prof. Dr. Udo Lipeck, University of Hannover (D)

e Prof. Dr. Tom Maibaum, Imperial College London (UK)

e Prof. Dr. Robert Meersman, Tilburg University (NL)

The IS-CORE working group explores the theoretical and methodological foundations
of information systems design, with the intention of achieving provably correct systems
and higher levels of reusability, through the use of adequate formal object-oriented design
techniques. Therefore, the group is working towards logical calculi and algebraic and
categorial semantics for a broad spectrum language as well as methodologies supporting
the object-oriented, transformational, and modular design of information systems. The
IS-CORE WG is also working on the comparison of object-oriented approaches with other
approaches to information systems development.

Currently, the activities of IS-CORE are concentrated along the following lines of
research (each of them carried out in a SubGroup - SG):

SG1 Algebraic and categorial semantics of object-orientation
SG2 Object-oriented languages for information systems design

SG3 Logical calculi for object-oriented specification and verification

11

SG4 Object-oriented analysis and design methods

The SG1 subgroup (semantics) works towards developing suitable model-theoretic
semantic domains for objects. Objects are formalized as observed processes in a categorial
framework. The results of the research work done in SG1 are presented in this volume
by a paper of H.-D. Ehrich and A. Sernadas discussing fundamental object concepts and
constructions, and by a contribution from J.-F. Costa, A. Sernadas and C. Sernadas on
modeling objects as non-sequential machines.

The SG2 subgoup (languages) has concentrated mainly on the identification of the
basic constructs that are needed to support object-oriented specification including the
description of single (atomic) objects, of object classes and types, communication, inher-
itance and aggregation mechanisms. This effort has been pursued both in the context of
a textual and a visual (diagrammatic) language. The visual language and its semantics
are discussed in this volume in a paper by C. Sernadas, P. Gouveia, J.-F. Costa and A.
Sernadas. An introduction to the textual language TROLL is presented in the contribution
by R. Jungclaus, T. Hartmann, G. Saake and C. Sernadas.

The goal of the SG3 subgroup (logics) is to develop adequate mechanisms for describ-
ing and reasoning about objects and their interrelations and aggregations both from a
specification and a verification point of view. Therefore, several logical formalisms have
been explored and used to formalize object-oriented concepts. J. Fiadeiro and T.S.E.
Maibaum in their contribution present a logical framework for reasoning about objects
based on deontic and positional logic operators. S. Brass, M. Ryan and U.W. Lipeck
discuss the use of default logic concepts for object specifications.

The SG4 subgroup (methods) concentrates on methodological aspects of using object-
oriented concepts for designing information systems. E. Verharen in his contribution gives
an overview of existing object-oriented system development frameworks. A main topic of
this subgroup is the comparison and integration of object-oriented design principles with
established information system design approaches. 0. de Troyer presents an approach
using object clustering to introduce modularization into the binary relation model.

The contributions in this volume are selected to give an impression of the broad
spectrum of scientific research done in the IS-CORE working group over the last two
years since 1989. The editors want to thank the authors for their effort in preparing
their contributions in time (even if all preliminary deadlines are outdated by months) and
enabling this comprehensive selection of IS-CORE research contributions to be completed

before the IS-CORE ’91 workshop.

Gunter Saake, Braunschweig
Amilcar Sernadas, Lisbon
September 1991

ITT

Table of Contents

H.-D. Ehrich, A. Sernadas:
Fundamental Object Concepts and Constructions 1

J.-F. Costa, A. Sernadas, C. Sernadas:
Objects as Non-sequential Machines 25

C. Sernadas, P. Gouveia, J.-F. Costa, A. Sernadas:
Graph-theoretic Semantics of Oblog — Diagrammatic Language for
Object-oriented Specification 61

R. Jungclaus, T. Hartmann, G. Saake, C. Sernadas:
Introduction to TROLL — A Language for Object-oriented Specification
of Information Systems 97

J. Fiadeiro, T.S.E. Maibaum:
Towards Object Calculi 129

S. Brass, M. Ryan, U.W. Lipeck:
Hierarchical Defaults in Specifications 179

E.M. Verharen:
Object-oriented System Development; An Overview 202

O. de Troyer:
'Schema Object Types: A New Approach to Modularization in Concep-
tual Modelling : 235

Fundamental Object Concepts and Constructions *

Hans-Dieter Ehrich
Abteilung Datenbanken, Technische Universitit, Postfach 3329
D-3300 Braunschweig, GERMANY

Amilcar Sernadas
Computer Science Group, INESC, Apartado 10105
1017 Lishon Codex, PORTUGAL

Abstract

We provide a systematic framework where the concepts object and class and
the constructs inheritance and interaction are clarified. Our object notion is
based on that of a process, but the framework is independent of a particular
process model. For illustration purposes, however, we outline one which em-
phasizes the importance of process morphisms, yielding a category of processes
where limits reflect parallel composition and colimits reflect internal choice.
Classes are shown to be special objects representing dynamic — and possibly
polymorphic — collections of objects. Inheritance constructs are introduced
as steps for building an inheritance schema: specialization, multiple specializa-
tion, abstraction, and generalization. Interaction constructs are introduced as
steps for building an object community: incorporation, aggregation, interfacing,
and synchronization. By using the same mathematics for both, a remarkable
symmetry between inheritance and interaction constructs comes to light.

1 Introduction

An enormous amount of work is being invested in developing object-oriented tech-
niques for software engineering. Evidently, there is much hope that software produc-
tion and maintenance can be made more effective, more productive, more adequate,
and more reliable this way. Indeed, object—oriented languages and systems as well as

*This work was partly supported by the EC under ESPRIT BRA WG 3023 IS-CORE (Informa-
tion Systems — COrrectness and REusability) and by JNICT under PMCT/C/TIT/178/90 FAC3

contract

design and implementation methods are invading all disciplines of software engineer-
ing. :

People working in programming languages have been the early promoters of ob-
ject—oriented ideas. SMALLTALK [GR83] has been the first breakthrough, although
related ideas can be traced back to SIMULA [DMN67] which appeared more than a
decade earlier. More recent developments are C++ [St86] and EIFFEL [Me88].

The database field followed in due course, mainly concentrating on structural
aspects [Ki90, At89]. Indeed, the idea of an object as a dynamic entity encapsulating
methods does not seem to be so popular in this area, although matters are changing
[BM91]. A comparison of recent developments can be found in [DRW89].

High-level system specification languages and design methodologies are evolving
which are based on object-oriented concepts and techniques. [Ve9l] gives an overview
of recent work in this area. We are cooperating in the ESPRIT BRA Working Group
IS-CORE where a graphical language [SGCS91, SRGS91, SSGRGI1, SGGSRI1] and
a textual counterpart [JSS90, JSS91a, JSS91b, SJ91] for designing, specifying and
implementing object communities are being developed.

With all these practical developments, it is amazing that theoretical foundations
for object-oriented concepts and constructions do not have found so wide attention
yet. Matters are changing slowly: there are formal approaches to object-oriented pro-
gramming language semantics [CP89], database concepts [Be91, GKS91], and spec-
ification languages [GW90]. Besides this, also language— and system-independent
discussions of fundamental object—oriented issues are evolving [Cu91, HC89, LP90,
Re90].

In the IS-CORE working group, we have been working in the latter direction. Re-
cent contributions to semantic fundamentals are [ESS90, ES90, EGS91, CS91, SE90,
SEC90, SFSE89|, emphasizing the process view of objects. In cooperation, logic
fundamentals of object specification have been developed [FM91a, FM91b, FS91,
FSMS90]. A first result harmonizing logics and semantics of object specification can
be found in [FCSMO91].

But no doubt, object theory is lagging far behind practice, and it is still in its
infancy. Theoreticians have to admit that practical development does not always rush
along the paths which they prepare ...

When approaching theoretical foundations of languages, we tend to have a choice
between four corners from which to attack the fortress. The corners are formed by
orthogonal combination of the concept pairs logics—semantics (I-s) and declarative—
imperative (d—i): the theory approach (I-d), the inference approach (I-i), the deno-
tational approach (s-d), and the operational approach (s—i). These approaches form
what we call The Language Quad:

The Language Quad | declarative | imperative
logics theory inference
semantics denotational | operational

The language quad extends Hennessy’s “trinity” [He88] where the two logic corners
are merged.

It is our firm belief that all four corners of the language quad need to be worked
out, with mutually compatible domains, before we can speak of a firm theoretical
basis.

In section 2, we are approaching the quad from the denotational corner: we outline
our menu model for processes. The salient feature of this model is the emphasis on
process morphisms, establishing a category where limits reflect parallel composition
and colimits reflect internal choice.

However, this model is only meant to be an ezample domain by which we illustrate
the basic object concepts and constructions in the rest of the paper. We have taken
pain to keep the latter domain-independent: everything should make sense with any
other logic or semantic domain (if it is reasonable . ..).

In section 3, objects are defined as an environment-dependent concept, based on
that of an object community which includes an inheritance schema. In section 4,
classes are shown to be special objects representing dynamic — and possibly poly-
morphic — collections of objects. In section 5, inheritance constructs are introduced
as steps for building an inheritance schema: specialization, multiple specialization,
abstraction, and generalization. In section 6, interaction constructs are introduced as
steps for building an object community: incorporation, aggregation, interfacing, and
synchronization. By using the same mathematics for both, a remarkable symmetry
between inheritance and interaction constructs comes to light.

2 A Semantic Domain

The essential feature to be captured in a semantic domain for objects is dynamic
behavior. Thus, relevant semantic domains can be found in process theory, adopting
the view that objects are processes [SEC90].

This does not mean, however, that object theory is just process theory: in cur-
rent process theory, there are hardly any concepts available for central object issues:
maintaining identity through change, classes and types, inheritance, etc. Concepts
like interaction, encapsulation and reification are addressed in process theory, but the
approaches we are aware of seem to be too restricted to cover the variety of practical
situations occuring in object—oriented systems.

One thing which is missing in current process theory is a thorough investigation of
relationships between processes, as general and deep as that of processes themselves.

It is our firm belief that an appropriate notion of process morphism as some kind
of “behavior preserving” map between processes contributes much to understanding
dynamic systems. This leads to a categorial view of processes and process morphisms
as a semantic domain for studying dynamic behavior.

The benefits of this approach are worthwhile. In previous papers [ESS90, ES90,
SE90, SEC90, SFSE89, SSE87], we have been experimenting with various process cat-
egories. We found several instances where parallel composition - also in the presence
of interaction - is appropriately modeled by limits. Limits are powerful categorial
constructions, and their relevance for describing behavior is known for a long time
[GoT3, GoT5] (the latter work was resumed in [Go90]).

But this is not all. More recently, in [CS91], process categories are proposed where
limits reflect parallel composition and colimits reflect internal choice! This establishes
a nice formal duality between these fundamental process constructions. The special
case of products and coproducts occurs in [Wi88].

Also, reification concepts and constructions can be given a satisfactory treatment
in this framework. In this paper, however, we cannot go into this issue.

In former papers [EGS91, ESS90, ES90, SE90, SEC90, SFSE89], we took some
care to model the process and data parts of objects separately. In [EGS91], we
emphasized the structural uniformity of these parts, both being instances of a general
concept called behavior there. Here we go one step further and generalize actions and
observations uniformly into events, reflecting the idea (already present in [FM91a))
that

e an event is anything which can occur in one instant of time.

For instance, for a queue object with integer entries, some of the events are the
following:

e the actions create, enter(7), leave, ...
as well as
e the observations front=7, rear=2, size=3, ...

Moreover, since, say, enter(4) and front="7 can occur at the same time (and an
event is anything which can happen in one instant of time), there should be events

like
e enter(4)|/front=7 , enter(4)|leave , size=3||rear=2||leave, ...
which are composed of simpler events occurring simultaneously.
Obviously, the operation || should be associative, commutative and idempotent,

and it should satisfy the cancellation law. Adding, for formal completeness, a neutral
element 1 standing for nothing happens (or, rather, nothing visible happens, i. e. it

might represent a hidden event), we arrive at the basic event structure we have found
useful to work with: an event monoid E = (E,||,1) having the properties mentioned
above.

As is usual in algebra, event monoids E; = (Ej,||+, 1:), 2 = 1,2, can be related by
event monoid morphisms h : By — E, which are structure preserving maps h : E; —
E, satisfying the properties h(1,) = 1, and h(e1||1€2) = h(e1)|| 2 h(e2). Henceforth,
we will omit the indexes from || and 1 as long as there is no danger of confusion.

In the rest of this section, we outline a reference model for processes and process
morphisms having the properties mentioned above: parallel composition is reflected
by limits, and internal choice is reflected by colimits. The model has been developed
from the acceptance tree model [He88], a fully abstract process model with respect
to testing equivalence.

Let E = (E,||,1) be an event monoid. A subset M C E is called a menu: it might
appear on a screen as a selection of events (actions and observations) which may
occur next (no matter who has the initiative to let them occur ...). For a collection
a of menues, |J a denotes the union of these menues,i.e. | Ja = {e|IMea: eecM}.

Definition 2.1 : A process over an alphabet £ is a map p : E* — 92" satisfying
the following conditions for each 7e E™:

L. Up(r) e pu(r)
2.VX,YCE : XCYCUp(r) A Xep(r) = Yep(r)

These conditions correspond to the saturation condition in [He88], making p(7)
an S-set (where S = Up(7)) for each 7 ¢ E*. The intuition might help that each
M e u(7) corresponds to a state of knowledge about what might possibly occur next
after the history 7 of the system. We note in passing that we do not require a finite
branching property as is standard in process theory.

It seems to be practical to impose the reachability condition

Vee EVTeE*: e ¢\ Ju(r) = Ju(re) =10

It is, however, not necessary to make the theory work. All constructions to be dis-
cussed in this paper will maintain reachability, so the reader may as well assume that
this condition holds.

Example 2.2 : Let E be the free commutative and idempotent monoid generated
by {a, b}, i. e. E contains 1,a,b and | b. A process y; over E is given by

e = {{a}}
a — {{b},{b,a|[b}}

T 0 for any other 7 in E*

In its start state (history €), the process has no choice but to perform a. After a,
there is a nondeterministic choice between menues {b} and {b,a || b}. In any case,
the process stops after the next move.

As mentioned above, one of the salient features of our approach is to emphasize
the importance of process morphisms.

Definition 2.3 : Let p; : Ef — 92% § = 1,2, be processes over alphabets E;
and E,, respectively. Let h : By — B, be 3 mon01d morphism. h is called a process
morphism iff the following condition holds:

h(p1(7)) C pa(h(7)) for each TekEy .

In this notation, k is extended to traces as well as sets and families of sets by
elementwise application. For example, h(ef) = h(e)h(f) and h({{a},{a,b}}) =
{{k(a)}, {k(a), h(b)}}. We note in passing that, if £y = E , there is a morphism
By — po iff gy << gy holds, where << is the testing preorder in [He88].

Example 2.4 : Let F; and E; be generated by {a,b} and {c}, respectively (cf.
example 2.2). Let p; be the process of example 2.2. Let 2 be the process given by

e = {1} {Le}}

L {{c}h{l,e}}

c— {{1}}

T 0 for any other 7 in Ej

Then there is a process morphism given by h(a) = 1 and A(b) = c. It hides the event
a by sending it to 1. O

For a more practical example of process morphism, cf. example 5.2 below. It is
not hard to prove that processes and process morphisms as defined above form a
category. We call this category

e NDM, the Non-Deterministic Menu model.

There is an obvious forgetful functor from NDM to the category EVT of event monoids
and morphisms, U: NDM — EVT. That is, (NDM, U) is a concrete category over
EVT in the sense of [AHS90].

We cannot develop the mathematics of NDM in this paper. We claim, however,

that
e NDM is complete, and limits reflect parallel composition,

e NDM is cocomplete, and colimits reflect internal choice.

Here we illustrate how basic instances of limits and colimits look like and how they
reflect the corresponding process constructions.
Given processes p; and pa, a product process of y; and po is given by

H1 ” Ha - (El || E‘Z)* T 22(E1"E2)

over the alphabet E = E; || E, which is a product alphabet of E; and E; in EVT
(and which happens to be a coproduct alphabet of E; and E; in EVT at the same
time!). The elements of E are all combinations e; || e; where e, € Ey and e; € E so that
each event e ¢ £ decomposes uniquely into e = e; || e2. Taken elementwise, 7 = (e ||
fi)(ez]| f2) ... € E* decomposes uniquely into 71 = ejey...€ Ef and m = fifa... e E].
p1 || 2 sends each such 7 to the family cl{A || B | A €pi(71), B € p2(m2)} where ¢l
denotes closure to satisfy the conditions in definition 2.1. The product morphisms
(projections) are obvious, we leave the details to the reader.
Example 2.5 : Let

m(e) = {{a}, {0}, {a,0}} p(r) = {0} forr#e;
pa(e) = {{z}, {z,9}} pa(r) = {0} forr#e.

Then we have

| p2(e) = {{allz} , {allz,ally}, {bllz}, {bllz,blly}, {a]lz, 0]},
{allz,ally,b]z,b]ly},
{allz,b]ly}, {ally,bllz},
{allz,ally,blz}, {allz,ally,blly},
{allz,bllz,blly}, {ally,bllz,b]ly}}
(the last three lines appear by closure)

pillpa(r) = {0} for7 #e.

This reflects (disjoint) parallel composition: since p1(g) and p2(e) may internally
choose, say, {a} and {z,y}, respectively, p1 || #2(¢) may internally choose {a || z,a| y},
and similarly for the other combinations. O

Parallel composition with synchronization on shared events is appropriately mod-
elled by pullbacks — which can be constructed from products and equalizers. Without
going into detail, we give a simple example.

Example 2.6 : For the processes in example 2.5, we want to synchronize on
b= z,i.e. band z are shared. The synchronization information is formally expressed
by a process p3 with one non-null event, say z, such that ps(e) = {{z}, {1},{z,1}}
and pz(t) = {0} for 7 # ¢, and two process morphisms h; : p; — ps, ¢ = 1,2, given
by

hi:b—z,a—1

hy:ax—z,ym—1

Now, the pullback process of h; and hs is obtained from the product process in ex-
ample 2.5 by picking those menues which contain || z, the events to be synchronized,
and neither b nor z appearing with another partner:

pllb=zpi2(€) = {{bllz}, {ally,bll=}}

The menu is {@} for other arguments than e. O
This may be enough here to demonstrate how limits work and what they tell us
about synchronization. We go on giving a brief sketch of what colimits are and how
they express internal choice.
Given processes pj and ps, a coproduct process of pqy and ps is given by

= (E1llE2)
ot pa s (B B — 22707

defined over the same alphabet £ = E; I E, as the product given above (because

product and coproduct alphabets in EVT happen to coincide). The menues, however,

are different: if 7€ E* decomposes into 7 € ET and 73 ¢ £}, then we have

p+ p2(e) = cl(p(e) U pa(e)) ifm=m=e

p1 + pa(m1) = pa(m) ifr#£e,m=c¢
g+ p2(12) = pa(r2) ifry =g, 130 &
1+ pa(m || 2) = {0} it ke ke .

The coproduct injections are straightforward, we leave the details to the reader.

Example 2.7 : Referring to py and py in example 2.5, we have

1 +Ju2(€) = {{a},{b},{a,b},{x},{m,y})
{a,b,a:},{a,b,y},{a,m,y},{b,x,y} ’
{a,b,a:,y}}

pa+ p2(r) = {0} for 7#e¢.

This reflects (disjoint) internal choice: since pq(€) and p2(e) may internally choose,
say, {a} and {z,y} respectively, u; + p2(€) may internally choose any of these. ()

In analogy to parallel composition, we may also consider internal choice with
merging. The result is appropriately modelled by a pushout process which can be
constructed from a coproduct and a coequalizer, utilizing appropriate “event merging”
information.

We omit further details here, leaving a comprehensive treatment of the theory to
a forthcoming paper.

While the category NDM of processes and process morphisms is powerful enough
to cope with modeling inheritance and interaction (as will be demonstrated), it is

not quite powerful enough to cope with reification, i. e. the construction of an imple-
mentation of a given high-level object over a given platform of low-level objects (cf.
section 5).

The first problem is that high-level events are reified by low-level transactions, ;
transcending the event—to-event-like morphism we have studied so far. A promising
way out is to equip event alphabets with two more operations, namely

e for sequential composition

<_-> for making a composite event an atomic transaction .

The second, more serious problem is that the event-to-transaction reification map
sometimes is state-dependent in practice (cf. [CSS91]). For example, if the high-level
operation increment (X) is to be reified by an assignment X:=a where a is a constant,
then increment (X) has to be mapped to X:=1if X=0, to X:=2if X=1, etc. What is
needed is a notion of reification morphism based on a trace map h : Ef — E3 rather
than on event maps. h should be prefix—preserving, i. e. for any traces 7,p € Ef,
h(p) = h(r)o should hold for some o e E;. A reasonable morphism condition is the
following: if M € py(r) is 2 menu after 7, then {e’ | h(7) €’ = h(7e) for some ee M}
should be a menu in p2(h(7)). However, we cannot go into reification issues here, the
subject is rather complex and requires more research.

3 Objects

What is an object ? Its behavior is a process, but an object is more than its behavior:
there may be many objects with the same behavior, but they are different as objects.
That is, an object has an identity while a process has not. Only if we can distinguish
clearly between individual objects is it possible to treat object concepts like inher-
itance and interaction in a clean and satisfactory way: interaction is a relationship
between different objects, while inheritance relates aspects of the same object.

The rest of the paper is largely independent of the particular semantic domain
of processes chosen. NDM as outlined in the previous section can be replaced by
any other process category with the required properties, namely modeling parallel
composition as limits and internal choice as colimits. In fact, other appropriate
process categories are currently being investigated, denotational and operational ones
[CS91, CSS91], and also logic-based ones [FM91a, FSMS90]. We feel that any process
model should be adaptable to our framework.

In order to emphasize the independence from a particular semantic domain, we
assume

e TMP , a category of behavior templates

10

to be given. A behavior template — or template for short — is just a process, but we
prefer to call it a template in order to emphasize its role as a generic behavior pattern
without individual identity.

Thus, TMP serves as a sort of formal parameter for the rest of this paper. NDM
is one possible actual parameter for TMP.

Object identities are atomic items whose principle purpose is to characterize ob-
jects uniquely. Thus, the most important properties of identities are the following:
we should know which of them are equal and which are not, and we should have
enough of them around to give all objects of interest a separate identity. That is, for
the purpose of this paper, we assume

e ID, a set of identities,

which is big enough for all intents and purposes. Sometimes it is useful to impose
some structure on identities, for instance an algebraic one. That is, we may consider
ID as an abstract data type. We do not go into further detail here.

Identities are associated with templates to represent individual objects — or,
rather, aspects of objects, as we will see.

Given templates TMP and identities ID, we may combine them to pairs bet (to be
read “b as t”), expressing that object b has behavior pattern ¢. But there are objects
with several behavior patterns! For instance, a given person may be looked at as
an employee, a patient, a car driver, a person as such, or a combination of all these
aspects. Indeed, this is at the heart of inheritance: bet denotes just one aspect of an
object — there may be others with the same identity!

Definition 3.1 : An object aspect — or aspect for short — is a pair bet where beID
and te| TMP)| .

By | TMP | we mean the elements of TMP (usually called “objects” in category
theory, but we have to rename them. . .).

Definition 3.2 : Let bet and ceu be two aspects, and let h : ¢ — u be a template
morphism. Then we call h : bet — ceu an aspect morphism.

Aspect morphisms are nothing else but template morphisms with identities at-
tached. The identities, however, are not just decoration: they give us the possibility
to make a fundamental distinction between the following two kinds of aspect mor-
phisms.

Definition 3.3 : An aspect morphism h : bet — ceu is called an inheritance
morphisms iff b = c¢. Otherwise, it is called an interaction morphism.

The following example illustrates the notions introduced so far.

Example 3.4 : Let el_dvice be a behavior template for electronic devices, and
let computer be a template for computers. Assuming that each computer IS An
electronic device, there is a template morphism % : computer — el_dvice (roughly
speaking, the el_dvice part in computer is left fixed, while the rest of computer is
projected to 1).

11

If SUN denotes a particular computer, it has the aspects

SUNe computer (SUN as a computer) and
SUNeel dvice (SUN as an electronic device),

related by the inheritance morphism h : SUNe computer — SUNeel dvice.

Let powsply and cpu be templates for power supplies and central processing
units, respectively. Assuming that each electronic device HAS A power supply and
each computer HAS A cpu, we have template morphisms f : el_dvice — powsply and
¢:computer — cpu, respectively. If PXX denotes a specific power supply and CYY
denotes a specific cpu, we might have interaction morphisms f’':SUNeel dvice —
PXXepowsply and, say, g’ : SUNecomputer — CYYecpu. f’ expresses that the SUN com-
puter — as an electronic device — HAS THE PXX power supply, and g’ expresses that
the SUN computer HAS THE cpu CYY.

These examples show special forms of interaction, namely between objects (as-
pects) and their parts. More general forms of interaction are established via shared
parts. For example, if the interaction between SUN’s power supply and cpu is some
specific cable CBZ, we can view the cable as an object CBZecable which is part of
both PXXepowsply and CYYecpu. This is expressed by a sharing diagram

CYYecpu — CBZecable «— PXXe powsply

An alternative way of modeling this would consider the cable as a separate object
not contained in the cpu and not in the power supply either. Rather, the cable would
share contacts with both. O

Given a category TMP of templates and a set (data type) ID of identifiers, we can
define the following categories:

e ASP : the category of all aspects and aspect morphisms ,
e INH : the category of all aspects and inheritance morphisms ,
e ITX : the category of all aspects and interaction morphisms .

Clearly, INH and ITX are wide subcategories of ASP, i. e. they contain all elements.

As we have seen, objects may appear in different aspects, all with the same iden-
tity but with different behavior templates, related by inheritance morphisms. The
information which aspects are related by inheritance morphisms is usually given by
template morphisms prescribing inheritance. For example, we specify h : computer —
el_dvice in order to express that each computer IS An electronic device, imposing
that whenever we have an instance computer, say SUNecomputer, then it necessarily
IS THE electronic device SUNeel_dvice inherited by h as an aspect morphisms, b :
SUNecomputer — SUNeel _dvice .

Definition 3.5 : Template morphisms intended to prescribe inheritance are
called inheritance schema morphisms. An inheritance schema is a diagram A in
TPL, i. e. a collection of templates related by inheritance schema morphisms.

Example 3.6 : In the following inheritance schema, arrowheads are omitted:
the morphisms go upward.

thing
el dvice calculator
computer
/I\
personal_c workstation mainframe

O

Practically speaking, we create an object by providing an identity b and a template
t. Then this object bet has all aspects obtained by relating the same identity b to all
“derived” aspects t' for which there is an inheritance schema morphisms ¢ — t'in A.

Thus, an object is an aspect together with all its derived aspects. All aspects of
one object have the same identity — and no other aspect should have this identity!

But the latter statement is not meaningful unless we say which aspects are there,
i. e. we can only talk about objects within a given collection of aspects. Of course, the
collection will also contain aspect morphisms expressing how its members interact,
we will be back to this. And if an aspect is given, all its derived aspects with respect
to a given inheritance schema should also be in the collection.

Definition 3.7 : An aspect community is a diagram I' in ITX, i. e. a collection
of aspects and interaction morphisms. I' is said to be closed with respect to a given
inheritance schema A iff, whenever an aspect aet is in I' and ¢ — ¢’ is in A, then we
also have aet' in T'.

Definition 3.8 : An object community — or community for short — is a pair
® = (A,T') where A is an inheritance schema and I' is an aspect community which
is closed with respect to A.

Definition 3.9 : Let an object community ® = (A,T') be given, and let a e ID
be an object identity. The object diagram ég(a) of a in @ is the diagram in INH
containing all aspects in I’ with the identity a and all inheritance morphisms lifted
from A.

By lifting we mean that whenever aet and aet’ are in 6g(a) and ¢ — ¢'is in A,
then aet — aet’ is in dg(a)).

13

Example 3.10 : Consider an object community containing the inheritance
schema in example 3.6, a particular workstation named SUN, and a particular cal-
culator named UPN. By inheritance, SUN automatically is a computer, an electronic
device, a calculator, and a thing. Since UPN is a calculator, it is also a thing, etc. So
we have the following object diagrams:

SUNething UPNething
/\
SUNeel dvice SUNecalculator UPNecalculator
SUNecomputer
SUNeworkstation

O

In a given community, an object is usually constructed by picking a specific iden-
tity @ and associating it with a specific template ¢, yielding an “owner” aspect aet
for this object. Then the object diagram of a is determined by all aspects aet’ where
' is related to t by an inheritance schema morphism ¢ — ¢’ in A. Consequently,
object diagrams have a unique initial aspect from which there is a unique inheritance
morphism to any other aspect: the owner aspect with which it was created.

Definition 3.11 : Let ® = (A,T') be a community. ® is called regular iff each
object diagram ég(a) in ® has an initial aspect.

While the notion of object should probably be taken as that of an object diagram
in general, we can make things easier and closer to popular use in a regular community:
here it is safe to identify objects with their initial aspects.

Definition 3.12 : Let ® = (A,T') be a regular community. An object bin @ is
the initial aspect of the object diagram §g(a) where a is the identity of b.

Since, according to this definition, objects are special aspects, we immediately have
a notion of object morphism: it is an aspect morphism between objects. It does not
make sense, however, to look at the category of all objects and object morphisms in a
given community: it is of little interest and it does not have nice closure properties in
general. The relevant constructions refer to the environment-independent categories
ASP, INH and ITX.

As outlined in the previous section, we require an instance category for TMP to

be complete and cocomplete. We note in passing that these properties easily carry
over to ASP, INH and ITX.

14

One immediate consequence is that we can look at an object community ® as one
object, the community object: take the limit of ' in ITX!

4 Classes

Objects rarely occur in isolation, they usually appear as members of classes — unless
they are classes themselves. Indeed, we will see that a class is again an object, with
a time—varying set of objects as members.

Or should we say aspects rather than objects? With the distinction between
objects and aspects made in the previous section, we have to be careful with what
can be a member of a given class, and whether a class is an aspect or an object. Let
us first look at the member problem.

Example 4.1 : Referring to the inheritance schema in example 3.6, let CEQ -
the computer equipment — be a class of computers of some company Z. Let MAC be
a specific personal computer in Z, and let SUN be a specific workstation in Z. The
question is: are the objects MACepersonal c and SUNeworkstation members of CEQ,
or rather their aspects MACecomputer andSUNecomputer? O

It is easier to work with homogeneous classes where all members have the same
template, so we formally adopt the second alternative: each class has a fixed member
template. This member template is called its type. But, since each aspect of an object
determines the object uniquely, there is no objection to considering, for example, the
MACepersonal_c a member of the class CEQ.

Therefore, while classes are formally homogeneous, they have a heterogeneous — or
polymorphic — flavor when working with inheritance: each object with an appropriate
aspect whose template is the type of the class can be a member of that class!

Classes can be specialized by inheritance. For example, if we define a club as a
class of persons, we might subsequently define special classes like a football club, a
motor club, and a chess club.

T heref01 e, we consider classes as aspects. The class events are actions like inserting
and deleting members, and observations are attribute-value pairs with attributes like
the current number of members and the current set of (identities of) members. In
most object-oriented systems, standard class events are provided implicitly, they need
not be specified by the user.

Definition 4.2 : Let te| TMP| be a template. An object class — or class for short
— of type t is an aspect C' = agetc where ac is the class name and t¢ = (E¢, Fg) is
the class template. The class events E¢ contain

e actions insert(ID), delete(ID)

e observations population=set(ID), #population=nat .

15

The class process Pg describes the proper dynamic behavior in terms of the class
events. O

In practice, we would probably have the information in the environment which
member identities can go with which class, i. e. some typing of identities. In this
case, the argument ID in the above definition should be replaced by ID(C), the set of
member identities which can be used in class C, and the notion of class type should
comprise ID(C') along with the member template ¢.

In the menu model, we would write uc instead of P¢ for the class menu map.

Definition 4.3 : Let C = agetc be a class of type t. An aspect aet is called
a member of C iff a is an element of the population of C'. An object beu is called a
member of C iff it has an aspect bet which is a member of C.

This definition justifies our calling a class an object class, not an aspect class: the
members may be considered to be the objects having the relevant aspects, emphasizing
the polymorphic viewpoint.

Since classes are objects or aspects of objects, there is no difficulty in constructing
meta—classes, 1. e. classes of classes of ...

Definition 4.4 : A class C is called a meta—class iff its type is a class template.

Since class templates tend to be homogeneous even if their types are not, a meta-
class may have classes of different types as members. For example, we could define
the class of all clubs in a given city without generalizing the club member templates
so as to provide an abstract and uniform one for all clubs.

Sometimes, we might want to restrict the members of a meta—class to contain
sub-populations of a given class. For example, we may devise classes CEQ(D) for
the computer equipment of each department D of company Z, given the class CEQ of
computers in the company (cf. example 4.1).

Definition 4.5 : Let C; and C; be classes. Cj is called a meta—class of C; iff
(1) the type of C is the template of Cs, and (2) each member of C; is a class whose
population is a subset of that of C5.

Since classes are aspects, we immediately have a notion of class morphism: it is
just an aspect morphism between classes. Thus, it is obvious to define the category
of classes as a full subcategory of ASP. As in the case of objects, however, there is
no need to introduce this category — or categories of classes in specific communities.
Everything can be handled in the categories we have already: ASP, INH and ITX.

5 Inheritance

When we build an object-oriented system, we must provide an inheritance schema
(cf. definition 3.5). Without it, the very notion of object does not make sense. In this
section, we investigate how to construct such an inheritance schema: which are the
inheritance morphisms of interest, and how are they used to grow the schema step by

16

step?

The inheritance morphisms of interest seem to be special indeed: in all cases we
found meaningful so far, the underlying event maps were surjective. Since they are
total anyway, this means that all events of both partners are involved in an inheritance
relationship. And this makes sense: if we take a template and add features, we have
to define how the inherited features are affected; and if we take a template and hide
features, we have to take into account how the hidden features affect those inherited.

For any reasonable process model, the template morphisms with surjective event
maps will be the epimorphisms in TMP. We found a special case of epimorphism
useful which reflects an especially well-behaved inheritance relationship where the
smaller aspect is “protected” in a certain sense: retractions. A retraction is a mor-
phism 7 : ¢ — u for which there is a reverse morphism ¢ : u — t such that ¢;r = id,.
In any category, retractions are epimorphisms.

In our menu model of processes, retractions are those epimorphisms where we
have equality in the morphism condition in definition 2.3. Intuitively speaking, the
smaller aspect is not affected by events outside its scope, it is encapsulated. As a
consequence, retractions maintain the degree of nondeterminism: if the bigger aspect
is deterministic, so is the smaller one.

Example 5.1 : Referring to example 3.6, consider the inheritance schema mor-
phism A : computer — el_dvice expressing that each computer is an electronic
device. Let el_dvice have the following events:

e actions switch.on, switch off
e observations is_on, is_off

By inheritance, computer has corresponding events switch_ on_c, switch off_c, etc.
h sends switch_on_c to switch_on expressing that the switch_on_c of the computer
is the switch_on inherited from el_dvice, and similarly for the other events. But
what about the other events of computer, i. e. the ones not inherited? For example,
there might be

e actions press.key, clickmouse, ...
e observations screen=dark, ...

Well, all these events are mapped to 1 indicating that they are hidden when viewing
a computer as an electronic device.

Concerning the processes of the templates, we would expect that a computer’s
behavior “contains” that of an el_dvice: also a computer is bound to the protocol
of switching on before being able to switch off, etc. In the menu model of processes,
this is expressed by the morphism condition in definition 2.3.

17

Naturally, the template morphism & : computer — el_dvice is a retraction:
there is also an embedding g : el_dvice — computer such that g; f is the identity
on el_dvice. Intuitively, this means that the el _dvice aspect of a computer is
protected in the sense that it cannot be influenced by computer events which are not
also el_dvice events: a computer can only be switched off by its el_dvice switch.

This would not be so if we had a strange computer which, say, can be switched
off by other means, not using the el_dvice switch (perhaps by a software option...).
In this case, we would have side effects of the computer on its el_dvice aspect: the
latter would change its state from is_on to is_off, but would not be able to observe
the reason for it locally: its switch_off was not used. In this case, the morphism h
would still be an epimorphism, but not a retraction. Please note how nondeterminism
is introduced for the local el_dvice aspect. O

Let an inheritance schema A be given. If we have a surjective inheritance mor-
phism h : ¢ — u not (yet) in A, we can use it in two ways to enlarge A:

e if ¢ is already in A, we create v and connect it to the schema via h:t — u ,
o if u is already in A, we create t and connect it to the schema via h : 1 — u .

The first construction step corresponds to specialization, the second one to abstraction.

The most popular object—oriented construction is specialization, constructing the
inheritance schema in a top-down fashion, adding more and more details. For exam-
ple, the inheritance schema in example 3.6 was constructed this way, moving from
thing to el.dvice and calculator, etc. By “inheritance”, many people mean just
specialization.

The reverse construction, however, makes sense, too: abstraction means to grow
the inheritance schema upward, hiding details (but not forgetting them: beware of
side effects!). Taking our example inheritance schema, if we find out later on that
computers — among others — belong to the sensitive items in a company which require
special safety measures, we might consider introducing a template sensitive as an
abstraction of computer.

Both specialization and abstraction may occur in multiple versions: we have several

templates, say uy,...,u,, already in the schema and construct a new one, say ¢, by
relating it to wuy,...,u, simultaneously. In the case of specialization, i. e. h; : t — u;
for : = 1,...,n, it is common to speak of “multiple inheritance”. In the case of
abstraction, 1. e. h; : u; — t for 2 = 1,...,n, we may speak of generalization.

Example 5.2 : Referring to example 3.6 and assuming top-down construction,
the template for computer is constructed by multiple specialization (multiple inheri-
tance) from el _dvice and calculator. O

Example 5.3 : If we would have constructed the schema in definition 3.6 in a
bottom-up way, we would have obtained thing as a generalization of el_dvice and
calculator.

18

A less contrived example of generalization, however, is the following: if we have
templates person and company in our schema, we might encounter the need to gen-
eralize both to contract_partner. O

We note in passing that, with respect to objects, we have two kinds of gener-
alization. For a computer ¢, its cething aspect is a proper generalization of its
ceel dvice and cecalculator aspects. We would not expect to have an object,
however, which is both a person and a company. Thus, the proper generalization
contract_partner of person and company would only appear as single object ab-
stractions peperson — pecontract_partner or cecompany — pecontract_partner,
but not as a proper object generalization.

6 Interaction

When we build an object-oriented system, we must provide an object community (cf.
definition 3.8). Without it, the very notion of object does not make sense. In this
section, we investigate how to construct such an object community: which are the
interaction morphisms of interest, and how are they used to grow the community step
by step?

As with inheritance morphisms, we found that interaction morphisms are epimor-
phisms in all meaningful cases. And this makes sense, too. An interaction morphism
h : aet — beu tells that the aspect aet has the part beu, and how this part is affected
by its embedding into the whole: this has to be specified for all items in the part!
Please note that the part can also play the role of a communication port and that
shared ports play the role of a communication channel (cf. example 3.4).

As with inheritance morphisms, we found that retractions model an especially
meaningful case of part-of relationship, namely encapsulated parts which are not
affected by events outside their scope.

Example 6.1 : Referring to example 3.4, the interaction morphisms

CYYecpu —— CBZecable +— PXXe powsply

express that the cable CBZ is a shared part of the cpu CYY and the power supply PXX.

Suppose the events relevant for cables are voltage level observation and switch—
on/switch-off actions. The sharing expresses that, if the power supply is switched on,
the cable and the cpu are switched on at the same time, etc. If the cable’s voltage level
depends only on the shared switch actions, the cable is an encapsulated part of both
cpu and power supply, and the interaction morphisms are retractions. If, however,
events from outside can influence the voltage level (say, by magnetic induction), then
the sharing morphisms are just epimorphisms, no retractions. O

Let an object community ® = (A,T') be given. If we have a surjective interaction
morphism A : aet — beu not (yet) in the aspect community I', we can use it in two

ways to enlarge I':

o if aet is already in I', we create beu and connect it to the community via
h:aet — beu,

o if bew is already in I', we create aet and connect it to the community via
h :aet — beu.

After connecting the new morphism to I', we have to close it with respect to A (cf.
definition 3.7), i. e. add all aspects derived from the new one by inheritance.

By incorporation we mean the construction step of taking a part and enlarging it
by adding new items. Most often the multiple version of this is used, taking several
parts and aggregating them. We will be back to this.

The reverse construction is also quite often used in the single version, we call
it interfacing. Interfacing is like abstraction, but it creates an object with a new
identity.

Example 6.2 Consider the construction of a database view on top of a database:
this is interfacing. Please note that it is quite common to have non-encapsulated
interaction: a non-updateable view would display many changes which cannot be
explained from local actions! That is, the interaction morphism from the database to
its view is not a retraction. O

Both incorporation and interfacing may occur in multiple versions: we have several
objects, say byou,, ..., b,eu,, already in the community and construct a new one, say
aet, by relating it to byeuy,. .., b,eu, simultaneously. In the case of incorporation, 1.
e. h; : aet — b;eu; for i = 1,...,n, we have aggregation as mentioned above. In the
case of interfacing, i. e. h; : bjeu; — aet for i = 1,...,n, we have synchronization by
sharing.

The latter was illustrated above in example 6.1 (cf. also example 3.4). An example
for aggregation is the following.

Example 6.3 : Referring again to example 3.4, suppose that PXXepowsply and
CYYecpu have been constructed and we want to assemble them (and other parts
which we ignore here) to form our SUNecomputer. Then we have to aggregate the
parts and provide the epimorphisms (retractions in this case?) f:SUNecomputer —
PXXepowsply and g:SUNecomputer — CYYecpu showing the relationships to the
parts. Please note that f sends the cpu items within the SUN to 1, while it sends the
power supply items to themselves (modulo renaming). The same holds for g, with
cpu taking the place of power supply.)

It is remarkable how much symmetry the inheritance and interaction construc-
tions display. Their mathematical core is the same, namely epimorphisms between
aspects. Taking the constructions in either direction and considering single and mul-
tiple versions, we arrive at the following table:

20

Object Constructs inheritance interaction
small-to-big/single specialization incorporation
small-to-big/multiple | mult. specialization | aggregation
big-to-small/single abstraction interfacing
big-to-small/multiple | generalization synchronization

For each of these cases, we also have the encapsulated variant where the epimor-
phism is a retraction.

7 Concluding Remarks

The amazing thing about objects is that they are so intuitive, and yet so hard to
formalize.

One reason certainly is that not all people working with objects share the same
intuition, but maybe this is not the only — and not even the most important reason.
Formalizing a concept usually means to look at its essential and invariant properties,
independent of context and environment. The notion of object, however, is inherently
environment—dependent! It does not make sense to talk about objects unless we are
in an environment where a community of objects is around. This sounds involute, but
it isn’t: the confusing thing is that you first have to define what an object community
is before you can say what an object is, not the other way round.

Once this viewpoint is adopted, all object concepts and constructions find their
natural place, and a remarkable symmetry between inheritance and interaction comes
to light.

This symmetry is made explicit by a common mathematical background: an ap-
propriate category of processes and process morphisms. We have given an instance
of a category where basic process constructions, parallel composition and internal
choice, are reflected by powerful categorial constructions: limits and colimits.

There is one fundamental issue of object—orientation which is not treated in this
paper, namely reification. At the end of section 2, we have suggested that reification
requires a more general notion of process morphism, involving transactions in the
place of events (see for instance [CSS91] but for another semantic domain). It remains
to be investigated, however, which the most appropriate notion is, how it can be
used to construct an implemetation on top of a given platform of objects, and what
an appropriate notion of correctness is in this framework. Naturally, the issue of
(hierarchic) transaction management comes in here, among others.

It should be pointed out that the reification relationship we have in mind is be-
tween objects and objects, not between object specifications and object specifications,
and not between objects and object specifications either. That is, what we have in
mind is software layers sitting on top of each other within running systems.

21

It is beyond the scope of this paper to outline how a complete work environment
for designing and implementing object communities might look like. An inheritance
schema as defined in section 3 would certainly be part of it, but there would be much
more. Among others, we would probably have a collection of data types, including
various types of identities, a collection of templates to be used as class types, an
interaction schema consisting of aggregation and synchronization patterns on the
template level, generic modules which can be actualized to form specific templates or
clusters of templates, and a collection of tools for manipulating all these items.

Acknowledgements

We gratefully acknowledge the contributions Felix Costa made to our understanding
of processes, he showed us how colimits can reflect internal choice. We are also
grateful for very stimulating discussions with Joseph Goguen, and for his teaching
the computer science community a long time ago how important categories are for
computing, and especially what limits have to say about putting systems together.
Jose Fiadeiro has made valuable contributions by keeping us in touch with object
specification logic. We are also grateful to Cristina Sernadas for helpful discussions
about the object concepts. Finally, the stimulating atmosphere in the IS-CORE
working group is gratefully acknowledged, there were always so many ideas around
that after a while you don’t know who had which one first.

References

[AHS90] Adamek,J.;Herrlich,H.;Strecker,G.: Abstract and Concrete Categories. Wiley,
New York 1990

[At89] Atkinson et. al.: The Object—Oriented Database System Manifesto. 1st Int. Conf.
on Deductive and Object-Oriented Databases, Kim, W. et. al. (eds.), 1989, 40-57

[Be91] Beeri,C.: Theoretical Foundations for OODB’s — a Personal Perspective. Database
Engineering, to appear

[BM91] Beeri,C.;Milo,T.: A Model for Active Object Oriented Database. Proc. 17th VLDB,
Sernadas, A. (ed.), Barcelona 1991, to appear

[CP89] Cook,W.;Palsberg,J.: A Denotational Semantics of Inheritance and its Correctness.
Proc. OOPSLA’89, ACM Press, 433-443

[CS91] Costa,J.-F.;Sernadas,A.: Process Models within a Categorial Framework. INESC
Research Report, Lisbon 1991, submitted for publication

[CSS91] Costa,J.-F.;Sernadas,A.;Sernadas,C.: Objects as Non-Sequential Machines. This
volume

22

[Cu91] Cusack,E.: Refinement, Conformance and Inheritance. Formal Aspects of Comput-
ing 3 (1991), 129-141

[DMN67] Dahl,0.-J.;Myrhaug,B.;Nygaard,K.: SIMULA 67, Common Base Language. Nor-
wegian Computer Center, Oslo 1967

[DRW89] Dignum,V.G.;van de Riet,R.P.;Wieringa,R.: Generalization and Specialization of
Object Dynamics. Rapportnr. IR-204, Vrije Universiteit Amsterdam 1989

[EGS91] Ehrich,H.-D.;Goguen,J.A.;Sernadas,A.: A Categorial Theory of Objects as Ob-
served Processes. Proc. REX/FOOL School/Workshop, deBakker,J.W. et. al. (eds.),
LNCS 489, Springer—Verlag, Berlin 1991, 203-228

[ESS90] Ehrich,H.-D.;Sernadas,A.;Sernadas,C.: From Data Types to Object Types. Journal
of Information Processing and Cybernetics EIK 26 (1990) 1/2, 33-48

[ES90] Ehrich,H.-D.;Sernadas,A.: Algebraic Implementation of Objects over Objects. Proc.
REX Workshop on Stepwise Refinement of Distributed Systems: Models, Formal-
ism, Correctness. deBakkerJ.W.;deRoever,W.-P.; Rozenberg,G. (eds.), LNCS 430,
Springer—Verlag, Berlin 1990, 239-266

[FCSM91] Fiadeiro,J.;Costa,].-F.;Sernadas,A.;Maibaum,T.: (Terminal) Process Semantics
of Temporal Logic Specification. Unpublished draft, Dept. of Computing, Imperial
College, London 1991

[FM91a] Fiadeiro,J.;Maibaum,T.: Describing, Structuring and Implementing Objects.
Proc. REX/FOOL School/Workshop, deBakker,J.W. et. al. (eds.), LNCS 489,
Springer—Verlag, Berlin 1991

[FM91b] Fiadeiro,J.;Maibaum,T.: Temporal Theories as Modularisation Units for Concur-
rent System Specification, to appear in Formal Aspects of Computing

[FS91] Fiadeiro,J.;Sernadas,A.: Logics of Modal Terms for System Specification. Journal
of Logic and Computation 1 (1991), 357-395

[FSMS90] Fiadeiro,J.;Sernadas,C.;Maibaum,T.;Saake,G.: Proof-Theoretic Semantics of
Object—Oriented Specification Constructs. Proc. IFIP 2.6 Working Conference DS-
4, Meersman,R.;Kent,W. (eds.), North-Holland, Amsterdam 1991

[GKS91] Gottlob,G.;Kappel,G.;Schrefl,M.: Semantics of Object-Oriented Data Models —
The Evolving Algebra Approach. Proc. Int. Workshop on Information Systems for
the 90’s, Schmidt,J.W. (ed.), Springer LNCS 1991

[Go73] Goguen,J.: Categorical Foundations for General Systems Theory. Advances in Cy-
bernetics and Systems Research, Transcripta Books, 1973, 121-130

[Go75] Goguen,J.: Objects. International Journal of General Systems, 1 (1975), 237-243

[Go89] Goguen,J.: A Categorical Manifesto. Technical Report PRG-72, Programming Re-
search Group, Oxford University, March 1989. To appear in Mathematical Struc-
tures in Computer Science.

[Go90] Goguen,J.: Sheaf Semantics of Concurrent Interacting Objects, 1990. To appear in
Mathematical Structures in Computer Science.

23

[GR83] Goldberg,A.;Robson,D.: Smalltalk 80: The Language and its Implementation.
Addison-Wesley, New York 1983

[GW90] Goguen,J.;Wolfram,D.: On Types and FOOPS. Proc. IFIP 2.6 Working Conference
DS-4, Meersman,R.;Kent,W. (eds.), North-Holland, Amsterdam 1991

[HC89] Hayes,F.;Coleman,D.: Objects and Inheritance: An Algebraic View. Technical
Memo, HP Labs, Information Management Lab, Bristol 1989

[He88] Hennessy,M.: Algebraic Theory of Processes. The MIT Press, Cambridge, Mass.
1988

[JSS90] Jungclaus,R.;Saake,G.;Sernadas,C.: Using Active Objects for Query Processing.
Proc. IFIP 2.6 Working Conference DS-4, Meersman,R.;Kent,W. (eds.), North-
Holland, Amsterdam 1991

[JSS91a] Jungclaus,R.;Saake,G.:Sernadas,C.: Formal Specification of Object Systems.
Proc. TAPSOFT’91, Abramsky,S.;Maibaum,T.S.E. (eds.), Brighton (UK) 1991

[JSS91b] Jungclaus,R.;Saake,G.:Sernadas,C.: Object-Oriented Specification of Information
Systems: The TROLL Language. Informatik-Bericht, TU Braunschweig 1991. To
appear

[Ki90] Kim,W.: Object-Oriented Databases: Definition and Research Directions. IEEE
Transactions on Knowledge and Data Engineering 2 (1990), 327-341

[LP90] Lin,H.;Pong,M.: Modelling Multiple Inheritance with Colimits. Formal Aspects of
Computing 2 (1990), 301-311

[Me88] Meyer,B.: Object—Oriented Software Construction. Prentice-Hall, Englewood Cliffs
1988

[Re90] Reggio,G.: Entities: Institutions for Dynamic Systems. Unpublished draft, Dept. of
Mathematics, University of Genova 1990

[SE90] Sernadas,A.;Ehrich,H.-D.: What is an object, after all ? Proc. IFIP 2.6 Working
Conference DS-4, Meersman,R.;Kent,W. (eds.), North-Holland, Amsterdam 1991

[SEC90] Sernadas,A.;Ehrich,H.-D.;Costa,J.-F.: From Processes to Objects. The INESC
Journal of Research and Development 1 (1990), 7-27

[SFSE89] Sernadas,A.;Fiadeiro,J.;Sernadas,C.;Ehrich,H.-D.: The Basic Building Blocks of
Information Systems. Proc. IFIP 8.1 Working Conference, Falkenberg,E.; Lind-
green,P. (eds.), North-Holland, Amsterdam 1989, 225-246

[SGCS91] Sernadas,C.;Gouveia,P.;Costa,J.-F.;Sernadas,A.: Graph-theoretic Semantics of
Oblog — Diagrammatic Language for Object-oriented Specifications. This volume

[SGGSRI1] Sernadas,C.;Gouveia,P.;Gouveia,J.;Sernadas,A.;Resende,P.: The Reification
Dimension in Object-oriented Database Design. Proc. Int. Workshop on Specifi-
cation of Database Systems, Glasgow 1991, Springer—Verlag, to appear

[SJ91] Saake,G.;Jungclaus,R.: Specification of Database Applications in the TROLL Lan-
guage. Proc. Int. Workshop on Specification of Database Systems, Glasgow 1991 ,
Springer—Verlag, to appear

24

[SRGS91] Sernadas,C.;Resende,P.;Gouveia,P.;Sernadas,A.: In-the-large Object—oriented
Design of Information Systems. Proc IFIP 8.1 Working Conference on the Object—
oriented Approach in Information Systems, van Assche,F.;Moulin,B.;Rolland,C.
(eds.), Quebec City (Canada) 1991, North Holland, to appear

[SSE87] Sernadas,A.;Sernadas,C.;Ehrich,H.-D.: Object-Oriented Specification of Data-
bases: An Algebraic Approach. Proc. 13th VLDB, Stocker,P.M.; Kent,W. (eds.),
Morgan-Kaufmann Publ. Inc., Los Altos 1987, 107-116

[SSGRGI1] Sernadas,A.;Sernadas,C.;Gouveia,P.;Resende,P.;Gouveia,J.: Oblog — An Infor-
mal Introduction, INESC Lisbon, 1991.

[St86] Stroustrup,B.: The C++ Programming Language. Addison Wesley, Reading, Mass.
1986

[Ve91] Verharen,E.M.: Object—oriented System Development: An Overview. This volume

[Wi88] Winskel,G.: An Introduction to Event Structures. Linear Time, Branching Time
and Partial Order in Logics and Models for Concurrency VIII, deBakker,J.W.;
deRoever,W.-P.; Rozenberg,G. (eds.), LNCS 354, Springer—Verlag, Berlin 1988,
364-397

25

OBJECTS AS NON-SEQUENTIAL MACHINES

J.-F.Costa, A.Sernadas, C.Sernadas

Departamento de Matemdtica - Instituto Superior Técnico
Av. Rovisco Pais, 1096 Lisboa Codex, PORTUGAL

&

INESC
Apartado 10105, 1017 Lisboa Codex, PORTUGAL
Phone: 351-1-3523870
Telefax: 351-1-525843
E-mail: (fgec,acs,css}@inesc.pt

Abstract. A new semantic domain based on fully concurrent transition systems is
proposed for object-oriented concepts. Object interconnection, reification and
encapsulation are given a precise mathematical semantics, adopting states and
transitions as the basic semantic primitives. Interactions between objects, like sharing
and calling, are explained by fibration techniques. Reification is explained in the setting
of the category of small, symmetric monoidal categories and has the desired properties
of vertical and horizontal compositionalities.

TABLE OF CONTENTS

1 Introduction

2 Sequential automata

3 Concurrent automata -

4 Interconnection

5 Reification ..
5.1 Sequential automata
5.2 Concurrent automata

6 Encapsulation

7 Object semantic domain
8 Concluding remarks
Acknowledgements
References

26
J.-F.Costa, A.Sernadas and C.Sernadas

1 Introduction

In this paper we continue a line of research that we have been pursuing to provide
rigorous foundations for object-oriented system development. The realisation that an
object is, basically, a process endowed with trace-dependent attributes directed research
on algebraic models for objects to capitalise on previous work on process models [eg
Sernadas and Ehrich 90, Sernadas et al 90].

We could say that the essence of object-orientation is to identify a system with a
community of interacting objects. Hence the main tasks involved were to provide (1) a
precise notion of object and (2) a model of object interconnection.

A well known categorial principle can be applied to algebraic models of systems as first
discussed within the context of General Systems Theory [Goguen and Ginali 78], and that
has been recently reawakened [e.g. Goguen 91] in an attempt to provide semantic
foundations for concurrent, interacting objects, namely using sheaf-theory. Other
applications of the same principle have been tested, namely for more traditional trace-
based object models [e.g. Costa and Sernadas 91]. A general framework is even now
available that unifies various semantic models of objects [Ehrich et al 91].

The application of this categorial principle provides the means for stating what objects
are and how they can be interconnected through diagrams in order to build more complex
objects, without resorting to any specific object language or algebra. Indeed, the basic
operation of object aggregation appears as a universal construction in all of them. Object
interaction by sharing and calling is adequately described.

However, some of the relevant issues for an effective semantic domain of objects, such as
reification and encapsulation were not dealt with in a completely satisfactory way. For
instance, it was clear for some time that a correct understanding of encapsulation would
require some form of internal non-determinism and that an adequate treatment of
reification should be centered around the notion of transition (instead of being described
around the notion of event).

Meanwhile, it also became clear that there was no need to distinguish attributes from
events — instead, it would be simpler and as effective to recognise two kinds of events
(actions and attribute observations).

Furthermore, the experimentation with the Oblog language and reification [SernadasA
et al 91, SernadasC et al 91a,b] strongly suggested the consideration of an object semantic
domain more closely related to the traditional operational semantic domains for

processes (around the notions of state and transition).

27
Objects as Non-Sequential Machines

Taking into consideration the developments in the Petri net approach to process theory, it
was clear that nets of all kinds might be good candidates. The semantic domain
presented in this paper corresponds to the authors current understanding of which of such
nets is more satisfactory for the purpose at hand. Other alternatives have been considered
and many more are still to be analysed, but the current framework seems to be rather
effective. Indeed, it satisfies all requirements for an adequate semantic domain of object
aspects or facets (cf [SernadasC et al 91c]), including encapsulation and compositionality
of reifications. Moreover, object aggregation with sharing and calling is as effectively
explained as before. Other higher level constructions (eg classes and specialization) are
easily defined on top of the proposed framework as in [Ehrich and SernadasA 91] where a

different semantic domain is used.

We make moderate use of the theory of categories and the theory of Petri nets. The reader
may find all the necessary category-theoretic and net-theoretic notions in [Barr and
Wells 90, Adamek et al 90] and [Reisig 85, Meseguer and Montanari 90], respectively.

In sections 2 and 3 (sequential) automata and non-sequential automata, respectively, are
presented as transition systems, adapting the ideas of [Meseguer and Montanari 90] to
nets as transition systems. In section 4 the theory of process interconnection is recovered
within the new setting using a fibration technique. This categorial theory of CSP-like
interaction is a contribution to the field of processes (related previous work concentrated
on a CCS-like interaction — cf [Gorrieri and Montanari 90]). In section 5 the theory of
reification is developed with some detail, including all the compositionality issues,
taking the program originally set-up in [Ehrich and Sernadas 90, Ehrich et al 91] to
complete satisfaction within the new framework. The results so obtained are novel in the
process field to our knowledge, although similar techniques have been used in [Gorrieri
and Montanari 90] for implementing CCS over nets. Section 6 briefly covers
encapsulation showing the essential role of internal non-determinism. Finally, in
section 7 an outline is given of the use of the proposed framework as a semantic domain

of object aspects.

2 Sequential automata

We start by formally introducing the concepts of graph, reflexive graph and pointed
graph, and their corresponding morphisms and categories.

Definition. A small graph G is a quadruple <V,T,dy,0,> where V and T are sets, and
do, 91: T>V. A graph morphism from a graph G; into a graph G is a pair of maps
<f,g>, f: V1V, and g: T;—Ty, such that fe dy =dy, ° g and f* 9y, =dy, ° g. 1

It is usual to write o: u—v for any aeT such that dy(a) = u and 0;(e) = v.

28
J.-F.Costa, A.Sernadas and C.Sernadas

Proposition. The graphs and graph morphisms constitute a category! Gr (of graphs and
their morphisms). 1

Definition. A reflexive graph G is a quintuple <V,T,d,,0;,1> where <V,T,d,0,> is a graph
and 1: VT such that 1(u): u—u for every ue V. A reflexive graph morphism from a
reflexive graph G, to a reflexive graph Gy is a graph morphism <f,g> such that
gol=1y°f. |

Proposition. The reflexive graphs and reflexive graph morphisms constitute a category
RGr (of reflexive graphs and their morphisms). |

Definition. A pointed graph G is a quintuple <V,s,T,d9,0;> where <V,T,dp,d,> is a graph
and s is a distinguished element of V. A pointed graph morphism from a pointed graph
G, to a pointed graph G, is a graph morphism <f,g> such that f(s) is the distinguished
element of G. 1

Proposition. The pointed graphs and pointed graph morphisms constitute a category Gr’
(of pointed graphs and their morphisms). |

A reflexive pointed graph is a tuple <V,s,T,d,0;,1> where <V,s,T,dy,0,> is a pointed graph
and <V,T,d,,0;,1> is a reflexive graph.

All these categories are (small) complete and cocomplete (see [Barr and Wells 90,
Corradini 90]). Each graph induces a reflexive graph in the following way:

Proposition. The forgetful functor S: RGr—Gr has a left adjoint R: Gr—RGr. The
reflexive graph freely generated by a graph G =<V,T,dp,0,> is the reflexive graph
R(G) = <V,V+T,idy+9o,idy+9;,inj;>, where T = V+T is the disjoint union of V and T,
id,: V-V is the identity map in V, inj;: V—T is the first injection, and idy+dy, idy+9d, are
uniquely determined by the universal property of coproducts in Set. For each
<f,g>: G;—Gy, Fe(<f,g>): Fe(G;)—Fe(Ge) is the reflexive graph morphism <f,> where g
is the canonical extension of g inductively defined as follows: (a) g{a)=g(a), for every
aeT, and (b) glo)=f(c) for every aeV.

Proof: See fig.2.1. Cf [Barr and Wells 90, Corradini 90] |

1 Recall that a category is a tuple <V,T,d9,0,,1,;> where <V,T,d0,0,,1> is a reflexive graph (the elements
in V being called objects and the elements in T being called morphisms), with additionally a (partial)
operation ;:TXT—T called composition, assigning to each pair of arrows o and B, such that
90(B)=91(c), an arrow o;B such that dg(ct;B)=0p(ct) and 9;(ct;B)=0,(B). Moreover the composition is
associative and the identities given by U are units for it. A pointed category <V,s,T,00,01,1,;> is just a
category with a distinguished object s. We assume the reader to be familiar with universal contructions
in categories and adjoint situations.

Note that composition within the category of sets and the category of pointed sets will be denoted by ©.

29
Objects as Non-Sequential Machines

The functor composition Rc = S ¢ R provides for each graph its reflexive closure: Re
enriches a given graph with an identity arrow in each state. Similarly, each pointed
graph induces a reflexive pointed graph.

Remark. For the purpose at hand, it is convenient to refer to pointed graphs as
(sequential) automata; furthermore, for each automaton G the nodes are called states, the

edges are called transitions, and the distinguished state is called the initial state. |
\' T
inj: inj s
idv V+T do, 01

idv+ao,
idv+01

;

\Y

Figure 2.1: The coproduct construction for sets T and V induce the wanted source and target maps for
the reflexive closure of a given graph.

Every automaton has a graphical representation which is easy to understand (see fig.
2.2). Often we ignore the identity of states when we display a graph representing a
sequential machine. Also we shall concentrate on automata where all states are

reachable from the initial state.

ouwrd Dm0

Figure 2.2: A flip-flop automaton as a sequential machine.

Let us now establish a category of automata, by introducing first a notion of automaton

morphism suitable for aggregation of automata.

30
J.-F.Costa, A.Sernadas and C.Sernadas

Definition. Given two automata G, and Gy, an asynchronous morphism h: G;~>Gg is a
pointed graph morphism h: G;—>Rce(Gy). 1

Composition of asynchronous morphisms is introduced using canonical extensions pro-
vided by the reflexive closure.

Definition. Given two asynchronous morphisms f: G,~>G, and g: G;~>Gj,, their
composition is defined as the pointed graph morphism Re(g) © f: G;—Re(Gs). |

Proposition. Automata and asynchronous morphisms constitute the category Aut (of
automata and their asynchronous morphisms). |

. c. DN

4
f b Q<a ol
i B

Figure 2.3: Illustration the product of two automata.

It is straightforward to verify that Aut is a (small) complete and cocomplete category
whose limits reflect the parallel composition and colimits reflect nondeterministic
choice of sequencial machines (see [Costa, 91]).

3 Concurrent automata

Concurrent transition systems have appeared in Petri net theory in several versions,
depending on the level of detail at which one wishes to describe concurrent processes. The
concept of concurrent transition system we adopt in this paper is inspired by [Reisig 85,
Best and Ferndndez 86, Olderog 89ab, Degano et al 89, Meseguer and Montanari 90, and
Gorrieri and Montanari 90]. We prefer the alternative terminology of concurrent

automaton (or non-sequential automaton).

31
Objects as Non-Sequential Machines

Definition. A concurrent schema is a quadruple
G= <V$, T',80,81>
where

(a) V is a possibly infinite set (of local states), and v® is the freely generated
commutative monoid over V (the elements of V€B are called states; the neutral
element 0 is referred to as the zero state),

(b) T®=T u () is a possibly infinite pointed set (of transitions), being ¢ the
distinguished element (the skip transition),

(¢) 9o, 4t T°5v® (respectively, the source and target of each transition) are pointed
set maps (* is mapped into 0). 1

Definition. A concurrent automaton is a quintuple
G=<V®s, T*,90,0>
where
(a) <V@, T*,90,0;> is a concurrent schema,
(b) s=u;® ... Duy is a distinguished element (initial state) of v® such that, for every
i = 1.k, each local state u; occurs only once. |
This definition smoothly extends the previous definition of a sequential automaton.

When comparing sequential automata with concurrent automata we realise that we are
distributing the (global) state of an automaton over several local states.

e Ollk

“O -
N A

(04

Figure 3.1: The graphical representation of a transition.

32
J.-F.Costa, A.Sernadas and C.Sernadas

As usual, any transition aeT *such that d4(c) = u and 9,(a) = v is written as a: u—v.
Furthermore, since for any o: u—v its source do(a) and target d,(c) are bags of local
states, these bags are represented as formal sums n;u;®...®nyuy, with the order of the
summands being immaterial, where uje V and nj (see fig. 3.1) indicates the multiplicity
of each local state, for i=1..k.

The graphical representation of a concurrent automaton is as follows. Local states are
represented as circles with identifiers outside, and transitions

o nju;®..enu = myv;@..emyv;

are represented as boxes carrying their identifiers inside and connected via directed
arcs to the places in dg(c) and 9;(cx). The arcs are labelled by the multiplicities of local
states. The initial state s is represented by putting one token @ into the circle of each local
state of s. Since dy(a) and 9;(cv) need not be disjoint, some of the outgoing arcs of each
transition may actually point back to places in do(ar).

9 T A
olff | B

56 &
® o, O

o B /GIB
O O g Yo
(c) (d)

Figure 3.2: (a) two transitions o and p being in mutual exclusion , (b) two transitions o and p in
concurrency, (c) choice between o and B, and (d) synchronization of o and .

Note that this graphical representation is not to be taken as a "presentation” of the
transition system as traditional in Petri net theory. Indeed, the proposed graphical
representation indicates the enabling of transitions as follows: at each step, the set of all
enabled transitions is the set of transitions whose source states are all marked; no other
transitions are enabled; therefore, the set of enabled transitions is interpreted as being in

33
Objects as Non-Sequential Machines

choice (not as being in concurrency as in traditional net theory "presentations” — eg in
[Meseguer and Montanari 90]); concurrent transitions arise by taking products.

Therefore, the proposed representation closely depicts the transition system as an
element of a semantic domain. Traditional Petri net theory "presentations” appear as
an effective language for describing transition systems, avoiding the explicit represen-
tation of concurrent transitions. For instance, according to such a language, net (a)
"denotes" net (b) in fig. 3.2. According to our representation appproach, in (a) we do not
recognize any concurrent transition and in (b) we know that olp is the concurrent
execution of o and P by looking at the (product) projections. Clearly, the proposed
representation is related to case graphs as introduced in Petri net theory.

A special concern of concurrent transition systems is to model distributed systems. Even
when we "recognize" within a concurrent automaton that two local states are the "same”
we cannot merge them because they keep their identities in being distributed in space.

For instance, two similar clocks put together by sharing a synchronized tick transition
could be pictorially captured by the above graphical representation.

Nl
&N

Figure 3.3: Two clocks put together. T;, T, transitions denote internal movements.

o o

Clearly, we may specify only concurrent automata with local state multiplicity < 1 if the
others are not interesting to us. If we start only with such automata, all relevant
constructions considered in this paper lead to automata with local state multiplicity < 1.
However, we have to take the more general approach in order to achieve some technical
properties discussed in section 5.

The question now is: how to combine automata? That is, how to compose them? We easily
find in the literature the main guidelines on categorial fundamentals of process
semantics [see, eg, Goguen 75, Ehrich et al 90, Ehrich and SernadasA 90, and Goguen 91]:

34
J.-F.Costa, A.Sernadas and C.Sernadas

(a) morphisms express part-of inheritance, that is, a process P inherits from another
process Q iff there is a process morphism f: P»Q; (b) communities of concurrent pro-
cesses are diagrams; (c) joint behaviour is limit (a well known universal construction
in categories).

We introduce the basic (asynchronous) morphism of (concurrent) automata that we will
use later on. The idea can be found in [Meseguer and Montanari 90].

Definition. Given two concurrent schemata G, and Gy, a morphism h: G;—G, is a pair
<f, g>, where f: Vleg—)VgGa is a monoid morphism and g: T'1—>T°2 is a pointed set map,
such that (a) dp, g =f dp, and (b) 9y, e g=f° dy,. |

Definition. Given two concurrent automata G, and Gy, a morphism h: G;—>G; is a
morphism betwen the underlying concurrent schemata such that g(s;) = ss. 1

Proposition. Concurrent automata and their morphisms constitute a category — the
category of concurrent automata CAut. |

This is the category of directed graphs with monoidal structure in states. In what follows
we have no need to map the elements of V; onto arbitrary elements of Vge. Instead, we
will work within the subcategory of freely generated commutative monoids equipped
with the canonical extensions of maps between sets of generatorsZ.

Proposition. The category CAut has all finite products.

Proof: Taking two arbitrary concurrent automata G1=<V1@,51,T1',601,811> and
G2:<V2@,32,T2',802,812> their product is the concurrent automaton

G1XG2 = <(V1+V2)€B,51®S2,T1 .XTz ¢ ,801X802,811X812>
with 0;,%0;, defined as follows: 03, X0j,(<01,0>) = 03, (0t1)®0i,(at2). |
Note that the local states of a product of two concurrent automata are the union of the local
states of the components (see fig. 3.5 (a) below). This is an important advantage of

working with CAut instead of Aut. Indeed, besides the lack of good properties of the latter
wrt reification as will be discussed later on, parallel composition in CAut is done without

2 As pointed out in [Meseguer and Montanari 90] the category of directed graphs with monoidal structure
in states lacks arbitrary limits, since the category of freely generated commutative monoids is not
complete when viewed as a full subcategory of the category of commutative monoids (which is complete
and cocomplete). However the category of freely generated commutative monoids equipped with the
canonical extensions of maps between sets of generators is both complete and cocomplete.

3 In fact, V,® xV,® = (V+V,)®=V,®+ VéG’, i.e., finite products and coproducts of free commutative
monoids coincide, and particularly (V1+V2)® is a freely generated commutative monoid.

35
Objects as Non-Sequential Machines

merging the local states, therefore supporting a distributed view; in Aut that operation
requires the merging the source and target states of the transitions to be shared.

The category CAut also has all finite coproducts? that we will not consider further herein.
Note only that the coproduct of two concurrent automata is the nondeterministic choice
composition (see fig. 3.5 (b) below).

2 9. Sk
5 & Y
©+®= /®\
S % O

(b)

Figure 3.5: Illustration of (a) product and (b) coproduct of two concurrent automata.

When developing later on the theory of reification we shall have to work also with
coproducts of concurrent schemata. To this end let us examine here very briefly the
relevant properties of concurrent schemata.

Clearly, concurrent schemata and their morphisms constitute a category — the category
of concurrent schemata CSch. There is an obvious forgetful functor CS from the category
of concurrent automata to the category of concurrent schemata which forgets the initial
state. This forgetful functor has a left adjoint that adds a new element s to V and uses it as
the initial state.

Let G1=<V1€B,T1',801,all> and G2=<V2e,T2',802,612> be two concurrent schemata. Their
coproduct (see fig. 3.6) is the concurrent schema whose set of states is (V;+Vy) @, whose set
of transitions is the coproduct of pointed sets T,*+T,°, and whose source and target maps

4 See proof in [Meseguer and Montanari 90].

36
J.-F.Costa, A.Sernadas and C.Sernadas

are given by do +0o, and 9;,+9,,, respectively, where 9;,+0;, denotes the function induced
on the coproduct T, *+T;°* by the component functions d;, and 9;,. The coproduct is just the
result of putting together the two schemata. The unique common transition is the

O O Q)
PR A
5 & 06

Figure 3.6: Tlustration of coproduct of two concurrent schemata (which is diferent from fig. 3.5 (b))

As we saw above, the composition of two independent concurrent automata is perfectly
reflected by the categorial construction of product. The question now is what happens in
the presence of interaction between (interconnection of) the components.

4 Interconnection

Composite automata resulting from interconnecting given component automata are
obtained by merging some transitions of the components (the basic mechanism of process
synchronization — recall the example in fig. 3.3). Furthermore, some transitions of the
resulting automata may be encapsulated (to be discussed in section 5). Naturally, the end
result may be used in further compositions. In this way, a rather involved structure may

arise.

Some concepts of category theory are useful in order to provide the required techniques for
process synchronization. Here we follow the technique of fibrations that is also used eg in
[Winskel 87] and, later on, in [Bednarczyk 88] for a similar purpose but in different

frameworks.

Definition. A morphism f: X;—X, in a category Xyz is said to be cartesian wrt some
(forgetful) functor V: Xyz—Zzz iff for any g: X;—X,; in Xyz and any morphism
o: V(X3)->V(X,) in Zzz for which o;0(f) = V(g) there is a unique morphism h: X3—X,
such that V(h) = ¢ and h;f = g. The cartesian morphism f: X,—X, is called a cartesian
lifting of the morphism V(f) in Zzz wrt X, of Xyz. |

37
Objects as Non-Sequential Machines

Definition. A fibration over the category Zzz is a (forgetful) functor V: Xyz—Zzz such that
every morphism ¢: Z;—Z, in Zzz has a cartesian lifting wrt any X, of Xyz such that

D(X1)=Z1. I
VX 1)
f g —> v(f) v(g)
Xs VX2 O V(Xas)
(a)
VA
¢
-l - =
lifting 7
(b)

Figure 4.1: (a) Cartesian lifting,
(b) all morphisms in Xyz are mapped onto 6, but f'is the cartesian lifting of ¢

Proposition. The forgetful functor Tr: CAut—Set® that maps each concurrent automaton
onto its pointed set of transitions is a fibration.

Proof: To see the cartesian liftings explicitly, let ¢: T,*>T,° in Set® and take
G,€ |CAutl to be a concurrent automaton. Define G2=<V1@,SI,T2',802,812> with 9, =
do, ° ¢ and 9y, = 9y, ° ¢. Let us prove now that <idy,p> is the cartesian lifting of
®: Ty" >T,°. Consider a morphism <gy,gr>: G3— G, such that there is a pointed set map
o: T3° 5T,° such that ¢ © 6 = gy. We only have to show that <gy,0> is a concurrent
automaton morphism from Gj to Gg. Let t be a transition of G3. Then we have:
gv(0i(t)) = 9; (gr(t)) = 0;,(¢ © o(t)) = 9;; ° d(o(t)) = d;,(a(t)). |

If : Ty " —T,* is one to one then the source Gy of the cartesian lifting of ¢ wrt G is simply
a restriction of the transitions of G,. More peculiar are the constructions when ¢ is really
partial®, or maps two distinct transitions into the same transition. If ¢ is undefined on a

5 That is, maps at least one transition onto the distinguished element e.

38
J.-F.Costa, A.Sernadas and C.Sernadas

transition o, an independent transition® is introduced into the transitions of G,. If ¢
takes the distinct transitions o. and B to a common transition ¥, then yin G, is replaced in
G; by two transitions with the same source and target: one is o and the other B.

Definition. Let V: Xyz—Zzz be a fibration. A fibre over Z in Zzz is the full subcategory
(denoted V~Y(Z)) of Xyz that is mapped back from the subcategory of Zzz consisting of the
object Z and the identity morphism on Z of Zzz. 1

Proposition. The fibration V: CAut—Set® induces a functor ¢*: V1(S;)=>V7(S,) for each
pointed set map ¢: S;—S;.

Proof: For any G;e 1V71(S;)1 let f; be a fixed cartesian morphism with G, as target, and
such that V(fg,) = ¢. Let the image of G, given by ¢* be the domain of fg, ie,
fe,: 9*(G1)—>Gy. If h: Go—>G is a morphism in CAut then define ¢*(h) to be the unique
morphism that makes the following diagram commute:

o*(G) fG: G1
fo-
o*(h) h
y > Y
04(G2) Py B

It is straightforward to prove that ¢*: V™'(S;)=>V'(S,) defined in this way is a functor. Cf
[Bednarczyk 88]. |

Definition. An interaction structure is a triple <T,°,T,",«> where T,* and T,* are

pointed sets, and « C T;xTyUT.xT, is a one to one binary relation, called the interaction
relation. 1

Each interaction structure <T1', T,®, «> determines a pointed subset S of the categorial
product T, *xT,* given by’

S =T, "xT3* \ U gpree ((0,8): BT, ")

6 With source and target 0, which is the unit element of Ve,

7 For every 0.€ A and Be B, by (a,B) we mean an unordered pair of the categorial product AxB and <a,b>
will stand for the an element of the cartesian product AxB. Thus, overloading the symbol X, AXB means
both the categorial and the cartesian products.

39
Objects as Non-Sequential Machines

and an inclusion pointed map t.: S—T;*xT, °. This means that if o«p then the
happening of o leads to the happening of B — o is not allowed to happen alone or even to
happen with any other transition diferent from p.

Gi17AGz

C->y p->vy
y o-> X
g n B> p->y

P

®

\
G|« Pullback Bl G

Y

@,

Yo

NPl

ol

JORROL

G1 ll«(}z

p|

Figure 4.4: Two transition systems sharing o and .

An interaction structure endowed with a symmetric interaction relation is said to be a
sharing structure and the underlying relation is called a sharing relation. Otherwise
they are said to be a calling structure and a calling relation, respectively.

The parallel composition of interacting concurrent automata is now defined easily
using the pulling back functor induced by ..

Definition. Given two concurrent automata G; and G, and an interaction relation « over
T,*xT,°, we define G, Il G; = 1, *(GxGy). 1

40
J.-F.Costa, A.Sernadas and C.Sernadas

Pullbacks are a special kind of limits that express the cooperative composition of two
concurrent automata, say G; and G,, sharing common transitions. Consider the
example in fig. 4.4. We introduce a middle (top) automaton with a single local state and
a distinguished transition for each pair (a;,0,0) such that o« and og«ct;. Let us denote
this middle object by G;~Gs. For every transition o, of G, if there exists apeT; such that
if ay«otp (and op«n;) then o, is mapped onto (oj,05), else it is mapped onto the skip
transition e. Also for every transition oy of Gy if there exists o€ T, such that ay«o,(and
o;«0p) then oy is mapped onto (o;,0) else it is mapped onto the skip transition e. The
pullback over this diagram is 1 *(G;xGg). Thus, in case of a sharing relation,
1. *(G%xGy) is just a pullback.

In the case of a calling relation, the parallel composition appears as a limit of a more
complex diagram — see [Costa and SernadasA 91].

5 Reification

5.1 Sequential automata

Given a sequential automaton G we may want to build another automaton Rtc(G) which
is the reflexive and transitive closure of G. That is, we may want to enrich the given
automaton with all the conceivable computations which can be split into permutations of

original transitions respecting source and target states.

This reflexive and transitive closure is easily done in a categorial context. There is a
forgetful functor Au from the category Cat of small pointed categories to the category Aut
of automata such that it forgets about the categorial structure of identities and arrow
composition. This forgetful functor has a left adjoint: a free functor Fc that freely
generates a category from a given automaton. The envisaged closure is obtained by

composing these two functors.

Definition. The forgetful functor Au: Cat®—Aut is the functor that gives for each pointed
category <V,s,T,d¢,0;,1,;> its underlying pointed graph <V,s,T,dq,0:>. |

Proposition. The forgetful functor Au has a left adjoint Fe: Aut—Cat® such that:
For each sequential automaton G = <V,s,T,d0,0;>, Fc(G) is the small pointed category

whose set of objects is V, with a distinguished element s, and whose set of morphisms T is
defined by the following rules of inference:

oa:usve T ue V o:unveT PivoweT
a:u-veT wu-oueT o;pruowe T

41
Objects as Non-Sequential Machines

subject to the following equational rules:

a:usve T og:uaveT PB:ivozeT yzoweT
w0 =0 and o;v=o0 o;(B3y) = (o;B)sy

and with identities given by the map 1:V—T such that 1(u)=u, and composition introduced
by the partial operation on transitions _;_: TxT—T.

For each <f,g>: G;—>Gy, Fe(<f,g>): Fe(G)—>Fc(Gy) is the functor <f,g> where g is the
canonical extension of g inductively defined as follows: (a) gla)=g(a), for every €T,

(b) glu) = f(u) and (c) gla;B) = glo);4(B). |
Definition. The category freely generated by an automaton G is the small category
Fc(G). The reflexive and transitive closure of G (or simply its transitive closure) is the

automaton Rtc(G), where Rtec = Au © Fe. 1

However, as stated in the next proposition, this nice construction lacks a basic property of

compositionality.
G, G,
| I Rtc
(0

Figure 5.1: The transitive closure of an automaton. Note that identities are denoted by small circles and
that two additional computations had to be added.

Proposition. The transitive closure of a product of automata is in general different from

the product of the transitive closures of the given automata.

Proof: Just consider two automata G, and G; as in figure 2.3. The product of both gives
rise to an automaton of the shape of the automaton in figure 5.1 (right). Thus the product of

42
J.-F.Costa, A.Sernadas and C.Sernadas

the transitive closures (that in the example adds no more transitions to both G; and Gg,
with the exception of the identities) is quite different from the transitive closure of the
product which introduces two new composite transitions. |

We can summarize the statement above by just saying that Rtc is not a continuous
functor; it does not preserve limits. This result is reflected by the following inequality:

Rtc(GxGa) # Rte(G)xRte(Gy)

One reason for this lack of compositionality is that automata are unstructured transition
systems, that is, states and transitions of an automaton are just sets. However, in many
cases, states and transitions have a useful intrinsic structure. That is the case for con-
current automata, to be considered again later on.

We aim at a general theory of reification of automata such that (a) reification mor-
phisms compose (vertical compositionality) and (b) the reification of a composite
automaton is a composition of the reifications of its parts (horizontal compositionality).

Anyway, in order to fulfil these requirements we must be able to deal with two different
granularities: transitions and computations. Transitions may be mapped onto
computations with possibly many sequential and parallel steps.

Definition. Given two (sequential) automata G, and Gg in Aut, a reification morphism
p: G;=G; is a automaton morphism p: G;—=Rtc(Gy). |

Composition of reification morphisms is introduced using canonical extensions pro-

vided by the categories generated by automata:

Definition. Given two reification morphisms p: G;=G; and 6: G;=Gg, their composition
is defined as the automaton morphism Rte(o) © p: G;—>Rte(Gy). |

Therefore, vertical compositionality is easily achieved. Furthermore, we can introduce
a category of automata and reification morphisms:

Proposition. Automata and reification morphisms constitute a category Reif (of

automata and their reifications).

Proof: Identities in Reif coincide with identities in Aut. In particular if p: G;=Gg then
Rte(idg) © p = p = Rte(p) © id;. Reification morphisms compose and their composition is

associative. |

The implementation of a composite automaton should be some composition of the
implementations of its parts. But the functor Rtc, as we saw, is not continous: the product

of two computations can be split in many distinct ways into a composition of products of

43
Objects as Non-Sequential Machines

single steps. Thus, the transitive closure introduces too many computations. Looking
back to fig. 5.1 we see that a solution to this problem should identify equivalent

computations:
af=alf=pa

In order to do so, we must provide automata with some suitable structure on transitions.

That is, we are directed to concurrent automata.

5.2 Concurrent automata

Let us repeat the procedure above for the case of concurrent automata. But, since now we
have a monoidal structure on the states, we may also induce a monoidal structure on
transitions when generating for each concurrent automaton its monoidal transitive
closure. Therefore, the role of Cat is now to be played by one of its subcategories:

Definition. A monoidal category8 is a category <(V,®,0),(T,®,0),00,91,1, ; > such that
(a) objects and arrows have a commutative monoid structure (b) source and target maps
do, 91, and identity map are monoid morphisms, and (c) the arrow composition
;: TXT—>T is a monoid morphism. |

This last requirement implies that, whenever the compositions are defined, the following
equation holds:

(a®B);(a'@®B") = (o;a YO (B;P).

This equational law imposes a new level of abstraction: complex computations are put
into the same equivalent class, abstracting from their internal execution order. For
more details see [Mac Lane 71, Gorrieri and Montanari 90]. The category of small
monoidal categories is denoted herein by MonCat.

The subcategory MonCat of Cat is also (small) complete and cocomplete. Furthermore, in
MonCat products are isomorphic to coproducts (see [Mac Lane 71]). This property of
MonCat will be useful below in order to achieve horizontal compositionality of

reifications.

Contrarily to what we did for (sequential) automata in the previous section, where it was
possible to avoid working with the monoidal structures, now we have to ignore the initial
state. That is, we have to work with concurrent schemata instead of concurrent automata.
Therefore, we start the theory of reification of concurrent automata by dealing first with

concurrent schemata.

8 Formally, strictly symmetric strict monoidal category.

44
J.-F.Costa, A.Sernadas and C.Sernadas

We may introduce a forgetful functor MS from MonCat into CSch by just forgetting the
additional structure on arrows, but keeping the aditional structure on objects, ie,
MS(((V,@,O),(T,@,.),ao,al,l,;>) = <(V,@,0),(T,.),ao,al>.

Proposition. The functor MS: MonCat—CSch has a left adjoint Fm: CSch—»>MonCat such
that:

For each concurrent schema G, Fm(G) is the (small) monoidal category whose set of
objects is V@, and whose set of morphisms T has a commutative monoid structure and is
defined by the following rules of inference:

o:u—»ve T ue v®

o:u—sveT wu—oue T

a:u-sveT B:voweT a:u-sveT B:vowe T
of:uowe T 0®p: udz—>vOw e T

subject to the following equational rules:

a:u—ove T
w;e =0 and o;v=o

o:u—sveT a:u-nveT Bu-oveT
oDe =0 a®p = fOa
a:usveT B:u—veT ypu'-ov'elT a:usveT PB:vozeT yzoweT
a®(PDY) = (a®B)®Y o;(B;y) = (oB)sy

awusveT PivozeT yu-oveT vz el
(a;B)®(y;8) = (0.®Y);(P®3)

and with identities given by the monoid morphism t: V®T such that ((u)=u, and
composition introduced by the partial operation on transitions _;_: TXT—T.

For each <f,g>: G;—> Gz, Fm(<f,g>): Fm(G,)—»Fm(G,) is the functor <f,g> where g is the
canonical extension of g inductively defined as follows: (a)if aeT then glo=g(a),

(b) gw)=f(u), (c) glo;B) = glo);4(R), and (d) HadP) = lo)®4B). 1

Besides the basic categorial equations of composition and identities, we have an

additional requirement about concurrency:

(0;0)®(B;B") = (a®P);(0'@B")

45
Objects as Non-Sequential Machines

That is, the parallel composition of two given independent computations a;o' and B;B’
has the same effect as the computation whose steps are the parallel compositions a®pB and
a'®B'. As an illustration of the previous law consider the case where we have two
computations a: u—v and pB: u'->v'. Then

(WO (BOV) = PO = a®B = (BOW;(v'Oar)

Thus the concurrent execution of two independent transitions o and p is equivalent to
their execution in any order interleaved with idle transitions. As a consequence of this
equation, any morphism a: u—v in a monoidal category, generated by a concurrent
shema G, can be split as the composition of atomic transitions, ie, o = B1®wy; ... ; Ba®wy,
where, for every i = 1..n, B; is a transition and w; a state of G.

This equation was proposed in [Meseguer and Montanari 90] in order to explore the deep
structure of Petri nets. As far as we know [Degano et al 89, Meseguer and Montanari 90,
and Gorrieri and Montanari 90] its connection with reification theory has not yet been
stressed in the literature.

Again denote by Rtc the functor composition MS e Fm. This functor maps each
concurrent schema onto a closure schema that corresponds to the category of processes of
the former taken as a presentation net (for this notion see [Meseguer and Montanari 90,
Best and Ferndndez 89]).

Definition. Given two concurrent schemata G, and G, in CAut, a reification morphism
p: G;=G; is a concurrent schema morphism p: G;—Rtc(Gg). |

Composition of reification morphisms is introduced as before:

Definition. Given two reification morphisms p: G;=G; and o: G;=Gg, their composition
is defined as the concurrent schema morphism Rte(o) © p: G;—>Rte(Gy). |

Proposition. Concurrent schemata and reification morphisms constitute the category

CReif (of concurrent schemata and their reifications). 1
Now we also achieve horizontal compositionality:

Proposition. Let (p;: G;=G')iet be a set of reification morphisms, indexed in some finite
ordinal {. Then the following result holds (Xje¢ pi: Xiec G = +ie§ G'y):

Xie§ Gi—i(&) RtC(+ie§ GY).

Proof: By definition we have that

>‘<1(':'c GI—XIG"SP]IH Xlec MC - Fm(G'l)

46
J.-F.Costa, A.Sernadas and C.Sernadas

Since MC is right adjoint it preserves products we can write

i i
Xiet Gi——lg-i# MC(XiE‘; Fm(G')),

and since Xie{, Fm(G;) = +ie§ Fm(G';) we have that

Xiet Gi—ig&—) MC(Fieg Fm(G')).

The result follows then, trivialy, from the fact that, since Fm is left adjoint, Fm preserves
coproducts. 1

That is, the coproduct of reifications of the components of a product schema is a
reification of the latter. Note that, Iﬁaybe unexpectedly, it is the coproduct of the
components (and not their product) that leads to a reification of the product. The intuition
is found in the fact that Rtc introduces all concurrent computations that are needed.

Let o; be a transition of the concurrent schema G, mapped onto a computation t; of
Rtc(G,") and o, a transition of the concurrent schema G mapped onto a computation ty of
Rtc(Gy'). Then the transition a;xoy of GixGg should be mapped onto the computation t;®t,
of Rte(Gy+Gy). If t; is E1;E9;83 and t is (3o then t,®t; denotes the following class of

equivalent computations (up to idle transitions):

[€1582;83 © 1382l = |
E1:€2:635813C2, E1362:81:8a:C2, I FESE IR IHON SRIRSRLHOS
C1561:62:82:8a, C1;61;82:82:€3, L1382:81:62:6a, €1;62;(E3®C1); e,
E13(E2®L)iEa:C2, E1081):E2:83:02, €1981):825(E3@C2),
(&0)iE0;(Ea®Ls), (810L1);(EDE2)iEs, £1:81:(E20L2)iEs,
C1:E1;(E2®L0)Es, (E1sE)® L1iEs L2, (€1:82)@ §1);(8s ®Ca),
E 1L 13((E2sEa)®L2), (€1@81);((E25E3)0L2), E1;(E®(L1;82)):8s,
(€19(C1;82))E2:83, £1562;(Ea®(C1:82))

We are now ready to discuss the issue of the initial state within reification. Given a
concurrent schemata reification morphism p: G;=Gs, if we choose an initial state s; for
G, then p = <f,g> imposes f(s;) as the initial state in G,. This seems to be reasonable
because it is conceivable that we may implement the entire life of a concurrent automaton
over the subsequent life of an already existing automaton. Otherwise, we must make
sure from the very beginning that f(s,) = s, where s, and s; are the given initial states of
the two automata. Clearly, the choice of the initial state does not interfere with the main
compositionality results above. '

However, it is essential to develop the theory of reification for concurrent schemata

instead of concurrent automata: indeed, considering the initial state would lead to

47
Objects as Non-Sequential Machines

problems when calculating the coproduct of the component reifications (a single new
initial state would be imposed on all of them).

6 Encapsulation

The problem now under consideration is how to extract a view from a given automaton by
hiding some of its transitions. Traditionally, in process theory, this desideratum is
achieved by resorting to labelling and using a special label (1) to indicate the hidden
transitions (cf [Winskel 87]). Clearly, such hidden transitions (labelled with 1) cannot
be used for interaction (since they are encapsulated).

Herein we prefer a simpler approach: we divide the set of transitions into two partitions,
one composed of hidden transitions and the other composed of visible transitions.

Definition. A transition structure is a pair of sets T = dI",TT> such that T" is a subset of
the pointed set T such that e T*, |

The elements of T® are called transitions and the elements of T® are called internal
transitions. Transitions in T°\T" are said to be visible.

Definition. Given two transition structures T; and Ty, a transition structure morphism
f: T;—T, is a pointed set map f: T;*—T,* such that e Ts" |

Proposition. Transition structures and their morphisms constitute a category — the
category of transition structures Tst. |

Definition. A concurrent T-automaton is a quintuple TG = <V@, §,<T° T ,30,0,> where
G= <V$, s,T*,9,,0,> is a concurrent automaton and <T°T%> is a transition structure. I

Definition. Given two concurrent T-automata G, and Gg, a T-morphism h: G;—G; is a
concurrent automaton morphism <f,g> such that g is a transition structure morphism. I

Proposition. Concurrent T-automata and their morphisms constitute a category — the
category of concurrent T-automaton TCAut. |

Proposition. The forgetful functor Ts: TCAut—Tst that gives for each concurrent 1-

automaton its underlying transition structure is a fibration.
Proof: The proof follows the same guidelines as for Tr: CAut—Set”. |

The theory of interconnection for T-automata can be developed as in section 4. There is no
need to go into details here. However, we should point out that a concurrent transition

48
J.-F.Costa, A.Sernadas and C.Sernadas

introduced in a product should be visible iff at least one of its projections is visible.
Moreover, it should be clear that hidden transitions are not allowed in interaction
relations.

Let us characterize now the envisaged encapsulation morphisms between concurrent 1-
automata. Each encapsulation morphism is to be induced by a transition structure
morphism that preserves the set of underlying transitions (ie by an encapsulation as
defined below).

Recall that the fibration provides a functor h*: Ts'}(T,)—Ts!(T;) for each morphism
h: T;—T, and that the source of the cartesian lifting of h: T,—»Ts(G;) wrt G, is h*(G,).

Furthermore, in some cases, there may exist a right adjoint functor h' of h*:
h': Ts(Ty)»Ts™H(T))

In such cases, the target of the cocartesian lifting of h: Ts(Gg)—>T; wrt Gy is h'(Gy). The

following result provides a useful sufficient condition:

Proposition. For each injective morphism h: T;—T,; the functor h* has a right adjoint
h': Ts1(Ty)->Ts(T,). I

If that were the case for any h: Ty—T; we would have a cofibration. But the forgetful
functor Ts: CAut—Tst is not a cofibration since the existence of cocartesian liftings is

not guaranteed in all cases.

Fortunately, for encapsulation purposes, we only need to work with injective transition

structure morphisms:

G <T°T">

Ts
cocartesian * h
lifting of h

Y \
h'(G) =G P Lk L

Figure 6.1: Ilustration of the cocartesian lifling construction.

49
Objects as Non-Sequential Machines

Definition. A hiding is a transition structure morphism over a pointed set identity. |

The encapsulation resulting of hiding some transitions within a concurrent automaton
is now defined easily using the cocartesian lifting construct.

Definition. Given a concurrent automaton G and a hiding h: Ts(G)—T', we define the
encapsulation result G, = h'(Q). 1

The cocartesian lifting of h wrt G is a concurrent 1-automaton morphism from G into Gy.
This morphism is said to be the encapsulation morphism induced by the hiding h over G.

7 Object semantic domain

We are now ready to outline the use of CAut as a semantic domain for objects, as well as
CReif for their reifications. Actually, each element of CAut is taken as a template of an
object aspect (or facet). Following [SernadasC et al 91, Ehrich and SernadasA 91], an
object is a diagram of aspects with the same identity; an aspect is composed of an
identifier and a template. Therefore, once the identifier space is given, it is easy to
define the category of aspects and the category of objects over the proposed reference
category of templates [Ehrich and SernadasA 91], that is over CAut in this case.

For the purpose of this paper, let us consider only examples of objects with single aspects.
In such cases we can even identify each object with its template.

spec = object ob
attributes
a, b: bool
events
birth €
update €2
death g3
query ey(bool)
valuation
[e;la=1f;
[esJa=not a;
[eglb =t if b=f1f
safety
(a= 1} eytt);
(a = 1f] ey ff)
end

This (textual) Oblog specification [SernadasC et al 91] introduces an object with two
boolean valued attributes (a and b) and several events (e;, i = 1..4); event e; is the birth

event; event e; is the death event; for each bebool, e4(b) is a query event; event e, is an

50
J.-F.Costa, A.Sernadas and C.Sernadas

update event; the effects of the events on the attributes are stated in the valuation clauses;
a frame rule is assumed if no changes are specified; the safety rules indicate the

enabling conditions, in this case only for the query events e,.

The question is: what should be the denotation of this object specification within CAut?
Several alternatives have been considered but the following one seems to be rather
adequate for the purpose at hand.

[spec] = <V€B, s, T., dg, 0;>

where
V = (% 1) ubool®
T = e

<3k, eq,<ff,ff>>,
<3#,e,<ff,tt>>,
<<ff,ff>,eq,<tt,t>>,
<<ff,tt>,eq,<tt,tt>>,
<<ff,ff>,es,T>,
<<ff, tt >,e3,1>,
<<tt,tt>,e3,1>,

<< ff,ff>,eq (i), <ff ,ff>>,
<<ff, it >,e4(ff),<ff, tt>>,
<<tt,tt>,eq(tt),<tt,tt>>

)
b 24
®
e1 e1
(ff,) (ff,tt)
eq(fhH) eq(ff)
€2 €2
(tt,tt)
es(tt)
/
es3 es €3

\»V

Figure 7.1: The denotation of spec

51

Objects as Non-Sequential Machines

The initial state s is the prenatal state #. And 1 is the postmortem state. Naturally, we
have <v,e,vo>: vi—v, for each <vy,e,vo> in T. It should be stressed that in this context e
appears as the label of <v;,e,vo>. Therefore, we use labels on transitions only when
establishing the semantic map from the object language into the proposed semantic
domain of unlabelled transition systems.

It is evident in this example that query events lead to endotransitions, eg e, (ff) from
<ff,ff> onto <ff,ff>. Furthermore, note that the denotation of this specification leads to a
non-deterministic automaton in the sense that, for example, out of state 3k there are two
possible transitions with the same event.

We assume that such a specification denotes a sequential automaton. Concurrent
automata appear only by aggregation. As expected, the denotation of such an aggregation
construct (not illustrated herein) is defined using the functor induced by the inclusion
morphism in Set’ defined by the interaction relation stated in the aggregation construct.

¥
70N

O,

f1

f1(0)

fo fs

fa(1) fi(3)

fz fo

fa
fs\» f; fs
(]

Figure 7.2: The denotation of spec’

52
J.-F.Costa, A.Sernadas and C.Sernadas

Let us concentrate instead on illustrating reification. To this end consider the following
specification:

spec' = object ob'
attributes
x:0.3
events
birth f;
update f,
death f;
query £;(0..3)
valuation
[filx=0;
[f5]x = ((x+1) mod 2)
safety
{(x=n} fy(n);
end

The idea is to show the semantics in CReif of the following implementation of ob over ob'":

spec” = reification ob/ ob'
attributes
a:=(xdiv2=1);
b:=((x - (x div 2)x2) = 1)
events
(fy + (fy; £2)) ;
([=0)(fo; fo;f2) + (x=1)(fy;f2));
f3

W

e4(1t) = f4(3)
e4(ff) 1= (f4(0) + £4(1))
end

This reification specification denotes the following reification morphism:

<ff,ff> — 0
<ff,tt> — 1
<t ,ff> — 2
<t,tt> — 3
<i#,e,<f,f>> — <¥,f,,0>
<k,ep,<ff,tt>> > <#,f,,0>;<0,f5,1>
<<ff,ff>,eq,<tt,tt>> — <0,f5,1>;<1,15,2>;<2,f,,3>
<<ff,tt>,e5,<tt,t>> — <1,f5,2>;<2,f5,3>
<<ff,ff>,e3,T> — <0,f3,1>
<<ff,tt>,es,T> — <1,f5,1>
<<t,tt>es,T> — <3,f5,T>

53
Objects as Non-Sequential Machines

<< ff,if>,e (ff),<ff,fi>> — <0,f4(0),0>
<<ff, tt >,e4(ff),<ff, t >> — <1,£,(1),1>
<<tt,tt>,e (tt),<tt,tt>> — <3,14(3),3>

According to the theory developed in section 5, if we consider, for example, two
isomorphic copies ob, and ob, of object ob, with their implementations over two isomorphic
copies ob;' and ob,' of ob', then the product of these refication morphisms is a reification
morphism from the aggregation ob;xob, into ob;+ob,'.

Note that in the denotation net of basic object specifications (without using aggregation)
each transition has source and target in V. That is, we do not need to consider transitions
with source or target in Ve However, when we aggregate objects the result will in
general include such transitions. For instance, in the aggregation ob;xob, consider the

transition:
< p,eq),<ff,i>> 1 <g,e,, <, >0>0 @3, - <ff, >, @<, >,

Clearly, in each transition source/target of the aggregation there are two components —
local states of its components ob; and ob,. That is, at the attribute level, in each transition
source/target of the aggregation there is a valuation for two disjoint sets of attributes —
each set coming from one of the components.

ot

Alive

1

CloseBox

-Alive @ Alive

OpenBox OpenBox

—Alive g Alive

Figure 7.3: Schridinger's cat.

54
J.-F.Costa, A.Sernadas and C.Sernadas

One might ask if it is conceivable and what would be the meaning of having a complex
(that is in V@, not in V) transition source/target in a basic, isolated object not built by
aggregation. Indeed, that is possible. Consider the example of the famous Schridinger
cat where the transition close-box has a complex target and each open-box transition has
a complex source: see fig. 7.3. Therefore, it seems that such transitions in objects not
built by aggregation may arise whenever "superposition of states"? is possible.

Finally, let us illustrate the use of TCAut as a semantic domain supporting the
encapsulation of objects. To this end, consider the following specification:

"

spec” = capsulation ob"/ob’ exporting
attributes
x:0.3
events
birth f;
death f3
query f,(0..3)
end

All the attributes and events of ob' are carried over to the "interface" object ob™ with the
single exception of the update event f, that is hidden.

This specification defines the following transition structure morphism:
h: <T'°,®> - <T",{<O,f2,1>, <1,65,2>, <2,£5,3>, <3,5,05]>

where

T = { .
<3#.£,0>,
<0,f2,1>,
<1,f5,2>,
<2,f2,3>,
<3,15,0>,
<0:f3,T>v
<1,f3,T>,
<2,f3,T>,
<3,f3,1>,
<0,f4(0),0>,
<1,f4(1),1>,
<2,f4(2),2>,
<3,£4(3),3>,

9 See for example the book by Roger Penrose, The Emperor's New Mind, Oxford Press, 1990.

55
Objects as Non-Sequential Machines

The resulting object ob™ is induced by the transition structure morphism h above:

obm &= hf(obt)
where h' is the functor associated to h as explained in section 6.

In the graphical representation, the hidden transitions are dashed and shadowed, as
shown in fig. 7.3.

Figure 7.3: The denotation of spec™.

The (internal) non-determinism of ob™ arises from the fact that the object may jump
internally from state x =i to state x = j at any time without the environment being aware
of the corresponding transitions related to f,. Therefore, at any time after birth and
before death all observations (f4(i), i = 0..3) are possible — the choice among these
observations is internal, not controlled by the environment. That is, in terms of the
acceptance tree model of processes (cf [Hennessy 88]), the node reached by f; is labeled
with the acceptance set menu obtained by saturating (union and convex closing) the
following set:

56
dJ.-F.Costa, A.Sernadas and C.Sernadas

(D,(£4(0),£3), (f4(1),f3), (fa(2),f5), (4(3),f5))

At that state the environment may always choose f; or f;(i) but without controlling the
choice of i.

The special role of hidden transitions is underlined when interconnecting objects:
internal transitions are not available for establishing interactions.

Note that at the Oblog language level we may wish to encapsulate attributes as well. If so,
at the semantic domain level, such an encapsulation is simply reflected by hiding the
corresponding observation transitions. Therefore, in either case, the hiding is applied to
transitions, never to states.

8 Concluding remarks

We introduced a new semantic domain for object-oriented concepts based on concurrent
transition systems that comes out of the realization, strongly suggested by
experimentation with the Oblog language and object reification, that object semantic
domains should be closely related to the operational semantic domains of processes,

around the concepts of state and transition with full concurrency.

Concepts and constructions like object interconnection, reification and encapsulation
that were not (fully) explained in other semantic domains have now a precise
mathematical semantics.

Interconnection of objects is categorially explained, by fibration techniques, in the
presence of two relevant forms of interaction: event sharing and calling. Reification is
also well explained, ensuring the envisaged levels of vertical and horizontal
compositionality. Encapsulation (hiding of transitions) is also dealt with, by cofibration

techniques, introducing the essential ingredient of internal non-determinism.

Therefore, we outlined an effective semantic domain for object facets (or aspects) where
the higher levels of a complete object theory (dealing with classes and specialization) can
be built upon.

With respect to further work, it should be clear that this may be the starting point of a
rather fruitful line of research on the semantics of object orientation around transition
systems. Moreover, some of the results seem to be interesting enough within the field of
pure process theory. But the fully abstraction of the adopted process model needs
investigation, capitalizing in the fact that the monoidal closure provides that property for
the relevant Petri nets (c¢f [Ferrari 90, Corradini 90, Gorrieri and Montanari 90]).

57
Objects as Non-Sequential Machines

Many issues directly relevant to object orientation are already evident as deserving
further attention, namely extending the proposed semantics to higher level constructs
including classes and specialization (following [SernadasC et al 91, Ehrich and
SernadasA 91]), as well as type reflection principles. Also interesting is the clarification
of the relationship to other semantic domains, such as those based on traces, by providing
the suitable translation functors. A similar approach should be followed in bridging the
gap to the object logics (taking the same path as in [Fiadeiro et al 91] for traces).

Acknowledgements

This work was partially supported by the Esprit Basic Research Action 3023 (IS-CORE)
and by the JNICT Project PMCT/C/TIT/178/90 (FAC3). We also thank Hans-Dieter
Ehrich and Joseph Goguen for many fruitful discussions and Ugo Montanari and
Andrea Corradini for the input received by electronic mail.

References

[Addmek et al 90]
J.Addmek, H.Herrlich and G.Strecker, Abstract and Concrete Categories, Wiley,
1990

[Barr and Wells 90]
M.Barr and C.Wells, Category Theory for Computing Science, Prentice Hall, 1990

[Bednarczyk 88]
M.A . Bednarczyk, Categories of Asynchronous Systems, PhD thesis, available as
technical report 1/88, University of Sussex, January 1988

[Best and Ferndndez 88]
E.Best and C.Ferndndez C., Nonsequential Processes, Monographs on The-
oretical Computer Science 13, Springer-Verlag, 1988

[Corradini 90]
A.Corradini, An Algebraic Semantics for Transition Systems and Logic Pro-
gramming, PhD thesis, available as technical report TD-8/90, Universita degli
Studi di Pisa, March 1990

[Corradini et al 90]
A.Corradini, G.L.Ferrari, and U.Montanari, "Transition Systems with
Algebraic Structure as Models of Computations”, in I.Guessarian (ed), Semantics
of Systems of Concurrent Processes, LNCS 469, Springer-Verlag, 1990, 185-222

[Costa 91]
J.-F.Costa, Fundamentos Categoriais da Composi¢do Paralela e Reificacdo, PhD
thesis, available as technical report, Universidade Técnica de Lisboa, Instituto
Superior Técnico, August 1991

58
J.-F.Costa, A.Sernadas and C.Sernadas

[Costa and Sernadas 91]
J.-F.Costa and A.Sernadas, "Process Models within a Categorial Framework",
Research Report, INESC, 1991 (submitted)

[Degano et al 89]
P.Degano, J.Meseguer, and U.Montanari, "Axiomatizing Net Computations and
Processes", in Proceedings of Logic in Computer Science, Asilomar, 1989, 175-185.

[Ehrich et al 90]
H.-D.Ehrich, A.Sernadas, and C.Sernadas "From Data Types to Object Types",
in Journal of Information Processing and Cybernetics, EIK 26(1/2), 1990, 33-48

[Ehrich and SernadasA 90]
H.-D.Ehrich and A.Sernadas, "Algebraic Implementation of Objects over
Objects", in J. de Bakker, W.-P. de Roever and G.Rozenberg (eds), Proceedings
of the REX Workshop on Stepwise Refinement of Distributed Systems: Models,
Formalisms, Correctness, Springer-Verlag, 1990, 239-266

[Ehrich et al 91]
H.-D.Ehrich, J.Goguen and A.Sernadas, "A Categorial Theory of Objects as
Observed Processes”, in J.W. de Bakker, W.P. de Roever, and G.Rozenberg (eds)
Proceedings of the REX90/Workshop on Foundations of Object-Oriented Lan-
guages, LNCS 489, Springer-Verlag, 1991, 203-228

[Ehrich and SernadasA 91]
H.-D.Ehrich and A.Sernadas, "Object Concepts and Constructions”, in G.Saake
and A.Sernadas (eds), Proceedings of the IS-CORE Workshop 91, to be published

[Fiadeiro et al 91]
J.Fiadeiro, J.-F.Costa, A.Sernadas and T.Maibaum, "Terminal Process Se-
mantics of Temporal Logic Specifications”, INESC, 1991 (submitted for publica-
tion)

[Ferrari 90]
J.L.Ferrari, Unifying Models of Concurrency, PhD thesis, available as technical
report TD-4/90, Universita degli Studi di Pisa, March 1990

[Goguen 75]
J.Goguen, "Objects", International Journal of General Systems 1(4), 1975, 237-243

[Goguen 89]
J.Goguen, A Categorical Manifesto, Technical Report PRG-72, Programming
Research Group, University of Oxford, March 1989

[Goguen 91]
J.Goguen, "Sheaf Semantics of Concurrent Interacting Objects”, to appear in
Mathematical Structures in Computer Science.

[Goguen and Ginali 78]
J.Goguen and S.Ginali, "A Categorical Approach to General Systems Theory", in
G.Klir (ed) Applied General Systems Research, Plenum 1978, 257-270

[Goguen and Meseguer 82]
J.Goguen and J.Meseguer, "Universal Realisation, Persistence Interconnection
and Implementation of Abstract Modules", in M.Nielsen and E.Schmidt (eds)
Proceedings of the 9th International Conference on Automata, Languages and
Programming, LNCS 140, Springer Verlag 1982, 265-281

59
Objects as Non-Sequential Machines

[Gorrieri and Montanari 90]
R.Gorrieri and U.Montanari, "SCONE: A Simple Calculus of Nets", in
Proceedings of Concur'90 — Theories of Concurrency: Unification and Extension,
Springer-Verlag 1990, 2-30

[Hennessy 88]
M.Hennessy, Algebraic Theory of Processes, MIT Press, 1988

[Mac Lane 71]
S.Mac Lane, Categories for the Working Mathematician, Springer-Verlag, 1971

[Meseguer and Montanari 90]
J.Meseguer and U.Montanari, "Petri Nets are Monoids: A New Algebraic
Foundation for Net Theory", in Proceedings Logic in Computer Science,
Edinburgh, 1988, 155-164. Full version to appear in Information and Computation,
also available as Technical Report SRI-CSL-88-3, SRI International, January 1988

[Olderog 89al
E.-R.Olderog, "Strong Bisimilarity on Nets", in Proceedings of the REX School:
Linear Time, Branching Time and Partial Order in Logics and Models for
Concurrency, LNCS 354, Springer-Verlag, 1989, 549-573

[Olderog 89b]
E.-R.Olderog, Nets Terms and Formulas: Three Views of Concurrent Processes
and Their Relationship, Habilitationsschrift, available as a technical report,
Institut fiir Informatik und Praktische Mathematic, Christian-Albrechts-
Universitit zu Kiel, 1989

[Reisig 85]
W.Reisig, Petri Nets: An Introduction, Monographs on Theoretical Computer
Science 4, Springer-Verlag, 1985

[SernadasA and Ehrich 90]
A.Sernadas and H.-D.Ehrich, "What is an Object, After All", in R.Meersman
and W.Kent (eds), Object-oriented Databases: Analysis, Design and Con-
struction, North-Holland, to appear

[SernadasA et al 90]
A.Sernadas, H.-D.Ehrich, and J.-F.Costa, "From Processes to Objects", The
INESC Journal of Research and Development 1(1), 1990, 7-27

[SernadasA et al 91]
A.Sernadas, C.Sernadas, P.Gouveia, P.Resende, and J.Gouveia, Oblog: An
Informal Introduction, INESC, 1991

[SernadasC et al 91a]
C.Sernadas, P.Resende, P.Gouveia, and A.Sernadas, "In-the-large Object-
oriented Design of Information Systems", in F.van Assche, B.Moulin and
C.Rolland (eds), The Object-oriented Approach in Information Systems, North-
Holland, in print

[SernadasC et al 91b]
C.Sernadas, P.Gouveia, J.Gouveia, A.Sernadas and P.Resende, "The Reification
Dimension in Object-oriented Data Base Design", Proceedings of the
International Workshop on Specification of Data Base Systems, Glasgow-
Scotland, to be published

60
J.-F.Costa, A.Sernadas and C.Sernadas

[SernadasC et al 91c]
C.Sernadas, P.Gouveia, J.-F.Costa, and A.Sernadas, "Graph-theoretic Semantics
of Oblog: Diagrammatic Language for Object-oriented Specifications”, in
G.Saake and A.Sernadas (eds), Proceedings of the IS-CORE Workshop 91, to be
published

[Winskel 87]
G.Winskel, "Petri Nets, Algebras, Morphisms and Compositionality”, in
Information and Computation 72, 1987, 197-238

[Winskel 88a]
G.Winskel, "An Introduction to Event Structures", in Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency, LNCS 354,
Springer-Verlag, 1988, 364-397

[Winskel 88b]
G.Winskel, "A Category of Labelled Petri Nets and Compositional Proof System",
in Proceedings of Logic in Computer Science, Computer Society Press, 1988, 142-154

[Winskel 89]
G.Winskel, "An Introduction to Event Structures", in Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency, LNCS 354,
Springer-Verlag, 1989, 29-95

61

Graph-theoretic Semantics of Oblog:
Diagrammatic Language for Object-oriented Specifications

Cristina Sernadas, Paula Gouveia, José-Félix Costa and Amilcar Sernadas

Department of Mathematics, Instituto Superior Técnico
Av. Rovisco Pais, 1096 Lisboa Codex
INESC, Apartado 10105, 1017 Lisboa Codex
email: css@inesc.uucp

Abstract: A graph-theoretic semantics is presented for the object, the calling interaction
mechanism and the inheritance specification constructs introduced with the Oblog
diagrammatic language. Objects are assumed to be sequential whereas interaction establishes
concurrency amoeng different objects. An object specification is denoted by a graph whose
nodes indicate the possible sequences of events as well as the values of the attributes.
Interaction mechanism specifications between objects are denoted by graphs that are
constructed from the graphs that denote the specifications of the components using a
concurrency operation symbol. Instances of a class are described by diagrams of graphs
which reflect the inheritance mechanisms for the class.

1.Introduction.
2. Bases.
2.1 Matrix diagram, signature and interpretation structure
2.2 Attribute initialization and updating diagrams and positional formulae
2.3 Behaviour diagram and safety formulae
2.4 Compliance
2.5 Base
3. Aggregating instances
3.1 Independent instances.
3.2 Calling
4. Inheritance graph and instances
5. Concluding remarks

1. Introduction

Object-orientation is nowadays becoming a computing paradigm adopted in several areas
namely in programming [Goguen 75,Goldberg and Robson 83,Albano et al 86,America
et al 86,Booch 91], databases [Lochovski 85,Dayal and Dittrich 86,Bancilhon 88,Dittrich
88,Kim and Lochovski 88,Kim et al 89] and information systems [SernadasA et al
89a,SernadasA and Ehrich 90]. It seems that object-oriented concepts are now stabilizing
namely in the area of information systems. A great progress was achieved when
recognizing that one of the basic components of an object [SernadasA et al89a,SernadasA
and Ehrich 90] is a process in the sense of process theory [Hennessy 88].

62

Cristina Sernadas et al

Among the main issues that characterize the paradigm [Atkinson et al 89] we can include
classes, types and object identity [Khosfian and Copeland 86,Ehrich et al 89], locality,
interaction mechanisms, aggregation, complex objects, hiding and inheritance [Cook and
Palberg 89,Cusack 91]. Other not so common aspects are related with object-oriented
design in-the-large including parameterization [SernadasC et al 91a] and reification
[Ehrich and SernadasA 89,SernadasC et al 91b].

A lot of effort is also going on towards providing a formal semantics [for instance
Goguen and Meseguer 86,Beeri 89] for object-oriented specifications. It seems that this
problem is complex due to the quantity and complexity of object-oriented abstractions.

Two main approaches have been followed for providing the semantics: the proof-theoretic
and the model-theoretic: In the proof-theoretic approach the main idea is to characterize
the theory (set of assertions) that is induced by an object-oriented specification. Also here
several calculi have been adopted like Hilbert-style [SernadasA et al 89b, Fiadeiro et al
90,Fiadeiro and Maibaum 91,SernadasC and Fiadeiro 91,Wieringa 90] and Gentzen-style
[SernadasC et al 90a,SernadasC et al 90b].

On the other hand, more emphasis has been put in model-theoretic semantics resulting in
several semantic domains [America et al 86,Bruce and Wegner 86,Kamin 88,Cardelli
89]. In [Goguen 75,Ehrich et al 90,Goguen 91] sheaves are introduced as a semantic
domain. In [Ehrich et al 88,SernadasA et al 90,Costa and SernadasA 91] categorial
domains are discussed. In the latter cases the semantic domains are analyzed
independently of the specifications.

However, some of the important issues of object-orientation were still difficult and
sometimes even problematic to explain. In [Costa et al 91] concurrent transition systems
are introduced as semantic domain. The object-oriented concepts are then described in
categorial terms by introducing relevant categories of automata. Reification and hiding are
discussed and explored. In [Ehrich and SernadasA 91] the requirements for defining the
basic object-oriented concepts are pointed out.

The map between specifications and the semantic domains seems now also feasible as we
hope to show in this paper. We use a diagrammatic object-oriented language OBLOG
(OBject LOGic) to introduce specifications. The corresponding textual language can be
seen in for example [SernadasA et al 1987,SernadasC et al 90]. In [Jungclaus et al
91,Saake 91] another dialect of this textual language is introduced. For details about the
OBLOG concepts and specification abstractions see [SernadasA et al 91].

We concentrate on the specification of objects (instances of object classes) namely in the
so called bases (single objects without taking inheritance into account), the calling
interaction mechanism between objects and upwards (multiple) inheritance.

The specification of a community is presented by a collection of graphical diagrams. For
instance, we have three main kinds of diagrams for specifying objects: the matrix diagram

63

Graph-theoretic Semantics of Oblog: Diggrammatic Language for Ofject-oriented Specifications

where events and attributes are declared, the attribute initialization and updating diagrams
where the effects of events on attributes are stated and the behaviour diagram where the
possible sequences of events are indicated.

Specifications have a proof-theoretic semantics meaning that they induce descriptions
(theories). Basic (simple) descriptions are induced by the bases of object specifications.
The interaction mechanisms provide the means for building more complex descriptions
from the descriptions of the components. Inheritance allow us to get the description of an
instance composed by several descriptions taking into account the inheritance graph of the
class where the instance belongs (note that in this way upwards inheritance leads to the
possibility of associating views with an object).

Graphs are adopted as the semantic domain. Hence, descriptions are denoted by graphs.
Contrarily to what happens in [Costa et al 91] we assume that objects are sequential
machines. As a consequence the graph that denotes an object description provides all the
possibles sequences of events for that object. Specificationwise this sequential
perspective implies that we do not have the concurrency operation symbol [Baeten and
Bergstra 91] at the object level.

On the other hand, the graph that denotes the description of the aggregation is constructed
from the graphs of the components. In this graph, we can have events in concurrency
resulting from the introduction of the concurrency operation symbol at the description
level. In this paper we only discuss calling as interaction mechanism taking advantage of
the constructions introduced for aggregating independent objects. The sharing mechanism
is analyzed in [Costa et al 91].

An instance of a class is specified by the base specification as well as the inheritance
graph for the class. The description of an instance is then a set of descriptions
corresponding to facets for all the classes in the inheritance graph. This description is
denoted by a diagram in the category graph. This diagram includes the graph that denotes
the basic description as well as graphs that denote the different facets.

The paper is organized as follows. In section 2, we present the base of a generic instance
(not considering inheritance). In subsection 2.1 we introduce the matrix diagram. In
subsection 2.2 initialization and updating diagrams are discussed. In subsection 2.3 we
define behaviour diagrams. In subsection 2.4 we present two compliance aspects.
Finally, the base concept is defined in subsection 2.5.

In section 3, we investigate aggregation between instances of two object classes. We start
in subsection 3.1 by discussing the aggregation problem for independent instances. In
subsection 3.2 we introduce the calling mechanism and the aggregation in the presence of
calling.

In section 4, we introduce the concept of inheritance graph and instance. For this purpose
upwards inheritance is also described.

64

Cristina Sernadas et al

2. Bases

An object class can be informally described as a pair composed by the set of identifiers of
the instances and the base (sometimes called type in object-orientation) of a generic
instance including the common aspects of the instances of the class. All relevant aspects
are introduced with the OBLOG diagrammatic object-oriented specification language.

Definition 2.1 Object class

An object class € is a pair (161,x:%) where 141 is a data type called the identification
space for class € and x:% is the base of a generic instance of class &.

The data type 161 includes a sort 161 and a finite set ident of zero-ary operation symbols
with codomain |41 called identifiers. The base x:%6is a triple (TM.x:«2, VU x:¢, B x:%¢) where
TN x:% is the matrix diagram, VU x.% is a set of attribute initialization and updating
diagrams and ®Bx.¢ is the behaviour diagram. O

We adopt the perspective as in [Khosfian and Copeland 86,Booch 91] that there is an
identification mechanism that uniquely identifies all the objects in a community. In this
situation, the data type I61 just allows us to refer to all objects in the same class &. It is
also possible as in [SernadasA et 91] to consider specific identification mechanisms for
the objects in the same class based on data types and/or other object classes.

The diagrams in the triple (T x:, V x:¢, B x:%) introduce the specification of the relevant
aspects of a generic instance. This specification must be a sentence built according to the
grammar of the OBLOG diagrammatic language. For this reason, we use a simplified and
liberal version of BNF for explaining the construction of these diagrams.

We do not discuss furthermore the identification space but concentrate on the base of a
generic instance namely in what the diagrams, what they induce (the proof-theoretic
semantics) and what is the respective denotation (the model-theoretic semantics).

The matrix diagram induces a signature and a language. The attribute initialization and
updating diagrams induce a set of positional formulae. Finally, the behaviour diagram
induces a set of safety formulae. The signature and the formulae constitute the description
of the base. The description is denoted by a graph, i.e., an interpretation structure for the
signature that satisfies all the formulae in the description when an interpretation is fixed
for the data types.

2.1 Matrix diagram, signature and interpretation structure

Data types are needed for introducing matrix diagrams. Since data types are well known
we do not concentrate on their specification, see instead [Ehrig and Mahr 85]. Hence, we
assume a pre-defined set 9 of data types including the identification spaces of object
classes.

65

Graph-theoretic Semantics of Oblog: Diagrammatic Language for Object-oriented Specifications

As an illustration consider the following matrix diagram M, x.¢ of a simple base x:%
including the data type boolean:

: @
where bool is the sort in boolean.

Definition 2.1.1 Matrix diagram

The matrix diagram Tl x.«¢ of the base x:6’ of a generic instance of object class €
including the set DC 9 of data types is defined as follows:

M x: := <seq_atts> <seq_birth_evs> <seq_updt_evs> <seq_death_evs>
<seq_atts> = <att_decl> | <att_decl> <seq_atts>

<seq_birth_evs> := <birth_ev_decl> | <birth_ev_decl> <seq_birth_evs>
<seq_updt_evs> := € | <updt_ev_decl> <seq_updt_evs>
<seq_death_evs> := € | <death_ev_decl> <seq_death_evs>

<att_decl> :=
<args_sort>

<codom_sort>
a
<birth_ev_decl> :=

<updt_ev_decl> :=

&
@ . <args_sort>

<death_ev_decl>

+g
@ . <args_sort>

<args_sort>

56

Cristina Sernadas et al

<args_sort> := € | <sort > <args_sort>
<codom_sort > := <sort>

where <sort > is any sort in D. a

The matrix diagram TN, x.¢¢ is composed by at least one attribute declaration, at least a
birth event declaration, possibly no update and death event declarations. The matrix
diagram induces a signature (a set of symbols) Xx.« and a language Ly..

Definition 2.1.2 Signature or vocabulary 4.

Let ¥ be an object class and . x:¢ the matrix diagram of the base x:% of a generic
instance including the set of data types D. The signature Zx.¢ induced by the matrix
diagram M.x.¢z is a quadruple ((S,OP),ev,EVT,ATT)
* (S5,0P) is the data type signature for the data types included in D;
* ev is the event sort;
« EVT is a S*x{ev}-indexed family of sets of event symbols, where EVT}, is the
sub-family of birth event symbols, EVTj is the sub-family of death event symbols
and EVTy=EVT-(EVT,UEVTjy) is the sub-family of update event symbols.
Moreover, EVTpzJ.
« ATT is a S*xS-indexed family of sets of attribute symbols;
such that
ae ATTy, s sfor each att_decl in T, x.% involving a, si,...,Sp as
<args_sort> and s as <codom_sort>;
ge EVTy 5] S8 for each birth_ev_decl in 'ﬂ'l,,x ¢ involving g and
$'1,...,8'm as <args sort>;
geEVTyy 18" €V for each death_ev_decl in T, x.¢¢ involving g and
$'1,...,S'm aS <args_sort>;
ge EVTu,s'l,.,s'm,ev for each updt_ev_decl in T x.¢¢ involving g and
$'1,...,8'm as <args_sort>. 0

No operation symbols are considered on the event sort ev besides those in EVT since we
assume that objects have sequential behaviours (i.e., describable by sequences of events)
as we will see below. If we wanted objects to have non sequencial behaviours it would
be necessary to have operation symbols whose argument and codomains are event sorts
like for example the concurrency operation symbol. The concurrency operation symbol
will be introduced (cf section 3) when discussing aggregation of instances of object
classes. Event and attribute operation symbols can have parameters which are data sorts.

Example 2.1.3
The signature Zy.¢ of the simple base x:%¢” induced by the matrix diagram M. . presented above is:
S={bool}

OPpool={true,false)
OPpool,bool={not}

67

Graph-theoretic Semantics of Oblog: Diagrammatic Language for Object-oriented Specifications

OPbool bool,bool={and,or}
EVTey=(e1, €2, €3}
EVToool,ev={€4}
EVTpev=(e1)
EVTdev=(e3}
EVTyev={e2, e4(true),e4(false)}
ATTpool=(a, b} o

Before discussing the denotation of a matrix diagram we must introduce some notation.
Let 2A be the set of all subsets of A and [A—B] where A and B are sets be the set of all
maps from A to B. Assume also that for sequences we have the following operations:
first returning the first element of the sequence, last returning the last element of the
sequence, tail returning for each sequence its subsequence without the first element and
take returning for each sequence the same sequence without the last element.

Definition 2.1.4 XZy.@-Interpretation structure My.g

Let 6" be an object class and Zy. the signature induced by the matrix diagram M.x.¢ of
the base x:€ of a generic instance including the set of data types D. Let 2B be a SU{ev}-
indexed family of sets called carriers of the sorts such that
Bey={g(b'1,...,.b"H): ge EVTy,..sp.evs b'i€ By, si€S, 1<i<m, m=0}
whose elements are called events;
Bev b={g(b'1,....b'n): g€ EVTb,S-l___s'm,ev, b'je Bg'.s s'i€ S, 1<i<m, m20} C Bey
whose elements are called birth events;
Bev,d=(g(b'1,,0'm): gEEVTq,s, s evs b'i€ By, s'i€ S, 1<i<m, m20} C Bey
whose elements are called death events;
Bey,u={g(b'1,....b'm): ge EVTu,s'l___s'm,eVa b'e By si€ S, 1<i<m, m20} C Bey
whose elements are called update events.
and
ATTy={a(by,...,bp): ae ATTSI___SH,S, bie B o Si€ S, 1<i<n, n2>0}
be the set of attributes.

A Zy.q-interpretation structure M y.e fixing Bis a small graph whose set of nodes is
+ Mxig)C Boy X[ATTy—27)
such that
(a) (e.9)e Mxw,
€ is the empty sequence
e [ATTy—28]: @(a)=@, ac ATT,
(b) oe Mx;cgo: proj1(c)=<e>, e€ Bey b
(c) if oe J‘rtx;cgo then
first(proj1(0))e Bev b
tail(proj 1 (6))N By, p=2
tail(proj1(0))N Bey,¢=2
or take(tail(proj1(0)))e Bev,u*, last(proj1(0))e Bev,d
(d) if oe M ., then O'e Jﬂ,x;«go: proj1(c’) is a subsequence of proj;(c)
(e)if 0,0'e ~er:<€0 and 6#0'then proj1(c)#proj1(c’)

68

Cristina Sernadas et al

(f) if oe My, and ae ATT;, s, s then proja(a(bi,....bn))e 2%s
and whose set of arrows is
2 .M.x;cgl G M’x:(gox 'Bev
such that
(8) ((e.9).0)e Hx:g), €€ Bev
(h) (o,0)e 'M'x:%l iff
source(o,e)e .M.x:cgo
target(c,e)e Mx:‘fo
proji(target(,e))=proj1 (o) <e>

The interpretation of an operation symbol oe OPF;, s sin M. is a map
0: By X..xBg =278
The interpretation of an attribute symbol ae ATTg, s In M@ is a Bg %X B -
indexed family of maps
a(bi,...,bp): 'Bev*—>2'BS
a(bi,...,bp)(<eq,....ex>)=
projz2(o)(a(by,...,bp)) if ce .M.x:cgo and proji(0)=<ey,...,ek>
@ otherwise
The interpretation of an event symbol ge EVTg
g: (Bs-lx...xassvm—ﬂgev
gS'l ...S'm,ev(b‘l "“yb'm)= { g(b‘l r'",b'm)] a

1.8 i Mx: is a map

Nodes are pairs (states) whose first component, indicated by proji, is a sequence of
events (elements of Bey*) and whose second component, indicated by projz, is a map
indicating for each attribute (element of ATTy) the value after the sequence of events.

Arrows are pairs composed of a node (the source of the arrow) and an event. The first
component of the target node of an arrow is the sequence resulting from the concatenation
of the first component of the source node with the event. The second component of the
target node is a map which gives for each attribute the respective value after the new
sequence of events.

Let us discuss the requirements of the graph:

(a) node (g,9) is compulsory, it corresponds to an instance not yet created, i.e. indicates
a pre-natal situation: the first component € is the empty sequence and the second
component is the empty map that assigns to each attribute the empty set;

(b) nodes whose sequence of events is a birth event are compulsory;

(c) nodes are such that: the first component of the sequence of events is a birth event, the
tail of the sequence of events has no birth events, the tail of the sequence of events either
has no death events or it can have a death event as the last element;

(d) there is a prefixed closure assumption: if a node belonging to the interpretation
structure has a sequence of events s then all the nodes whose sequence of events is a
subsequence of s must also belong to the interpretation structure;

(e) there are no nodes with the same sequence of events;

(f) attributes must have values in the carrier of the codomain sort;

69

Graph-theoretic Semantics of Oblog: Diggrammatic Language for Object-oriented Specifications

(g) there is an arrow between node (g,) and any node whose sequence of events is a
unique birth event;

(h) there is an arrow between any two nodes in the interpretation structure whose
sequences of events are s and s'=s <e>.

Proposition 2.1.5
Interpretations of attribute symbols are well defined.
Proof

According to the construction of an interpretation structure My.¢¢ there is at most a node
i *
oe Mx.¢ such that proji(o)=<ei,...,.ex> for any sequence <ej,...,ex>€ B,y - a

The interpretation of an attribute symbol at a node fixing the parameters is a map which
indicates the set of values of the attribute after the sequences of events in that same node.
With such an interpretation structure we have nondeterminism on attributes, i.e. an
attribute can have a set of values at the same time. This aspect will be important when
discussing inheritance (cf section 4). Operation and event symbols are interpreted by sets
fixing an interpretation of the parameters.

Example 2.1.6

Consider the simple base above with the signature Xy .. Assume that we fix B as
Bpool={ 1t ,ff}

We have for example
(<e1>, f(a)=(false}, f(b)={true false})e M X6

((<e1>, f(a)={false}, f(b)={true,false}), ex)e J'tx;<g1
source(((<e1>, f(a)={false}, f(b)={true,false}), ep)=(<e1>, f(a)={false}, f(b)={false,true})
target((<e)>, f(a)=(false}, f(b)={true,false}), e2)=(<e1e2>, g(a)={true}, g(b)={true}) O

A more liberal graph concept is needed for relating signatures with graphs namely for
explaning inheritance (cf section 4).

Definition 2.1.7 Graph based on a signature

Let € be an object class and Zx.¢ the signature induced by the matrix diagram TN x.¢ of
the base x:¢ of a generic instance including the set of data types D. A Zx.«o-graph §x.¢
is a graph based on the signature Zx: iff fixing B as in Definition 2.1.4 we have
B8 C Bey X[ATT -2
ATTy={a(by,...,by): ae ATTSI_‘_SH,S, (b1,...bn)€ Bs;x...xBg_}
Gx:%l(;';x:‘gox Bey O

70

Cristina Sernadas et al

Proposition 2.1.8

A Xx.co-interpretation structure M. is a graph based on the signature Zy.c. O
The signature Zx.¢¢ defines a language Ly-¢ composed by terms and formulae.
Definition 2.1.9 Terms over Iy

Let € be an object class and Zy.¢¢ the signature induced by the matrix diagram M. x.¢z of
the base x:¢” of a generic instance including the set of data types D. Let Y be a S-indexed
family of sets of variables of data sort in S. The set of terms Tx:2(Y) over Zx. ¢ is a
SU{ev) -indexed family of sets of terms defined inductively as follows:

» for every se S, @se Tx;cgs(Y);

* if ye Y then ye Tx;CgS(Y);

» if oe OPSL“_,SR,S and t;e Tx:chi(Y), i=1,...,k then o(ty,...,ty)e Tx;rgs(Y);

+ if ae f’&T’I‘Sl,_._,Sk’S and t;e Tx;chi(Y), i=1,...,k then a(ty,...,ty)e Tx:th(Y);

o ifte TX;CgS(Y) and ue TX;Cgev(Y) then [u]te Tx;cg‘s(Y);

. ifte Tx:,(Y) then next(t)e Tx:‘é’s(Y);

« if ge EVTsl,...,sk,ev and t;e Tx;q,aSi(Y), i=1,...,.k then g(ty,...,ty)e Tx;rgev(Y). O

Besides the terms @5 and the variables, terms of data sort are built with data type
operation symbols, attribute symbols as well as with the positional [] and the next
operators. The application of these positional operators to terms is detailed in [Fiadeiro
and SernadasA 90]. We adopt a unary version of the positional operator (just one event
term). However, it is simple to introduce a n-ary version of this operator. Terms of event
sort are built with the event symbols.

Example 2.1.10 Terms over Xy

e4(true)e TX:Cgbool,ev(Y)
[el]ae Tx'tgbool(‘{) a

Terms are interpreted in an interpretation structure as sets of values meaning that at the
same time a term can have more than one value.

Definition 2.1.11 [Interpretation of terms

Let 6 be an object class and Zx.c¢ the signature induced by the matrix diagram TN, y.c¢ of
the base x:¢” of a generic instance including the set of data types D. Let Tx.(Y) be the
family of terms over Zx.42 and M y.¢¢ an interpretation structure for Zy.ce. Let Q be the set
of all assignments for the variables in Y. An assignment p is a S-indexed family of maps
Ps:Ys—27S. The interpretation %, of the terms is a SU{ev}-indexed family of maps
It Txar(V)-[Q—[Bey™ - 271
such that
© As@s)(p)(<el,...en>)=T

71

Graph-theoretic Semantics of Oblog: Diagrammatic Language for Ofject-oriented Specifications

I s(y)(p)(<et,...en>)={ps(y)}

o Iuso(ty, i) (P)(<eL,....en>)=

Ub1....bi)e FHs1(t1)(P)(<e] ,0r80>) e TH S () (P)(<E L o) OO 1e-nsDK)
if exists ce va:%‘o, proj1(o)=<ey,...,en>

otherwise &

o Ausaty,...t)(p)(<er,....en>)=

proja2(o)(a(by,...,bk)) if exists oe J¢x;<g0, proji(o)=<ey,....en>
otherwise &;

[]
w
Vamn
~
o]
[S—
=L
o~
o)
p —
N
a
a
ke
=
\Y4
p
]
C
o—
m
<
(e]
<
o~
=
S
o~
©
P
A
[¢]
4
[¢']
= |
\"
o
§
~
mo?
~
o)
o
~~
A
[¢']
[
o
=
.
v

if exists (0,e')e Wx:;, proji(c)=<ey,...,en>
M s(next())(p)(<el,....en>)=Ue'e projg(S)L?M s(D(p)(<et,....en,e">)
' S={(o,e")e J-Lx;cgl: proj1(o)=<e1,....en>}
© Iev(8(tr,t))(P)(<el,e.n>)=
Ub]....bide PHs () (<e mnren> e x M s (4 (p) (<] son>) (E(D1-0bK))
if exists (o,e')e Jd,x;cgl, proji1(o)=<ey,...,.en>

otherwise &
ye Y5, tig Trg (Y), i=1,...k, te Txg(Y), ue Txig, (Y). O

The interpretation of a term obtained by applying an operation symbol, an attribute
symbol or an event symbol is a set of values resulting from picking up tuples of
interpretations of the argument terms.

We adopt a branching semantics for the interpretation of terms taking advantage of having
a graph as an interpretation structure. The interpretation of nex#(t) after a sequence
<e1,..-,ep> is the set of interpretations of t after all sequences accessible from
<e1,....en>. That is to say for evaluating terms with the next operator we pick up all the
first components of the targets of the arrows that have n+1 elements and whose first
component of the source node is <ey,...,ep>.

A term can be interpreted as the empty set for a particular sequence <ej,...,en> namely
when there is no node whose first component is that sequence. The map Ay s([u] (p)
can also be the empty set for another reason. It may be the case that there is no node
whose first component is <ey,...,en,e> and e is an interpretation of the event term u.

Example 2.1.12

The interpretation of [eq]a is

A bool(e112)(P)E)=F hool @) (P)(<e1>)]

It seems reasonable to consider from now on that both event and attribute symbols are
applied to terms not involving attributes, positional and next operators. In this way the
interpretation of an event term is a set with a unique element.

72

Cristina Sernadas et al

Definition 2.1.13 Formulae over Zy.«¢ and Tx<g(Y)

Let % be an object class, x:% be the base of a generic instance and Zy.¢ the signature
induced by the matrix diagram . x.¢¢ including the set of data types D. Let Tx.«2(Y) be
the family of terms over Zy.¢. The set of formulae Fx.2(Y) over Xx.«¢ and Tx.(Y) is:

« if ty,12€ Tx:g(Y) then t1=tze Fr:@(Y);

o if <uy,..up>e Trig, (V)" then after(uy,....up)e Fxg(Y);

o if UeFx.«(Y) and ue Ty eyl Y) then [u]Qe Fx.(Y);

o if AeFx.(Y) then sometimefa(Q),sometimep(Q), alwaysfy(A), next(Q)e Fx.(Y);

+ if AeFxe(Y) and ue Tx:w, (Y) then {QU}ue Fx.e(Y);

o if Cp,Ure F(Y) then (= QUy), (U1=CUy)e Fxe(Y).]

For the purposes of this paper we only consider the predicate =. Of course other
predicates can be considered and can be defined for particular applications. The positional
operator can also be applied to formulae. Again we adopt a unary positional operator. The
extension is again straightforward. We only include the temporal operators sometimef3
and alwaysfy as illustrative of the temporal operators referring to the future. The
sometimef3 operator is the "existential" sometime in the future whereas the afwaysfy is the
"universal” always in the future operator (see [MacArthur 76]).

Definition 2.1.14 Positional and safety formulae

Let ae ATTg, s, s UE Tx:€o (Y), t€ Trig (), Cle Fy-Y).

The formula [u]a(ty,...,tn) =t is called a positional formula.

The formula {C€ }u is called a safety formula. O

Example 2.1.15

[e1]a=false is a positional formula
{b=true} eq(true) is a safety formula]
Definition 2.1.16 Denotation of formulae

Let € be an object class and x:%’ be the base of a generic instance. Let Fx.(Y) be the set
of formulae over the signature Xy.¢. Assume that M x.¢¢ is an interpretation structure for
the signature Zy.2. The denotation of formulae Yy, is a map
Dy: Frg(Y)>[Q - [Bey™ - (t,1}]]
such that for pe Q
« Dy (t1=2))(p)(<el,...en>)=(Ius(t(P)(<e1,....en>)=Ih s(t2) (P)(<E1,....€n>))
o Dy (after(u))(P)(<eL,mrr.n>)=(en€ Hhey(U)(P)(<EL,wrren-1>))
o Dy (after(uy,...,uy))(p)(<eq,....ep>)=1
iff if m<n then
Dy, (after(uy))(p)(<eq,....ep>)=1t
Dy, (after(uy,...,upn_)(P)(<eq,...en.1>)=1

73

Graph-theoretic Semantics of Oblog: Diagrammatic Language for Object-oriented Specifications

o Dy ([ulQ)(p)(<er,....en>)=1t
iff for every e'e Iy (u)(p)(<el,....en>) .@M(Cl)(p)(<el,...,en,e'>)=tt
o Dy (sometimef3(Q))(p)(<el,....en>)=1t
iff if exists ce M x:E- proj1(o)=<eft,...,en>
then there is ¢'e J'tx;cgo such that
(o,0)e Mxw > TE IN,
proj1(c')=<eq,....ens..,€m>
Dy, (Q)(p)(<e1,....€n5--,€m>))=1t
o Dy (sometimep(Q))(p)(<eq,....en>)=1t
iff if exists oe J'tx;cgo: proji(o)=<eft,...,.en>
then there is k<ne N, such that
Dy (Q)(p)(<eq,....ex>))=1t
o Dy (alwaysfy(Q))(p)(<el,....en>)=1t
iff if there is oe J‘-tx;cgo: proji1(o)=<et,....en>
then for all o'e Mx;cgoz <eq,...,en> 1s a proper subsequence of proj;(c’)
Dy, (A (p)(proji(c')))=tt
© Dy, (next(W))(p)(<et,....en>)=1t
iff for every e'e proja(S) ..@'Ji(C{)(p)(<el,...,en,e'>)= tt
S={(o,eh)e M x:€1:Proj1(o)=<ef,...,en>}
« Dy, {U}w)(p)(<et,....en>)=
iff if ene ey (W)(p)(<E1,...,€n-1>)) then Py (A)(p)(<ey,....en-1>)=1t
© Dy (~A)p)(<el,...en>) = ff iff Dy (A)(p)(<er,...en>) = tt
o Dy (U1=U(p)(<el,....en>)=ff
iff Dy (AU (p)(<eq,....en>)=1t
Dy, (Uo)(p)(<eq,....en>)=ff O
Again a branching semantics is given to formulae involving the next, the sometimefq and
the alwaysfy operators. In particular, next(Q) is true in <ey,...,en> iff ¢ is true in every
sequence <ep,...,en,e> such that €' is accessible from eq,...,e5. On the other hand,
sometimefa(Q) is true in <ey,...,en> iff & is true at least in a sequence <ejp,...,€n,...,Em>

where e, is accessible from ey,...,en. That is to say this temporal operator corresponds to
the use of the existential quantifier on the trajectories.

Example 2.1.17
The denotation of [e]]a=false for the base x:¢ is
I bool([e1])(P)(e)=I bool (A (P)(<e1>)=TM ool (false)(p)(e)=tf O
Satisfaction and semantic consequence are introduced as follows:
Definition 2.1.18 Satisfaction and semantic consequence

Let € be an object class and x:%” be the base of a generic instance. Let Zy.¢¢ the signature
induced by M.x:w and M.¢ is an interpretation structure for the signature Z.ce.

74

Cristina Sernadas et al

M x:¢ satisfies the formula € at the sequence <ey,...,e,>, or is a model for formula C at
<el,...,en>, denoted by

Mx:@, <€1,....en>EU

iff for all assignments p we have Dy (Q)(p)(<el,....en>)=1t.

Formula ¢ is a semantic consequence of ¢ 1,...,8y at <ey,...,e,>, denoted by
A1, Uy <€15ees€>F QA

iff for every interpretation structure Mx.cg

if -H.vx:cg,<31,.-.,en>}: cll: 1<i<n then \Mx:cg,<31,‘..,en>}=m d

2.2 Attribute initialization/updating diagrams and positional formulae

Assume that the attribute initialization and updating diagrams U x.¢¢ for the base x:% of a
generic instance are the following:

:__.... (false)
b {true, false)

v} R elave v 8 = v)
bt y et
{w) 7 :C > B —w
e4(true) 4

v s -
{true} : K) o (false)

v

et] :C o
(false) i L . B
v) a C4(false) 4 =
(false} [~ :C) o | ()
v s i
(true) I) P

75

Graph-theoretic Semantics of Oblog: Diagrammatic Language for Ofject-oriented Specifications

Definition 2.2.1 Astribute initialization and updating diagrams

The attribute initialization and updating diagrams VU'y.¢¢ of the base of a generic instance
of object class ¥ is defined as follows:

Vx:@ := <seq_initialization> <seq_updating>
<seq_initialization> := <initialization> | <initialization> <seq_initialization>
<seq_updating> := € | <updating> <seq_updating>
<initialization > :=
*n

O_»_ a(t 1,..-,tn) t

*
() g AL ppeesty)

where u is an event term involving a birth event symbol.
<updating > :=

u

a(t 1 tﬂ) t ——»O—»a(t lgou,tn) tl

u

atpaty) 3 O——paltpotn)

where u is an event term involving an update event symbol. Moreover ac ATTy, s sand
t, t'e Tx;fgS(Y).

There are two possible initializations and two possible updatings. Let us discuss for
example initialization. In the first situation, the value of the attribute denoted by
a(ty,...,tn) is the value of the term t'. The second situation indicates that there is no effect
of the birth event that denotes event term u on the value of the attribute denoted by

a(tl,...,tn).
Definition 2.2.2

Let € be an object class and x:%€” the base of a generic instance. The attribute initialization
and update diagrams V'x.¢induce a set ®x.¢¢ of positional formulae such that

« for each attribute initialization we have the following cases:
alwaysfy([u]a(ty,....tn) = t');
alwaysfy([u]a(ty,...,tn) = D)

76

Cristina Sernadas et al

corresponding to the two components of <initialization>, respectively;

« for each attribute updating
alwaysfy([u]a(ty,....tn) = t")
alwaysfy([ula(ty,...,tn) = a(ty,...,tg))
corresponding to the two components of <updating>, respectively.

* alwaysfy([ula(ty,...,tn) = a(ty,...,tn))
where u is an event term involving a death event symbol and a is any attribute
symbol. O

Example 2.2.3

The following are the positional formulae induced by the attribute initialization and updating diagrams for
the simple base.

alwaysfy([e1]a = {false}) alwaysfy([e1]b = {true,false})

alwaysfy([e2]a = {-a)) alwaysfy ([e2]b = {—b})

alwaysfy([e4(true)]a = a) alwaysfy([e4(true)]b = false)
alwaysfy([eq(false)]a = a) alwaysfy([e4(false)]b = true)

afwaysfy([esla = a) afwaysfy([e3]b =b) O

2.3 Behaviour diagram and safety formulae

Consider the following behaviour diagram

.

*cl

€2

b=true b=false

€4(true) e4(false)

+€3

T

Graph-theoretic Semantics of Oblog: Diagrammatic Language for Object-oriented Specifications

Definition 2.3.1 Behaviour diagram
The behaviour diagram T.¢ of the base of a generic instance of object class € is:

Wy := <pre_natal_sits> <sits> <post_mortem_sits>

<pre_natal_sits> := <pre_natal_sit> | <pre_natal_sit> <pre_natal_sits>
<sits> = € | <sit> <sits>

<post_mortem_sits> := € | <post_mortem_sit> <post_mortem_sits>

3

*

<pre_natal_sit> :=

u

where u is an event term involving a birth event symbol,

<sit> =

where u is an event term involving either a birth or an update event symbol and u' is an
event term involving either an update or a death event symbol,

<post_mortem_sit> :=

% | %
*+u' J'+u'

where u' is an event term involving a death event symbol and u is an event term involving
either a birth or an update event symbol. Qe Fx.(Y) is a formula and it is optional. O

Definition 2.3.2

Let €” be an object class and x:%’ the base of a generic instance. The behaviour diagram
By.¢induces a set B¢ of safety formulae of the form

alwaysfy({ after(u) A Ju')

78

Cristina Sernadas et al

alwaysfy({ after(u) Ju')
per each <sit> and <post_mortem_sit>. a
Example 2.3.3

The safety formulae induced by the behaviour diagram for the simple base of the generic instance are

atwaysfy({after(e1)}e2)
alwaysfy({ after(eg) Ab=true}e(true))
alwaysfyy/ ({ after(eg) nb=Ffalse}eq(false)) m]

2.4 Compliance

The first compliance aspect consists in adding constraints on the attributes in the matrix
diagram. The second consists in discussing formulae that are satisfied by all interpretation
structures for the signature of the base of a generic instance of an object class.

Definition 2.4.1 Marrix diagram revisited

A constraint Qe Fx.¢/(Y) on the attribute symbol a of the base x:% of a generic instance
of object class ¢ is declared in the matrix diagram as follows:

<args_sort>

@ <codom_sort>
O

We must say when such constraints comply with the formulae induced by the attribute
initialization and updating diagrams and the behaviour diagram.

o

Definition 2.4.2 Compliance

A constraint ¢ on the matrix diagram of the base x:%€ of the object class ¥ complies with
Ax:e and Pyp at <ey,...,e> iff
if My.@,<eq,...en>F Bx.¢ U Pyr.pthen My, <eq,....6>F U
that is to say ¢ is a semantic consequence of By UP ..
The set of constraints induced by a matrix diagram will be denoted by Cx-e. O

Let us now discuss some formulae that comply with every interpretation structure for the
signature of the base of an object class.

Proposition 2.4.3

Let M. be an interpretation structure for the signature Xx.¢¢. Then

79

Graph-theoretic Semantics of Oblog: Diagrammatic Language for Object-oriented Specifications

(a) Mx:z,<eq,....e>F {sometimep(after(g(t1,....,tn)))} '(t'1,...,t'k)
g'(t'y,...,t'0)€ EVTy, g(t1,...,tn)e EVT}
() Mxgi<er,....en>F {(— (sometimep(after(g'(t'1,...t K))))) I (t1,.rtn)
g'(t'1,-'EEVT, g(t1,....tn)e EVT},
(©) Mx:g.<eqs....en>F {(— (sometimep((after(g(t1,...,tn))))) } &' (t'1,....t'K)
g(t1,....,tn)e EVTy, g'(t'1,...,t'x)eEVT
(d) Mx:@<eq,....ep>F[ula=t, ue Tey(Y), a,te Tg(X)
providing that there is (o,e)e Jttx;rgl such that proji(c)=<ey,...,e>,
e€ Hiev(v)(p)(<ey,....€n>), projp(target(c,e)) (@)= s(D(p)(<el,....en>) O

Let us discuss some of the formulae:

(a) every interpretation structure M. satisfies a formula expressing that all events with
the exception of birth events are only allowed to occur after a birth event;

(d) values of attributes in the nodes of any interpretation structure M y.c7 are indicated with
positional formulae involving an event term corresponding to the arrow into that node.

2.5 Base

Now we can give both the proof-theoretic and the model-theoretic semantics of the base
of a generic instance of an object class.

Definition 2.5.1 Basedescription

Let € be an object class and x:% the base of a generic instance. The triple (M, x:¢,
Vx4, Bx:w) of diagrams induces a description Ay.p =(Zx.¢,PxeUAxw UT)
where

* 2x: is the signature induced by TN, x.¢¢ with Ly.¢ as the language induced by the

signature;

* ®x@C Ly is the set of positional formulae induced by V'x.z;

* ABx¢C Lx: is the set of safety formulae induced by By.z;

* Cx@C Lx:g is the set of constraints induced by T, x.cz. O

The base induces the presentation of a theory and is denoted by an interpretation structure
as indicated in the following definition:

Definition 2.5.2 Denotation of the base description

Let Ax: be the base description induced by the triple (M x.%¢,V x:%,Bx:%¢). The
denotation is a graph M x.¢ which is an interpretation structure for the signature Zy.¢¢ and
* Mxe={(o,e): target(c,e)=0', proji(c)=proji(c)e,
(@) if ({@}ue Bxp and e€ 5, (W)(P)(proj1(0)) then M.ez, proj (6)F &
(b) proja(c')(a)=proja(c)(a) if
- there is no positional rule [u]a=te P.cp with a#t;
proj2(c')(a)=v if [u]a=te Px. and v=At)(p)(proj1(0));
* By complies with Bx.2UP .2
+ {0": 6'=source(o,e) or o'=target(c,e), (0,e)e Mx;cgl }e .H.x;fgo. O

80

Cristina Sernadas et al

Hence the denotation of a description is a graph. The graph includes the arrow (c,e)
providing o satisfies all the safety rules for e. Moreover, the second component of
target(o,e) satisfies the positional rules for projj(c) e. Constraints must also be satisfied.

Example 2.5.3

An interpretation structure that satisfies all the formulae in the description of the simple base is as
follows:

M X6~ (00=(e.9),
o1=(<e1>, f(a) = {false}, f(b) = (true,false}),
o2=(<e1e2>, g(a) = {true}, g(b) = {true,false}),
o3=(<e1e2e4(true)>, hq(a) = {true}, hy(b) = (false}),
o4=(<e1ee4(false)>, ho(a) = {true}, ha(b) = {true}),
os5=(<ejepe4(true)e3>, i(a) = {true}, i(b) = (false}),
o=(<e1e2e4(false)e3>, j(a) = {true}, j(b) = {true})
M x:¢,={(c0,eD), (01,€2), (02.e4(true)), (02.e4(false)), (03.€3), (04.€3)} O

Proposition 2.5.4

The interpretation structure Mx:¢ as introduced in Definition 2.5.3 is a model for Ax.«,
i.e. for all assignments

Mx-, eFC
for all Qe Px.xUAx-wUTx4. O

Now we can say what is induced by an object class.
Definition 2.5.5 Object class description
Let % be an object class and x:%” the base of a generic instance. The object class induces
an object class description, i.e., a family
Ag={Ay:¢: € ident)
where

Aw:s=Dxe[ATT/0.ATT,EVT/0.EVT]

i.e., Ay:s is the description Ax.¢ of the base where the attribute and the event symbols
are replaced by the same attribute and event symbols, prefixed by w:%. O

An object class with n identifiers induces n presentations which are the same as the
presentation of the base of a generic instance up to a signature change.

Definition 2.5.6 Denotation of the object class description

Let A the object class description induced by an object class %. The denotation of such
description fixing the carrier set Bg={ 0: we ident} is a family

31

Graph-theoretic Semantics of Oblog: Diagrammatic Language for Object-oriented Specifications

Meg={ M y.0: we ident, M . is the denotation of Agy.) O

3 Aggregating instances

Let us now discuss how to aggregate the bases of two instances of two object classes.
We start by discussing aggregation of the independent bases and after that we analyze
aggregation of bases in the presence of calling (an interaction mechanism similar to
message passing).

3.1 Independent instances
Definition 3.1.1 Independence diagram

Let :% and 0: 9 be the bases of two instances of classes € and 9, respectively. An
independence diagram is as follows:

The result is the base :F ®0: 2 of the aggregation instance of object class € ® &. O
Again we discuss the proof-theoretic and the model-theoretic semantics.
Definition 3.1.2 Extended signature Ly ¢ ®0: 9

Let 0:% and 0: Y be the bases of two instances of classes ¥ and &, respectively. The
extended signature of the aggregation m: € ®0: Y is
Zoe®0:-9=((S,0P),eve®ev g, EVT,ATT)
S=Sw:¢ USe. &
OP=0P U OPg. o
skiPevcp is a constant of sort eve and skipey o is a constant of sort ev g
I (evegrevgr) (evegiey gr)s evep ®ev gy is a binary operation on event sorts
EVT=({gllg" g.8'€ EVTu:¢U EVTg: U {skipevep, skibev g7} }-
({skipevepliskipey gy, Skipey grllskipevee) U
{gllg g€ EVTy: ¢ }U {glg" g.g2€EVTe. 5 })/
{(glg.g'lg): g.g'€ EVT U EVTy. oU {Skipe\rcg, Skipcv_g;r} }
ATT=ATTy.¢ U ATTg. & O

The signature of the aggregation includes the sorts, the operation and the attribute
symbols of the signatures of both bases. The family of event symbols is the quotient for
the relation {(gllg'.g'llg): g.g'e EVT .U EVTg.gU {skipewg, skipevg}]. They are
constructed from the event symbols of the signatures of the bases using the constants
skipevcg, skipev g and the operation symbol II{P,\,.%,,@v) eveprevar) vep ®ev gy In what
follows, glig' will represent the respective equivalence class. The extended signatures

82

Cristina Sernadas et al

2w ®6: v and Xo: 9 o Will be the same. Moreover the skip operation symbol and the
Il operator correspond to the idle operator and the concurrency operator in process algebra
[Baeten and Bergstra 91], respectively.

Example 3.1.3

Consider that the base 6: 9 has the signature
ATTpool = (¢}
EVT = {¢'1,6'2}
EVTp = (e'1}
EVTg = {e'2)
and the base ®:% is obtained from the generic instance x:% defined above.

Assume the following positional formula for 0:. 9/
[e'1]c<€= true O

Definition 3.1.4 Terms of event sort

The set of terms of event sort Ty w®0: Devep®ev gy (Z) built with the signature Xy
®0: 9 over the family of variables Z=Y .2 U Yg. 97 is as follows:

o if tiE Tm;cgs_(Ym;fg), 1S]Sn, ge EVTS]'"Sn’evcg then
g(tl,---:tn5|13kipevge Tw:%@G:.@?evcg®evg(z);
e if tle Te_gsl(Ye_@), ISISH, ge EVTS]"'Sn’cv-@— then
skipevee lg(t1,....tn)e Trp e 0: Prevep®ev g (£);
. lf tle T(chsl(Yng), 151..<..In and lf t'JE TB@SJ(YG.@'), ISJSm
g€ EVTsl---s LVes gIEEVTS ...sn,ev_@then
g(tl,---,tnﬂlg'(t'L---er)e +m:‘€®9:.@:ev:€®ev9 (Z). O

Terms of event sort are obtained using the concurrency operation symbol with
constructions corresponding to ®:% and 6: alone and to ®:% and 0:9 acting
together.

Definition 3.1.5 Independent bases aggregation description

Let :% and 6: be the bases of two instances of classes ¥ and 9, respectively. The
independence diagram induces a new description Ay 0: 9=~Zw:¢®6: 9 P 0 ¢®0:9;
A 0% ®0:9,C 0:#®6:9) such that
* Xu:@®0: 95 is the signature introduced in Definition 3.1.2
* Pugee:.={[ullskipey g Ja=t: [ula=te P .5} U {[skipevey llu]a=t: [u]a=te Pg. 57} U
{[ullu']la=t: [u]a=te P .U {[ullu']a'=t": [u']a'=t'e Pg. 97}
* Aoswe.o={{QU }ullskipev_@: {QUlue Augt U {({Q]Skipewg llu: {Q}ue Ao: 97}
{H{AAQ }ullu': {QU}ue By (U'u'ee Bg. 9]
* Cou:s00:9=Cw:¢ UCo. o O

For instance the positional formula

83

Graph-theoretic Semantics of Oblog: Diagrammatic Language for Object-oriented Specifications

[u”Skl'peV.@«]a=t: [u] a=te 6) a):cf

indicates that we must include in ® y: 9 ®6: 9 the positional formulae of P . providing
that
u is replaced by ullskipey o

For instance the safety formula
{{aAnl'}ullu’: (U}ue By:g (U'u'ee B¢. 97

indicates that ullu' can only occur providing that both events are possible immediately
before.

Definition 3.1.6 Denotation of an aggregation description

Let 0:% and 6: Y be the bases of two instances of classes ¥ and &, respectively.
Assume that the carrier sets for the data sorts are fixed and that
Bevep ®ev gi {GHSkiPcv_@: ce '-Bevcg } U{Skjpe\rcg lle: ee (Bevgj) U
{elle": e Bevep and '€ Boy o1)
is the carrier of the event sort evig®ev gx On the other hand
%vcg ®ev_@;b={e”5kipcv_@r3 ce CBevcg,b} U{Skipcv%a lle: ee '-Bev_@r b} U
{elle': ee Bevep,b and e'e Bevg,b}
is the set of birth events and
Bevep ®ev gy,d={eliskibey g5t €€ Bevep,d} U{skipevep lle: € By gr,a} U
{elle": ee Bevep,d and e'e %vg,d]
is the set of death events. Moreover if
SE Bever ®ev 9* and s=s' skipevey lle where s'e Bevep ®ev _9*, €€ Bev g
then s Bevep =s'iﬁev(g where sl'BeV% is the projection of s to Bevep
and the same the other way around.
Moreover assume that skip and Il are interpreted as expected. Let M .oand M g. 95 be
interpretation structures for the signatures that satisfy all the formulae in Ay and Ag. g5
respectively.

The denotation of Agy.we: 9 is a graph M .« 0. 97 whose set of nodes is
o Mg 9. C ﬁgewg@ev.@*x [ATTy n m:%UATTv,.MG:.@%Z%U g’@j
and whose set of arrows is
« Mosw 0:9,C M o6 0:2)* Bevep ®ev gy
such that
(a) 'M(n:%@e:.@l:
{(opme.clle’):
((Proj1(Cw@ o) Bevep Proj2(0w@ VA TTy Maxd).e)e Mgy
((proj1(Cwee) Bev o1 Proj2(Cw@e) L ATTy, 10: 9).€)€ Mg 97} U
{(cp® B,CHSkiPevg):
((Proj1(60@e) Beveo,Proj2(Co@)L ATTy Ho:d).e)e Mg

84

Cristina Sernadas et al

and (proj1(cwe B)JffBevgprojl’(cm@ OLATTy 0. 90e M 0:9p) U
{(cw®8,skipevep ll€):
((proj1(Swee)d Bey g7 -Proj2(0p®6) ‘LATTV,'M- 0:9),€)€ M W 9
and (proj1(Ceee)d Bevep:Pr0j2(Cw® OVATTy pw:Pe M'm:‘é(’)}
target(Cp®p,elle)=(proj1(cuee) <elle™>, f(a)=
proja(target((proj1(Cu® O Bevep,Proj2(6ne o) ATTy, 4 o:4),€))(a)
if ac ATTy M.
proja(target((proj1(Cwe)4 Bev 47 Proj2(0ewe o) L ATTy, Ma: 2).€")) (@)
if ac ATTy Mw: 9)
target(Gw®e,¢liskipey g7))=(proj1(Cwe e)<ellskipey ¢;)>, f(a)=
proja(target((proj1(Cpe o) BevepProj2(Ceuee NV ATTy, s w:49):¢)) ()
if ac ATTy M %
proj2(proj1(Ceee)d Bev 55Proj2(6we e ATTy,46.9)(2)
if ac ATTy M6:9)
target(Co®e,5kiPevep 1€)=(Proj1(Cn@e),<skipeye, lle>, f(a)=
proja(target((proj1(Cwe e Bev 41Proj2(Cwe 6)L ATTy, #6:2).))(a)
if ac ATTy M. 97
proj2(proj1(6w®e)d Beve proj2(Gwe o) ATTy, 46:4)(2)
if ac ATTy Mo0:9
(b) (e.9)e My s00:. 9
(¢) source(Cu®8,5kPevep lle)e M o:46:) if (Cwoe:skipevep lle)e M wsw0: 9,
target(Cw® 0,skipevep lle)e M o:400: 97, 1f (Cw®6.skipeve, Ile')e J"JCD:%@B:.@I
source(Ge6.ellskipev g)€ M w:606: 9, if (Cweo,eliskipey g)& M o:6w0: 9,
target(Cop®6.¢llskipevep)e M w6 0: 9, 1f (Cwe o.eliskipey gr)e M w6069,
source(Cpmo.elle)e M y.wwo: g7 if ?cm@;e,ellc')e J"«m:%@ﬂ:.@l
target(Cooo.elle)e Ho:so.9, if (Cuwe.clie)e Muwwo. 9, 8

As indicated the aggregation is created as soon as at least one component is created. The
aggregation ceases to exist as soon as at least one of the components ceases to exist.

For instance, the arrow

(Co®o.cliskipey g;)€ MJ(o:‘f@@:.@l
providing that

+ the projection of node Oy e to the events in Bevepand to the attributes in ATTy y o6
is anode in Mm_-%;

« there is an arrow in Mm;cg‘l whose second component is e;

» the projection of node oup®e to the events in Bey & and to the attributes in ATTy M, 9
is a node in M ¢ gy,

Note that the aggregation of two instances of two classes is a commutative operation.
Example 3.1.7

Consider the interpretation structures M, o)-¢#and M .g. gr for the situation presented in Example 3.1.3. We
have in the graph M ¢ 0: 97

85

Graph-theoretic Semantics of Oblog: Diggrammatic Language for Object-oriented Specifications

(e.0)e M w:%6® 0:9),
. (Skfpevfg ”e'l, S(a) = Q, S(b) = @, S(C) - {LI'UE})E Mm“é@ 9.@0
. (elllskipev@, r(a) = {false}, r(b) = (false, true}, r(c) = D}e Mm;Cg@g;_@rO

¢ (D) skipevep lle')e R 60: 97|
* (@D)e1lskipey g)e M09 =

Proposition 3.1.8

A graph M .59 0: 9 as in Definition 3.1.6 is an interpretation structure for X0 0: 9
satisfying all the formulae in Ay-4m0: 9.

Proof
(a) M:4w0: 97 is an interpretation structure for the signature X% 0: 9

Trivial by the construction of M . sme: &

(b) Mo swe: 97 satisfies By sw0: 9

Assume that there is an arrow (Cyea.elle)e My 0: 9, It is necessary to show that
Ce®o satisfies the safety rules of the form

{U}ue Buyw

{(U'v'e o9

where

ee IH, ev(w(p)(proji1(cwe G)lfBev%p)

e'e A, ev(W)(P)(Proj1(Cue o) Bev 5)
Since

(proj1(Cpe B)l@e\fcg:ijZ(cm@) OVATT .9 M 0:%)
and M)% is an interpretation structure for :% it satisfies { ¢ Ju.
Similar reasoning applies to the satisfaction of {€&'}u' by Mg. gx

In the same way we can prove the satisfaction of positional formulae and constraints. O

3.2 Calling

Let us consider now a very weak form of interaction between bases of instances of object
classes. An event of the argument base calls an event of the target base iff the happening
of the first leads to the happening of the second. However, it is possible for the second
one to happen independently of the first.

As an illustration consider the following calling diagram between the two simple bases
described above:

86

Cristina Sernadas et al

Definition 3.2.1 Calling diagram

Let @:% and 6: 9 be the bases of two instances of classes ¥ and &, respectively. A
component of a calling diagram between the two bases is as follows:

L :%0:9= <call> | <call> <calls>
<call> :=

where u and u' are event terms in 0:% and 0: 9 respectively. The event term u is the
source of the calling and the event term u' is said the target of the calling.

The result is the base :6® ;55 '0:F of the aggregation instance of object class
E® u>>u'Y, i.e. is an aggregation taking the calling u>>u' into account. O

Definition 3.2.2 Bases aggregation description in the presence of calling

Let m:% and 0: 9 be bases of generic instances of classes € and 9, respectively. The
calling diagram induces a new description Agy-¢g 15508 T=(Z0:68 |55y 0: D
P 0:6® 155 0: D A 0168 1550: D C 0:6® o 0:2) Such that
* Lp:6® ooy 0: F=L0:6® 0: T
8 Pm:%@u>>u-9:.@=ﬁ°mz%®9:.@'
A 0B oy 0: F=AB 6w 0: U
{a=a}ullskipey & U
{aa}ullu", u"#u'
where ae ATTy
¢ Cm:%@)u»u'ez.@:’cm:‘é@&.@ .

Hence, when aggregating two bases with an interaction through a calling we get a
description which has the signature of the aggregation of the same bases with no calling.
The same applies to terms, positional formulae and constraints. However, the same does
not apply to safety formulae. We-add the following safety formulae

87

Graph-theoretic Semantics of Oblog: Diagrammatic Language for Object-oriented Specifications

{a=a}ullskipey &
{aza}ullu”, u"#u'

which prevent u from happening alone and from happening in concurrency with any other
term with the exception of u', respectively.

Definition 3.2.3 Denotation of an aggregation description

Let o:% and 0: 2 be bases of generic instances of classes ¥ and 7, respectively. Let
M o:¢¢and M. a7 be the denotations of Ay.eand Ag. g respectively fixing Beand By
The denotation of the description A(D;%@u»u.e; g, corresponding to the base of the
aggregation of the bases in the presence of the calling u>>u' is a graph M .4 X
such that the arrows are
* M’m:‘é@)u))u'ez.@l": 'M'm:‘é@e:.@l‘ ({(cwea.clle™):
e€ I, ov(W(P)(Proj1(Cwee) Bevey)
€"e I, ey(W)(P)(Proj1(Gwe o) Bev o)) U
((Cwmoseliskipey g): €€ I, 0y (W(P)(Proj1(Cwe o) Bev)})
. Mm:"ﬁ*@u);,u-e:.@(): SOUTCC(J"'XQ):%U>>U'S:.@1) U target(Mm:%u>>u-e:.®1) 0

Hence, we eliminate the arrows whose second component is: (a) elle" providing that e is
the interpretation of u and e" is the interpretation of u" where u" is different from u';

(b) ellskipey gy
Example 3.2.4
The following are nodes of the graph M .5t eo>>e’ 19; % for the simple bases:

(eqliskipey gezlle'l, t(a)=(true}, t(b)={false,true}, t(c)=true})
(e1liskipey gezl!e'l eq(true)lle’s, z(a)={true}, z(b)={false}, t(c)=true})

and the following are second components of the arrows
eqliskipey g e2lle'1, e4(true)liskipey g e4(false)liskipey g e4(true)lle'y a
Proposition 3.2.5

The graph Mm:%@u»u@: gris an interpretation structure for Zy.
the formulae in Ay 1>oy'0: T

) satisfying all

Proof
(a) M .52 u>>y'0: @18 an interpretation structure for the signature

Trivial by the construction of M ¢y 4® ..., 6:9

88

Cristina Sernadas et al

(b) M .50 oy satisfies A % >0 Y

For instance, since there is no arrow whose second component is e where e belongs to
the interpretation of u we trivially satisfy the safety rule {a=a}ullskipey & since e is never
allowed to occur. mi

4. Inheritance graph and instances

A generic instance is a pair composed by the base of the generic instance and a set of
facets which reflect the inheritance graph of the class where the instance belongs.

We consider a graph for inheritance instead of the usual tree. There are two reasons for
this. On one hand, we do not want to have a root object class as in most object-oriented
approaches [Booch 91]. On the other hand, we want multiple inheritance to be possible.

For illustrating inheritance consider several classes related to papers in a conference. In
particular, we are interested in discussing instances of the object class PUBLISHED_PAPER.

For this purpose, consider the inheritance graph G:PUBLISHED_PAPER for the class
PUBLISHED PAPER as follows:

No root is indicated. We have multiple inheritance for instance from ACC_PAPER and
INVITED_PAPER into PUBLISHED_PAPER. Hence, we have a graph but not a tree. We say that
the object class ACC_PAPER is directly inherited into the object class PUBLISHED _PAPER and
the object class SHORT_PAPER is inherited into the object class PUBLISHED_PAPER.

Definition 4.1 Inheritance graph diagram

A component of an inheritance graph diagram G is:

89

Graph-theoretic Semantics of Oblog: Diagrammatic Language for Object-oriented Specifications

O—)
where & and ¥ are object classes indicating that € is directly inherited into 2.
Moreover, 2y.¢C 2. 9.

We then say that each instance of & has a facet that is like an instance of 6. However,
there are instances of ¥ which are not facets of instances of 2. Multiple inheritance
corresponds to having several classes inherited into 9

A class € is inherited into & iff ¥ is direcly inherited into & or € is inherited into &
and the latter is directly inherited into 2

An inheritance graph G for class & is a graph including all the classes inherited into 2
]

When having an inheritance graph for a class & we also have inheritance graphs for all
classes that are inherited into 2. It is possible to have a class & with a single node which
is the same class (reflecting no inheritance into class &). The important aspect about the
inheritance graph for & is to indicate what is its effect on the base of an instance of .

Definition 4.2 Instance

A generic instance of the object class & is a pair (x:,G:Y) where x: Y is the base of
the generic instance and G: is the inheritance graph of class . O

Definition 4.3 Facet

An instance (x:¥,G: D) of the object class & induces a pair (Ax; 57,0 g: @) such that
* Ay. gy is the description induced by x: Y,
* V6. 9={Ax T1e=Cx. 916, Cx: 9/0): Zx: T 1¢=2x: 916, € is an object
class inherited into & according to G: &, Ty. grx¢ s the set of constraints on
ATT,« where 2% is the base of a generic instance of &} .

Each element Ax. grrg€ ¥ . @ is called a facet of x: Y for class € a

The inheritance graph provides a structured way of looking into the signature of the base
of an instance. Note that Ay. 5579y is a facet of x: 9 for class & which can be obtained
from Ay. gr by eliminating the safety formulae 8. gr and the positional formulae ®y. g7.

Proposition 4.4
Let (x:¥,5:9) be a generic instance of the object class &J. There is a category of

signatures sig(x: 97,g: &) whose objects are the signatures Zx: g7/ of all facets of x: &
related to the object classes % inherited into 2/ and whose morphisms are inclusions

90

Cristina Sernadas et al

2 PfeLx: I O
Example 4.5 Facets of an instance of PUBLISHED_PAPER
Consider a generic instance of PUBLISHED_PAPER. It includes

base x:PUBLISHED_PAPER

facet x:PUBLISHED_PAPER/PUBLISHED_PAPER

facet x: ACC_PAPER/PUBLISHED_PAPER

facet x:INVITED_PAPER/PUBLISHED_PAPER

facet x:SHORT_PAPER/PUBLISHED_PAPER

facet x: LONG_PAPER/PUBLISHED_PAPER

facet x:SUBMITTED_PAPER/PUBLISHED_PAPER O

Let us now discuss the denotation of an instance. The basic aspect is to indicate the
denotation of a facet. This denotation is like a view. We can look into a part of an instance
and have no explanation there for the values of the attributes.

Proposition 4.6

Let (x:¥,G:Y) be an instance of the object class & and M 4. gr be an interpretation
structure for Ayx. 7. Let 2. g5/« be the signature induced by the object class € inherited
into &. This signature induces

» a graph M. g7 based on the signature Xy. gyrg, called the graph induced in M. gr by
XD

+ and an homomorphism Fx. grrg:Mx. - My ar/p.

Proof

(a) Induced graph
'M'x:.@/‘a”o:{Gx:.@/%:(sx:.@/‘@fx:_@'/‘g)5 exists oj=(w;,fj)e 'H'x:.@o, 1<i<n
such that sx:.@fﬁfﬂni%wg and fx: 9r6(a)=U)<i<nfi(a), ac ATTy z:¢)

Mx.gre={(0x. 16, ex. el Nlex ore,,), me N,:
Ox: g/ My €, and exists (oj,ej)e Mx: 9> 1SjSm, 1<i<n
ex: P/ €}=C] if eje CBcvcg.
ex: _@/cg’j=skipcg otherwise
target(Ox: g/g.x: I .. llex: 916,)=(0'x: 9 16,8x: T 16)
C'x: 9 1¢=p10j1(Ox: 5//¢) <ex:.@f€1”---”ex:.@f/<€m>
gx: 9/¢(@)=U1<j<m gj(@), ac ATTy z:¢

gj=proja(target(ci,€;)), 1<i<n}

(b) Homomorphism
Fx 16y Mx oy Wy 16,
Fx.D16,(0)=0x.@F¢ such that proji(6)d By, ~proj1 (ox. 91#)
Fx. g6 M x> Wy o160,
Fx:916,(0.e)=(0x:g/¢.ex: Fr& .. lex Fre) O

9

Graph-theoretic Semantics of Oblog: Diagrammatic Language for Object-oriented Specifications

Let us comment on the induced graph. A node of this graph must always correspond to at
least a node in M. gr. When there are several nodes in M. gr corresponding to the same
node of M. grxg it is as if all those are collapsed into a single one. Map fx: g5 for a
node of M. grre assigns a set of values to a particular attribute of € which is evaluated
as the union of the second components of the nodes in M. gr that are mapped into that
node.

The second component of an arrow in M. /¢, corresponds to the concurrency of all
second components of arrows in M. gr whose sources are collapsed into the source of
the arrow in M. /¢, The operation skipg corresponds to an arrow in My 9 Whose
second component is not an event in Bovep

Corollary 4.7

The homomorphism Fx. g5 fg M x: 90—9Mx; 98, is surjective but not injective on the
nodes.

Proof

It is obvious that it is not injective since it may be the case that different nodes of M. g
are mapped into the same node of M. grrs.

It is also trivial to see that it is surjective since no node in M. g7 can appear without
resulting from a "projection” of nodes of M. gr. |

Proposition 4.8

The graph M. g7/ based on the signature 2. g5 is not an interpretation structure for
the base of z:%€

Proof

Consider in M. gr an arrow (G,e) such that
e€ Bovg
ac ATTy %
proj2(o)(a)#proja(target(c,e))(a)
This means that there is in ®x. gr a positional rule [u]a=t such that
a#t
e€ ev(1)(p)(proj1(c))
Assume that there only a positional rule [u']a=t' in ®;.¢¢ where z is the base of ¢ such
that :
e'e A ev(u)(p)(take(proj1(o))
last(proj1(c))=¢'
s(O(P)(proj1(0))= I (1) (p)(take(proj; (o))
Hence in M. g7/ we have a node ¢ such that

92

Cristina Sernadas et al

Iis(O(P)(proj1(c)) C proj2(o%)
I 5(t)(p)(take(proj1(c))) C proja(c)
But M x. 97x¢ does not satisfy the positional rule [u']a=t' in proj;(c). O

The counterexample above is built out of side effects of events of M. gr in attributes in
M x: 97/¢. These side effects correspond exactly to the concept of a view in the sense that
when selecting attributes and not all the events that modify the values of the attributes we
can no longer explain those values.

Note also that no constraints on events are present in M. g7/. For instance it is possible
not to have any node with a birth event belonging to %6

Definition 4.9 Denotation of a facet

Let (x:Y,G:) be a generic instance of object class . Let M- o be an interpretation
structure for the signature Zx: g5. The denotation of (Ax; 97,0 6. &) is a diagram @ g. g5=
(Mx: 9, M x. 9510 Fx: 9716 6€ G:D) in graph (the category whose objects are graphs and
whose morphisms are homomorphisms between graphs). O

Example 4.10

Let M x:PUBLISHED_PAPER be an interpretation structure for the description Ay

PUBLISHED_PAPER. The denotation of (Ax:PUBLISHED_PAPER.¥¢:SPUBLISHED_PAPER) is the
diagram with the following arrows:

Fx:PUBLISHED_PAPER/PUBLISHED_PAPER

Fx:PUBLISHED_PAPER/ACC_PAPER

Fx:PUBLISHED_PAPER/INVITED_PAPER

Fx:PUBLISHED_PAPER/SHORT PAPER

Fx:PUBLISHED_PAPER/LONG_PAPER

Fx:PUBLISHED_PAPER/SUBMITTED_PAPER O

From a syntactic point of view, there is a facet for all the object classes inherited into an
object class. However from a semantic point of view some facets are of no relevance.

Definition 4.11 Empty denotation

Let Zy. gr/¢ be a facet of x: 9 for object class €. The denotation of such facet is empty
providing that there is an attribute ac ATTYy z:¢¢ which is not defined for any node of the
respective graph or when the values of a do not comply with the constraints on a. O

Example 4.12

For instance, the denotation of the facet Ax:PUBLISHED_PAPER/INVITED_PAPER can be empty
because some attributes of INVITED_PAPER can be always undefined. On the other hand, the facet

93

Graph-theoretic Semantics of Oblog: Diagrammatic Language for Ofject-oriented Specifications

Ax:PUBLISHED_PAPER/SHORT PAPER can also be empty because short paper has a maximum of
2000 words and the published paper under consideration has 5000 words. O

5. Concluding Remarks

Objects are considered to have sequential behaviours whereas the community is
composed by objects that are concurrent. A model-theoretic semantics is provided for
object-oriented specifications based on graphs.

An object specification induces an object description (presentation) of a theory including
positional formulae expressing how the values of attributes are affected by events and
safety formulae indicating the enabling conditions for the events. An object description is
denoted by a graph. The graph is an interpretation structure that satisfies the formulae in
the description and indicates the possible sequences of events as well as the admissible
values of the attributes.

The calling interaction mechanism between two object specifications induces a description
which can be constructed from the descriptions induced by the object descriptions
introducing two operation symbols on events: skip and concurrency. The description of
the aggregation is denoted by a graph that once more is constructed through the graphs
that denote the descriptions of the components.

The upwards inheritance graph specification for each class allows the specification of an
instance of a class. Such specification induces several descriptions corresponding to the
different facets of the instance wrt the classes in the inheritance graph. Such facets are
denoted by a diagram in the category graph including graphs that denote all descriptions
involved.

Important object-oriented issues that are of utmost relevance for information systems like
reification and complex objects are left out of this paper.

Acknowledgements

This work was partially supported by Junta Nacional de Investigag¢do Cientifica e
Tecnoldgica (JNICT) through the OBCALC project n® PMCT/C/TIT/177/90 and CEC
through the ESPRIT BRA IS-CORE n® 3023.

References

[Albano et al 86] Albano, A., Gheli, G., Occhiuto, G. and Orsini, R., "Galileo: A Strongly Typed
Interactive Conceptual Language”, ACM TODS, 10[2], 1986

[America et al 86] America, P., de Bakker, J., Kok, J. and Rutten, "Operational Semantics of a Parallel
Object-oriented Language”, Proc. 13th ACM Symposium on Principles of Programming Languages,
ACM 1986, 1986, 194-208

94

Cristina Sernadas et al

[Atkinson et al 89] Atkinson, M., Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D. and Zdonik, .,
"The Object-oriented Database System Manifesto", First International Conference on Deductive and
Object-oriented Databases, W. Kim, J.-M. Nicolas and S. Nishio (eds), 1989, 40-57

[Baeten and Bergstra 91] Baeten, J. and Bergstra, J., "Real Time Process Algebra", Formal Aspects of
Computing, 3[2], 1991, 142-188

[Bancilhon 88] Bancilhon, F., "Object-oriented Database Systems", Procs of the ACM Sigact-SIGMOD-
SIGART Conference on the Principles of Database Systems, 1988

[Beeri 89] Beeri, C., "Formal Models for Object-oriented Databases", First International Conference on
Deductive and Object-oriented Databases, W. Kim, J.-M. Nicolas and S. Nishio (eds), 1989, 370-395

[Booch 91] Booch, Object-oriented Design, The Benjamin/Cummings Publishing House, 1991

[Bruce and Wegner 86] Bruce, K. and Wegner, P., "An Algebraic Model of Subtypes in Object-oriented
Languages", SIGPLAN Notices 21(10), ACM, 1986, 163-172

[Cardelli 89] Cardelli, L., "Semantics of Multiple Inheritance", Readings in Object-oriented Database
Systems, S. Zdonik and D. Maier (eds), Morgan Kaufmann Publ, 1989, 59-83

[Cook and Palberg 89] Cooke, W. and Palberg, J., "A Denotational Semantics of Inheritance and Its
Correctness”, Object-oriented Programming Systems, Languages and Applications 89, 1989

[Costa and SernadasA 91] Costa, J.-F. and Sernadas, A., Process Models Within a Categorial Framework,
INESC, 1991

[Costa et al 91] Costa, J.-F., Sernadas, A. and Sernadas, C., "Objects as Non-sequential Machines", Procs
IS-CORE Workshop 91, Saake, G. and Sernadas, A. (eds), 1991 to be published

[Cusak 91] Cusak, E., "Refinement, Conformance and Inheritance", Formal Aspects of Computing, 3[2],
1991, 129-141

[Dayal and Dittrich 86] Dayal, U. and Dittrich, K. (eds), Proc. of the International Workshop on Object-
oriented Database Systems, Los Angeles, IEEE Computer Society, 1986

[Dittrich 88] Dittrich, K., Advances in Object-oriented Database Systems, Springer Verlag, 1988

[Ehrich et al 88] Ehrich, H.-D., Sernadas, A. and Sernadas, C., "Abstract Object Types for Databases",
Advances in Object-Oriented Database Systems, in [Dittrich 88]

[Ehrich et al 89] Ehrich, H.-D., Sernadas, A. and Sernadas, C.,, "Objects, Object Types and Object
Identity"”, Categorical Methods in Computer Science with Aspects from Topology, H. Ehrig et al,
Springer Verlag, 1989, 142-156

[Ehrich et al 91] Ehrich, H.-D., Goguen, J. and Sernadas, A., "A Categorial Theory of Objects as
Observed Processes”, REX90: Foundations of Object-oriented Languages, Springer-Verlag, 1991, 203-
228

[Ehrich and SernadasA 89] Ehrich, H.-D. and Sernadas, A., "Algebraic Implementation of Objects over
Objects”, de Bakker, J., de Roever, W. and Rozenberg (eds), REX89: Stepwise Refinement of Distributed
Systems: Models, Formalisms, Correctness, Springer Verlag, 1989, 239-266

[Ehrich and SernadasA 91] Ehrich, H.-D. and Sernadas, A., "Object Concepts and Constructions", Procs
IS-CORE Workshop 91, Saake, G. and Sernadas, A. (eds), 1991 to be published

[Ehrig and Mahr 85] Ehrig, H. and B. Mahr, Fundamentals of Algebraic Specifications I: Equations and
Initial Semantics, Springer-Verlag, 1985

[Fiadeiro et al 90] Fiadeiro, J., Sernadas, C., Maibaum, T. and Saake, G., "Proof-theoretic Semantics of
Object-oriented Specification Constructs”, R. Meersman and B. Kent (eds), Object-oriented Databases:
Analysis, Design and Construction, North-Holland, to be published

95

Graph-theoretic Semantics of Oblog: Diagrammatic Language for Object-oriented Specifications

[Fiadeiro and SermadasA 90] Fiadeiro, J. and Sernadas, A., "Logics of Modal Terms for Systems
Specification”, Journal of Logic and Computation, 1(2), 1990, 187-227

[Fiadeiro and Maibaum 91] Fiadeiro, J. and Maibaum, T., Describing, Structuring and Implementing
Objects, REX90: Foundations of Object-oriented Languages, Springer-Verlag, 1991, 274-310

[Goguen 75] Goguen, J., "Objects", International Journal on General Systems, 1, 1975, 237-243

[Goguen 91] Goguen, J., "Sheaf Semantics for Concurrent Interacting Objects", Mathematical Structures
in Computer Science, to be published

[Goguen and Meseguer 86] J.Goguen, J. and Meseguer, J., "Extensions and Foundations of Object-
oriented Programming”, SIGPLAN Notices 21(10), ACM, 1986, 153-162

[Goldberg and Robson 83] Goldberg, A. and Robson, D., Smalltalk 80: The Language and its
Implementation, Addison-Wesley, 1983

[Hennessy 88] Hennessy, M., Algebraic Theory of Processes, MIT 1988

[Jungclaus et al 91] Jungclaus, R., Saake, G. and Sernadas, C., "Formal Specification of Object
Systems", Abramsky, S. and Maibaum, T. (eds), TAPSOFT'91, to be published

[Igggnin 88] Kamin, S., "Inheritance in Smalltalk-80: a Denotational Definition", ACM TOPLAS, 5(1),
1

[Khoshaf"i)zg;x:5 and Copeland 88] Khoshafian, S. and Copeland, G., "Object Identity", Sigplan Notices,
21[11], 1

[Kim and Lochovski 88] Kim, W. and Lochovski, F. (eds), Object-oriented Concepts, Databases and
Applications, ACM Press, Addison-Wesley, 1988

[Kim et al 89] W. Kim, J.-M. Nicolas and S. Nishio (eds), First International Conference on Deductive
and Object-oriented Databases, 1989, 370-395

[Lochovski 85] Lochovski, F., Special Issue on Object-oriented Systems, IEEE Database Engineering,
8(4), 1985

[MacArthur 76] MacArthur, R., Tense Logic, D. Reidel Publishing Company, 1976

[Saake 91] Saake, G., "Descriptive Specification of Database Object Behaviour", Data and Knowledge
Engineering, 6(1), 1991, 47-74

[SernadasA et al 87] Sernadas, A., Sernadas, C. and Ehrich, H.-D., "Object-Oriented Specification of
Databases: An Algebraic Approach", Proc. 13th Conference on Very Large Data Bases, VLDB,
Hammersley, P. (ed), 1987, 107-116

[SernadasA et al 89a] Sernadas, A., Fiadeiro, J., Sernadas, C. and Ehrich, H.-D., "The Basic Building
Blocks of Information Systems", Information System Concepts: An In-depth Analysis, Falkenberg, E.
and Lindgreen, P. (eds), North Holland, 1989, 225-246

[SernadasA et al 89b] Sernadas, A., Fiadeiro, J., Sernadas, C. and Ehrich, H.-D.," Abstract Object Types:
A Temporal Perspective”, Temporal Logic in Specification, Baniegbal, B., Barringer, H. and Pnueli, A.
(eds), Springer Verlag, 1989, 324-350

[SernadasA et al 90] Sernadas, A., Ehrich, H.-D. and Costa, J.-F-, "From Processes to Objects", The
INESC Journal of Research and Development, 1990, 7-27

[SernadasA et al 91] Sernadas, A., Sernadas, C., Gouveia, P., Resende, P. and Gouveia, J., Oblog: An
Informal Introduction, INESC, 1991

[SernadasA and Ehrich 90] Sernadas, A. and Ehrich, H.-D., "What is an Object, After All", Object-
oriented Databases: Analysis, Design and Construction, Meersman, R. and Kent, B. (eds), North-Holland,
to be published

96

Cristina Sernadas et al

[SernadasC et al 90a] Sernadas, C., Gouveia, P., Silva, L. and Lopes, A., “Objects as Structuring Units
for Incorporating Dynamics in Deductive Conceptual Modeling”. Proceedings of the International
Workshop on the Deductive Approach to Information Systems and Databases, 93-110, 1990

[SernadasC et al 90b] Sernadas, C., Gouveia, P. and Lopes, A., "Gentzen-type System for Verification in
Conceptual Modeling and Knowledge Representation", INESC, 1990

[SernadasC et al 91a] Sernadas, C., Resende, Gouveia, P. and Sernadas, A., “In-the-large Object-oriented
Design of Information Systems”. The Object-Oriented Approach in Information Systems, Van Assche,
F., Moulin, B. and Rolland, C., (eds), North Holland, to be published

[SernadasC et al 91b] Sernadas, C., Gouveia, P., Gouveia, J., Sernadas, A. and Resende, P., "The
Reification Dimension in Object-oriented Data Base Design", International Workshop on Specification of
Data Base Systems, to be published

[SernadasC et al 90] Sernadas, C., Saake, G. and Sernadas, A., Algebraic Approach to Inheritance, INESC
Research Report, 1990

[SernadasC and J. Fiadeiro 91] Sernadas, C. and Fiadeiro, J., "Towards Object-oriented Conceptual
Modeling", Data and Knowledge, to be published

[Wieringa 90] Wieringa, R., "Equational Specification of Dynamic Objects” , R. Meersman and B. Kent
(eds), Object-oriented Databases: Analysis, Design and Construction, North-Holland, to be published

97

Introduction to Trgrl —

A Language for Object-Oriented Specification of Information Systems?

Ralf Jungclaus*
Thorsten Hartmann*
Gunter Saake*
Cristina Sernadas!

Abstract

In this paper, we present the language TROLL for the abstract specification of
information systems. Information systems are regarded to be reactive systems with
a large database. Before we present the constructs of TRoLL, we briefly explain the
basic ideas on which the language relies. The UoD is regarded to be a collection of
interacting objects. An object is modeled as a process with an observable state. The
language TROLL itself allows for the integrated description of structure and behavior
of objects. We explain the abstraction mechanisms provided by TRoLL, namely
roles, specialization, generalization and aggregation. To support the description of
systems composed from objects, the concepts of relationships and interfaces may be
used.

1 Introduction

Information systems represent the relevant aspects of a portion of the real world (referred
to as the Universe of Discourse (UoD) in the sequel) that are to be computerized. As
such, an information system is capable of storing, processing and producing information
about the UoD and thus is embedded in the UoD. The stored information changes over
time according to interactions with the environment or predefined internal functions.
Thus, information systems are dynamic in the sense that they may be regarded to be
reactive systems [Pnu77, MP89] (note that we do not address the evolution of the schema).
That is, an information system subsumes data, behavior and knowledge about both data
and behavior. Recent trends in information systems research concern the distribution
of information over (heterogeneous) systems and interoperability between cooperative
systems, as information systems are increasingly used in a decentralized manner.
Information systems represent increasingly large and complex UoD’s. Thus, adequate
means to support the design are becoming more and more important. The design starts

*Abt. Datenbanken, Techn. Universitit Braunschweig, Postfach 3329, D-3300 Braunschweig, Germany
({jungclau,hartmann,saake}@infbs.uucp)

'Departamento de Matemética — Instituto Superior Técnico, Av. Rovisco Pais, 1096 Lisboa Codex,
Portugal (css@inesc.inesc.pt)

}This work was partially supported by CEC under ESPRIT-II Basic Research Action Working Group
No. 3023 IS-CORE (Information Systems — COrrectness and REusability). The work of Ralf Jung-
claus and Thorsten Hartmann is supported by Deutsche Forschungsgemeinschaft under Sa 465/1-1 and
Sa 465/1-2.

98

with collecting and representing knowledge about the UoD, which covers all relevant static
and dynamic aspects [Gri82]. In this phase, it is highly irrelevant to know how these
aspects are implemented, thus a modeling approach should support a declarative descrip-
tion. As in engineering, the design process should produce models of solutions that can
be assessed formally before any concrete system is implemented. Thus, formal specifi-
cations of mathematical models should be produced as early as possible in the design
process of information systems. A desirable feature of specification languages is a logical
representation with a proof theory for reasoning about specifications based on a suitable
logical framework. A proof theory allows to derive knowledge from specifications in or-
der to support assessment of solutions and to formally verify implementations against
specifications.

In this paper, we give an introduction to the language TROLL. TROLL is & specification
language suitable for the description of the UoD and the information system on a high
level of abstraction. TRQLL is a logic-based language to describe properties and behavior
of dynamic (cooperative) systems in an object-oriented way. That is, the specification is
structured in objects. As far as possible, knowledge is localized in objects. Objects may
interact by synchronous communications. Thus, a system is regarded as a collection of
interacting objects. In these objects, the description of structure (by means of properties
and subobjects) and behavior over time (by means of processes over abstract events) is
integrated. Collections of objects are further structured using the concepts of classifica-
tion, specialization, generalization, and aggregation. Interactions and global assertions
can be specified apart from object specifications to describe system properties and the
overall behavior of systems.

The approach evolved from integrating work on algebraic specification of data types
[EM85, EGL89] and databases [Ehr86, EDG86|, process specification [Hoa85, Mil89],
the specification of reactive systems [Ser80, MP89, Saa91], conceptual modeling [CheT6,
MBWS0, BMS84, Bor85, HG88, EGH'90] and knowledge representation [BM86, ST89,
MBB89]. The concept of object used as a basis for TROLL has been developed in [SSE87,
SFSE89, SE90| accompanied by work on a categorical semantics [ES89, EGS90, ES91].
Based on this formal concept, work has been done towards a logical framework of struc-
tured theories over a suitable logical calculus [FSMS90, FM91]. First versions of the
language introduced in this paper have appeared in [JSS91, SJ91a, SJ91b, JSH91).

The paper is structured as follows: In the next section, we explain the basic ideas
behind TRoLL. We give a motivation for using an object-oriented approach and introduce
informally the concept of object that underlies our language. In section 3, we show how
objects as the basic system components can be specified. In section 4, we introduce
abstraction mechanisms to construct objects from objects. In section 5, mechanisms to
relate objects to build systems are presented. In the last section, we summarize and
briefly discuss further research issues.

2 Basic Ideas behind TrQLL

TROLL tries to integrate ideas from conceptual modeling (in the tradition of the ER-
approach) and the specification of reactive systems with the object-oriented paradigm.
This paradigm has been attracting a lot attention in different fields of computer science.
In the software engineering community, object-orientation has taken the way up from
programming (e.g. [GR83, Mey88]) to design (for a survey see [MK90]) and has already
entered analysis (e.g. [CY89, RBP*90]). In the database community, object-oriented

99

databases have been very popular in recent years [DD86, Dit88, ABD*89, KL89]. Ac-
cording to traditional research issues, each community puts special emphasis on certain
aspects of object-orientation [Ver91|

2.1 Conceptual Object-Oriented Modeling

Traditionally, many notations for conceptual modeling have been entity-based in the sense
that they look at the world consisting of interrelated entities [Che76]. Whereas entity-
based notations emphasize structural aggregation, abstraction and inheritance, most
object-oriented notations being around currently emphasize behavioral aggregation and
inheritance. In conceptual modeling, both structural and behavioral aspects should be
paid equal attention. Additionally, temporal aspects like precedence relationships be-
tween state transitions or possible life cycles and global aspects are of interest [TN89).
Temporal aspects in system specification have been addressed by approaches to use tem-
poral logic (see e.g. [MP89]) in conceptual modeling of databases and information systems
[Ser80, Lip89, Saa9d1].

The basic idea is to integrate all static and dynamic aspects local to an entity (or ob-
ject) in an object description. Object descriptions are thus encapsulated units of structure
and behavior description. An object instance has an internal state that can be observed
and changed exclusively through an object interface. In contrast to object-oriented pro-
gramming languages that emphasize a functional manipulation interface (i.e. methods),
object-oriented databases put emphasis on the observable structure of objects (through
attributes). We propose to support both views in an equal manner, i.e. the structural
properties of objects may be observed through attributes and the behavior of objects may
be manipulated through events which are abstractions of state changing operations.

The encapsulation of all local aspects in object descriptions implies that object de-
scriptions are the units of design. Following this perspective, we may model the system
and its environment in a uniform way. We achieve in having clean interfaces between
components that are part of the environment and components that are to be computer-
ized later on. This approach results in having higher levels of modularity and abstraction
in the early phases of system design.

An object description usually is regarded as a description of possible instances of the
same kind which is similar to the notion of fype in semantic data modeling. In object-
oriented programming, the notion of type is closely related to (and sometimes even mixed
up with) the notion of class. In our view, a class defines a collection of instances of the
same type.

Objects can be composed from other objects (aggregation). Aggregation of objects
imposes a part-of relation on a collection of object-descriptions. This kind of inheritance
is known from semantic data models where it is used to model objects that appear in
several roles in an application. It is also useful to distinguish disjoint from non-disjoint
complex objects. In non-disjoint complex objects, components may be shared with other
complex objects, whereas in non-disjoint complex objects only belong to one complex
object. This implies that the existence of components of disjoint complex objects is
strongly dependent on the existence of the aggregation. For non-disjoint complex objects,
components may exist independently from aggregations. Non-disjoint complex objects
can be defined based on static properties (static aggregation) or operations to alter the
composition (dynamic aggregation).

Object descriptions may also be embedded in a specialization hierarchy. Usually,
specialization implies reuse of specification code and allows to treat instances both as

100

instances of the base class and the specialization class. A related concept is generaliza-
tion that allows to treat conceptually different instances uniformly as instances of the
generalization class.

Besides the structuring mechanisms mentioned above, a means to describe the inter-
action of object instances is needed to specify system dynamics. For conceptual modeling,
we have to abstract from implementation-related details that arise from using message-
passing and process communication. Communication is modeled conceptually by calling
or identifying events of interrelated objects.

2.2 Basic Ideas of Object Models

After having discussed the concepts for conceptual object-oriented modeling, we will take a
short look at the mathematical structures being possible formal models for object systems.
As mentioned already, an object can be regarded as an observable communicating process
encapsulated by an access interface. Observations consist of reading its attribute values,
object changes over time are driven by occurrences of its events. The event occurrence
may be initiated by the object itself (active object) or as a result of a communication with
another object (event calling). Both the values of attributes and the possible parameters
of events are data values in the sense of abstract data type values.

The basis for a formalization of such an object concept are values structured using the
concept of abstract data types (ADT’s) [EM85, EGL89|. Data values are elements of the
carrier set of some ADT. An ADT is defined by a carrier set for data values along with
data type specific functions on this set.

For the formalization of object signatures, we use the notion of a signature from the
ADT framework. An object signature consists of attribute and event symbols. Attributes
are null-ary functions into a certain domain (a data type), events are functions with
parameters and a special event sort as domain. The object signature defines the alphabet
for an object specification in a formal framework.

The next step is the formalization of object evolutions using linear processes in a
process framework. The reason we only consider linear processes is that we do not want
to have intra-object concurrency, i.e. our objects are the units of concurrency. A possible
choice is to adopt the life cycle model which defines a process as the set of possible
snapshots of events. A snapshot is a set of concurrently occurring events. Special attention
must be paid to events that create and destroy an object. Therefore we require the first
snapshot in a life cycle to include at least one birth event. If the life cycle is finite, a death
event is included in the last snapshot. Note that death events are not required, thus there
may be objects that exist infinitely.

The last point to formalize for the specification of simple objects is the observation
of current object properties. This is done by introducing an observation structure fixing
attribute values for each reachable state of an object. A reachable object state is given by
any finite prefix of possible object life cycles. The observation structure can be described
as a mapping from object states (life cycle prefixes) to attribute-value relations [SSE87,
ESS90].

Up to now we have only sketched a formalization of single objects. Another topic
is the definition of object composition. Component relation between objects is modeled
using structure preserving mappings between objects, the so-called object morphisms
[ESS90, EGS90], which can be be compared to process combination known from process
theory. As a special case we have inclusion morphisms where the mapping is supposed to
be injective. Inclusion morphisms can be used to explain the embedding of subobjects into

101

objects, i.e. aggregation of objects. The embedded objects are regarded as subprocesses in
the enclosing composite object, where only events local to the subobject may have effects
on attribute observations (of the subobject attributes). :

The step from single objects to sets of objects is done by introducing an identification
mechanism for object instances. Again we use ADT’s to describe object identifiers. A
class type defines a set of identifiers along with a prototype object model (an object
template). An object class then consists of a class type and a set of object instances
together with a mapping from a set of object identifiers to actual object instances. Note
that it is possible to extend the notion of (hornogeneous) class types by introducing a set
of object templates for one class type, i.e. we may have heterogeneous class types [SSE87].

A formalization of these ideas can be found in [JSS91, SJ91b, JSH91]. For recent
developments towards a more sophisticated semantic domain for object systems see [ES91].

3 Specification of Objects

Throughout the rest of this paper, we use fragments of the following example taken from
commercial applications. A bank maintains a number of accounts for customers. It also
owns a number of automatic teller machines (ATMs) that are operated remotely. Accounts
have the usual properties such that they may not be overdrawn etc. Associated with a
checking account is a number of cash cards that can be used to withdraw money at an
ATM. An ATM accepts a cash card, communicates with the user and the bank to carry
out the transaction and dispenses cash if the transaction was successful and the ATM is
not empty. The bank coordinates the card verification requests and the bank transactions
issued concurrently from the ATMs.

In this section, we introduce object descriptions. The body of an object description is
called template. In a template, the signature (the interface) as well as the structure and
behavior of an object is described. A simple template may include the following sections:

template [template name]
data types import of data type signatures
attributes attribute name and type declarations
events event name and parameter declaration
constraints static and dynamic constraints on attribute values
derivation rules for the derivation of attributes and events
valuation effects of events on altributes
behavior
permissions enabling conditions for event occurrences
obligations completeness requirements for life cycles
commitments state-dependent short-term goals
patterns {ransactions and scripts
[end template template name]

A single object is defined by a proper name and a template. An object class is defined
by a class name, a template and an identification mechanism. In TRgL[, we declare exter-
nal identifiers. External identifiers are elements of the carrier set of an abstract data type.
Similar to primary keys in databases, external identifiers are tuples of atomic data values.
The set of external identifiers and the template make up the class fype. An external iden-
tifier along with the class name defines a unique identification for instances of that class.
The set of identifiers for a class is called the id space. An id space is an isomorphic copy of

102

the set of external identifiers of the associated class type. As a notational convention, we
denote the id space of a class C with |C|. Please note that |C| is a data type. Associated
with an id space is an operation that maps an external identifier to the corresponding
element of the id space. As a convention, the name of this operation is the class name:
C: type of external identifier => |C|.

Consider now an example for the description of a class in TRQLL, the specification of
the class Account. For this and the following examples, we assume a simple enumeration
data type UpdateType={deposit,withdraw} to be predefined. We assume data types
in general to be specified independently from object specifications in a suitable algebraic
framework (e.g. [EM85]). The signature of such datatypes is explicitly imported in each
template.

The attribute and event declarations defined make up the local signature which is the
alphabet for the template. For our example, the signature is specified as follows:

attributes
constant Holder: |BankCustomer| ;
constant Type:{checking,saving};
Balance:money;
Red:bool;
CreditLimit :money;
derived MaxWithdrawal:money;
events
birth open(in Holder:|BankCustomer|,in Type:checking,saving);
death close;
new_credit_limit(in Amount:money);
accept_update(in Type:UpdateType, in Amount:momney);
withdrawal(in Amount:money) ;
deposit(in Amount:money) ;
update_failed;

The local signature defines the interface of instances since it introduces the names and
parameters of all visible components of an instance. In the Account-example, we declared
the attributes Holder, Type, Balance, Red, CreditLimit and MaxWithdrawal along with
their codomains, i.e. attributes in TRQLL are typed. Holder is a constant attribute, i.e. it
will be instantiated at creation time of an instance and may not be altered throughout
the lifetime of that instance. The value of the attribute Holder is an identifier of an
instance of class BankCustomer, i.e. it is a reference to another object (which is, however,
not a component). The attribute Type denotes whether the account is used as checking
account or savings account. The value of the attribute MaxWithdrawal is derived from
the values of the other attributes according to the rules given in the derivation-section
of a template.

In the events-section, the event names and parameters are declared. At least one
birth-event is required that denotes the creation of an instance. Optionally, we may
declare death-events that denote the destruction of an instance but we may declare
objects that live “forever”. All other events denote a noteworthy change in the state of
instances. Events may have formal parameters which allow to define the effects of events
on attribute values or for data to be exchanged during communication. The keywords in
and out are used to decide about the data-flow direction during communication.

In the constraints-section, we may impose restrictions on the observable states. For
accounts, we may e.g. state the following:

103

constraints
initially Red = false;
initially CreditLimit = 0;
initially Balance = 0;
initially ((Balance > 100) before Red);
Red => (Balance <= CreditLimit);
Red => sometimef(not Red);
derivation
{ Red } => MaxWithdrawal = CreditLimit - Balance;
{ not Red } => MaxWithdrawal = Balance + CreditLimit;

Constraints with the keyword initially state conditions to be fulfilled with respect to the
initial state after the birth-event occurred. For initial and ordinary constraints we admit
dynamic constraints stated in future tense temporal logic [Ser80, Lip89, Saa91]. Dynamic
constraints describe how the values of attributes may evolve in the future. Consider the
initial constraint

initially ((Balance > 100) before Red);

which says that after an account has been opened, the balance must have been more that
100 before it can be overdrawn. The formula,

Red => sometimef(not Red);

states that if an account is in ‘red condition’, sometime in the future it has to leave this
condition. Implicitly, constraints restrict the possible state transitions.

In the derivation-section, rules to compute the values of the derived attributes may
be stated. For the Account-template, we have conditional expressions to compute the
maximal amount of money that can be withdrawn in the current state depending on the
value of the attribute Red.

The values of attributes may change with the occurrence of events. Thus, to describe
the change of objects over time, we have to describe how the occurrence of events affect
the values of attributes. Valuation formulae stated in the valuation-section of a template
are based on a positional logic [FS90]. The valuation-section of our account example
looks as follows:

valuation
variables m:money;
[new_credit_limit(m)]CreditLimit = m;
not Red and (m <= Balance)} => [withdrawal(m)]Balance = Balance - m;
not Red } => [deposit(m)]Balance = Balance + m;
not Red and (m > Balance)} =>
[withdrawal(m)] (Balance = m - Balance) and (Red = true);
Red } => [withdrawal(m)]Balance = Balance + m;
Red and (m >= Balance)} =>
[deposit(m)](Balance = m - Balance) and (Red = false);
{ Red and (m < Balance)} => [deposit(m)]Balance = Balance - m;

Valuation formulae may be conditional like the following one:

{ not Red and (m <= Balance)} => [withdrawal(m)]Balance = Balance - m;

104

The rule will only be applied if the condition evaluates to true. The rule states that after
the occurrence of the event withdrawal instantiated by a value m the attribute Balance
will have the value of Balance-m. Please note that the term on the right side of the
equals-sign is evaluated in the state before the event occurred.

In the following rule, we state that the occurrence of an event has an effect on more
than one attribute. In that case, we may use a conjunction:

{ not Red and (m > Balance)} =>
[withdrawal(m)](Balance = m - Balance) and (Red = true);

Please note that we implicitly use a frame rule saying that attributes for which no
effects of event occurrences are specified do not change their value after occurrences of
such events.

A major part of an object description is the description of the behavior of instances.
Let us first give the behavior-section of the Account template:

behavior
permissions
variables t,t1:UpdateType; m,ml,m2:money;
{ Balance = 0 } close;
{ not sometime(after(accept_update(t,m1)))
since last (after (update_failed) or
after(deposit(m2)) or
after (withdrawal(m2)))} accept_update(ti,m);
{ sometime (after(accept_update(t,m)))
since last after(accept_update(ti,m1)) and
t = withdraw and (m > MaxWithdrawal)} update_failed;
{ sometime (after(accept_update(t,m)))
since last after(accept_update(ti,m1)) and
t = deposit } deposit(m);
{ sometime (after(accept_update(t,m)))
since last after(accept_update(ti,m1)) and
t = withdraw and (m <= MaxWithdrawal)} withdrawal(m);
commitments
variables t:bool; m:money;
{ after(accept_update(deposit,m)) } => deposit(m);
{ after(accept_update(withdraw,m)) and
(m <= MaxWithdrawal) } => withdrawal(m);

Basically, we provide four sections. In the permissions-section, we may state enabling
conditions for event occurrences. Events may only occur if the enabling condition is
fulfilled. Thus, permissions state that something bad may never happen. The general
form of permissions is

{ (temporal) condition } event_term;

Permissions may refer to the current observable state (simple permissions) or to the
history of events that occurred in the life of an instance so far (temporal permissions). As
an example for a simple permission look at the following rule that requires an account to
be empty before it can be closed:

{ Balance = 0 } close;

105

For temporal permissions, we may state preconditions being formulae of a past tense
temporal logic. It is defined analogously to the future tense temporal logic of [Saa91].
Besides the temporal quantifiers sometime, always and previous we may also use the
bounded quantifiers sometime ... since last ... and always ... since last The
following rule for example states that after a transaction has been completed with the
occurrence of one of the events update_failed or deposit(ml) or withdrawal(mi), at
most one event accept_update may occur (i.e. we do not allow to handle interleaved
updates in an account):

{ not sometime(after(accept_update(t,m1)))
since last (after (update_failed) or
after(deposit(m2)) or
after(withdrawal(m2))) } accept_update(ti,m);

In the obligations-section, we state completeness requirements for life cycles. These
requirements must be fulfilled before the object is allowed to die. Usually, obligations
depend on the history of the object. The following requirement states that once an event
accept_update(t,m) occurs, this update must be completed eventually by an occurrence
of one of the events update _failed or deposit(m) or withdrawal(m):

{ after(accept_update(t,m)) } =>
deposit(m) or withdrawal(m) or update_failed;

The intuitive semantics of commitments is a bit more subtle. Commitments describe
internal activity of objects. In our example, a request to update the account should be
processed actively as soon as possible. As an example the following formula states that
after a request for an update of type deposit was accepted the corresponding deposit-
event instance should occur:

{ after(accept_update(t,m)) and t = deposit } => deposit(m);
Let us now give the specification of the class Account as a whole:

object class Account
identification
data types nat;
No: nat
template
data types |BankCustomer|,money,bool,UpdateType;
attributes
constant Holder:|BankCustomer|;
constant Type:{checking, saving};
Balance:money;
Red:bool;
CreditLimit :money;
derived MaxWithdrawal: money;
events
birth open(in Holder:|BankCustomer|,in Type:checking,saving);
death close;
new_credit_limit(in Amount:money) ;
accept_update(in Type:UpdateType, in Amount:money);
withdrawal(in Amount:money);

106

deposit(in Amount:money);
update_failed;
constraints
initially Red = false;
initially CreditLimit = 0;
initially Balance = 0;
initially ((Balance > 100) before Red);
Red => (Balance <= CreditLimit);
Red => sometimef(not Red);
derivation
{ Red } => MaxWithdrawal = CreditLimit - Balance;
{ not Red } => MaxWithdrawal = Balance + CreditLimit;
valuation
variables m:money;
[new_credit_limit(m)]CreditLimit = m;
{ not Red and (m <= Balance)} =>
[withdrawal(m)]Balance = Balance - m;
not Red } => [deposit(m)]Balance = Balance + m;
not Red and (m > Balance)} =>
[withdrawal(m)] (Balance = m - Balance) and (Red = true);
Red } => [withdrawal(m)]Balance = Balance + m;
Red and (m >= Balance)} =>
[deposit(m)] (Balance = m - Balance) and (Red = false);
{ Red and (m < Balance)} => [deposit(m)]Balance = Balance - m;
behavior
permissions
variables t,t1:UpdateType; m,ml,m2:money;
{ Balance = 0 } close;
{ not sometime(after(accept_update(ti,mi)))
since last (after(update_failed) or
after(deposit(m2)) or
after (withdrawal(m2)))} accept_update(t,m);
{ sometime(after(accept_update(t,m)))
since last after(accept_update(ti,m1)) and
t = withdraw and (m > MaxWithdrawal)} update_failed;
{ sometime(after(accept_update(t,m)))
since last after(accept_update(ti,mi)) and
t = deposit } deposit(m);
{ sometime(after(accept_update(t,m)))
since last after(accept_update(ti,mi)) and
t = withdraw and (m <= MaxWithdrawal)} withdrawal(m);
commitments
variables m:money;
{ after(accept_update(deposit,m)) } => deposit(m);
{ after(accept_update(withdraw,m)) and
(m <= MaxWithdrawal) } => withdrawal(m);
end object class Account;

~——— e

There is another means to describe the behavior of objects. Parts of life cycles (behav-
ior patterns) may be described using a process language that draws on CSP [Hoa85| and

107

LOTOS [ISO84]. To illustrate the use of the process sublanguage consider the description
of automatic teller machines (ATMs):

object class ATM
identification
data types nat;
IdentNo:nat;
template

data types nat,money,bool, |CashCard]|;

attributes
CashOnHand:money;
derived Dispensed:bool;

events
birth set_up;
death remove;
ready; cancel;
refill(in Amount:money);
read_card(in C:|CashCard]|);
check_card_w_bank(in Acct:nat:, in PIN:nat);
card_accepted; bad PIN msg; bad_account_msg;
issue_TA(in Acct:nat,in Amount:money);
TA_ failed msg; eject_card;
dispense_cash(in Amount:money);

constraints

initially CashOnHand = 10000;
derivation

Dispensed = (CashOnHand < 100);
valuation

variables m:money;
[refill(m)]CashOnHand = CashOnHand + m;
[dispense_cash(m)]CashOnHand = CashOnHand - m;
behavior
permissions
variables n:nat; m:money; C:|CashCard|;
{ not Dispensed } read_card(C);
{ m <= CashOnHand } issue_TA(n,m);
patterns
variables n,p:nat; m:money;
process ATM_USAGE = read_card(C) -> choice
cancel;
check_card_w_bank(n,p)
=> GO_ON
end choice -> eject -> ready
end process

108

where process GO_ON = choice
bad_account_msg;
bad_PIN_msg;
card_accepted -> choice
cancel;
DO_IT;

end choice;

end choice
end process

where process DO_IT = issue_TA(n,m) -> choice
dispense_cash(m) ;
TA failed_msg

end choice
end process

end object class ATM;

ATMs are identified by ident numbers. The observable state consists of the amount of
cash on hand in the ATM. The events denote the start of a service-session (read_card),
the request for checking a cash card (check_card_w_bank), various messages to the user of
the ATM (card_accepted, bad_PIN msg, bad_account_msg), the issuing of a transaction
request to the bank (issue_TA), the eject of the inserted card (eject), the dispense of
cash (dispense) and the refill of cash (refill).

The behavior of an ATM during a service-session is quite complex. An ATM only ac-

- cepts a cash card if the cash on hand exceeds 100. After the card has been read, the session
may either be canceled or it may go on with the corresponding check_card_w_bank-event.
Please note that through the variables we are able to use the values read by the read_card-
event, i.e. variables are not universally quantified but chosen by the environment. The
keyword choice denotes an ezternal choice, i.e. the decision for one of the alternatives
is left to the environment. The GO_ON-pattern starts with another external choice which
depends on whether the inserted card is valid or not (a decision which is not made by
the ATM itself). If the card is accepted, the process may be canceled again or may go on
with the launch of a transaction that can either be terminated with the dispense of cash
or a failure message. That decision is again not made by the ATM but the environment.
In any case, the service session with an ATM ends by the eject of the cashcard. Please
note that an external choice requires communication with the environment that decides
on how to proceed. This kind of communication is explained in section 5.

Templates are the building blocks of system specifications. As a first concept to
structure system descriptions, we introduced classification. In the following section we
want to introduce more epistimologic concepts for the structuring of specifications.

4 Abstractions

System descriptions in TRQLL can be structured in many ways. The mechanisms presented
in this section are roles, specialization, generalization, and aggregation.

4.1 Roles, Specialization and Generalization

The three concepts are related in the sense that they describe is_a relationships between
object descriptions, i.e. each instance of a role/specialization/generalization class may be
referred to as an instance of the base class, too.

109

4.1.1 Roles

The concept of role describes a dynamic (temporary) specialization of objects, i.e. a
special view of objects [Wie90]. As an example consider the roles customer or employee
of persons.

When looking at an object playing a role, we may want to know things that are not
relevant for the base object. Thus, a role has additional properties, it is a more detailed
description of the base object from a certain point of view.

Consider now an example. Suppose we have specified a template describing persons,
called Person. The Person template is assumed to have the usual attributes like Name,
FirstName, Address, Birthdate etc. The dynamics only cover attribute updates. In our
bank world, let us now look at persons being customers: :

object class BankCustomer
role of Person
template
data types nat,set(nat);
attributes
Accts:set(nat);
events
birth bc_bank_customer;
death cancel;
active open_account(out Acct:nat);
active close_account(in Acct:nat);
valuation
variables n:nat;
[bc_bank_customer]Accts = emptyset();
[open_account(n)]Accts = insert(n,Accts);
{ in(n,Accts) } => [close_account(n)]Accts = remove(n,Accts) ;
behavior
permissions
variables n:nat;
{ sometime(after(open_account(n))) } close_account(n);
end object class BankCustomer;

In the template, we introduce new attribute and event symbols that extend the Person
signature. Here, we have an additional attribute Accts that clearly makes sense only for
bank customers.

A birth event for a role corresponds to an ordinary event of the base object and denotes
the start of playing a role. Each object may play a role several times. A death-event of a
role denotes that an object ceases to play a role (at least for that moment).

In the BankCustomer-template, two other events are declared. Both are marked ac-
tive, which denotes that they may occur on the initiative of the BankCustomer whenever
they are permitted to.

Semantically, we have to deal with both syntactical and semantical inheritance. Syn-
tactically, the base template is included in the role template. The local specifications
extend the base template. Semantically, each role instance includes the corresponding
base instance. In our example this means that an instance of BankCustomer includes the
instance of Person of which it is a role. This way, a role instance may access the base
instance’s attributes and may call the base instance’s events.

110

4.1.2 Specialization

Let us now consider a special case of a role which is called specialization. We decided to
introduce extra language features for this concept because it arises frequently in a system
specification. Specialization describes that an object plays a role throughout its entire
lifetime. In conceptual modeling, this concept is known under the term ¢s-a or kind-of. A
specialization hierarchy describes a tazonomy on objects.

For specializations, we do not have to describe the birth of a specialized object explic-
itly since it corresponds to the birth event of the base instance. Thus, we do not have
to specify a birth event for a specialization. In case of a (static) specialization, we must
provide a specialization condition, stating which objects belong to the specialized object
class.

As an example, consider two specializations of our Account: A savings account
(SavingsAccount) and a checking account (CheckingAccount). Both have special prop-
erties in addition to their common ones which are described in the base template Account.
A special aspect of savings accounts is that the bank (usually) pays interest for it. Fur-
thermore, the balance of a savings account is always non-negative, i.e. the credit limit is
0. Every once in a while, interest is paid (computed by some interesting function) and is
added to the balance. Please note that we may not update directly the attribute Balance
of the Account — we have to call explicitly the event deposit of the Account to update
the Balance. The specialization class SavingsAccount is specified as follows:

object class SavingsAccount
specializing Account where Type = saving;
template
data types real,date;
attributes
constant interest_rate:real;
last_interest_paid:date;
events
pay-interest(in date:date);
constraints
alwaysf (CreditLimit = 0);
alwaysf not Red;
valuation
variables d:date;
[pay-interest(d)]last_interest_paid = d;
behavior
permissions
variables d:date;
{ days_between(d,last_interest_paid) > 30 } pay_interest(d);
interactions
variables d:date;
pay-interest(d) >> deposit(:
(days_between(d,last_interest_paid)/360) *
(Balance * interest_rate / 100)
0k

end object class SavingsAccount;

Consider now the specialization class CheckingAccount. In our small UoD, we may

144

assign cashcards to checking accounts. With each checking account, a constant personal
identification number (PIN) is associated:

object class CheckingAccount
specializing Account where Type = checking;
template
data types nat,|CashCard| ,money;
attributes ;
constant PIN:nat;
Cards:set(|CashCardl);
events
assign card(in C:|CashCardl);
cancel card(in C:|CashCard|);
constraints
initially Cards = emptyset();
valuation
variables C:|CashCardl|;
[assign card(C)]Cards = insert(C,Cards);
{ in(c,Cards)} => [cancel_card(C)]Cards = remove(C,Cards);
end object class CheckingAccount;

Note that we do not impose further restriction on the life cycles — cashcards may be
assigned anytime, and for example the credit limit may be updated anytime due to the
occurrence of the event new_credit_limit inherited from the base object (although this
is not done on the initiative of a CheckingAccount-instance itself).

4.1.3 Generalization

Generalization is used to construct a uniform view on (several) different base classes.
Consider for example the very popular example of legal persons being either ‘real’ persons
or companies. Basically, generalization is similar to the second is-a concept specialization.
The difference is that it goes in the other direction: Using specialization, one defines a
number of subclasses for a base class whereas by generalization, one defines a common
superclass for a number of subclasses. The issue of specialization vs. generalization has
been discussed in the semantic data modeling community for some time [SS77, UD86,
HK87, PM88].

Consider the following example. Suppose the bank wants to treat persons being cus-
tomers and companies being customers in a uniform way. We may then define a class
Customer that generalizes the classes BankCustomer and Company (which is not defined
in this paper).

object class Customer
generalizing BankCustomer, Company:
template

data types nat,set(nat),string, |Customer|;

attributes
derived Accts:set(nat);
derived Address:string;

events
derived open_acct(out Acct:nat);
derived close_acct(in Acct:nat);

112

derivation

variables C:|Customer|; n:nat

{ in-class(C,BankCustomer) } =
Accts = BankCustomer(C).Accts and
Address = BankCustomer(C).Address and
open_acct(n) == BankCustomer(C).open_account(n) and
close_account(n) == BankCustomer(C).close_account(n);

{ in-class(C,Company) } =>
Accts = Company(C).Accounts and
Address = Company(C) .Location and
open_acct(n) == Company(C).new_acct(n) and
close_acct(n) == Company(C).delete_acct(n);

end object class Customer;

Please note that all attributes and events of the generalized class Customer are derived
from the corresponding attributes and events of the base classes. The predefined predicate
in-class evaluates to true if the instance identified by an identifier is a member of the
indicated class. For the derivation of events, we use event sharing since we want the
derived events to be identified with their corresponding base events.

4.2 Complex Objects

Using the aggregation concept, we may construct objects from components. In the
database community, this is also known as constructing complez objects. Basically, we
can identify two kinds of complex objects [BB84]:

e Disjoint complex objects do not share any components. This implies that compo-
nents cannot exist outside the complex object, they are strongly dependent and the
components are local to the complex object. The composition is always static.

e Non-disjoint complex objects may share components. Thus, components are au-
tonomous objects. In TRLL, we distinguish two kinds of non-disjoint complex ob-
jects: Dynamic complex objects may alter their composition through events whereas
the composition of static complex objects is described through static predicates.

For disjoint and non-disjoint complex objects the components are encapsulated in the
sense that their state may only be altered by events local to the components. Their
attribute values, however, are visible. The coordination and synchronization between
the complex object and its components or between the components must be done by
communication. Let us now continue with the concepts of non-disjoint complex objects,
that is static and dynamic aggregation.

4.2.1 Static Aggregation

The aggregation of static complex objects is described using predicates over identifiers
and constants. In contrast to dynamic aggregation where the structure of the complex
object may vary over time, the structure of a static complex object never changes. Spec-
ificationwise we describe the possible object composition not violating the constraints for
aggregation. Possibly there are components belonging to the complex object that are not
yet born.

113

In section 2 we sketched the concept of embedding subobjects in objects. Object em-
bedding can be used directly to describe static aggregation. All properties of the embed-
ded objects are preserved. Attribute values of the embedded objects can only be altered
by events local to the subobjects. Interaction between embedded objects or embedded
objects and the complex object must be achieved by synchronous communication. These
interactions may not violate the life cycle specification of the communicating objects.

For example let us consider the specification of an object Bank1. Suppose that we want
to describe this Bank1l object including all possible Account objects. The specification
may look as follows: :

object Bankl
template
including A in Account;
data types |Account|,set(|Account|),nat,UpdateType,money;
attributes
TheAccounts:set(|Account|);
events
birth establish;
death close_down;
open.account(in No:nat);
close_account(in No:nat);
process_TA(in Acct:nat,in Type:UpdateType,in Amount:money);
TA_failed(in n:nat);
valuation
variables n:nat;
[open_account (n)]TheAccounts = insert(Account(n),TheAccounts);
[close_account(n)]TheAccounts = remove(Account(n),TheAccounts);
behavior
permissions
variables n,p,pl:nat; m,ml:money; t,tl:UpdateType;
{ not in(Account(n)) } open_account(n);
{ sometime after(open_account(n)) } close.account(n);
{ not sometime after(process.TA(n,t,m)) since last
(after (TA_failed(n)) or after(TA_0K(n)))} process_TA(n,ti,ml);
/* Each Transaction must be completed before */
/* the next for account n can start */
interactions
variables t:UpdateType; m:money; n:nat;
open_account(n) >> Account(n).open;
close_account(n) >> Account(n).close;
process_TA(n,t,m) >> Account(n).accept_TA(t,m);
{ sometime after(process_TA(n,t,m) } =>
Account(n) .withdrawal(m) >> TA_OK(n);
{ sometime after(process_TA(n,t,m) } =>
Account(n).deposit(m) >> TA_OK(n);
{ sometime after(process_TA(n,t,m) } =
Account(n).update_failed >> TA_failed(n)
end object Banki;

In the interaction section communication between the composite object Bankl and

114

its components — the Accounts - is specified. Since the aggregated object is constructed
from a set of accounts, we must use an operation Account : nat — |Account| to generate
identifiers for included objects.

Identifiers are only references to objects, thus a second operation taking an object
identifier and yielding the object itself is needed. Since there is no ambiguity — the
accounts are subobjects of the bank — we could leave out the second operation, assuming
that Account(n) delivers an object instance:

open_account(n) >> Account(n).open;

In this case for example the Bank1 event open_account (n) calls the Account event open in
component object Account (n). Thus the creation and destruction of Account instances is
triggered by the Bank1 object. Note that the conditional calling (intuitively) only occurs
if the condition evaluates to true in the current state.

Let us now give a few words on the semantics. The signature of the Bank1 object is
obtained by disjoint union of the (local) signatures of the Bank1 and the accounts. Since
we included a set of objects we have to deal with indexed symbols. Indexing is denoted
using the dot notation (for example Account (n) .open). For the life cycle of the complex
object we state that if we constrain a life cycle to the events of a component object, we
have to obtain a valid life cycle of this component. For observations of the complex object
projected to the attributes of the component we must obtain the same observation as for
applying the observation mapping of the component to a life cycle of the composite object
restricted to the events of the component.

4.2.2 Dynamic Aggregation

The use of dynamic complex objects allows for a high level description of object com-
position. Components may be specified as single components as well as sets or lists of
components. The components of the dynamic complex object are behaviorally indepen-
dent from the aggregation. They have a life of their own and may be shared by other
objects as well.

With the specification of a dynamic complex object denoted with the keyword com-
ponents we have implicitly defined events to update the composition. Additionally we
have implicit attributes to observe the composite object. For example for a set of com-
ponent objects we have events to insert and delete objects and an attribute to observe
set-membership. For lists of objects we have events to append and to remove objects and
for single objects there are events to add and remove them as well as an attribute to test
if the component is assigned. A complete list of implicitly generated events and attributes
for each complex object construction can be found in the upcoming language report.

This view of complex objects is operational instead of declarative like the concept
of static aggregation. Before we will say how dynamic aggregation fits in our semantic
framework we will give an example

object Bank
template
data types nat, |ATM| ;UpdateType,money, | CashCard| ;
components
Accounts:SET (CheckingAccount)
events

115

birth establish; death close_down;
open_account (in No:nat);
close_account(in No:nat);
verify_card(in Acct:nat,in PIN:nat,in ATM:|ATM|);
no_such_account (out ATM:|ATM|);
bad_PIN(out ATM:|ATM|);
card_OK(out ATM:|ATM|);
process_TA
(in Acct:nat,in Type:UpdateType,in Amount:money,in ATM: |ATM|);
TA failed(out ATM:|ATM|);
TA_OK(out ATM: |ATM|);
card_request (in AcctNo:nat);
card_return(in C:|CashCardl);
behavior
permissions
variables n,p,pl:nat; m,ml:money; t,tl:UpdateType; atm:|ATM|;
{ not Accounts.IN(CheckingAccount(n)) } open_account(n);
{ sometime after(open_account(n)) } close_account(n);
{ not sometime after(process_TA(n,t,m,atm)) since last
(after(TA_failed(n,atm)) or after(TA_OK(n,atm)))
and Accounts.IN(CheckingAccount(n))} process_TA(n,tl,mi,atml);
/* Each Transaction must be completed before */
/* the next for account n can start */
{ not sometime after(verify_card(n,p,atm)) since last
(after(bad_PIN(atm)) or after(no_such_account(atm))
or after(card OK(atm)))} verify card(m,p,atm);
/* Each verification for a particular account must */
/* be completed before the next can start */
{ sometime after(verify_card(n,p,atm)) and
Accounts.IN(CheckingAccount(n)) and
(Accounts(CheckingAccount(n)) .PIN = p)} card OK(atm);
{ sometime after(verify card(n,p,atm)) and
not Accounts.IN(CheckingAccount(n))} no_such_account(atm);
{ sometime after(verify card(n,p,atm)) and
Accounts.IN(CheckingAccount(n)) and
not (Accounts(CheckingAccount(n)).PIN = p)} bad PIN(atm);
commitments
{after(verify card(n,p,atm))} =>
(bad_PIN(atm) or no_such_account(atm) or card OK(atm));
interaction
variables t:UpdateType; m:money; n:nat; C:|CashCard|;
open_account(n) >> Accounts.INSERT(CheckingAccount(n));
open_account(n) >> Account(CheckingAccount(n)).open;
close_account(n) >> Accounts.REMOVE(CheckingAccount(n));
close_account(n) >> Account(CheckingAccount(n)).close;
{ Accounts.IN(CheckingAccount(n)) and
not in(C,CheckingAccount(n).Cards) } =>
card_request(n) >> Accounts(CheckingAccount(n)).assign_card(C);
card_return(C) >>

116

Accounts(CheckingAccount(CashCard(C) .ForAccount)) .cancel_card(C);

process_TA(n,t,m,atm) >>
Accounts(CheckingAccount(n)) .accept_TA(t,m);

{ sometime after(process_TA(n,t,m,atm) } =>
Accounts(CheckingAccount(n)) .withdrawal(m) >> TA_OK(n,atm);

{ sometime after(process_TA(n,t,m,atm) } =>
Accounts(CheckingAccount(n)) .deposit(m) >> TA_OK(n,atm);

{ sometime after(process_TA(n,t,m,atm) } =>
Accounts(CheckingAccount(n)) .update_failed >> TA_failed(n,atm)

end object Bank;

In this example, we model another Bank object with a component set of
CheckingAccount objects. Initially, the Bank has no component. To manipu-
late the set of component accounts, the events Accounts.INSERT(|Account|) and
Accounts.DELETE(|Account|) are automatically added to the signature of the Bank
object. For set components a parameterized, bool-valued attribute, in this example
Accounts.IN(|Account|):bool, is included.

For the behavior of the complex object the communication inside the complex object
must be specified. Communication can take place between the component objects and
between the complex object and the component objects. In this example only the latter
case is used. See for example the clauses

open_account(n) >> Accounts.INSERT(CheckingAccount(n));
open_account(n) >> Account(CheckingAccount(n)).open;

which state, that every time an account identified by the natural number n is opened, it
becomes a member of the set of components and the event open is called in the corre-
sponding object CheckingAccount(n) which is inherited from the more general account
specification (see page 9). Note that the event open_account in the Bank object may
only occur if the expression not Accounts.IN(|CheckingAccount|) evaluates to true.
As an example for a conditional calling in the opposite direction consider the following
expression:

{ sometime(after(process_TA(n,t,m,atm))) } =>
Accounts(CheckingAccount(n)).update_failed >> TA failed(n,atm)

This clause states, that sometime after the event process_TA(...) occurred in the Bank ob-
Ject, the effect of the event update_failed in the component object CheckingAccount (n)
is the calling of event TA_failed(...) in the Bank object. Intuitively the calling only takes
place if the specified condition holds.

Let us now briefly look at the semantics of dynamic object aggregation. Since our
concept of object only allows for static object composition, i.e. embedding the components
into the complex object, we need to simulate dynamic composition using the concept of
static aggregation. This is done in the following way: for each possible composition the
corresponding template is obtained by including the object signatures of all objects that
are part of this complex object. Whenever the composition changes, a new complex object
is created in the same way and the old one is destroyed. The observable properties of the
unchanged components remain the same in the new instance.

Consider for example the Bank object containing a set of CheckingAccounts. Just to
explain the idea, we may construct an object class ComplexBank identified by instances

117

of set(|CheckingAccount|). For each object of this class its structure is defined by
embedding all CheckingAccounts that are elements of its (external) identifier. Changing
the composition thus yields a new object instance. We require this new instance to have
the same observable state as the old instance. The old object can be destroyed. This
view implies a change of object identity whenever the composition of the complex object
changes. However this change is not visible at specification level [KC86)].

4.2.3 Disjoint Complex Objects

Disjoint complex objects may not share components with other objects. The parts of a
disjoint complex object are strongly dependent on the composition. They cannot exist in-
dependently from the aggregation. In TRoLL. disjoint complex objects are described using
subtemplates. Subtemplates are a means for structuring the specification. Conceptually,
subtemplates describe local subobjects not usable outside the complex object.

For example let us specify a class of banks each containing a set of divisions. The first
step is to model the Division template:

template Division
data types |Personl,...;
attributes
Manager: |Person| ;

events
birth openDivision;
death closeDivision;
setManager(|Person|) ;

valuation
variables p:|Person];
[setManager(p)] Manager = p;

end template Division;

This specification fragment shows a division of a bank having an attribute Manager which
can be changed using the event setManager (|Person|). Divisions can be created with
the birth event openDivision and destroyed with the death event closeDivision. In
the second step the template specification of divisions can be used as subtemplates in a
possible bank object:

object class Bank2

identification
data types nat;
no:nat;

template
data types string, |Personl,...;
subtemplates

Divisions(string) :Division;

events
newDivisionManager(string, |Person|);

118

interaction
variables d:string, p:|Personl|;
newDivisionManager(d,p) >> Division(d).setManager(p);

end object class Bank2;

Inside the Bank template we have a possible Division template for each value of the inter-
nal name space, in this case for each possible string. We can use the components specified
in the subtemplate by supplying the subtemplate name and its internal identification. For
example the clause:

newDivisionManager(d,p) >> Division(d).setManager(p);

states, that an event denoting the advancement of a person p to be the new division
manager for division d calls for the event setManager(p) in the subobject Division(d).

Note that different Bank instances can have the same names for their divisions. The
names of the subobjects are local to the enclosing object as are the objects themselves.
They may not be shared with other bank instances.

One way to explain the semantics is static aggregation again. Objects specified using
subtemplates may be transformed to simply structured objects. Therefore we may gener-
ate (internal) object class descriptions employing the identification space of the original
object together with the internal template identification. The template of this new object
class is obtained from the subtemplate specification. For example the Bank2 object may
be transformed to the object class Division_Internal:

object class Division_Internal
identification
data types |Bank2|,string;
Bank2: |Bank2]| ;
internallD:string;
template Division
end object class Division_Internal;

and the modified object class Bank2 including all instances of Division_Internal be-
longing to the current instance:

object class Bank2
identification
data types nat;
no:nat;
template
including Division_Internal D where D.id.Bank2 = SELF.id;

end object class Bank2;

Note that the last two specifications are not visible to the designer. Each object
instance of the class Division_Internal may be shared only by exactly one Bank2 class
object. This property must be guaranteed with the including condition in the modified
Bank2 object. The condition is also an example for using predicates to describe the
aggregation of static complex objects.

119

An alternative semantics for disjoint complex objects can be obtained by flattening
the specification. In this case, the internal identification mechanism of subtemplates will
be used to index its attribute and event symbols. These indexed symbols are then added
to the signature of the enclosing complex object. Thus in the Bank object we have events
openDivision(string), setDivision(string), ... and attributes Manager(string).

5 Specification of Systems

When it comes to describing systems of interacting objects, it is not sufficient to provide
only the structuring mechanisms described in the previous section. In system specification,
we have to deal with static and dynamic relationships between objects, with interfaces,
and with object societies.

5.1 Relationships

Relationships connect objects that are specified independently. Basically, relationships
are language constructs to describe how system components are connected in order to
describe the whole system.

In TROLL, two types of relationships are supported:

¢ (global) interactions and

e (global) constraints.

5.1.1 Global Interactions

Global interactions describe communication between objects. We may use the syntax
for interactions inside complex objects. Global interactions along with the specifications
of the connected objects describe patterns of communication between the connected ob-
jects (these patterns are called scripts elsewhere [MBW80]). As usual, communication is
described using event calling and event sharing.

As an example consider the description of interactions between an ATM and the bank.
The relationship describes all communications that are necessary to carry out remote bank
transactions from an ATM:

relationship RemoteTransaction between Bank, ATM;

data types |ATM|,nat,money,UpdateType;

interaction '
variables atm: |ATM|; n,p:nat; m:money;
/* Card checking business */
ATM(atm) . check_card_w_bank(n,p) >> Bank.verify card(n,p,atm);
Bank.no_such_account(atm) >> ATM(atm).bad_account msg;
Bank.bad _PIN(atm) >> ATM(atm).bad _PIN msg;
Bank.card OK(atm) >> ATM(atm).card_accepted;
/* bank transaction business */
ATM(atm) .issue_TA(n,m) >> Bank.process_TA(n,withdraw,m,atm);
Bank.TA_failed(atm) >> ATM(atm).TA_failed msg;
Bank.TA_OK(atm,m) >> ATM(atm).dispense_cash(m);

end relationship;

120

From a process point of view, such a relationship describes how the involved processes
synchronize. For the business of checking a cashcard inserted into an ATM, we may
specify the first four clauses. The event check_card_w_bank occurring in an ATM denotes
a request to the bank to verify the inserted cashcard. Please note that we have to use
event calling here since we do not want to identify the verify_card event of the bank
with the check_card_w_bank event of each ATM. The other three clauses concern the
result of the card checking at the bank which must be transmitted to the corresponding
ATM. The bank transaction business is described in an analogous way.

In interaction specifications, we may want to refer to the history of events in the
connected objects. Consider the interaction between an ATM customer (of which the
specification may become the description of a user interface later) and an ATM. Here,
we must put precedence rules into conditions for interactions to model the process of
communication:

relationship UseATM between ATMCustomer, ATM;
data types |ATMCustomer|,|ATM|, |CashCard|,nat,money;
interaction
variables C:|ATMCustomer|; atm:|ATM|; CC:|CashCard|; p:nat, m:money;
Customer(C) .insert_card(CC,atm) >> ATM(atm).read_card(CC);
{ sometime after(Customer(C) .insert_card(CC,atm)} =>
Customer(C) .enter_PIN(p,atm) >>
ATM(atm) .check_card w_bank(CashCard(CC) .ForAcct,p);
Customer(C) .enter_cancel(atm) >> ATM(atm).cancel;
{ sometime after(Customer(C) .enter_PIN(p,atm))} =>
ATM(atm) .card _OK >> Customer(C).card accepted(atm);
{ sometime after(Customer(C).insert_card(CC,atm))} =>
Customer(C) .enter_amount(m,atm) >>
ATM(atm) .issue_TA(CashCard(CC) .ForAcct,m,atm);
{ sometime after(Customer(C).enter_amount(m,atm)) } =>
ATM(atm) .dispense_cash(m) >> Customer(C).cash_dispensed;
Customer(C) .take_cash(atm) >> ATM(atm).eject_card;
{ sometime after(Customer(C).insert_card(CC,atm))} =>
ATM(atm) .eject_card >> Customer(C).take_card(atm);
Customer(C) .take_card(atm) >> ATM(atm).ready;
end relationship;

For precedence rules, we may use the after predicate. Take e.g. the following clause:

{ sometime after(Customer(C).insert_card(CC,atm)} =>
Customer(C) .enter PIN(p,atm) >>
ATM(atm) . check_card_w_bank(CashCard(CC) .ForAcct,p);

It states that once a particular ATM customer inserted a cashcard, the input of the
personal id number (PIN) calls for the check_card_w_bank event in the ATM (which
itself calls for the verify_card event in the Bank).

Please note that we use a very simple execution model. A chain of calls may only be
carried out if all called events are permitted to occur (atomicity principle). We are aware
of the limitations of our approach with respect to exceptions and long transactions and
plan to work on a more sophisticated model of execution.

121

5.1.2 Global Constraints

When we model systems by putting together objects, we sometimes have to state con-
straints that are to be fulfilled be related but independently specified objects. Such global
constraints set up a relationship between objects. Consider the following example. When
modeling our banking world, there may be a regulation that one particular bank customer
may only be holder of at most one checking account. Please note that this is an exam-
ple for a relationship since it cannot be specified to be local to one instance of the class
CheckingAccount. In TRQLL, this would be specified as follows:

relationship IB1 between CheckingAccount C1,CheckingAccount C2;
data types |BankCustomer|,nat;
constraints
(C1.Holder=C2.Holder) => (C1.No=C2.No);
end relationship IB1;

Global constraints are specified using the same syntax as local constraints.
If a relationship between object classes contains both interactions and constraints,
both sections may be specified together.

5.2 Interfaces

An object or object class interface is first of all a mechanism to describe access control
to objects. Interfaces in TRQLL support the explicit encapsulation of object properties.
Access control is achieved by projecting the attribute and event symbols to external visible
symbols. Interfaces may be defined for single objects as well as for object classes. For
object classes, we may additionally define selection interfaces, thus restricting the visible
population of the class to some proper subset. Selection interfaces resemble the well
known views from relational databases [SJ91b].
The first example shows a simple class interface for ATM’s seen by a customer:

interface class ATMToCustomer
encapsulating ATM:
data types bool, |CashCard|,nat,money;
attributes
dispensed:bool;
events
active ready;
active read_card(in C:|CashCard]|);
card_accepted; bad_PIN.msg; bad_account_msg;
active issue TA(in Acct:nat,in Amount:money);
active cancel;
TA_failed msg; eject_card,
dispense_cash(in Amount :money) ;
end interface class ATMToCustomer;

The only observation for customers is the status of the ATM in terms of the bool-
valued attribute dispensed. Information about the amount of money available inside
the machine should (for obvious reason) not be public. An interface to dynamic objects
must define also the possible operations visible at this level of system description. Here
a customer should only be able to talk to the ATM at ‘user level’, i.e. he must be able to

122

insert cards, issue transactions, cancel the transaction and not at least dispense money.
Customers must not be able to refill a machine or even remove it. Also they should not
see details of the internal operations, for example the event check _card_w_bank is not
relevant at 'user level’. The semantics of this simple kind of interface is just a signature
restriction to the explicit noted event and attribute symbols.

Another kind of access restriction in contrast to the above mentioned projection inter-
face is the selection interface. Suppose we only want customers to use ATM’s identified
by a natural number between 100 and 199:

interface class ATMToCustomer?2
encapsulating ATM
selection
where IdentNo >= 100 and IdentNo <= 199
data types bool,.. =
attributes
dispensed:bool;
events

end interface class ATMToCustomer?2;

Here the actual visible population is limited using a predicate over the external key.
The semantics of this kind of interface definition is given by an object class specialization
followed by a projection interface. The predicate used for the definition of the specialized
class can be seen as a filter allowing only those instances to pass, that satisfy the selection
condition evaluated locally to the object instances.

In general we do not only want to restrict the external object interface to some subset
of events and attributes, but also be able to present derived properties of objects. We may
specify views of an object where some information is explicitly computed from existing
attributes. An example interface for the ATM class may be used for service personnel
only. Suppose that we want to indicate machines that must be refilled to avoid a dispensed
condition. Therefore this view defines a derived bool-valued attribute please_refill to
be true for ATM’s with CashOnHand below a threshold value of 1000:

interface class ATMToService

encapsulating ATM

data types bool,money;

attributes
please_refill:bool;
dispensed:bool;

events
refill(in Amount :money);

derivation
please refill = (CashOnHand <= 1000) ;
end interface class ATMToService :

Note that the derivation part is generally hidden from the view users. Technically, an
interface with derived properties consists of a formal implementation step [SE90, ES89]
and an explicit projection interface. More general we can also look at specialized opera-
tions as a view on the dynamic part of objects. For example we may have users of the

123

ATM that have to pay an extra charge for each bank transaction. Suppose that the ATM
has an additional (may be constant) attribute extraCharge:money, denoting the amount
of money to be withdrawn from the account:

interface class ATMToExtraUser

encapsulating ATM

data types money,bool,money;

attributes
extraCharge :money;
dispensed:bool;

events
issue_TA_Extra(nat,money) ;

derivation
calling
variables n:nat, m:money;
issue TA_Extra(n,m) >> <issue_TA(n,m) -> issue_TA(n,extraCharge)>
end interface class ATMToExtraUser;

The attribute extraCharge is seen from the specialized user, since he should know about
the extra charge. Each time this user issues an issue_TA_Extra(n,m) at this ATM two
bank transactions will occur. The first one issue_TA(n,m) to withdraw the amount of
money requested by the user. The second one issue TA(n,extraCharge) denotes the
extra charge. The derivation of events is done using arbitrary process calling, which again
is part of a formal implementation step hidden from the view user. In this case the
-> between the two events denote sequential composition of events. The angle brackets
denote a transactional requirement: either both events may occur or none of them may
occur. If for example the second event cannot take place because there is no money left,
the event issue_extra TA(n,m) will be rejected.

Please note that object interfaces have nothing to do with object copies. Interfaces
are just a means to specify different views on objects, that is, to select special object
populations out of the existing set of instances and to restrict the use of objects with
respect to their observation and operation interface.

6 Conclusions and Outlook

In this paper, we have introduced an abstract specification language for information sys-
tems. Specifications are structured in objects. An object description includes the specifi-
cation of structural properties and the specification of behavioral properties. For simple
objects, attributes are used to describe static aspects of the object’s state and events are
used to describe the basic state transitions. The admissible temporal ordering of events
is described using (temporal) enabling conditions (permissions), conditions to be guar-
anteed by objects (obligations), short-term initiatives (commitments) or even patterns of
behavior. The evolution of the object’s state depending on the actual behavior over time
is described by valuation rules that specify the effects of event occurrences on attribute
values.

Object descriptions are the basic units of structure. In TRgLL, we may apply a number
of abstraction mechanisms to object descriptions. Roles describe temporal (dynamic)
specializations of objects. An object may play several roles concurrently and may play

124

each role more than once. Specializations are roles which are fixed for the lifetime of an
object. Using generalization, we may collect different objects under a common (virtual)
class. Furthermore, we may describe objects that are constructed from components.
Disjoint complex objects have components that are strongly dependent on the base object
—such components may be described using subtemplates. Static and dynamic aggregation
describe objects with components that may be shared between objects.

Object descriptions and their abstractions are the components of systems. They have
to be connected in order to provide the services of a system. For this purpose, TROLL
provides the features of relationships and interfaces. Relationships describe constraints
and interactions between objects that are specified independently. Interfaces describe
explicit views on objects and may be used to control access to system components.

TROLL offers a large number of constructs that are especially suited for the conceptual
modeling of information systems at a very high level of abstraction. It tries to combine
features of conceptual modeling approaches and object-oriented approaches with formal
approaches to data and process modeling. Providing objects as units of design, TRgQLL
allows to achieve higher levels of modularity with clean but complete interface descriptions.
Thus, the boundaries between the information system and the environment as well as
the boundaries between data and processes become transparent. TRQLL is a semi-formal
language. Syntactic sugar has been added in quite large amounts to make the language
more user-friendly than a pure logical calculus.

Further work on TRoLL will cover in-the-large issues like reuse, modularization above
the object level, and parameterization. We plan to put another language level above TRgr L,
with constructs that enable the construction of system descriptions from components of
various grain.

In another direction, we are working on a language kernel which include those TROLL
concepts that are suitable to describe (distributed) implementation platforms like oper-
ating systems and databases in an abstract way. This kernel language is regarded as an
interface to an implementation platform. We then want to investigate the transformation
of TRoLL specifications into this kernel language.

This work is accompanied by work on a logical calculus being the formal background
for TRoLL specifications.

Acknowledgements

For many fruitful discussions on the language we are grateful to all members of IS-CORE,
especially to Amilcar Sernadas, Hans-Dieter Ehrich, Jose Fiadeiro, and Egon Verharen.

References

[ABD*89] Atkinson, M.; Bancilhon, F.; DeWitt, D.; Dittrich, K. R.; Maier, D.; Zdonik,
S. B.: The Object-Oriented Database System Manifesto. In: Kim, W.; Nicolas,
J.-M.; Nishio, S. (eds.): Proc. Int. Conf. on Deductive and Object-Oriented
Database Systems, Kyoto, Japan, December 1989. pp. 40-57.

[BB8&4] Batory, B.; Buchmann, A.: Molecular Objects, Abstract Data Types and Data
Models: A Framework. In: Proc. VLDB ‘84, Singapore, 1984. pp. 172-184.

[BM86] Brodie, M. L.; Mylopoulos, J. (eds.): On Knowledge Management Systems.
Springer-Verlag, Berlin, 1986.

(BMS84]

[Bor85]
[CheT6]
[CY89)

[DD86)

[Dit88]

[EDGS6]

[EGH*90]

[EGL89)

[EGS90]

[Ehr86]

[EMS5]

[ES89]

[ES91]

125

Brodie, M.; Mylopoulos, J.; Schmidt, J. W.: On Conceptual Modelling — Per-
spectives from Artificial Intelligence, Databases, and Programming Languages.
Springer-Verlag, Berlin, 1984.

Borgida, A.: Features of Languages for the Development of Information Sys-
tems at the Conceptual Level. IEEE Software, Vol. 2, No. 1, 1985, pp. 63-73.

Chen, P.P.: The Entity-Relationship Model — Toward a Unified View of Data.
ACM Transactions on Database Systems, Vol. 1, No. 1, 1976, pp. 9-36.

Coad, P.; Yourdon, E.: Object-Oriented Analysis. Yourdon Press/Prentice
Hall, Englewood Cliffs, NJ, 1989.

Dittrich, K. R.; Dayal, U. (eds.): Proceedings of the 1986 International Work-
shop on Object-Oriented Database Systems, Pacific Grove, CA, 1986. IEEE
Computer Society Press, Washington, 1986.

Dittrich, K. R. (ed.): Advances in Object-Oriented Database Systems. Lecture
Notes in Comp. Sc. 334. Springer Verlag, Berlin, 1988.

Ehrich, H.-D.; Drosten, K.; Gogolla, M.: Towards an Algebraic Semantics
for Database Specification. In: Proc. 2nd IFIP WG 2.6 Working Conf. on
Knowledge and Data (DS-2), Albufeira (Portugal), 1986. North-Holland, 1988,
pp. 119-135.

Engels, G.; Gogolla, M.; Hohenstein, U.; Hiillsmann, K.; Lohr-Richter, P.;
Saake, G.; Ehrich, H.-D.: Conceptual Modelling of Database Applications Us-
ing an Extended ER Model. Informatik-Bericht 90-05, Technische Universitat
Braunschweig, 1990.

Ehrich, H.-D.; Gogolla, M.; Lipeck, U. W.: Algebraische Spezifikation abstrak-
ter Datentypen. Teubner Verlag, Stuttgart, 1989.

Ehrich, H.-D.; Goguen, J. A.; Sernadas, A.: A Categorial Theory of Objects as
Observed Processes. In: Bakker, J. de; Roever, W. de; Rozenberg, G. (eds.):
Foundations of Object-Oriented Languages (Proc. REX School/Workshop),
Noordwijkerhood (NL), 1990. LNCS 489, Springer-Verlag, Berlin, 1991, pp.
203-228.

Ehrich, H.-D.: Key Extensions of Abstract Data Types, Final Algebras, and
Database Semantics. In: Pitt, D. et al. (eds.): Proc. Workshop on Category
Theory and Computer Programming. Springer Verlag, Berlin, 1986, pp. 412-
433.

Ehrig, H.; Mahr, B.: Fundamentals of Algebraic Specification I: Equations and
Initial Semantics. Springer-Verlag, Berlin, 1985.

Ehrich, H.-D.; Sernadas, A.: Algebraic Implementation of Objects over Ob-
jects. In: deRoever, W. (ed.): Stepwise Refinement of Distributed Systems:
Models, Formalisms, Correctness (Proc. REX’89), Mood (NL), 1989. LNCS
394, Springer Verlag, Berlin, 1989, pp. 239-266.

Ehrich, H.-D.; Sernadas, A.: Fundamental Object Concepts and Construc-
tions. In: This volume.

[ESS90]

[FM91]
[FS90]

[FSMS90]

[GR83]
[Grig2]

[HGSS)]

[HK87]
[Hoa85|
[1SO84]

[JSHO1]

[J8S91]

[KCs6]

[KL89]

[Lip89)

126

Ehrich, H.-D.; Sernadas, A.; Sernadas, C.: From Data Types to Object Types.
Journal on Information Processing and Cybernetics EIK, Vol. 26, No. 1/2,
1990, pp. 33-48.

Fiadeiro, J.; Maibaum, T. S. E.: Towards Object Calculi. In: This volume.

Fiadeiro, J.; Sernadas, A.: Logics of Modal Terms for System Specification.
Journal of Logic and Computation, Vol. 1, No. 2, 1990, pp. 187-227.

Fiadeiro, J.; Sernadas, C.; Maibaum, T.; Saake, G.: Proof-Theoretic Seman-
tics of Object-Oriented Specification Constructs. In: Meersman, R.; Kent, W.
(eds.): Object-Oriented Databases: Analysis, Design and Construction (Proc.
4th IFIP WG 2.6 Working Conference DS-/), Windermere (UK), 1990. North-

Holland, Amsterdam. In print.

Goldberg, A.; Robson, D.: Smalltalk-80: The Language and Its Implementa-
tion. Addison-Wesley, Reading, MA, 1983.

van Griethuysen, J.: Concepts and Terminology for the Conceptual Schema
and the Information Base. Report N695, ISO/TC97/SC5, 1982.

Hohenstein, U.; Gogolla, M.: A Calculus for an Extended Entity-Relationship
Model Incorporating Arbitrary Data Operations and Aggregate Functions. In:
Proc. Tth Int. Conf. on the Entity-Relationship Approach, Rome, 1988. North-
Holland, Amsterdam, 1988.

Hull, R.; King, R.: Semantic Database Modeling: Survey, Applications, and
Research Issues. ACM Computing Surveys, Vol. 19, No. 3, 1987, pp. 201-260.

Hoare, C. A. R.: Communicating Sequential Processes. Prentice-Hall, Engle-
wood Cliffs, NJ, 1985.

ISO: Information Processing Systems, Definition of the Temporal Ordering
Specification Language LOTOS. Report N1987, ISO/TC97/16, 1984.

Jungclaus, R.; Saake, G.; Hartmann, T.: Language Features for Object-
Oriented Conceptual Modeling. In: Teory, T. (ed.): Proc. 10th Int. Conf. on
the ER-Approach, San Mateo (CA), 1991. To appear.

Jungclaus, R.; Saake, G.; Sernadas, C.: Formal Specification of Object Sys-
tems. In: Abramsky, S.; Maibaum, T. (eds.): Proc. TAPSOFT’91, Brighton
(UK), 1991. LNCS 494, Springer-Verlag, Berlin, pp. 60-82.

Khoshafian, S.N.; Copeland, G.P.: Object identity. In: Proc. OOPSLA Con-
ference, Portland, OR, 1986. ACM, New York, 1986, pp. 406-416. (Special
Issue of SIGPLAN Notices, Vol. 21, No. 11, November 1986).

Kim, W.; Lochovsky, F. H. (eds.): Object-Oriented Concepts, Databases,
and Applications. ACM Press/Addison-Wesley, New York, NY/Reading, MA,
1989.

Lipeck, U. W.: Zur dynamischen Integritit von Datenbanken: Grundlagen der
Spezifikation und Uberwachung. Informatik-Fachbericht 209. Springer-Verlag,
Berlin, 1989.

[MB89]

[MBWS0]

[Mey88]
[Mil89]
[MK90]

[MP89]

[PM38]
[Pnu77)
[RBP*90]
[Saa91]

[SE90]

[Ser80]

[SFSE8Y)]

[SJ91a]

[SJ91b)

127

Mylopoulos, J.; Brodie, M. (eds.): Readings in Artificial Intelligence €
Databases. Morgan Kaufmann Publ. San Mateo, 1989.

Mylopoulos, J.; Bernstein, P. A.; Wong, H. K. T.: A Language Facility for
Designing Interactive Database-Intensive Applications. ACM Transactions on
Database Systems, Vol. 5, No. 2, 1980, pp. 185-207.

Meyer, B.: Object-Oriented Software Construction. Prentice-Hall, Englewood
Cliffs, NJ, 1988.

Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood
Cliffs, 1989.

McGregor, J. D.; Korson, T. (Guest editors): Special Issue on Object-Oriented
Design. Communications of the ACM, Vol. 33, No. 9, 1990.

Manna, Z.; Pnueli, A.: The Anchored Version of the Temporal Framework. In:
Bakker, J. de; Roever, W. de; Rozenberg, G. (eds.): Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency. LNCS 354,
Springer-Verlag, Berlin, 1989, pp. 201-284.

Peckham, J.; Maryanski, F.: Semantic Data Models. ACM Computing Sur-
veys, Vol. 20, No. 3, 1988, pp. 153-189. :

Pnueli, A.: The Temporal Logic of Programs. In: Proc. 18th IEEE Symp.
Found. of Computer Science, 1977, pp. 46-57.

Rumbaugh, J.; Blaha, M.; Premerlani, W.; Eddy, F.; Lorensen, W.: Object-
Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs, NJ, 1990.

Saake, G.: Descriptive Specification of Database Object Behaviour. Data &
Knowledge Engineering, Vol. 6, No. 1, 1991, pp. 47-73.

Sernadas, A.; Ehrich, H.-D.: What Is an Object, After All? In: Meersman,
R.; Kent, W. (eds.): Object-Oriented Databases: Analysis, Design and Con-
struction (Proc. 4th IFIP WG 2.6 Working Conference DS-4), Windermere
(UK), 1990. North-Holland, Amsterdam. In print.

Sernadas, A.: Temporal Aspects of Logical Procedure Definition. Information
Systems, Vol. 5, 1980, pp. 167-187.

Sernadas, A.; Fiadeiro, J.; Sernadas, C.; Ehrich, H.-D.: The Basic Building
Blocks of Information Systems. In: Falkenberg, E.; Lindgreen, P. (eds.): In-
formation System Concepts: An In-Depth Analysis, Namur (B), 1989. North-
Holland, Amsterdam, 1989, pp. 225-246.

Saake, G.; Jungclaus, R.: Konzeptionelle Modellierung von Objektge-
sellschaften. In: Appelrath, H.-J. (ed.): Proc. Datenbanksysteme fiir Biiro,
Technik und Wissenschaft BTW’91, Kaiserslautern, 1991. IFB 270, Springer-
Verlag, Berlin, 1991, pp. 327-343.

Saake, G.; Jungclaus, R.: Specification of Database Applications in the TRoLL
Language. In: Harper, D. (ed.): Proc. Int. Workshop on the Specification of
Database Systems, Glasgow, 1991. Springer-Verlag, London, 1991. In print.

[5577]

[SSE87]

[ST89]

[TN89]

[UDS6]

[Ver91|

[Wie90)

128

Smith, J.M.; Smith, D.C.P.: Database Abstractions: Aggregation and Gen-
eralization. ACM Transactions on Database Systems, Vol. 2, No. 2, 1977, pp.
105-173.

Sernadas, A.; Sernadas, C.; Ehrich, H.-D.: Object-Oriented Specification of
Databases: An Algebraic Approach. In: Hammerslay, P. (ed.): Proc. 13th
Int. Conf. on Very Large Databases VLDB’87, Brighton (GB), 1987. Morgan-
Kaufmann, Palo Alto, 1987, pp. 107-116.

Schmidt, J. W.; Thanos, C. (eds.): Foundations of Knowledge Base Manage-
ment. Springer-Verlag, Berlin, 1989.

Tsichritzis, D. C.; Nierstrasz, O. M.: Directions in Object-Oriented Research.
In: Kim, W.; Lochovsky, F. H. (eds.): Object-Oriented Concepts, Databases,
and Applications. ACM Press/Addison-Wesley, New York, NY/Reading, MA,
1989, pp. 523-536.

Urban, S. D.; Delcambre, L.: An Analysis of the Structural, Dynamic, and
Temporal Aspects of Semantic Data Models. In: Proc. Int. Conf. on Data
FEngineering, Los Angeles, 1986. ACM, New York, 1986, pp. 382-387.

Verharen, E.: Object-Oriented System Development — An Overview. In: This
volume.

Wieringa, R. J.: Algebraic Foundations for Dynamic Conceptual Models. PhD
thesis, Vrije Universiteit, Amsterdam, 1990.

Towards Object Calculi

J.Fiadeiro, T.Maibaum

Department of Computing
Imperial College of Science, Technology and Medecine
180 Queen's Gate, London SW7 2BZ, UK

ABSTRACT - Logical calculi are presented for supporting an object-oriented discipline of systems development. An
object is viewed as an "entity” that has an identity independent of its state, that encapsulates a collection of attributes
(its private memory) which it is able to manipulate according to a circumscribed set of actions, and that is able to
communicate with other objects by sharing actions. Formal descriptions of such objects are seen as theory presentations
of the proposed logic. Attributes (state information) and events (behaviour) are integrated in coherent logical units
(focused on a logical réle for signatures) around which the notion of locality (encapsulation) is formalised. The effects
of the events on the attributes are described using positional (modal) operators. Restrictions and requirements on the
occurrence of events (ie, when they may and must occur) are defined using deontic predicates of permission and
obligation. Inference rules are defined for deriving properties of the described objects expressed in a temporal language.
Both safety and liveness properties are addressed. Moreover, rules are defined for reasoning at the global level ofa
society of objects which take into account the interaction between the participating objects.

Keywords - object-description; description morphism; modular specification; action logic; deontic logic; temporal
logic; interpretation between theories; locality; encapsulation; concurrency; safety; liveness

CONTENTS
1 Introduction
2 Defining object calculi

3 Object signatures and models
3.1 Object signatures
3.2 The semantic structures
3.3 Locality

4 Descriptive structures
4.1 The description language
4.2 Object descriptions
4.3 A calculus of descriptive properties
4.4 Using locality

5 Normative structures
5.1 Trajectories
5.2 The temporal language
5.3 Temporal axiomatisation
5.4 A calculus of safety properties
5.5 A calculus of liveness properties

6 Structured object descriptions
6.1 The category of object descriptions
6.2 Object interaction and societies of objects
6.3 Reasoning about societies of objects

7 Conclud'ing remarks

References

Appendix A - birth/death events and existence attributes
Appendix B - bounded temporal operators and obligations

130

1 Introduction

An attempt to establish a solid theoretical framework for object-oriented specification has been motivated
by the growing popularity of the object concept in practically every field of software construction. In
fact, research on formal foundations started as early as [16], but the main thrust has only been given
more recently, partially as a result of the progress in the areas of abstract data types (ADT) and
concurrency. On the one hand, research on ADT specification provided the necessary background for
formalising principles for programming/specifying "in the large". Modular decomposition,
parameterisation, stepwise refinement are some of aspects whose formalisation has been clarified by that
body of research. However, the ADT approach to specification (since e.g. [18,42], based on more or
less exotic versions/fragments of first-order logic, is centred around values rather than objects, leading
to an applicative account of behaviour that is not adequate for formalising the essential reactive nature of
object-oriented specification. Instead, alternative work on providing formal techniques for specifying
and reasoning about reactive, concurrent systems pointed out to the advantages of adopting modal
logics, and in particular temporal logics (since e.g. [37]), as the underlying formalisms. In this paper,
we capitalize on these achievements, and present a formal framework in which logics are provided for
supporting the modular specification and verification of objects.

The notion of object that we have in mind is that of an "entity" that has an identity independent of its
state, that encapsulates a collection of attributes (its private memory) which it is able to manipulate
according to a circumscribed set of actions, and that is able to communicate with other objects by sharing
actions. As argued in [39], this notion is rich enough to capture the wide variety of phenomena that are
normally encountered in design. As a specification primitive, it makes it possible to consider each layer
of the software development process to be structured uniformly as a collection of interacting, fully
concurrent objects. During refinement, it allows us to regard each design step as the implementation of
some abstract object in terms of a collection of concrete ones that are "assembled” into a configuration
that provides the functionality required by the abstract object. Our aim with this paper is to provide
logical tools supporting the use of the concept of object as the structuring unit for a fixed development
layer. The support for refinement techniques is under study (see [3] for an algebraic account, and [10]
for a preliminary logical account), but will not be addressed herein.

Having this in mind, the nature of the intended logical support seems obvious. Basically, there are two
levels at which our formalism is required to operate: at the local level of an object, and at the global level
of a society of interacting objects. On the one hand, we have to provide a logic that allows us to describe
both the structural and behavioural aspects of objects, and to formalise the notion of locality
(encapsulation) so that theory presentations, as units of specification, may be taken as object
desciptions. On the other hand, we are also required to be able to reason at the global level of a society
of interacting objects. For this purpose, we want to be able to have the specification of a complex object
(a society) as the result of some composition of the specifications of its components, and to have the
ability to deduce properties of the society from properties of the constituents. That is, we want our
calculi to be modular and reflect the structure imposed by how we put objects together.

The local support provided by the calculi is the subject of sections 3, 4 and 5, after a brief introduction
and motivation on the nature of the logics and the style of presentation that will be adopted (section 2).
In section 3, we define the notion of signature around which the description of objects and the notion of

131

locality is structured. These signatures will provide separate structures for data (values), attributes (state)
and events (behaviour). We also present the intended semantic domains, making clear which model of
behaviour we shall be using. Then, in section 4, we present the language in which objects are described,
and define the inference rules that will enable us to derive properties of the described objects. The effects
of the events on the attributes are described using positional (modal) operators. Restrictions and
requirements on the occurrence of events (i.e., when they may and must occur) are defined using
deontic predicates of permission and obligation. These deontic predicates partition the possible
behaviours of the described objects into those that comply with the permissions and the obligations
(normative behaviours) and those that do not (non-normative behaviours). In section 5 we show how
the traditional notions of safety and liveness can be related to permissions and obligations, and define a
temporal language in which we are able to express such safety and liveness properties. A calculus is then
defined for relating the language used for description and the temporal one, so that we may verify the
descriptions against the temporal requirements on the behaviour of the objects. Finally, in section 6, we
show how the formalism supports the composition of descriptions into more complex descriptions, and
how the structure of the resulting descriptions can be used to assist the derivation of global properties of
societies of interacting objects. A stock management example, the "trader's world", is used throughout
for illustration. Several appendices will focus on more detailed aspects of the formalisms.

Finally, we should stress that our goal in this paper is not to present a specification/programming
language for object-oriented system development. Other papers in this volume address this issue. We
shall not be advocating the proposed logics as specification vehicles, but rather as a formal framework
on top of which the semantics of object-oriented specification languages may be defined. In fact, several
specification constructs such as inheritance and aggregation have already been studied in this framework
[14]. Hence, the paper will concentrate on the definition of the proposed calculi.

2 Defining object calculi

We have already mentioned that our goal in this paper is to provide logical calculi that may be used to
assist in the object oriented specification of systems. The nature of this support may be more clearly
defined as follows. The intention is to adopt theory presentations in a given logic as semantic units for
formalising systems development [27,29,31,32,40]. In the object-oriented approach that we shall
follow, the software development process is viewed uniformly in terms of the manipulation of these
syntactical units, ending with one that is "executable" (is supported by the "programming"
environment). The specification primitives used to structure each development layer are also seen as
operations on such theory presentations. A calculus becomes necessary in order to be able to reason
about the resulting structured or unstructured specifications.

Put in more formal terms, we shall view a logic as consisting of the following components [11]:

* a category of signatures - providing the required structures of non-logical (or extra-logical)
symbols,

+ a functor from this category to the category of sets - providing the set of formulae over each
signature, i.e. providing the grammar of the language of the logic, including its logical symbols,

132

« a consequence relation - providing for each set of formulae the set of its consequences.

This view is closely related to institutions [19], except that models and satisfaction were replaced by a
consequence relation as this is, in our opinion, the level of abstraction at which we want to support
specification building. A theory presentation for such a logic consists of a pair (0,d) where 0 is a
signature and @ is a collection of formulae for that signature (usually referred to as the axioms of the
specification). The theory presented by (6,D) consists just of the set of formulae that are consequences
of @ (its theorems). The difference between theories and their presentations is just that theories are
closed under consequence and, hence, generally infinite and not necessarily recursive sets. Theory
presentations are, on the other hand, generally finite so that they can serve as specification units.

We can then consider a calculus as a set of rules that we may use to prove that certain formulae are
theorems of a theory presentation. One way of doing so, and the one we have explored in [7], is to
provide syntactical counterparts of consequence operators and axiomatise them. This emphasis on
consequence at the core of our formalisation effort has, indeed, several advantages from the point of
view of the reasoning mechanisms that are required for suporting the intended object-oriented discipline
of system development.

On the one hand, the desired ability to relate local (where each object is considered in isolation) and
global (where an object is considered in the context of a society of interacting objects) levels of
reasoning, namely to support the desired degree of modularity in verification, can be achieved through
higer level inference rules relating two consequence operators, a local and a global one. In fact, because
such relationships are reflected by the morphisms of the category of the theory presentations of the logic,
we shall see how our calculi will have to manipulate morphisms as a means for translating between local
and global properties.

On the other hand, even at the local level of a single object, it is useful to have our reasoning
mechanisms structured in layers of consequence operators. For instance, a consequence relation is
required for developing state-based reasoning, i.e. for deriving properties from local information about a
specific state of an object, and a higher level of consequence will be useful for reasoning about
properties that hold in every possible state. Moreover, at this higher level, it will be useful to distinguish
between properties that hold in every possible behaviour, in safe behaviours, and in live and safe
behaviours, leading to several interconnected consequence operators.

These features will be progressively introduced throughout the paper, adapting and extending fragments
of the logics presented in [9,13,23,25]. On the one hand, we shall support behaviour modelling using
the deontic notions of permission and obligation on events, and describe the effects of events on the state
of an object using positional (modal) operators. On the other hand, besides supporting the description of
objects, calculi will also support the envisaged forms of local reasoning. These include properties of the
admissible (normative) behaviours (execution sequences) in which an object may engage, both safety
and liveness, and which are dealt with in a temporal logic. However, we should stress that the need to
support forms of composition of objects into more complex objects lead to some modifications in the
treatment of events. The local calculi are based on the notion of locality (encapsulation) which is
formalised as a logical notion (i.e., is part of the logic in the sense that it is not a requirement that must
be enforced through the non-logical axioms of a specification). Hence, the calculi are always local, so to
say, to some object. Naturally, this object may be more or less complex as, for instance, we shall treat a

133

society of interacting objects as an object. But, because these more complex objects are structured in
terms of their component objects, our calculi make use of this structure to reason at such global levels.

3 Object signatures and models

We start with the local aspects of object descriptions. That is to say, we concentrate first on the
information structures that constitute an object and, later on (sections 4 and 5) on the languages that are
used to describe and reason about the properties of the described objects. The central notion is, of
course, that of signature. As motivated in the introduction, locality is a notion that is relative to a
collection of attributes and events that act on the attributes. From a formal point of view, such logical
loci are built around signatures.

3.1 Object signatures

An object signature must be comprised of at least three different components: the universe component,
the attribute component, and the event component. The universe component includes the information that
is state-independent and that gives, so to say, the data context in which the object is placed. It can be
seen as defining the frame of reference with respect to which change is to be measured. The attribute
component keeps the information that is state dependent. Examples of these structures can be found
under different names given according to the "nature" of the object: e.g., program variables, database
attributes, or frame slots. The event component accounts for the actions that the object may perform.

Definition 3.1.1 (object signature): An object signature is a triple (£,A,I") where

+ X is a signature (the universe signature) in the usual algebraic sense [5], i.e. a pair (S,Q2) where S
is a set (of sorts) and Q is a $*xS-indexed family (of function symbols).

+ A is a S*xS-indexed family (of attribute symbols). In programming terms, a nullary attribute
symbol corresponds to a program variable, whereas non-nullary attribute symbols can be
associated with more complex data structures such as arrays or database relations/schemas.

« I'isan S*-indexed family (of event symbols).]

The families €2, A, I" are assumed to be disjoint and finite (i.e., there is only a finite number of function
symbols, attribute and event symbols). The distinction between function () and attribute (A) symbols
will have a semantic counterpart: function symbols will be given a rigid interpretation (sate-
independent), whereas attribute symbols will be non-rigid. Naturally, this will also be reflected in the
adopted axiomatisation.

This distinction between rigid and non-rigid symbols in the signature of an object was already proposed
in [13]. There is, however, a basic difference with respect to the partition of event symbols into
reference and transition sets as used therein: when dealing with the composition of objects, the notion of
reference looses some meaning because everything becomes relative to a certain locale. An event that
gives a reference to the state of an object may loose that property when that object is regarded as a
component of another object. We shall see later on how we have a unique global reference (to the "big

134

bang") and how local references, such as those to the birth of an object, can be defined non-logically in
a specification.

For technical reasons, it is convenient to extend the notion of universe signature associated with a
signature:

Definition 3.1.2: Given a signature 0=((S,Q),A,I') we extend the associated universe signature to
the pair ZU=(SU,QU) where
* SU=S@®{E}, i.e. SU is the extension of S with a new sort E (for events).
* QU is the $"xSU-indexed family such that for every 6e $* and se SU, if se S then QU = Q.
and QU g =I';. That is, we extend Q with the event symbols. O

For instance, assume that we were modelling the universe of a trader. For simplicity, assume that only
one product is stocked. As a first approximation, we might consider decomposing its behaviour into two
activities: processing the orders (i.e. registering which orders have arrived and which have been
delivered), and managing the stock (i.e. updating it according to deliveries or replenishments).
Naturally, these activities are not independent. However, each makes a coherent unit in terms of local
behaviour, which we formalise by defining two signatures: ORDER-SERVICE and STOCK:

STOCK
universe signature:

sorts: NAT«INT,BOOL,ORD
function symbols:
true,false: BOOL;
zero: NAT;
suc: INT—INT;
+: INT,INT—INT;
-1 INT,INT—INT;
<: INT,INT—>BOOL;
req: ORD—NAT
attribute symbols:
qoh: INT;
#processed: NAT
vent symbols:
process(ORD);
replenish(NAT)

Intuitively, goh gives the quantity on hand available in the stock and #processed the number of orders
processed so far. These are attributes (non-rigid designators) as they will likely be the subject of changes
operated by events. On the other hand, by including req in the universe signature, we are saying that this
is a state-independent piece of information of a stock: every order has an associated requested quantity
whose value does not depend on the state.

The universe symbols give the standard operations on booleans, natural numbers and integers.
However, we should point out that by stating NAT«INT we are assuming some kind of hierarchy of
types that we abstain from formalising herein, as it is not directly relevant for the topic of the paper (see
[22] instead).

135

The chosen event symbols are more or less intuitive, and account for replenishments of the stock and the
processing of orders.

Consider now the signature

ORDER-SERVICE

nive ign :
idem

attribute symbols:
pending: ORD—BOOL;
#requests:INT;

vent symbols:
deliver(ORD);
request(ORD)

That is to say, we have two attribute symbols accounting for the orders that are currently pending and
the number of orders received so far. The event symbols account for orders being received and
delivered.

It is important to stress that each of these signatures stands for itself and is not related to the other. In
this framework, when we want to say that there is a relationship between two signatures, we have to do
so by establishing morphisms between them saying which symbols are to be shared. For instance, we
shall see in section 6 how we can say that process and deliver are to be shared so that the two objects
synchronise at these events.

3.2 The semantic structures

A semantic interpretation structure for an object signature is given by an algebra that interprets the
universe parameters, a mapping that gives the values taken by the attributes in the traces (finite
sequences of events), and two relations between events and traces (of permission and obligation)
defining the underlying process:

Definition 3.2.1 (6-interpretation structures): A 6—interpretation structure for a signature
0=(%,A,I) is a quadruple (% _%.9%) where:
o % is a XU-algebra.
« ¥ maps:
- feAysto AN:E,) s,
= feAi, spos 10 AD: S19x.x80g xEyS > 5y, 5
» Fand @ are relations in EyxE,/". U

We recall that K is the sort of events, so that Ez, is its interpretation (a set) in the algebra Z. As usual,
Ez: denotes the set of finite sequences of events (traces). Traces will play the role of "possible worlds"
in the interpretation of the modal language to be proposed in section 4, so that an interpretation structure
provides the necessary Kripke semantics.

136

All functions involved are assumed to be total. With respect to attributes, this means that we are not
giving logical support to partiality. (See [7] for an extension of a similar framework to support partial

.....

the function Aay,...,an..Aai,...,an,)(e).

This semantic notion differs from those used in [4], where the underlying process is defined directly in
terms of sets of life cycles (runs or execution sequences). The "deontic" model was preferred because it
is more general, allowing us in particular to formalise other kinds of information like error recovery
through corrective actions, or sanctions if desired (see, for instance, [25,34,35,41]). On the other hand,
it will support a more descriptive account of the behaviour of an object in the sense that we will not be
modelling directly the allowed life cycles but describing instead the behavioural properties that they must
satisfy. This has an impact at the formal level by separating the absence of normative behaviours (empty
set of life cycles) or occurrence of non-normative behaviour from inconsistency of a specification.

Still comparing with the semantic notion of object that has been adopted in related work [4], notice that
we have included a local universe component defining the data context on which the object depends. In
that work, a (global) data context was assumed, but we felt that such local universe components are part
of the notion of locality and, hence, that it was worthwhile to work with them. It is important to stress
that this is just a data context and, hence, it does not "contain" objects. However, this does not mean that
other objects cannot be referred to: for instance, in the example above, there are references to orders.
(Assume, for the sake of argument, that orders would be modelled as objects as well.) But this is not a
direct reference to objects but merely the reference to their "surrogates” or identifiers. Moreover, there is
no way to tell from the signature STOCK whether the sort ORD will be a surrogate sort for orders.
These aspects are further discussed in [15].

3.3 Locality

As motivated in the introduction, objects have an intrinsic notion of locality according to which only the
events declared for an object can change the values of its attributes. This notion of locality can be
formalised by restricting the interpretation structures that we want to allow as models of an object
signature.

First, some definitions. We assume the following operations on traces:

Definition 3.3.1:
* <>isthe empty trace
 <e> is the trace that contains only the event e
* e i the trace obtained from e by appending e
* led is the length of the trace. It satisfies |<>1=0, le::ed=leed+1
* given 1<i<le, e(i) is the i-th event in . Tt satisfies (€::eer)(leed+1)=g, (€::00:)(1)=eex(i) for i<lessl
* given 1<i<lwl, e is the trace up to (and including) ex(i). It satisfies e ;= er(i+1)::e; and
e =<er(1)>. We also define exg=<>.

137

Definition 3.3.2 (generated events): Given an object signature 0=(Z,A,I') and a B-interpretation
structure (X FF0O) we define Gy ={ee Ey | e=gy(ay,...,a,) for some ge I and ay,...,a, in the
appropriate carrier sets}. Events belonging to Gy, are said to be generated. a

Notice that Gy as defined above does not correspond to the set of events that are term-generated (i.e.,
which are the interpretation of a closed term) because its definition is relative to the XZ-algebra induced by
% (We are working with the interpretation of open terms.) Hence, this notion of generated event
depends not only on the signature but also on the algebra being used to interpret the universe signature.
We shall see how this is reflected at the level of the axiomatisation of the modal logic to be proposed in
section 4.

Definition 3.3.3 (8-loci): Given an object signature 6=(Z,A,I'), a O-interpretation structure
(Y FFD) is a B-locus iff for every e Gy, for every trace e, for every fe A, ADe:w)=ADw). O

That is to say, non-generated events are silent in the sense that they have no effect on the local state of an
object (i.e., the values of the attributes are determined uniquely by the generated events that occur in the
trace). Hence, although we are working with global traces, we are requiring that these global traces be
"local" (private) states (identifying, as usual, states with the interpretations of the attribute symbols -
observations)!.

Notice that the notion of non-generated event is local to a signature in the sense that, fixing a domain of
events, some will be generated for some signatures but not for others. This is similar, in a way, to the
classification of events/actions used in [2] as belonging to the system (object) or the environment, and
that the authors claim to be the key to obtaining composable specifications. The former correspond in
our case to the generated events. Naturally, the same event may be generated according to two different
signatures. In this case, this means that the two objects synchronise at that event, which can be seen as
the concurrent "execution” of the two operations involved (one from each signature). As we shall see
below, working also with non-generated events permits an easier mapping between interpretation
structures for different (but related) signatures. The intuition for this approach is as follows: the calculus
is intended to permit the derivation of properties of an object in any context where the object can be
placed (i.e., where its description is validated). Section 6 will discuss these points in more detail.

This discussion points out again to the importance of assigning a logical role to signatures. Signatures
define the boundaries of our objects, i.e. locality has to be understood relative to a signature. In
particular, signatures define the vocabulary of the language that we have available for specifying an
object (see section 4), which implies that we are not allowed to refer to parts of the specification of
another object unless these are reflected somehow in the signature of the former.

Hence, the components (objects) that we specify are "context" independent in the sense that state
information is localised rather than shared between components, a strategy for achieving high levels of
modularity that can be traced back to [36]. However, notice that locality concerns only the attributes of
an object: permissions and obligations are global notions because they are properties of events, which
have to be global in order to capture interaction through event sharing.

1 Hence, in terms of sequences of such states, non-generated events introduce “stuttering” [1].

138

4 Descriptive structures

In this section, we develop the declarative or descriptive level of reasoning associated with an object
signature. It is based on the logics put forward in [9,13].

4.1 The description language

We shall now put forward the language to be used to describe objects. Again, we stress that this
language is not to be understood as a specification language, but rather as a low-level language on top of
which the semantics of a specification language may be defined (as, for instance, in [14]). A collection &
of variables (distinct from the universe, attribute and event symbols) is assumed to be given. Given an
object signature, by a classification 2 we mean a partial function E-SU (SU being the set of sorts of the
extended universe signature). We shall also denote by Z the SU-indexed set given by E ={xe§ |
=(x)=s}.

Definition 4.1.1 (terms) Given an object signature 0 and a classification Z, we define inductively
the SU-indexed set of terms DTy(Z) as follows:

« variables: if E(x)=s, then x is a term in DTy(E),;

o if fe QU .5 andt are terms in DTg(2),, then f(t,...,t)e DTo(E)g;

« iffeA s> and tjare terms in DTg(2)g, then f(ty,...,t,)e DTg(Z);

« if e is an event term, i.e. ee DTy(E)g, and te DTy(Z); then ([e]t)e DTy(E), ([e]t reads "t after e");

+ if te DTy(E), then ([Jt)e DTgy(E), ([t reads "first t").

Given a O—interpretation structure S=@. %97, a classification E, and an assignment A for (mapping
each variable in E; to an element of the carrier set sg), each term te DTy(E), defines a mapping [t]S:A:
Eg* — sy, (its interpretation) as follows:

— if xe &, [x]SA(w)=A(x);

<% lf fE QU(sl _____ Sn>,8? Ef(tl'r- . :tn)]]S'A(w) = f&([[tl]]S'A(“"'): (KRS] [[tn]] S'A(w))
where by fg we are denoting the interpretation of the symbol f in the algebra %

.....

[lel(®)15A(e) =[tISA([e]SA(eer):1e);
[OM1SA(e) =[t]SA(<>)

Notice how all the symbols belonging to the universe signature are rigid designators, i.e. their
interpretation is state-independent. These include the variables: as we mentioned above, state dependent
structures that correspond to "program variables" are modelled through the attribute symbols. The term
variable shall be used in the sense of first-order logic, denoting an element of the carrier set assigned to
its sort. We shall call a term that only uses symbols from the universe signature and variables a universe
term. Such terms are clearly rigid. Also notice the semantics of the modal operators applied to terms:
([e]t) denotes in a trace e« the value taken by t after the occurrence of the event denoted by e. On the
other hand, ([]t) denotes the value taken by t in the empty trace, i.e. before anything happens. Hence,

139

this operator replaces the reference operators used in [13]. As hinted above, this is the unique global
reference that is possible. O

Definition 4.1.2 (state propositions): Given a classification Z, the set DPy(Z) of (state)
propositions is defined inductively as follows:

+ if t; and t, are terms in DTg(Z), for some se SU, then (t;=st;)€ DPy(Z);

+ if e is an event term in DTy(Z)g, then Pe r(e),0b 1(e)e DPy(E);

+ if e is an event term in DTg(Z)g and pe DPy(E) then ([e]p)e DPy(E);

+ if pe DPg(E) then ([]p)e DPy(E).

Naturally, the language of state propositions can be enriched with first-order connectives (conjunction,
negation, quantifiers, etc) but we shall remain in this more restricted setting throughout the paper. The
predicate symbols Per and Ob1 are the "deontic" operators and will be used to specify the behavioural
properties of events (when they are permitted and when they are obligatory). The satisfaction of a state
proposition by a structure S and an assignment A in a trace e is defined as follows:

|

(t=,tp) is satisfied by S and A in e iff [t;]S-A()=[t,]5A(z);

Per(t) is satisfied by S and A in e iff ([t]SA(ee))€ T

Ob1(t) is satisfied by S and A in e iff ([t]SA(ee) er)e &

[e]p is satisfied by S and A in e iff p is satisfied in [e]SA(e): e,

[1p is satisfied by S and A in e iff p is satisfied in <>. O

Definition 4.1.3 (formulae): Given a signature 0, and a pair (P;,P,) of (finite) sets of =-
propositions for some classification Z, (P;—z P,) is a formula of the description language associated
with 8 (or a 8-formula for short). We shall assume the usual abbreviated notations such as (P —z p)
instead of (P—z(p}), (P;,P,—z P'|,P'y) instead of (P;UP,—z P'|UP',), etc.

From the point of view of logical consequence, — will be given an underlying "at a trace" ("in a world")
notion of consequence, formulae being regarded as sequents (in the sense of proof theory) over state
propositions: a 6—formula (P;—z P,) is true in a 6-structure S iff, for every assignment A and trace e,
if all the propositions in P, are satisfied by S and A in e, then there is a proposition in P, that is also
satisfied by S and A in ee. a

The need for indexing the single arrow with a classification is as in many-sorted equational logic:
because the interpretation of sorts may be empty, the domains of quantification have to be explicilty
given in order to obtain a sound calculus [20].

4.2 Object descriptions

Definition 4.2.1 (descriptions): An object description is a pair (0,F) where 0 is an object
signature and F is a (finite) set of 6-formulae (the axioms of the description). a

That is, an object description is a theory presentation in the description language. We shall often refer to
descriptions by a name, e.g. STOCK. In this case, the signature of the description will be denoted by
B(STOCK) and the set of its axioms by ®(STOCK). For instance, we shall have

140

O(STOCK):

universe
usual axioms for the chosen data types

ffi n
al) —x.orp ([process(x)lgoh = qoh-req(x))
@) —ynar ([replenish(x)lqoh = goh+x)
a3) = (zero<[]qoh = true)

ffi n #pr
@) —y.orp ([Process(x)iprocessed = #processed+1)
a5) —ynar ([replenish(x)J#processed = #processed)
a6) = ((#processed = zero)

These formulae account for the description of the effects of the events on the attributes of the stock (the
quantity-on-hand and the number of orders already processed) and are more or less self-explanatory. As
explained at the begining of the section, we are using the positional operators applied to the terms in
order to define the effects of the events. Hence, al) states that the value of goh after processing an order
requesting y units is decreased by y. Notice, however, that underspecification of the effects of the events
is possible: for instance, a3) merely states that the quantity on hand is non-negative in the initial state.
Hence, no fixed value is assumed to be assigned initially.

Besides describing the effects of the events on the attributes, an object description contains axioms
regulating the permissions and obligations of the object with respect to the events:

ermissions li

a’) Per(process(x)) —y.orp (req(x)<qoh = true)

With this formula we are stating that it is only permitted to process an order when there is enough
quantity on hand to satisfy the requested amount. Notice that al specifies the effects of processing an
order on the stock independently of the fact that there is sufficient quantity on hand to satisfy the order.
The safety axiom a7 states that, indeed, such events are only permitted when there is enough quantity-
on-hand to satisfy the requested amount. This means that, if this pre-condition is violated, the object will
enter a non-normative state. Such a situation can be explicitly dealt with (error recovery) by including,
for instance, a flag overdrawn together with

req(x)>qoh —y.orp [process(x)]overdrawn = true
and, possibly

(overdrawn = true) — Obl(replcnish(—Z*qph))
requiring that a corrective action (replenishing the stock with twice the amount overdrawn) be taken.
This is the advantage of separating non-normative states from inconsistency. The latter is a situation

from which it is not possible to recover within the logic. With the deontic approach, we are allowing for
recovery from non-normative situations within the logic. See [25] for more details on this subject.

141

The axioms of the description of order-services could be as follows:

®(ORDER-SERVICE):
ff n
bl) —y.orp ([Ipending(x) = false)
b2) —,.orp ([deliver(x)]pending(x) = false)
b3) —y.orp ([request(x)]pending(x) = true)

effects on #requests
b4) — ([J#requests = zero)
b5) —y.orp ([deliver(x)J#requests = #requests)
b6) —y.orp ([request(x)l#requests = #requests+1)

permissions and obligations
b7) Pex(deliver(x)) —.opp Pending(x)
b8) pending(x) —y.orp O 1(deliver(x))

That is to say, orders become pending when a request arrives and cease to be so when a delivery occurs.
On the other hand, the number of requests received so far is incremented each time a request arrives,
starting from zero. Finally, deliveries can only take place for pending orders, and there is an obligation
to deliver each pending order.

Notice how only necessary conditions for the events to be permitted and only sufficient conditions for
the events to be obligatory are given. This stems from the fact that events may be shared. Hence,
specifying a sufficient condition for an event to be permitted is a very strong requirement which easily
leads to inconsistencies when objects are put together. For instance, we shall see later on that the event
symbols process and deliver are to be identified in order to specify the interaction between stocks and
order-services. Hence, we could not have used an equivalence (or, for that matter, sufficient conditions)
when defining their permissions because there is not enough knowledge about the action in each of the
objects. :

However, nothing prevents the specifier from defining a boolean attribute for each event symbol giving
its local permission (idem for obligations). For instance, we could have defined a (local) boolean
attribute per-deliver with arguments in ORD and for which we would specify

per-process(x) = (req(x)<qoh)
and, naturally
Per(process(x)) —x:orp per-process(x)

The attribute per-process being local, these local permissions are carried through to other objects
unchanged. However, its contribution to the global permission is that of a necessary condition.
Naturally, if one wants to consider the object in isolation, it is always possible to work with the
completion of these conditions into equivalences. Nevertless, we should point out that such local
permission conditions are not "logical" in the sense that their meaning as necessary conditions for
permission is not fixed by the logic but, instead, specified by non-logical axioms such as above. We

142

shall see in the next section why it is important to have the global permission predicate Per defined
logically.

Still concerning our deontic notions, it is important to stress that we intend that several events may be
obligatory at a given state: indeed, according to our description, all deliveries are obligatory for pending
orders. The fact that an event is obligatory does not mean that it will "occur next" (or, equivalently, that
any other event is forbidden), but that its execution is a requirement that must be fulfilled sometime in
the future. The idea is that making the occurrence of an event obligatory in the next state is a rather
strong requirement: in particular, we must allow an arbitrary number of silent events to occur before the
obligatory one because these events are unobservable. On the other hand, it seems useful to be able to
specify boundaries to the interval during which the obligation is to be fulfilled. We shall see in appendix
B how such bounded obligation operators may be defined.

Moreover, contrarily to other definitions of these deontic notions [e.g. 25,41], there is no immediate
connection between our notions of permission and obligation. An event may be obligatory in a state
although not permitted, which prevents it from being executed next and defers its execution to later on,
For instance, a delivery may be obligatory but not permitted because there is not enough quantity on
hand, which implies that some replenishing must take place before the delivery. Also, the fact that an
event is obligatory does not mean that the others are not. Hopefully, the fact that a delivery is obligatory
will not prevent replenishments or the arrival of other requests before it is performed.

4.3 A calculus of descriptive properties

In order to reason about the properties of an object description, it is convenient to have a syntactical
counterpart of the "in an object" notion of consequence which can be given in terms of sequents of
formulae over the same signature:

Definition 4.3.1 (assertions): If F is a (finite) set of formulae of the description language over a
signature 0, and f is also a formula over 0, (F = f) is a descriptive assertion. Abbreviations will be
used as for formulae. Such an assertion is said to be valid iff every 0-locus that makes all the formulae
in F true also makes f true. O

Notice the difference between the "at a trace"/"in a state" and the "in a model" notions of consequence
underlying, respectively, truth of formulae and validity of assertions. Both are useful for reasoning
about objects: the first one (—) allows us to reason about consequences of the local information
available in a state (expressed through propositions), and the second one (=) to reason about the
consequences of a description i.e. of the axioms that define the overall behaviour of the object, and so
give us properties that hold at any trace. Indeed, the (descriptive) properties of an object description
(6,F) are just the formulae f for which we can prove that the assertion (F =g f) is valid. Following the
naming conventions given above for the names of descriptions, we shall often write (DESC = f) instead
of (®(DESC) =»g(pEsc) f)-

The indexing of the double arrow with the underlying signature is similar to the indexing of the single
arrow with the underlying classification or, for that matter, to the indexing of the equality symbol with a
sort symbol. In a way, these indexes are used to denote the "type" of the syntactical entities that are

143,

involved (respectively, formulae, state propositions, and terms). They also serve an important purpose.
As we have already argued, the indexing of the single arrow is as in many sorted equational logic [20]
and is needed because the possibility of having empty carrier sets requires the domains of quantification
to be made explicit in order to make the calculus sound. In the case of the indexing of the double arrow
with the signature, we shall see that rules that use the locality principle need the "syntactical closure" that

is provided by the signature.

We should also stress that, by defining the validity of assertions subject to loci and not interpretation
structures in general, we chose to give logical support to locality, i.e. locality is a concept formalised as
part of the logic. Alternatively, we could have chosen to introduce locality as a non-logical concept, i.e.
instead of working only with structures that are loci, we could work with general structures and restrict
ourselves to local structures through the axioms of a specification. As could be expected, this choice has
a strong impact on the logic: we shall see in section 6 that the price to pay for logical locality is reflected
on the structural properties of the logic (a kind of non-structural behaviour arises). Why then pay this
price? The logical support has a strong appeal: on the one hand, the logic seems to become more "object-
oriented" in the sense that locality is implicit and not something that must be explicitly required in a
specification. On the other hand, having logical locality will allow us to have locality as the criterion for
the composability of object descriptions, i.e. it will make our units of modularisation (theory
presentations) closer to objects as specification primitives.

We shall assume the usual structural rules for assertions, implication and equality, and give only some
of the operational rules that govern the different term constructors. See [9,13] for a more detailed
account of this inference system. As usual, we will omit the symbol =g in assertions that have an
empty antecedent, and the symbol —z in formulae that have an empty antecedent.

D1: Given terms t;e DTy(E), and ee DTy(E)g:
L. [el(ti=ty) —= ([elt; = [e]ty)
2. ([elt; = [elty) == [e]l(t=ty)
3. [t=ty) —= ([t = [Itp)
4. ([t =t -z [I(t1=tp)

These rules tells us that equality is a rigid operator, i.e. that it has a trace-independent interpretation.
Hence, we are able to "distribute” the positional operators over equality.

D2: Given universe function symbols fe QU
1. ([elf(ty,....tp)=f([e]ty,....[e]t,))
2. ([fCty,.. o t)=E([ty,....[1tn))

<81y..-,5>,8"

As above, these rules state that universe symbols have a trace-independent interpretation (are rigid).
Hence, again, positional operators "distribute" over them.

D3: 1. (Pl—)E P2) =9 ([C]Pl—')g [C]Pz)
2. (P1—zPy) =4 (IP1—=[1Py)

This is the rule of necessitation. Notice that it relates formulae on different sides of the double arrow and
not state-propositions on different sides of the single arrow because it is a property of the "model"-based

144

consequence and not of the "trace"-based one. We can only necessitate over properties that hold true in

every trace.

In order to present the substitution rule it is necessary to agree on certain notational conventions:

Definition 4.3.2: Let ue DTy('F), for some sort s and classification ‘. Also let also te DTg(E)y and
x be a variable such that Z(x)=s and Z and ¥ are x-compatible, i.e. they do not classify any common
variable differently except, possibly, the variable x. By t*® we will denote the term in
DTy(E\{x:s }JU¥), that is obtained from t by replacing every occurrence of the variable x by the term u.
We generalise this definition to equations and formulae as follows: by (t;=t)*" we mean (t,*"=t;*")
and by Qx¥ we mean {q** | qe Q}. Given an assignment A for (E\{x:s}U'Y) and ae sy we will denote
by AX:a the assignment over E that is equal to A on E\(x:s} and that assigns to x the value a, i.e.
Axa(x)=a. a

D4: Let (P;—z P,) be a formula, u,ve DTy(‘¥), for some sort s and classification ‘¥, te DTq('¥),
pe DPy(¥), and x be a variable such that E(x)=s and Z and ¥’ are x-compatible.

1. Ifuisauniverse term (i.e., u uses only the variables and universe symbols), then
(P1—=z Py) =¢ (P*! oz\xisjuw P2*Y)
2. If x does not occur within the scope of a positional operator, then
(P1—=z Py) =6 (P 2z\(x:s)uw P2°Y)
3. (u=v) = (tXU=1tXY)
(=v) = (P*" 2a\(xsjuw P*)
4. If x does not occur within the scope of a positional operator,
(U=v) Da\(usjuy (Y =)
(u=v), p* —E\[x:s}U¥ p*Y a

Finally, the rules that state that the positional operator [] refers to a fixed trace (the empty one):

DSs: 1. [el(lIn=[]t
2. [el(Ip) = [p
3. lp—[eldp O

That is, a positional qualification with [e] collapses when juxtaposed with a positional qualification with

(1.

As an example of local reasoning at the descriptive level, consider that we would like to prove that a
replenish increases the quantity on hand, i.e. we would like to prove that the assertion

STOCK = (—y.nar (qoh<[replenish(x)]qoh)=true)
is valid. This is easily done as follows
(qoh<[replenish(x)]lqoh))

= (qoh<(qoh+x)) a2), substitution (4.3)
= true substitution (4.4) on the theorem (—),“N‘,.‘T,y:mT (y=(y+x))=true)

145

As another example, suppose we would like to prove that a delivery is obligatory after a request, i.e. that
the assertion

ORDER-SERVICE = (—,.pp [request(x)]Ob 1 (deliver(x)))
is valid. This is also easily done as follows

[request(x)]pending(x) —.orp [request(x)]Ob1 (deliver(x)) necessitation (rule 2) on b8)
—x-orp [request(x)]Ob1(deliver(x)) b3), &

where, by 8€ we are denoting the "cut" rule. However, notice that it is not possible to derive b8) from
this formula: they are only equivalent in normative traces.

More generally, the derivation of properties from an object description is usually done by induction on
the traces: in order to prove that a property holds in every trace, we prove that it holds in the empty trace,
and that it is invariant for every possible event. These induction principles lead to the following rules:

D6: 1. forevery peP;
{(Pi=zax.E P2, [XIP) | pe Py},
{([x]p, Py —>zex:E P2) | p€ P2}
=9 ([JP;—z[1Py, p)

2. forevery peP;
{(P1—>z@x:E P2, [xIp) | pP1},
{([x]p, Py—>zox:k P2) | pe P2}
= (p, [IP;—>= [1P)

3. forevery peP;
{([X]PIAEQX:E [xIPy, p) | pe P},
{(p, [X]P1—>zgxk [X]P2) | pe P2}
—¢ (P1—z Py, [Ip)

4. forevery peP;
{([x]Py=z@y. [x]Py, P) | pe Py},
{(p, [xIP; > zgy.g [X]P2) | pe P2}
=g (lp, Py>z Py)

We should point out that the induction step in each rule is given through the two sets of formulae that
constitute the antecedents of the assertions. Although not very intuitive at first sight, they can be given
more intuitively in terms of nested implications: rules 1 and 2 correspond to

([x]Py = [x]P2)—=(P1 —P))) = ((P1—=P2) ([P, —[1Py))

and rules 3 and 4 to

146

((P;—P,)—=([x]P >[x]Py)) = ((IP;—=[1Py)— (P —Py))

This makes the induction more clear: if a formula is invariant "backwards", then it being true at some
trace implies that it is true at the initial trace, and if it is invariant "forwards", it being true at the initial
trace implies that it is true at any trace. However, we should stress that these are not assertions in our
language because we are not allowing implications to be nested. Indeed, — should not be regarded as
"implication" in the usual sense, but as the representation of the trace-based consequence operator. We
can easily add the usual propositional connectives as constructors of state-propositions, allowing us to
provide a "friendly" presentation for these rules, but the advantage of the rules as they are is that they are
easier to apply because they rest on the simple manipulation of state-propositions around the state-based
consequence operator. The intuition for proving invariance is that it is sufficient to prove that [x]P, is a
(state) consequence of [x]P; when either one of the state propositions in P, is satisfied or one of the
state propositions in P; is not satisfied. The first case corresponds to the premisses

(p, [xIP;—zex:E [XIP2)

with pe P,, and the second case to the premisses
((xIP1—=zexE [X]P2, P)

with pe P;.

As a derived rule we have

5. {([xIP;—=zax:E [X]P2, P) | pEP1},
{(p, [XIP1=zgxE [X]Py) | pe P2},
(1P == [1Py),
=g (P;—=zP)y)

This rule is closer to those used in [9,13] where more than a possible initial state (given by reference
events) was allowed. It is also this rule that will be most frequently used: it states that in order to prove a
property from a description, it is sufficient to prove that it is invariant under any possible event (first two
sets of premisses), and that it holds initially (last premiss).

Simultaneous induction over several formulae is also possible, and in the absence of propositional
connectives (which would reduce it to the previous case), we have:

D7: Consider n formulae (P} - Pé),_ (P’l1 — Pg). Let Q=(qy,...,qm} be the set of all possible
sequences <p,...,pp> such that pje P{UP). For each such sequence g;, let R; be the set of the state
propositions that belong to g; and that belong to Pé for some 1<j<n (i.e., R; is the set of those state-
propositions that occur on the right hand side of the given formulae) and L; the set of the state
propositions that belong to g; and that belong to le for some 1<j<n (i.e., L; is the set of those state-
propositions that occur on the left hand side of the given formulae). Then, for every 1<k<n

147

{ Ry, [XIP] >z@yx [XIP), L) | 1<i<m, 1<j<n)
{ (UP] =z [IPy) | 1<j<n}
=9 (P} -z P))

The intuition is the same as for the single induction, except that now we can use the sets L; and R; as
added hypotheses reflecting the fact that we assume that each of the formulae is satisfied in the current
trace. Rules similar to D1-4 can also be given.

4.4 Using locality

The previous rules are based on proofs of invariance of state propositions under an arbitrary event. (In
the rules, arbitrary means that the variable x of sort E must not occur in the rest of the formula.) Because
we are working only with 8-loci, we should be able to make use of the locality principle (cf 3.3) and
link induction directly to the event symbols: the idea is that we should be able to deduce the invariance of
a proposition involving only attributes (as these are local to the object) from their invariance under
generated events. The reason is obvious: under locality, attributes are invariant under non-generated
events. This calls for the distinction of some syntactic categories:

Definition 4.4.1 (local propositions and formulae): Given an object signature 0, for each
classification Z the set LTg(Z) of local terms and the set LPg(Z) of local propositions is defined
inductively as follows:

— if Z(x)=s, then x is a term in LTg(E),;

- iffe QU<SL___‘SH>,S'and t; are terms in DTg(E), then f(ty,...,ty)e LTy(E),;
— iffeA, s> andt; are terms in LTg(E), then f(ty,... ,t,)e LTg(E)g;
if t;,tpe LTg(Z), for some se SU, (t;=4ty)e LPg(E).

That is to say, we have omitted the deontic predicates and the positional operators. Also, we shall call a
formula (P, —z P,), where P, and P, contain only local propositions, a local formula. a

These syntactic categories are important due to the following result:

Proposition 4.4.2: Given an object signature 0, a 6-locus © for that signature, a trace « and a non-
generated event e:

» for every local term t on E,[t]®A(e::e)=[t]CA(eer);

« for every local proposition p on Z (Q,A e::z) satisfy p iff (0,A,e) satisfy p.

proof: by induction on the terms and propositions. a

This means that non-generated events keep local terms and local state-propositions invariant. Hence, in
order to prove properties of invariance for an object, we can limit ourselves to generated events. It is
easy to see why we cannot extend this result to propositions involving permissions and obligations: as
argued in 3.3.3, these are global notions and, hence, they cannot be controlled locally by an object.

148

Locality is reflected at the level of the calculus as follows. Given a classification Z and an event symbol
geT, we can always define a classification E(g) disjoint from = and a term t(g) of the form g(xy,...,Xn)
with Xi,...,Xp€ 2(g). Taking this into account we have:

D8: Let Py, P, be sets of Z-propositions and P'y, P'; sets of E-local propositions. Then,

1. for any peP'y

{(P, P1, [(@]IP'1 =yz(g) [H(B)P'2, Py | geT') =9 (p, Py, [XIP'1 = z@x:E [XIP'2, P))
2. for any pe P

{(P1, [(@)]P'1 =zuz(g) [((2)IP'2, Py, p | geT'} = (P1, [XIP'1 = zox:k [X]P'2, Py, p)

That is to say, from the invariance of a local proposition under arbitrary generated events we can
conclude its invariance under an arbitrary event. We should point out that this is the first rule whose
soundness depends on the fact that the consequence relation is being defined over loci. The previous
rules remain valid if we work on top of the more general interpretation structures.

Also, because the set I" of event symbols is finite (cf 3.1.1), the sets of premisses are finite and, hence,
we have well formed assertions. This is a consequence of the fact that locality was not defined over term
generation (in which case we would probably have to work with sets of premisses indexed by closed
terms) but on a weaker notion which allows us to work with open terms.

For instance, it is easy to prove that the number of requests is non-negative in every trace. Because

((zero<#requests) = true)

is a local proposition (that we shall henceforth abbreviate to (zero<#requests)), the rule above tells us
that invariance of this proposition can be proved by looking at the effects of generated events:

(zero<#requests) —, opp [request(x)](zero<#requests)
(zeros#requests) —,.qpp [deliver(x)](zeros#requests)

We have for each case:

request:

1. [request(x)l#requests = #requests+1 bo)

2. (zeros#requests) —y.opp Zeros[request(x)l#requests 1, substitution

3. (zerosHrequests) —,.orp [request(x)](zero<#requests) 2, D2 (zero and < being rigid)
deliver:

1. [deliver(x)l#requests = #requests - b5)

2. (zeros#requests) —y.opp zero<[deliver(x)}#requests 1, substitution

3. (zeros#requests) —,.opp [deliver(x)](zero<#requests) 2, D2 (zero and < being rigid)

Hence, by rule D8.1 (making Py=P,=P'i=@ and P',={(zero<#requests)}, we can infer

(ORDER-SERVICE = ((zero<#requests) —,.r, [x](zero<#requests)))

149

Finally, using D6.4 (making P;=0 and P,=((zero<#requests)}) we infer
(ORDER-SERVICE = ([](zero<#requests) — (zero<#requests)))

But, from b4) we infer immediately
(ORDER-SERVICE = (- [](zeros#requesis)))

and, hence,
(ORDER-SERVICE =» (— (zero<#requests)))

as asserted.

With the help of these rules we can simplify D6 for local formulae. Indeed, we shall have, for instance,
the following rule derived from D6.5 and D8:

D9: Let Py and P; be sets of E-local state propositions. Then,

{([L(®)IP1—=z =z [(8)]P,, p) | ge T, pe Py},
{(p, [t(8)IP1>=uz) [1(8)IP,) | ge T, pe Py}
([1P1—== [1Py)

—¢ (P1—zPy)

That is to say, with respect to D6.5, we replaced invariance under an arbitrary event x by invariance
under each t(g) with geT".

Rules D8 emphasise the invariance of state-propositions. However, property 4.5.2 allows us to give
more general rules that explore the invariance of terms. Indeed, we shall have

D10: Let Py, P; be sets of Z-propositions and ty,...,t, local terms over Z, and a term e of sort E (i.e.,
an event term). Then,

[((C=t(g)), Py _)EUE(g) P, | ge I'},
([({e] ti = ti) | ISISH}, P] —)EUE(g) P2)
=g (P1>=Py)

That is to say, in order to derive a formula involving a term of sort event (i.e. a property of events), it is
sufficient to derive it assuming that either the event is generated (first set of premisses) or that the event
keeps the chosen local terms invariant (last premiss). Any set of local terms will do. The soundness of
this rule is a direct consequence of the locality principle.

An example will help us illustrate its use. Assume, for instance, that we would like to prove that no state
transition decreases the number of requests. That is, we would like to prove:

150

(ORDER-SERVICE = (—, i (#requests<[x]#requests)))

The rule above, instantiated to Pj=@, Po={ (#requests<[x]#requests)}, n=1 and t;=#requests, tells us
that in order to prove this assertion it is enough to prove

(ORDER-SERVICE = ((x=deliver(y) —x.g y.orp (#requests<[x]#requests)))
(ORDER-SERVICE = ((x=request(y) —.y.orp (#requests<[x]J#requests)))
(ORDER-SERVICE = (([x]ffrequests=#requests —,.i, ,.orp (#requests<[x]#requests)))

where y is a variable distinct from x. That is, it is enough to prove invariance assuming that the event is
either a delivery, a request, or does not interfere with the attribute #requests. The last assertion is trivial
to prove. The first ones are not much more difficult:

request:
1. [request(y)}#requests = #requests+1 b6)
2. — #requests<#requests+1 theorem of NAT
3. —y.orp #requests<[request(y)J#requests 1,2, substitution
4, (x=requests(y)) —x:E,y:0rD #requests<[xJ#requests 3, substitution
deliver:
1. [deliver(y)l#requests = #requests bs)
2. —y.orp Hrequests<trequests theorem of NAT
3. —y.orp #requests<[deliver(y) #requests 1,2, substitution
4. (x=deliver(y)) —x:E,y:orp #requests<[x]#requests 3, substitution

This derivation shows the intuition behind locality: not having specified any event by which the number
of requests is allowed to decrease, we know that any event will either increase the number of requests or
keep it invariant.

5 Normative structures

Notice that in the derivations made at the end of the previous section the axioms of the description that
concern permissions and obligations were never used. Indeed, the formulae that were derived express
properties of every possible trace of the described objects. However, we are also interested in the
properties of the normative behaviours of the object, i.e. properties that are obtained when the object
performs events only when they are permitted and that performs every event which it is obliged to
perform. The derivation of these properties of normative behaviour is the topic of this section.

Such behavioural properties have traditionally been dubbed safety (something "bad" will never occur)
and liveness (something "good" will eventually occur) properties, and handled in temporal formalisms
[33]. Although safety properties can be dealt with in a non-temporal framework?, this requires history to

2 See [9] for an extension of the logic studied in the previous section in order to reason about safety properties.

151

be recorded and leads, usually, to less intuitive formulations than those that can be obtained using a
temporal logic. Hence, we shall address safety properties immediately in a temporal extension of the
description logic.

5.1 Trajectories

We begin by defining the notion of behaviour of an object or trajectory, assuming the extension of 3.3.1
to infinite sequences.

Definition 5.1.1: Given a 6-interpretation structure S=@. %.9°¢, a trajectory 7 for S and 6 is an
infinite sequence over Eg A safe trajectory 7 1s such that, for every i, (Ai+1),.%e Z A live trajectory
s such that, for every i, (e,.%)e Cimplies that there is j>i such that e=.9(). A safe and live trajectory
is said to be normative. O

That is to say, a safe trajectory is such that each event in the sequence is permitted in the trace consisting
of the events that have already occurred, and a live trajectory is such that every event that is obligatory
after a prefix of the trajectory will occur later on. Besides the intuitive appeal, there is some justification
to our classification of safe and live trajectories. On the one hand, it is easy to see that the set of safe
trajectories is closed for the usual topology on infinite sequences: hence, this corresponds to the notion
of safety used in [1]. On the other hand, the set of live trajectories is no longer closed and is dense in the
space of infinite sequences, which once again agrees with [1].

Through the notion of normative trajectory we get closer to the semantic notion of object used in [4]:
indeed, denoting by £ the set of trajectories for (% £.F%0), the triple (% %% approximates an object in
the terminology of [4] (forgetting the universe component, and forgetting non-genetared events).

We should also stress that trajectories are "global" in the sense that not only the local (generated) events
occur. That is, we are not considering an object in isolation but embedded in a wider environment.
Because of this, working with trajectories as infinite sequences is not restrictive: the local view of a
trajectory from the point of view of an object may always be finite.

5.2 The temporal language

Definition 5.2.1: We define the SU-indexed set of temporal terms TTy(E) as follows
- E;CTTe(E)s
- if fe QU<s1....,sn>,sUA<s1 _____ sp>,s and i€ TTG(E)Si then f(t,,...,t,)e TTy(E);
— if te TTg(E) then Xte TTy(E),.

For each classification Z, the set TPy(Z) of Z-temporal propositions is defined as follows:
— if t;,tp€ TTg(E), for some se SU, (t;=:ty)e TPy(E);
— if ee TTy(E)g, then Per(e),0bl(e)e TPy(E);
— if pe TPy(E) then Xp,Gp,Fpe TPy(E).

152

Temporal formulae are defined like description formulae as pairs of sets of temporal formulae. We also
define the notions of local proposition and of local formula as in section 3.2 a
The temporal operators are X, F and G with the usual flavours: respectively, "next", "sometime in the
future", and "always in the future". Notice that we have included X as a term constructor as well (as in

[33D).
The interpretation of these categories in a trajectory is given as follows:

Definition 5.2.2: Given a pair T=(.Z/S) where S is a O—interpretation structure and .Z7s a trajectory,
a classification = and an assignment A for Z:

- if xe &, [x]TA®{) = A(x);

= if fe Qupy s e LECte st ITAG) = fy ([t ITAG),..., [, ITAG);

— if feAg,.... 00,00 LECt1-) ITAGD) = KDLt ITAG),..., [, ITAG),T);

— [Xt]TAG) = [tITAG+1)

That is to say, universe function symbols are interpreted as before, and attribute symbols are evaluated at
time i in the trace Z. The temporal operator X designates the value taken by the argument term in the
next instant. With respect to propositions, formulae and assertions:

— (t;=t,) is satisfied by T and A in i iff [t, IT-A®G)=[t,]TA();

— Per(t)is satisfied by T and A in i iff ([t]TA®{), F)e F~

— Obl(t) is satisfied by T and A in i iff ([t]T-AG{), Fe &

— Xpis satisfied by T and A in i iff p is satisfied by T and A in i+1;

— Fpis satisfied by T and A in i iff there is j2i such that p is satisfied by T and A in j;
— Gpis satisfied by T and A in i iff p is satisfied by T and A in every j2i.

A temporal formula (P, —z P,) is said to be true in (FS) iff, for every assignment A and instant i, if all
the propositions in P; are satisfied by (.Z;S) and A in i, then there is a proposition in P, that is also
satisfied by (ZS) and A in . O

It is easy to see that the sets of terms of the description and temporal languages are not disjoint: their
intersection contains every term where no temporal or positional operator occurs (i.e., every local term).
This applies mutatis mutandis to propositions and formulae: the two languages share propositions
involving only terms in the referred intersection (local state propositions) and formulae using only such
propositions (local formulae). However, the interpretation of such terms and propositions agree
(interpretation at time i corresponds to the interpretation at the trace).

Further notice that because trajectories are global, so are the temporal operators. This means that the
operator X refers to the next global instant, which may correspond to the occurrence of a silent event.
We shall see below how this is reflected in the calculus. See [7] for local interpretations of temporal
operators. Working with the global interpretation facilitates the mapping between (sets of) theorems
along description morphisms.

153
5.3 Temporal axiomatisation

Again, we use the notion of assertion in order to reason about the temporal properties of object
descriptions.

Definition 5.3.1 (temporal assertions): Given a finite set F of temporal formulae over a signature
6 and a temporal formula f, (F =1 f) is a temporal assertion. An assertion (F =g, f) is said to be
valid iff for every 8-locus S and trajectory .7 for S such that (Z/S) makes all the formulae in F true,

(ZR) also makes f true.

Again, we assume the standard structural rules for =, — and =. With respect to the operational rules,
we use a linear temporal calculi (see [13] for details).

T1: Given sets of temporal propositions P; and P, and a proposition p:

1. (p—Fp)

2. (XFp — Fp)

3. for each pe Py, {(Xp'P1oPy) | pePa}, ((P1—Xp'Py) | pePi} =1 (Fp,P1—Py)
4. (Gp—p)

5. (Gp— XGp)

6. for each pe Py, {(Xp',P1—=P3) | pePy}, {(P1—Xp'.Py) | p'e P1} =1 (P1—Gp,Py)

T2: (Pl_)E Pz) =>T(9) (XPI'—)E XP2)

Necessitation. This is the counterpart of D3.

T3: 1. X(t; =t) > Xt; = Xty)
2 (th = th) - X(tl = t2)
Equality is rigid. This is the temporal counterpart of D1.

T4: Given universe symbols ge QU, ;, fe QU ¢ . ¢ and ;e TTo(E); for a classification E
1. (Xg=g)
2. (Xf(ty,....t)=f(Xty,....X1t,))

Universe symbols are rigid. This is the temporal counterpart of D2.

TS: Let (P;—z P,) be a formula, u,ve TTo(¥), for some sort s and classification ¥, te TTy('¥),
pe TPy(*¥'), and x be a variable such that Z(x)=s and Z and ¥ are x-compatible.
1. If u is a universe term, then
(P1—=z Py) =1@) (P1*" =a\xsjuw P2*Y)
2. If x does not occur within the scope of a temporal operator, then
(P1—z Pg) =716 (P1*™ 9a\(x:sjuw P2*Y)
3. (u=V) =>T(9) (tX:u = tX:V) :
(u=v) :T(Q) (px:u _)E'\{x:s}u‘{’ px:v)
4. If x does not occur within the scope of a temporal operator,
(u=v) —E\(x:s)UY (B =AY
(u=v), pxu —E\[xis)UP pY

154

These rules concern the axiomatisation of the temporal logic. However, we want to be able to relate the
temporal language to the language used to provide descriptions of objects. This can be done by
extending the notion of assertion as follows:

Definition 5.3.2: Given a signature 0, a set F of formulae of the description language and a temporal
formula f, (F =g f) is an assertion. Such an assertion is said to be valid iff for every 6-locus §, all
formulae of F being true in S implies that f is true in (S, 9 for every trajectory 7 a
One of the main rules that connects descriptive and temporal reasoning is the following:
Té6: Let Py, P, P'; and P'; be sets of Z-local propositions, and x a variable such that x¢ Z, then

(P1, [x]P'1 @ zuxE [XIP'2, P2) =g (P1, XP'1 =z XP'y, Py) O
With this rule we are saying that an arbitrary positional qualification with [x] (arbitrary here meaning that
x does not occur in the rest of the formula) can be replaced with a temporal qualification with X. As a

consequence, we can infer temporal invariance from invariance under arbitrary events. For instance, we
derived in the previous section

(ORDER-SERVICE = ((zerosfrequests)—,.g, [x](zero<#frequests)))
Hence, by applying rule T6, we can infer

(ORDER-SERVICE = ((zero<ftrequests)— X(zeros#requests)))
L.e. that the property that the number of requests is non-negative is an invariant for any trajectory.
This is an axiomatisation of the consequence relation defined over trajectories in general. However, we
are also mainly interested in safe and live trajectories. In the remainder of the section, we shall see how
we can axiomatise consequence over these restricted sets of trajectories, and how we can reason about
safety and liveness properties from object descriptions.
5.4 A calculus of safety properties
We start with safe trajectories.
Definition 5.4.1: Given a signature 8, a set F of formulae of the description language and a temporal
formula £, (F 4 f) is an assertion. Such an assertion is said to be valid iff for every 6-locus S, all

formulae of F being true in S implies that f is true in (S, 9 for every safe trajectory .7 a

The new symbol 254 cannot be given the standard structural rules for consequence operators. We have
only a restricted form of reflexivity and transitivity:

T7: 1. (fDgf) if fis alocal formula over 6
2. From {(F) =4 f) | feF,} and (F, = f) infer (F; &, f).

155

3. From [(Fl =s>9 f') | fe F2] and (Fz =>T(9) f) infer (Fl ii)e f)

That is to say, = is closed to the left with respect to =>¢ and closed to the right with respect to =),
For instance, this means that positional necessitation can only be applied to formulae on the left hand
side of =4, and that temporal necessitation can only be applied to formulae on the right hand side of
=54. This leads to a style of proof where, from the axioms of a specification, we proceed within the
description calculus, then change to the temporal calculus using operational rules for 24 (to be given
below) and, finally, proceed within the temporal calculus if necessary.

An immediate consequence of these rules is:

4. Given an object description (8,F) and a local formula f,
then from (F = f) we can infer (F 2 f).

That is to say, descriptive properties are also properties of safe trajectories. Hence, in a way, we are
working in an extension of the previous consequence operator.

These descriptive properties hold in any possible trace and, hence, in any possible state reached in a
trajectory. However, because the states reached in a safe trajectory are such that events occur only when
permitted, we can weaken the proofs of invariance in safe trajectories by assuming that events are
permitted before they occur. That is, in each of the rules D6, we may replace the antecedent

(P1, [X]P'1 = zuxE [XIP'2, P2)
by
(Per(x), Py, [x]P'1 Dz xg [X]P'2, P2)
For instance, we shall have instead of D6.5:
T8: Let Py, P, be sets of Z-local propositions, then

{(Perx), [x]P;—=zgyx.g [XIP2, p) | pe Py},
{(Per(x), p, [X]P;>zgyr [X]Py) | pe Py},
. ([P1—z [Py,
—¢ (P1—>zPy)

Naturally, under locality, we can simplify these rules by requiring only that they be proved to be
invariant under generated events:

{(Per(u(g), (t(8)IP1—z z(, [H(&)]P,, p) | ge T, pe Py},
{(Pex(t(®), p, [P >z z(,) [H()]P)) | geT', pe Py}
([IP1—z [1Py)

=9 (P1>zP,)

For instance, in order to prove that

(— (zero<qoh))

is a property of safe trajectories of stocks, we have just to derive

(= [(zerosqoh))

(Per(process(x)), (zero<qoh)—x:orp [process(x)l(zero<qoh))
(Perx(replenish(x)), (zero<qoh)—y.naT [replenish(x)](zero<qoh))

This can be done as follows:

empty trace:
1. zero<[lqoh

2. [(zero<qoh)

replenish:
1. [replenish(x)](zero<qoh)
= zero<[replenish(x)]lqoh
= zero<(qoh+x)
2. (zerosqoh) —,.yar (zeros(qoh+x))
3. (zero<qoh) —,.nat [replenish(x)](zero<qoh)

process:
1. [process(x)]l(zero<qoh)
= zero<[process(x)]qoh
= zero(qoh-req(x))
(req(x)<qoh) —,.opp (zeros(qoh-req(x)))
(req(x)<qoh) —y.orp [process(x)l(zero<qoh)
Per(process(x)) —.qrp (req(x)<qoh)

S L)

156

Per(process(x)) —x.orp [Process(x)](zero<qoh)

a3)
1, rules 2 (zero rigid and < rigid)

rules 2 (zero rigid and < rigid)
a)

universe (x:NAT)

1,2

rules 2 (zero rigid and < rigid)
al)

universe (req(x):NAT)

1,2

a’)

4,5

Notice the use of the restriction on permissions in step 4. Hence, by application of the induction schema,

we are allowed to infer

STOCK = (— (zero < qoh))

However, although the consequent is also a formula of the description language, notice that

STOCK = (— (zero < qoh))

is not valid: we have derived a property of safe behaviour, not of every possible behaviour. Hence, in

general, = will not be a conservative extension of =.

This property, "the quantity on hand is non-negative", is a typical example of a "static" safety constraint.
By "static”, it is meant that it involves only individual states. Other safety properties like "prices never
decrease" are, on the contrary, "dynamic" because they involve more than one state: the notion of

157

decreasing is a dynamic one. As argued in [9], this dynamic flavour can be eliminated by coding enough
information on the past history in each state. However, formulations of such dynamic properties in
temporal logic make the coding of history redundant and are much more intuitive. Therefore, it remains
to give specific rules relating description and explicitly temporal formulae.

For safe trajectories, rule T6 may be strengthened to:

T9: Let Py, Py, P'; and P'; be sets of Z-local propositions, and x a variable such that x¢ =,

1. (Pe r(x)’ Pls [X]P'I ""EU)(:E [X]P'Z: PZ) -—s.>6 (Pl! XP'I _)E XP'Zs P2)]

because, in a safe trajectory, every event is permitted before it occurs. Using locality, we can also relate
the application of this rule to the event symbols as in rules D8. Hence, we have for any pe P’

2. {(Pexr(t(g)), p, P1, [t(g)IP'1 >z z(y [t(8)]P'2, P2) | geT'}
:56 (P: Pl! Xp'l —z XP'Z’ PZ)

and for any pe P';

3 {(Per((g), P1, [(g)IP'1 ==uz() [1(@)IP'2, Py, p) | ge T')
¢ (P1, XP'1 =z XP'2, P2, p)

Notice that the inclusion of a proposition of P'; (resp. P';) in the left (resp. right) hand of 2 (resp. 3)
ensures that the formula is trivially satisfied in case of a silent transition (in the case of a silent transition,
X collapses).

As proved in [9], it is also possible to give rules that manipulate terms directly:

T10: Let Py, P,, P'; and P'5 be sets of E-local propositions, x a variable such that x¢ E, y a variable
such that Z(y)=s, and t a local term. Then,

(Per(x), Py, Pt g, g PRV, Py) Sg (P, P'Y Xt o5 PYYXL Py)
That is to say, we may replace a positional qualification with an arbitray event over a term by a temporal
qualification over that term. In order to illustrate the application of these rules, consider again the case of
order-services. Consider now the temporal formula
(— #requests < X#requests)
expressing that the number of requests does not decrease. In the previous section, we derived
(ORDER-SERVICE = (—,.r (#requests<[x]#requests)))

Hence, a simple application of T10 allows us to infer

(ORDER-SERVICE = (—,.; (#requests<X#requests)))

158

Finally, notice that none of the rules so far makes use of obligations. That is to say, all the safety
properties are derived independently of the axioms of the description that define the obligations of an
object (assuming that, as happened above, these can be separated from the other axioms).

5.5 A calculus of liveness properties

Liveness properties are to be derived, obviously, in live trajectories. However, it makes little sense to
study liveness properties independently of safety concerns: hence, instead of working with live
trajectories, we shall work with normative (safe and live) ones.

Definition 5.5.1: Given a signature 6, a set F of formulae of the description language and a temporal
formula f, (F &g f) is an assertion. Such an assertion is said to be valid iff for every 6-locus S, all

formulae of F being true in S implies that f is true in (S, . for every normative trajectory 7, a

Again, the new connective cannot be given the standard structural rules for consequence operators. We
have only a restricted form of reflexivity and transitivity:

T11: 1. (f B, if fis both a description and a temporal formula over 0
2. From ((F; =¢ ') | feF,)} and (F, 24 f) infer (F; &g f).
3. From {(Fl £>9 f) | f'e Fz} and (F2 ﬁT(B) f) infer (Fl '—Ibg f)

The fact that we are working with normative trajectories (which are also safe) makes Iy an extension of
4 i.e., we have for every object description (6,F) and temporal formula f:

4. From (F =g f) we can infer (F &g f).
That is to say, safety properties are also properties of normative behaviour. Naturally, besides safety
properties, we expect to be able to derive liveness properties from normative behaviour. For that

purpose, we have the following rule:

T12: Let P, and P, be sets of Z-local propositions, p a E—local proposition and e a term of sort £ over
Z. Then,

(P, =z Ob1(e), Py), (—z [elp) Ty (Py 2= Fp, Py) m
That is to say, if we know that in a certain context an event is obligatory, and that the event establishes a
certain proposition, then we can infer that in that context the proposition will eventually hold in
normative trajectories. ‘

For instance, from b8) on obligation of deliveries we infer immediately

ORDER-SERVICE & (pending(x)=true —,.qxp F(pending(x) = false))

i.e., that every pending order will eventually cease to be pending (i.e. is delivered).

159

As we saw at the beginning of this section, the set of live trajectories is dense within the set of all
trajectories. This means that any trace can be extended to a live trajectory (by performing all obligatory
events). However, this is not necessarily true with respect to the set of safe trajectories: the set of live
trajectories is not necessarily dense with respect to the set of safe trajectories. This means that it is
possible that certain safe traces cannot be extended to live trajectories. From an operational point of
view, this is a situation that is important to detect: essentially, it means that normative behaviour may
depend on properties of traces that are not enforced as safety properties, i.e. through permissions. In a
way, it is a situation that may lead to a deadlock: the object has certain obligatory events to perform but it
cannot extend the present trace in a normative way to fulfil these obligations although it has until this
point only performed permitted events.

At the level of the calculus, this situation can be detected by the fact that we are able to derive more
safety properties with £ than with =5 We shall illustrate this point by adapting from an example used in

[9]. Consider that an event symbol a satisfies the following:

cl) Per(a)— (cond= false)
c2) —C0bl()

where cond is an attribute that satisfies

c3) — [Jcond = false
c4) [x]cond=false —,.p cond=false

That is to say,cond is initalised to false and, once set to true, remains equal to frue.
From ¢2) we know that a belongs to every normative trajectory. On the other hand, because a can only
occur when cond has not been set to true, we should be able to derive that cond never takes the value
true in a normative trajectory. We shall see next how to derive this property.
First of all, we have the following rule
T13: & (Obl(x) o, F Per(x)) a
stating that, in any normative trajectory, if an event is obligatory then it will eventually be permitted.
Indeed, because an obligation implies the future occurrence of the event, and an event can only occur
when permitted, every obligatory event must be eventually permitted. Notice that this holds only for
normative trajectories (not necessarily for live ones).
From T13 we can infer

cl-c4 & (> F (cond = false))

On the other hand, it is trivial to derive

c4) N (X(cond = false) — (cond = false)) from T6

160

c4) & (X(cond = false) — (cond = false)) from T11.4
c4) & (F(cond = false) — (cond = false)) from T1.3

Hence, finally, we have
cl)-c4) & (— (cond = false))

The important point is that this is a (safety) property of every state reached during normative behaviour,
but not a property of safe trajectories: the assertion

cl)-c4) = (— (cond = false))

is not valid. This means that there are safe traces that cannot be extended to normative behaviours
(namely those where cond is equal to true). The detection of a situation like this one is important because
it shows that it is possible for the system to take an action that is permitted (namely one that sets cond to
true) but that will prevent obligations from being fulfilled. In order to overcome this situation, it would
be necessary to enrich the description with axioms B in a way that would guarantee

cl)-c4), B = (= (cond = false))

This analysis also points out the advantage of having different levels of reasoning and corresponding
calculi, namely of having separate levels for reasoning about safe trajectories and normative trajectories.

6 Structured object descriptions

In the previous sections, we have given calculi that are local to an object signature and that allow us to
derive the properties of the described object. However, as stated in the introduction, we also want to
provide mechanisms that allow us to reason at the more global level of a society of interacting objects.
We also mentioned that our intention was to provide formal support for object-oriented systems design
in the categorial way of, as J. Goguen has put it, "describing a large widget as the interconnection of a
system of small widgets, using widget-morphisms to indicate the interfaces over which the
interconnection is to be done" [17]. According to this view the description of a complex system (a
society) is itself an object description, the description of the society considered as a (more complex)
object. Hence, the local calculi still apply.

However, it seems obvious that an added value must be obtained from the fact that the more complex
object is not a mere object but an interconnection of smaller objects. Hence, it is desirable that our calculi
are able to use this structure when reasoning about the behaviour of the complex object. This also
stresses the requirement for the calculi to be modular. It must be possible to reason locally about the
behaviour of the components, and compose the local properties to form properties of the complex object.
On the other hand, there are properties that are intrinsic to the complex object and that result from the
interaction between the components, and our calculi must be able to decompose the proof of these
properties in terms of the objects that are responsible for them.

161

Taking this view of a society of interacting objects as being itself an object, the problem of supporting
"global reasoning” may be reduced to the problem of reasoning about morphisms between two object
descriptions. Indeed, the basic relationship that accounts for structured descriptions is given by the
morphism that exists between an object description and another one that is being considered to have the
former as a component. Hence, we shall start by formalising morphisms between theory presentations,
and then extend the calculi to take morphisms into consideration.

6.1 The category of object descriptions

Adopting this strategy, it is necessary to define first morphisms of object signatures so that we can
establish how the structure preservation notion intrinsic to morphisms explains the relationship between
an object and another one that we want to consider as a component of it:

Definition 6.1.1: Given two object signatures 6,=(2,A,I'1) and 8,=(2,,A,,I';), a morphism ¢
from 0, to 6, consists of
+ amorphism of algebraic signatures 6,;: X;— Z;
o foreach f: sq,...,5,—8 in A an attribute G,(f): 6,(51),...,0,(S,) = Oy(s) in Ay;
+ foreach g: s,,...,8,—s in I'; an event symbol 6,(g): G,(s1);...,04(Sp) = 0,(s) in I';. Notice that we
define in this way a morphism o,: ZU;— ZU,. O

That is to say, we are merely requiring that a signature morphism identifies the symbols in 6; that are
used to interpret (implement) the symbols of 61. This is the "obvious" notion of signature morphism. It
is easy to prove:

Proposition 6.1.2: Object signatures and signature morphisms constitute a category S IGN. This
category is finitely cocomplete, and has (3,0,9) as initial object signature (denoting also by @ the initial
algebraic signature). O

Given a signature morphism o: 6,—0,, we define for each formula of the description and temporal
languages its translation under ¢ as follows:

Definition 6.1.3:
» given xe &, o(x) is x;
o if fe QU s 5 then o(f(ty,....th)) is Oy(D)(O(ty),...,0(ty));
o iffeAg, . syo,s then O(f(ty,....th) is G, (F)(0(ty),...,0(ty);
* o([e]t) is ([o(e)]o(1));
* o([]) is ([Jo(t))

* o(t;=ty) is (o(t))=0(tp));
» o(Per(e)) is Per(ole));
« o(Obl(e)) is Obl(ole));
+ o([elp) is ([o(e)]o(p))
and for temporal propositions
+ o(Xp) is (Xo(p))

162

+ o(Gp) is (Go(p))
« o(Fp) is (Fo(p))

L4 G(Pl e P2) is (G(Pl) —)O(E) G(Pz))
where 6(Z)=(x:0,(s) | x:s€ E} m|

Based on these notions of signature morphism and formula translation, we would like to define a
morphism between two descriptions (01,F;) and (0,F;) as a signature morphism that induces a
property preserving mapping, i.e. such that for every formula f of the description language for which
(F1 =9, 1) is valid, (F2 =y, o(f)) is also valid, and for every formula f of the temporal language for
which (Fy £>91 f) is valid, (F, J_1>92 o(f)) is also valid. Because proving the existence of a morphism in
this way requires the derivation of an infinite set of assertions (one for each property), we would also
like to be able to conclude the existence of a'morphism between two descriptions by checking only that
some designated formulae of the source description are "implemented” by the target description, i.e. by
proving that (F =g, o(f)) is valid for every formula f in a designated set of 6;-formulae (e.g.
containing every fe F1). This is also necessary for the category of theory presentations to be co-
complete, assuming that the collection of axioms of a theory presentation must be finite (or, at least,
recursive). However, for this to be possible, we know [11] that the underlying consequence relation
must be structural, i.e. that given an arbitrary set of 8;-formulae F and a 0,-formula f, if (F =9,) is
valid then (o(F) =0, o(f)) must also be valid (which also means that =0, alone is able to "implement"
=>g,)- And it is easy to see that, in our case, both =g and Zbg are not structural: take for instance the
induction rule proposed in section 4:

{(p 2zuz [((@)Ip) 1 g} =6 (p oz Xp)

The fact that the set of premisses is indexed by I" makes the rule non-structural. Intuitively, it is easy to
see why: this rule allows us to derive properties based on a fixed set of event symbols. If we extend the
set of event symbols we can no longer admit that the property is preserved. For instance, we derived the
property ((zero<#requests) — X(zero<#requests)) of order-services based on the fact that there were no
operations that would make the number of requests decrease. Naturally, by extending the description of
order-services with such an operation, we would not be able to preserve the property. The calculi
proposed in sections 4 and 5 are, in fact, non-structural.

Hence, there is something more that we must demand for a signature morphism to define a morphism
between two descriptions so that we can decide on the existence of a morphism by considering only the
axioms of the source description. And, it is easy to see that what we need is to check that locality with
respect to the source signature is preserved. For instance, by extending the description of order-services
with an operation that allows for the number of requests to decrease, we are violating the principle of
locality which allowed us to assume that the attribute #requests could only be updated by the events
generated from the original I. Hence, that extension would not be "structure" preserving, which is the
very idea behind the notion of morphism. This situation is similar to what happens with the notion of
interpretation of first order theories [6] where the target theory must contain appropriate closure axioms
and non-emptiness conditions.

This can also be understood from a more "model-theoretic" point of view. The notion of reduct of
interpretation structures along a signature morphism is easily defined as follows:

163

Definition 6.1.4: Given two object signatures 6,=(Z;,A,I';) and 6,=(Z;,A,,I';), and a morphism
o from 0, to 65, we define for every 6z-interpretation structure S=(% %97 its reduct along o as the
6,-interpretation structure Sly= (#45A;.9%0) where

— for every se S, sy~ 0,(8)y and Eg) = Eg;

— for every f: sy,...,5,-s in Q,UI'; fy,= 6,(f)y;

— for every f: 8q,...,8,-s in Ay, Fls(f)(@y,...,ane) = A6,()(ay,...,a5.e) O

It is straightforward to prove

Proposition 6.1.5 (satisfaction condition): Given a 0;-interpretation structure S, a 6,-
description formula f is valid in Sl; iff o(f) is valid in S. O

so that we obtain

Corollary 6.1.6: Taking 0-interpretation structures as models we obtain an institution (in the more
restricted sense where the model functor has its codomain in SET°P), O

However, the same results do not hold if we take 0-loci instead of 8-interpretation structures as models
because the reduct of a 8,-locus is not necessarily a 6;-locus. The institutional counterpart of the
structurality of the consequence relation, which is the satisfaction condition, does not hold for loci.
Hence, when defining the notion of a morphism G between two object descriptions (81,F;) and (65,F5)
we cannot require only for every 8,-locus Q validating F, that Ol validates F; (as usual), but we must
also require that Ol be a 8;-locus.

Hence, we have to extend the description language so that we can express this extra requirement. There
are at least two ways of doing so: by extending state propositions with quantifiers, and by extending
formulae with signature morphisms much in the same way proposed in [19] to express data constraints.
We shall take the second approach herein because it is the "natural” institutional operation when we want
to restrict the underlying models to a certain class that is not "axiomatisable" using the language.

Definition 6.1.7: We extend the description language associated with an object signature 8 by
including, for every object signature 6' and morphism o between them, 8'30 as a formula. A 0-
interpretation structure validates 6'30 iff its o-reduct is a 8'-locus. Given a morphism p: 68", the
translation of 8'30 along p is 6' 24" 9". |

We obtain:
Proposition 6.1.8 (description morphism): A morphism G between two descriptions (81,F)

and (6,,F3) is a signature morphism o: 8; — 0, such that (F, =, O(f)) is valid for every fe Fy, and
(F, ﬁez 912)92) is also valid. O

164

6.2 Object interaction and societies of objects

The basic mechanism by which objects interact is by sharing some other object (a common
subcomponent). This subcomponent may be more or less complex. The simplest case, however,
consists of event sharing: two objects interact because they synchronise in order to perform some joint
action. Notice that we can still specify non-asynchronous communication between two objects such as
message passing by saying that both objects share the message regarded as an object, so that the sender
and the receiver synchronise with the message and not with each other.

For instance, in our trader's world example, we would like to express that a stock and an order-service
interact by sharing the delivery of orders and their processing. This sharing may be expressed by
defining first an auxiliary object ORDER-PROCESSING that contains only one event:

O(ORDER-PROCESSING)
niv ignature:
same as 8(STOCK) and 6(ORDER-SERVICE)
vent symbols:

process(ORD)

(D(ORDER-PROCESSING)
@ (i.e., an empty set of axioms)

Notice that the universe signature was defined to be the same as the previous ones. This is necessary in
order to state which data types are to be shared between the objects (in this case, all of them).

This intermediate object can be seen as a subcomponent of both ORDER-SERVICE and STOCK. Indeed,
we have two obvious morphisms that map the event symbol process of ORDER-PROCESSING to process
of STOCK and delivery of ORDER-SERVICE. This relationship gives rise to the diagram

ORDER-SERVICE
ORDER-PROCESSING

\J

STOCK

This diagram can be seen to denote a society of two objects, an order-service and a stock, that interact
through the specified interface, order-processing. In fact, this society can itself be seen as a (complex)
object: the minimal object that contains the given ones and that respects their interaction. The description
of this object may be obtained by computing the colimit of the diagram above (a pushout).

Proposition 6.2.1: Object descriptions and their morphisms form a category DESC. Moreover, this
category is finitely cocomplete. The initial description is (3,8) and a pushout of two description
morphisms W;: (8,F) = (81,Fy) and pa: (8,F) — (82,F2) is given by the object description
(911L992,0'1(F1)U0'2(F2)U{91%911992, 92%911992}) where 011402, 01 and o7 are a pushout of
K1 and M as signature morphisms. |

165

A colimit is obtained only up to isomorphism. A specification language would have to provide the
resulting morphisms (o) and G, in proposition 6.2.1) by saying which are the new names that we want
for the symbols in the colimit. See [14] for an example. However, we can assume that the resulting
signature will be

6(SOCIETY)

universe signature:
same as O(STOCK) and 6(ORDER-SERVICE)

attribute symbols:
pending: ORD—BOOL;
#requests:INT;
qoh: INT;
#processed: NAT

vent symbols:

process(ORD);
replenish(NAT);
request(ORD)

That is to say, we take the union of the signatures after a suitable renaming. Notice that we do not obtain
deliver as an event symbol because it is mapped to process by the interface morphism.

Proposition 6.2.1 also tells us how to obtain the resulting set of axioms: it consists of the translations of
the axioms of the descriptions involved together with two new axioms (the signature morphisms)
expressing that the objects we started from are components of the new object (i.e., that their locality is to
be preserved). That is to say, we shall have

O(SOCIETY)
ff n
bl) —y.orp ([Jpending(x) = false)
b2) —y.orp ([process(x)lpending(x) = false)
b3) —y.orp ([request(x)]pending(x) = true)

effects on #requests
b4) — ([J#requests = zero)
b5) —y.orp ([process(x)l#requests = #requests)
b6) —y.orp ([request(x)]#requests = #requests+1)

effects on goh
al) —y.opp ([process(x)lqoh = qoh-req(x))
@) —y.ar ([replenish(x)]qoh = qoh+x)
a3) - (zero<[lqoh = true)

effects on #processed
@) —y.orp ([process(x)l#processed = #processed+1)
@) —ynar ([replenish(x)]#processed = #processed)
a6) — ([(#processed = zero)

permissions and obligations
b7) Per(process(x)) —y.orp Pending(x)
a7) Per(process(x)) —,.qrp (req(x)<qoh)

166

b8) pending(x) —=y.orp Ob1l(deliver(x))

structure
sI) ©(ORDER-SERVICE) — B(SOCIETY)
s2) 6(STOCK) — 6(SOCIETY)

Notice how b2), b5) and b7) were translated along the morphism by changing deliver to process. Also
note that because of this translation, b7) and a7) now express constraints on the permission of the same
event. This is why it is "dangerous" to specify permissions through equivalences: implications add-up
nicely, but adding up equivalences may lead to inconsistent descriptions.

Finally, it is important to point out that we have no axioms specifying the effects of request on goh and
#processed, nor of replenish over pending or #requests. Intuitively, we could think that these events
should have no effects on the mentioned attributes, and thus assume that the corresponding axioms, e. g.

[replenish(x)]#requests = #requests

would be necessary, or left to some kind of frame rule [21]. However, this is the role of the signature
morphisms included as axioms of the society: the locality preservation requirement expressed through
the morphisms guarantees that each event from order-service either occurs in concurrency with an event
from stock (i.e., two symbols, one from each signature, are given the same interpretation), or does not
interfere with the attributes of the stock, and vice versa. However, the requirement expressed via the
signature morphism is weaker than the non-interference axiom. Indeed, the signature morphism leaves
open the possibility of having event symbols inherited from different specifications to generate the same
events (recall that we are not working with initial models of the universe signature) and, hence, allows
for further refinements of our specifications. For instance, we are allowing for replenishments to
coincide with requests. Although we are not imposing it, we might decide later on to require it explicitly
in order to enforce some new policy. The general principle is that event symbols inherited from different
signatures are usually unrelated and, hence, they should be allowed the maximum‘dcgrce of freedom in
terms of "occurring simultaneously" (generating the same events). In fact, our model of concurrency is
not of pure interleaving, but allows for "true concurrency" of non-interfering events. The non-
interference formulae would prevent this by discriminating the events generated from different event
symbols in terms of their effects on the attributes, i.e. they would make them observationally different.
Hence, basically, the signature morphisms identify sub-components of an object that should not interfere
apart from the specified interfaces. We shall see in the next section how this flavour is captured at the
axiomatic level.

A final word in order to complete the picture within institutions. We saw in 6.1.6 how we could define
an institution using the description language and interpretation structures as models. This result extends
to m-institutions (a consequence-based counterpart of institutions proposed in [11]) by adopting an
interpretation structure-based notion of consequence instead of the object-based version proposed in
section 3 (i.e., the interpretation structure-based consequence is structural). Because in this setting
locality is no longer logical, we have to make it non-logical by having each specification include an
additional axiom characterising locality. It is easy to see that, in the extension of the descnpnon language
proposcd above, that additional axiom is just 6:48. Hence, we can see why the axioms 0, —‘>611992
and 0, —>911L992 appear in the pushout, as they are the translations of the locality axioms for each of the
signatures.

167

6.3 Reasoning about societies of objects

Although the consequence relation is not structural, we do have the following properties of structurality
for a signature morphism o: 6;—0;:

if (F =g, f) is valid then (o(F), 0,56, =g, o(f)) is also valid
if (F é:»gl f) is valid then (o(F), 0,56, 592 o(f)) is also valid
if (F -‘bel f) is valid then (o(F), 0136, &92 o()) is also valid

These structurality results lead us to the rules:
MI1: Given a signature morphism ¢: 6;—0;:

1. From (F =y, f) infer (6(F), 81582 =, o(f))
2. From (F %y, f) infer (6(F), 0136, S, o(f))
3. From (F &y, f) infer (6(F), 6136, o, o(f))

with which we extend our calculus in order to axiomatise the new class of formulae. These rules are
very useful because they allow us to export properties along a morphism. In particular, they allow us to
use these properties of a component as lemmas during the derivation of properties of a "global" object.
We shall see an example below. Another important structural rule is the following:

M2: Assume a signature 8; and let Py, P, be sets of E-propositions and e a term of sort E, Then, given
a signature morphism G: 6;—0 and ty,...,t, local terms over Z for 0,

0:50,

{((e=t(g)), P1 =0z, P2 | ge (T},

({([elo(t) = o(t)) | 1<i<n}, Py —g Py)
=6, (P1—zP))

This rule is very similar to D10 (section 3.2), but cannot be inferred from it through M1 because we are
allowing Py and P; to be arbitrary sets of propositions in 0. It states that, in order to derive a formula
of 8, involving a term of sort event (i.e. a property of events), it is sufficient to derive it assuming that
either the event is generated according to 8; (second set of premisses) or that the event keeps the chosen
terms from 0 invariant (last premiss). Any set of local terms will do. The soundness of this rule is a
direct consequence of the locality preservation expressed through the first premiss. Hence, this rule
allows us to use knowledge about the component of a specification in the derivation of a "global"
property. We shall illustrate this point below.

In fact, it is rule D10 that is derivable from M2 and the following rule:

M3: Given a signature 0, infer (=>¢ (0 i 0))

168

This rule is a result of the fact that locality is "logical" in our formalism. Put in other words, it expresses
the fact that the consequence operator = is being interpreted only over objects.

Another "simple" introduction rule can be given as follows:
M4: Given a signature morphism o: 8;—0,,
((mz@ez@ (M@ = t@) | geTNG(T), ac 6(A1)} =, (6156,)

where, for each event symbol g, t(g) is a term of the form g(xy,...,xn) with x4, ..., x,&€ E(g), and for
each attribute symbol a, t(a) is a term of the form g(x,...,xp) with x, ..., x,€ Z(a). That is to say, from
the fact that the "new" event symbols (those that belong to I'2\6(I"1)) do not update the "old" attributtes
(those that belong to 6(A1)), we can conclude that the locality with respect to 0, is preserved. However,
as we argued at the end of the previous section, these "non-interference formulae" are much stronger
than the signature morphism as a formula because their assertion may prevent concurrency by making
the events observationally different.

A trivial instantiation of this rule is given when we have an empty set of attributes in 8y, i.e. when A, is
empty. In that case, (61302) is a theorem. Hence, in particular, when specifying interaction through
mere event sharing, we can forget about the structurality axioms with respect to the interfaces. These
structurality axioms are only relevant when attributes are involved.
In order to illustrate the application of these rules, let us prove

(SOCIETY = (#processed<ffrequests))
i.e. that, in each state, the number of requests received so far is greater than or equal to the number of
orders processed so far. Again, we prove it by induction. According to rule D6.5, it is sufficient to
prove

(SOCIETY = [](#processed<#requests))
i.e. that the property is established initially, and

* (SOCIETY = ((#processed<#requests) —,.; [x](#processed<#requests))

i.e. that the property is an invariant. The first assertion is a trivial consequence of a6 and b4. We shall
prove the second one using M3. First, we choose the inclusion of STOCK (s2). Hence, we are told by
M3 that is is sufficient to prove

SOCIETY = (x=replenish(y), #processed<#requests —y.E,y:orp [X](#processed<#requests))

SOCIETY = (x=process(y), #processed<#requests —x:E,y:orp [X](#processed<#requests))

SOCIETY = ([x]#processed=#processed, #processed<#requests —y. [x](#processed<#requests))

That is, it is sufficient to prove invariance for an event knowing that either the event is generated
according to STOCK, i.e. is either a replenishment or the processing of an order, or that the event does

169

not interfere with the attribute #processed. Using M1 and the inclusion from ORDER-SERVICE (s1), we
can also infer from

(ORDER-SERVICE = (—:E (#requests<[x]#requests)))
which was proved in section 4, the validity of
(SOCIETY = (—.E (#requests<[x]#requests)))

Hence, we can use the fact that the number of requests does not decrease as a lemma in the proof of the
three assertions. Consider then the first assertion:

1. [x](#processed<#requests) = [x]#processed<[x]#requests D2, < rigid

2. (x=replenish(y)) =x:E,y.nar (#rprocessed=[x]#processed) ad)

3. (x=replenish(y)), (#processed<[x]#requests) —x:E,y:Nat [X](#processed<#requests) 2, substitution

4. —y.g (#requests<[x]#requests) lemma

5. (#processed<#requests) —y.g (#processed<[x]#requests)) 4, transitivity of <
6. (x=replenish(y)), (#processed<ttrequests) —x:E,y:nar [X](H#processed<irequests) 3,5, 8

and the second

1. [x](#processed<#requests) = [x]#processed<[x]#requests D2, <rigid

2. (x=process(y)) —x:E,y:NAT ([x]J¥#processed=#rprocessed+1) as)

3. (x=process(y)) —x:E,y:NAT ([xI#requests=#requests+1) b6)

4. (#processed<#requests) — (#processed+1<#requests+1) theorem of integers
5. (x=process(y)), (#processed<#requests) —x:E,y:NAT ([x]#processed<[x]#requests) 2,3,4 substitution
6. (x=process(y)), (#processcd<#requests) —X:E,y:NAT [x](#processed<#requests) 1,5 substitution

and the third one

1. [x](#processed<#requests) = [x]#processed<[x]#requests D2, < rigid

2. ([xJ#processed=#processed), (#processed<[x]#requests) —.F [X](#processed<#requests)

3. —x:E (#irequests<[x}#requests) lemma

4. (#processed<itrequests) —x.E (#processed<[x]#requests)) 3, transitivity of <
5. ([x)#processed=#processed), (#processed<#requests) —.g [x](#processed<#requests) 2,4, 8

The three assertions being proved, we may infer
(SOCIETY = (#processed<#requests))
as asserted.
The important point to retain from this example is that the derivation of properties at the level of the

society uses the structure of the society as an interconnection of components by importing properties of
the components already proved as lemmas (through rule M1), and by using the preservation of the

170

locality of the components (through rule M3). This is the degree of modularity that we claim our calculi
to have achieved.

Finally, we should point out that these rules can form the basis of calculi directed to specific
specification languages. We have already shown in [14] how reasoning about aggregation and
inheritance may be formalised on top of these rules. Having chosen the proposed logic framework for
formalising a specification language, a higher level calculus can then be taylored to the specific
primitives of the language by building on top of the basic rules that we have proposed herein.

7 Concluding remarks

In this paper, we have shown how logical calculi for assisting object-oriented systems development can
be defined around the notions of object signature, object description, and corresponding notions of
morphism-. The proposed calculi take object descriptions (specifications) as theory presentations in a
modal logic where the modal (positional) operators are used to describe the effects of the events on the
attributes of the object, and where two (deontic) predicates of permission and obligation on events are
used to describe normative behaviour. The choice of this logic was motivated by the need to give
adequate support for the behavioural notions that are intrinsic to objects as dynamic entities, for which
we decided to extend and adapt from [9,13,25]. The inference rules of the resulting calculi allow us to
prove both safety and liveness properties of objects. We illustrated these capabilities using a stock-
management example, and showed how certain well known behavioural situations such as deadlock can
be associated with logical relationships between calculi, such as absence of conservativeness when
going from safety to normative levels of reasoning.

Another major aspect of our formalism refers to the treatment of locality, according to which only the
events declared for an object can update its attributes. This allowed us to have local (private) states. This
principle of locality was incorporated into the calculi by allowing us to derive properties of the attributes
of an object using induction on the events that the object can perform, and by requiring morphisms
between descriptions to be locality-preserving mappings. This treatment of locality raised some
problems at the level of the structurality of the underlying local calculi, which we solved by the
"classical" institutional operation of extending the language with signature morphisms as formulae. The
resulting rules for reasoning at the "global" levels take into account the structure of the object in terms of
its components, leading to the desired degree of modularity in the verification process: we do not need
the global specification of the system to reason about its parts, and we can use the structure of the
system in order to reason about its global properties.

We have concentrated throughout the paper on the basic principles of the object-oriented paradigm and,
hence, on the minimal rules and principles that are required to support reasoning from object-oriented
specifications. In [14] we have shown how object-oriented specifications constructs such as aggregation
and inheritance can be supported in this framework, namely how inference rules may be provided for
each such construct, again relying on the structuring of consequence relations for that effect. Further
work is also going on towards extending the proposed formal support to the reification dimension.
Peliminary work in that direction can be found in [10]. Finally, a closer relationship is being established

171

between the proposed logics and the algebraic semantic domains being explored by the ISCORE group
following the strategy illustrated in [8] for an object-oriented approach to process specification based on

temporal logic.

Acknowledgments

The work of J.Fiadeiro was supported by a grant of the Commission of the European Communities
while on leave from Departamento de Matemdtica, Instituto Superior Técnico, Lisboa, Portugal. This
work was partially supported by the ESPRIT BRA Working Group n® 3023 (IS-CORE) whose
members we wish to thank for many fruitful discussions. Udo Lipeck in particular has also contributed
with detailed comments on an earlier version of this paper. Mark Ryan has also been an active source of
comments and suggestions.

References

[1] M.Abadi and L.Lamport, The Existence of Refinement Mappings, Research Report, Digital, 1988

[2] H.Barringer and R.Kuiper, "Hierarchical Development of Concurrent Systems in a Temporal
Framework", in S.Brookes, A.Roscoe and G.Winskel (eds) Seminar on Concurrency, LNCS
197, Springer-Verlag 1984, 35-61

[3] H.-D.Ehrich and A.Sernadas, "Algebraic View of Implementing Objects over Objects"”, in
W.deRoever (ed) Stepwise Refinement of Distributed Systems: Models, Formalisms,
Correctness, Springer-Verlag (in print)

[4] H.-D.Ehrich, A.Sernadas and C.Sernadas, "From Data Types to Object Types", Journal of
Information Processing and Cybernetics EIK 26(1/2), 1990, 33-48 !

[5] H.Ehrig and B.Mahr, Fundamentals of Algebraic Specification 1: Equations and Initial Semantics,
Springer-Verlag 1985

[6] H.B.Enderton, A Mathematical Introduction to Logic, Academic Press 1972
[71 J.Fiadeiro, Cdlculo de Objectos e Eventos, PhD Thesis, Technical University of Lisbon, 1989

[8] J.Fiadeiro, J.-F.Costa, A.Sernadas and T.Maibaum, (Terminal) Process Semantics of Temporal
Logic Specification, Research Report, 1991

[9] J.Fiadeiro and T.Maibaum, "Temporal Reasoning over Deontic Specifications", Journal of Logic
and Computation 1(3), 1991, 357-395

[10] J.Fiadeiro and T.Maibaum, "Describing, Structuring and Implementing Objects”, in
J.W.deBakker, W.P.deRoever and G.Rozenberg (eds) Foundations of Object-Oriented
Languages, LNCS 489, Springer-Verlag 1991, 274-310

[11] J.Fiadeiro and A.Sernadas, "Structuring Theories on Consequence”, in D.Sannella and A.Tarlecki
(eds) Recent Trends in Data Type Specification, LNCS 332, Springer Verlag 1988, 44-72

[12] J.Fiadeiro and A.Sernadas, "Specification and Verification of Database Dynamics", Acta
Informatica 25, 1988, 625-661

(13]

(14]

[15]

[16]
[17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

172

J Fiadeiro and A.Sernadas, "Logics of Modal Terms for Systems Specification", Journal of Logic
and Computation 1(2), 1990, 187-227

J.Fiadeiro, C.Sernadas, T.Maibaum and G.Saake, "Proof-theoretic Semantics of O})jcct-qﬁented
Constructs", in R.Meersman and W.Kent (eds) Object-Oriented Databases: Analysis, Design and
Construction, North-Holland (to be published)

) Fiadeiro, C.Sernadas, T.Maibaum and A.Sernadas, "Describing and Structuring Objects for
Conceptual Schema Development”, in P.Loucopoulos and R.Zicari (eds) Conceptual Moc_z'ellmg,
Databases and CASE: An Integrated View of Information Systems Development, John Wiley (to

be published)
J.Goguen, "Objects", Int. Journal of General Systems 1, 1975, 237-243

J.Goguen, A Categorical Manifesto, Technical Report PRG-72, Programming Research Group,
University of Oxford, March 1989

J.Goguen, J.Thatcher and E.Wagner, "An Initial Algebraic Approach to the Specification,
Correctness, and Implementation of Abstract Data Types", in R.Yeh (ed) Current Trends in
Programming Methodology, Vol 4, Prentice-Hall 1978, 80-149

J.Goguen and R.Burstall, "Introducing Institutions", in E.Clarke and D.Kozen (eds) Proc Logics
of Programming Workshop, LNCS 164, Spronger-Verlag 1984, 221-256

J.Goguen and J.Meseguer, "Completeness of Many-Sorted Equational Logic", Sigplan Notices
16(7), 1981, 24-37

J.Goguen and J.Meseguer, "Extensions and Foundations of Object-Oriented Programming",
SIGPLAN Notices 21(10), ACM 1986, 153-162

J.Goguen and J.Meseguer, Order-sorted Algebra 1: Equational Deduction for multiple inheritance,
overloading, exceptions and partial operations, Technical Report SRI-CSL-89-10, SRI
International, 1989

P.Jeremeas, S.Khosla and T.Maibaum, "A Modal (Action) Logic for Requirements
Specification”, in D.Barnes and P.Brown (eds) Proc Software Engineering 86, IEE Computing
Series 6, Peter Peregrinus 1986

S.Khosla, T.Maibaum and M.Sadler, "Database Specification", in T.Steel and R.Meersman (eds)
Database Semantics (DS-1), North-Holland 1986, 141-158

S.Khosla and T.Maibaum, "The Prescription and Description of State-Based Systems", in
B.Banieqgbal, H.Barringer and A.Pnueli (eds) Temporal Logic in Specification, LNCS 398,
Springer-Verlag 1989, 243-294

S.Kripke, "Semantical Considerations on Modal Logic", in Modal and Many-Valued Logics, Acta
Philosophica Fennica 1963, 83-94

M.Lehman, V.Stenning and W.Turski, "Another Look at Software Design Methodology", ACM
Software Enginnering Notes 9(2), 1984, 38-53

U.Lipeck, H.-D.Ehrich and M.Gogolla, "Specifying Admissibility of Dynamic Database
Behaviour using Temporal Logic", in A.Sernadas, J.Bubenko and A.Olivé (eds) Theoretical and
Formal Aspects of Information Systems, North-Holland 1985, 145-157

T.Maibaum, "Rdle of Abstraction in Program Development", in H.-J.Kugler (ed) Information
Processing’86, North-Holland 1986, 135-142

T.Maibaum, A Logic for the Formal Requirements Specification of Real-Time Embedded
Systems, Forest Research Report 1987

[31]

(32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]
[41]

[42]

173

T.Maibaum and W.Turski, "On What Exactly Goes On When Software Is Developed Step by
Step" Proc. 7th Int. Conference on Software Enginnering, IEEE 1984, 528-533

T.Maibaum, P.Veloso and M.Sadler, "A Theory of Abstract Data Types for Program
Development: Bridging the Gap?" in Formal Methods and Software Development, LNCS 186,

Springer-Verlag 1985

Z.Manna and A.Pnueli, "Verification of Concurrent Programs: The Temporal Framework", in
R.Boyer and J.Moore (eds) The Correctness Problem in Computer Science, Academic Press

1981, 215-273
L.McCarty, "Permissions and Obligations", IJCAI 83, 1983, 287-294

M.Minsky and A.Lockman, "Ensuring Integrity by Adding Obligations to Priveleges", in Proc 8
IEEE Int. Conf on Software Engineering, 1985, 92-102

D.Parnas, "On the criteria to be used in decomposing systems into modules", Communications
ACM 15, 1972, 1053-1058

A.Pnueli, "The Temporal Logic of Programs", in Proc 18th Annual Symposium on Foundations
of Computer Science, IEEE 1977, 45-57

A.Sernadas, J.Fiadeiro, C.Sernadas and H.-D.Ehrich, "Abstract Object Types: A Temporal
Perspective", in B.Banieqbal, H.Barringer and A.Pnueli (eds) Temporal Logic in Specification,
LNCS 398, Springer-Verlag 1989, 324-349

A.Semnadas, J.Fiadeiro, C.Sernadas and H.-D.Ehrich, "The Basic Building Blocks of Information
Systems", in E.Falkenberg and P.Lindgreen (ed) Information Systems Concepts: An In-depth
Analysis, North-Holland, 1989, 225-246

W.Turski and T.Maibaum, The Specification of Computer Programs, Addison-Wesley 1987

R.Wieringa, J.Meyer and H.-Weigand, "Specifying Dynamic and Deontic Integrity Constraints",
Data and Knowledge Engineering 4(2), 1989, 157-190

S.Zilles, Algebraic Specification of Data Types, Project MAC Progress Report 11, MIT 1974, 28-
52

174

Appendix A - birth/death events and existence attributes

A question that is often raised in certain application areas, namely in information systems specification,
concerns the modelling of the variation of a population (of objects) in time. Formal treatments of this
notion in first-order modal logics either model this variation of a population by allowing the domains of
quantification to vary from world to world (in the underlying Kripke model), or adopt a constant domain
approach and use an existence predicate to account for this variation. One advantage of the latter is that it
overcomes the problems that the varying quantification domains raise at the level of the inference rules of
the logic (e.g. [26]), namely wrt the validity of the Barcan formulae, and that is why it has been

favoured in some approaches (e.g. [12,24,28]).

In what concerns modelling the variation of a population of objects in our setting, we must start by
pointing out that our quantification domains are for values and not for objects. As we have seen in
appendix A, some of these values may stand for identifiers (names, surrogates) of objects (e.g., ORD for
orders), but it makes no sense to speak about the existence interval of a value. Instead, it seems that the
notion of existence that is interesting for objects must be formalised in behavioural terms. For instance,
it seems that the very essence of "existence" is that an object is not able to interact (share events) with an
object that does not "exist". On the other hand, a "big" object (e.g., a society of objects, a "type" of
similar objects) needs events for creating and destroying its components in order to "manage" the
existing population. For instance, a client must be able to create orders (request events), and the stock to
destroy them (deliver events).

Indeed, the notion of existence of an object may be modelled in our framework by introducing events
accounting for the creation and deletion of that object, together with a boolean attribute that records
whether the object exists. This is a "non-logical" notion of existence in the sense that it is not built into
the logic, but a notion that can be formalised as a specification pattern. (Logical support is given, for
instance, in [7], where the notions of birth and death event are given a distinguished semantics.) In this
appendix, we shall see how these notions may be formalised on top of the existing framework, and how
inference rules may be derived that support the derivation of properties that depend on existence
attributes. In a way, these derived rules give a "logical" flavour to the notion of existence that can be
incorporated into a specification language where the notion of existence is to be explicitly supported.

Basically, we can assume for each object signature 0 a designated subsignature Ox;sis consisting of a
designated boolean attribute (henceforth denoted by ex1i st sg), together with two designated sub-
collections of event symbols I', and [y (birth and death events) . This attribute and these event symbols
are assumed to be axiomatised as follows:

= ([Jlexist sg=false)
—=(g) ((U(®)lexistse=false) forevery gelg

—z(g) ([t(@)lexist sg=true) for every gel,

That is to say, initially the object does not exist, objects exist after the occurrence of birth events and
cease to exist after death events. Moreover, for every event symbol ge I\, UI'y, we assume

Per((g)) —=(g) (existsg= true)

175

That is, "normal" events are only permitted to occur when the object exists. There seem to be no specific
restrictions on the permissions and obligations concerning birth and death events. We could argue that
restricting the permission of birth events to states of non-existence might be intuitive, but there are cases
where we want to have the flexibility of saying that a collection of events may act as birth events and still
allow more than one of these events to occur. The same applies, mutatis mutandis, to death events.

Naturally, each object description will have to include the signature inclusion (Bexjsis — 6) as an axiom
indicating that only the designated birth and death events may update the existence attribute. Again, this
can be left to a specification language by providing special notation for birth and death event symbols.
For instance, in [39], birth event symbols are identified through @ and death events through ¥.

When using existence predicates, properties of object descriptions are typically of the form

existse,P1 2P

where ex 1 st sg is the existence attribute for 6, i.e. they express something that must always hold after
birth and before death. The proof of properties of this form may be simplified by taking into account the

axioms governing the use of the existence attribute. For instance, the application of D6.5, D9 and T8 can
be simplified because we can always derive the intialisation condition from the axiom

[lexistsg —
of the description. The same happens for death events: it is trivial to prove

(= [c]lexist sg=false) =g ([¢]P;, [clexistsg —z [¢]Py, p) for any pePyu{existsg)
(— [elexistsg=false) =g (p, [¢]P}, [c]existsg —= [€]P;) for any pePy

On the other hand, it is trivial to prove

([e]Py —z [e]Py) =g ([e]Py, [e]lexistsg —z [e]Py, p) forany pe Pju{exist sg)
([e]P; —z [e]Py) =3¢ (p, [e]P}, [elexist sg —z [e]P;) forany pe P,

So, for birth event symbols g, it is sufficient to derive
()P —zUz(g) [UB)IPY)
from the description. Also, it is trivial to prove using monotonicity

(Per(i(g)) - existsg) =g (Per(t(g)), [(g)IP;, [t(g)lexistsg —z [1(g)]P, exist sg)
(Per(u(g)), p, [t(®)IP] =z [t(8)]P) =>g (Pex(t(g)), p, [t(2)]Py, [t(g)lexist sg —z [t(g)IPy)

so that, for the other event symbols, it will be sufficient to derive

{(Pex(u(g)), p, [(g)IP, 2=z [((8)IPy) | pe Py}
{(Per(u(g)), ()P, =z g [(8)IP,, p) | pe Py}

176

Summarising: in order to prove
F &g (existse,P1 = P2)
it is sufficient to prove for every geI', (i.e., for every birth event symbol)
F =5 ([()IP; =0z [1(@)IP)
and for every g& I'qUlb,

F =g (Per(t(g), p, [t(8)IP) =zuz([t(8)]Py) for every peP)
F =g (Pex((g)), [t(2)]P; =zuz(g) [((8)]Py, p) for every peP,

As could be expected, death events do not interfere at all, and we never need to manipulate the existence
attributes explicitly.

177

Appendix B - bounded temporal operators and obligations

We consider now an extension of the proposed temporal logic with bounded temporal operators (similar
to "until" operators). These are temporal operators that behave like F and G except that their range is
limited to an interval fixed by the truth value of a proposition. The need for these operators arises when
we can only give proofs of invariance subject to some condition holding (or, equivalently, in limited
intervals). For instance, as already mentioned in appendix A, typical safety and liveness properties are
usually bounded by existence attributes. For instance, in general, we can only prove invariance of an
proposition p while @x1 st sy is true, i.e. we can only establish

existsgp—Xp
This can be seen to be the case from the previous discussion on the manipulation of the exist sq
attributes in induction rules. In order to derive, for instance, properties using G we would like to use the
induction rule T1.10. However, we cannot apply that rule unless we can show that existsg is
invariant. And this is not the case if we allow for death events. Indeed, if a death event occurs, we
expect that from the invariance of p while ex1 st sg is true we can only deduce that p will always hold
while €x1 st sg is true. That is to say, we expect to derive

existsg, p— Gexistsey
where G€*15t50 is the operator "always in the future until ex1i st Sg becomes false",
More generally, for every state proposition a, we shall consider as additional temporal operators G and
F2. Given a pair T=(S,.9) and an instant i, if a is satisfied at i we denote by a(i) the largest interval that

starts at i and where a is satisfied; otherwise, a(i)=@. Then, we say that

— F?pis satisfied by T and A in i iff there is je a(i) such that p is satisfied by T and A in iH
— G is satisfied by T and A in i iff p is satisfied by T and A in every je a(i).

We have the following rules:

T14: Given sets of temporal propositions Py and P, and a proposition a:

1. (a,p—F?)

2. (a, XF?% — F?p)
3. (F%p—>a)

4. for every pe P,

((a, Xa, Xp', P; = Py) | p'e Py},
{(a, Xa, Py = Xp', Py) | p'eP)
=16 (F°p, Py > P)

5. (a,Gp—p)
(a, G*p - XG?)
7. (— G?%,a)

)

178

8. for every pe Py,
((a, Xa, Xp, P; = Pp) | p'e Py},
((a, Xa, Py = Xp’, Py) | p'eP1)
=10 P12 G?p, P2) : a

We have, as expected, the following derived rule:

(a - Xa) =>T(9) (a, Gap - Gp)

which shows that, in the case where the binding condition is an invariant, we can do without these
bounded operators. In fact, the non-bounded temporal operators may be derived from the bounded ones
by having a binding condition that is satisfied in every trace, e.g. (true=true).

The discussion above also shows that, in the case where death events may occur, the intuition behind
obligations is that they should be fulfilled before death occurs. In a more general case, it is of interest to
be able to specify bounded obligations, i.e. obligations that must be fulfilled in a certain interval (as in
[30]). This is an intuitive generalisation of the notion of obligation used so far, and is also of great
pragmatic value because, in general, we tend to impose obligations that we want to see fulfilled while a
certain condition holds (or, equivalently, before a certain deadline is met).

For every state proposition a that belongs to the description and temporal language, we can introduce
obligations bounded by a through an operator Ob 1? interpreted by a relation &°. The semantics of this
bounded obligation is as follows: for a trajectory to be live it must further satisfy:

if @?(e) and a are satisfied in i, then there is je a(i) such that Aj)=e.
That is to say, the obligatory event must occur while the proposition a is satisfied. This leads to

T15: (a, P, >z Ob1l%e), P,), (0z [elp) L (a, P; —z Fp, Py) O

i.e., a bounded obligation leads to a bounded temporal operator.

179

Hierarchical Defaults in Specifications®

Stefan Brass!, Mark Ryan?, Udo W. Lipeck!

1 Universitat Hannover, Institut fiir Informatik, FG Datenbanken und Informationssysteme,
Lange Laube 22, D-W-3000 Hannover 1, Fed. Rep. Germany
Electronic mail: sb/ul@informatik.uni-hannover.dbp.de

2 Department of Computing, Imperial College of Science, Technology and Medicine,
180 Queen’s Gate, London SW7 2BZ, UK
Electronic mail: mdr@doc.ic.ac.uk

July 1991

Abstract

The goal of this paper is to explain the usage and semantics of hierarchical de-
faults in logical specifications. We discuss the usefulness of defaults for different
specification scenarios like specialization, aggregation, explanation, revision, etc.
To understand defaults formally, we introduce a general framework parameterized
on the underlying logical institution extended by an instantiation mechanism for
formulae. It is shown that hierarchical defaults have intended models if the ex-
tended institution is compact. As an example for a non-standard logic, we give the
semantics of defaults in the multi-modal object calculus of the 1S-CORE project. To
structure and compose specifications with defaults, default-preserving specification
morphisms are defined and corresponding colimit constructions are sketched.

1 Introduction

In this paper, we want to explain the usage and semantics of defaults in logic-based system
specifications, particularly in specifications having an object-oriented structure.

Our approach is motivated by inheritance hierachies in object-oriented programming:
general properties of object classes (on higher levels) are assumed to hold also for more
special objects (on lower levels) unless they are overridden by explicitly given special
properties. Thus object descriptions are inherited top-down and serve as defaults for
lower levels. This programming paradigm comes from two important roots of object-
orientation: the concept of module and the requirement to reuse code. Software should
be designed in a differential way — select a module from a library, refine it by adding
new functions, and modify it by overriding some old ones.

We want to investigate how such an inheritance mechanism can be incorporated into
formal specifications of objects where the essential information is given by formulae in
an appropriate logical calculus. In order to use arbitrary formulae as defaults we must

*This work was partially supported by the CEC under ESPRIT-2 BRA Working Group No. 3023 IS-
CORE (Information Systems — COrectness and REusability), and partially by the British SERC/IED
FoRrREST Research project.

130

explain how an overriding of given formulae by additional formulae works. Problems aris.le
as soon as the extension does not remain consistent, i.e. when the defaults and the addi-
tions contradict each other; then techniques of non-monotonic reasoning are needed which
can ignore the critical defaults. Since a default formula is often meant as a representative
of a set of instances, not the entire formula, but only contradicting instances should be
overridden. More problems arise when hierarchies with several levels of inheritance are
considered; then priorities will come into the reasoning process. And finally, different
logical calculi have to be considered, since object-oriented specifications usually deal with
manyfold aspects ranging from static structure (attributes) to dynamic behaviour (events,
effects, permissions, obligations, temporal evolution, etc.). Thus, defaults should be ap-
plicable to non-standard logics like modal (dynamic, deontic, temporal) calculi as well as
to the standard predicate calculus.

In order to make the semantics of hierarchical defaults in logical specifications pre-
cise, we introduce a general framework parameterized on the underlying logical institution
extended by an instantiation mechanism for formulae. It is shown that intended mod-
els exist under the condition of compactness for the extended institution. We discuss
the usefulness of defaults for different specification scenarios like specialization, aggre-
gation, explanation, revision, etc. As an example for a non-standard logic, we give the
semantics of defaults in the multi-modal object calculus given by [FM91]. This calculus,
which combines elements of dynamic and deontic logic, shall serve as a logical seman-
tics of object-oriented system specifications as they are studied by the 1S-CORE working
group (see this volume). To structure and compose specifications with defaults, default-
preserving specification morphisms are defined and corresponding colimit constructions
are sketched.

Related work on the semantics of defaults can be identified in the areas of artificial
intelligence (non-monotonic reasoning) and deductive databases (closed world assump-
tion and other completions), e.g., [Rei78, McC80, Rei80, Min82, BS84, Poo88]. All of
these approaches, however, have not studied defaults in the generality followed here. We
investigated a parameterization of the closed world assumption in [BL89] and properties
of arbitrary database completions in [Bra90]. With [BL91b, Rya91b], we have started to
integrate issues of hierarchical structuring and default reasoning, albeit from two different
perspectives: the one analyzing inheritance and composition of object specifications given
in predicate logic, the other introducing a revision operator for general structured theories.
Another difference lies in the utilized instantiation mechanism: a semantic instantiation
in [BL91b], which allows to generalize the power of second order circumscription to arbi-
trary defaults, and a syntactic instantiation by so-called natural consequences in [Rya91b],
which allows to assume partial formulae. This paper tries to unify the two approaches.

Apart from object specifications, our work should extend foundations for deductive
object-oriented databases [KNN89]. Most of the approaches in that area have considered
inheritance only syntactically, i.e. for names of object components, but not for deduction
rules. An exception was [Abi90] who discussed at least examples of semantic inheritance.
Operational questions of generalized deduction with defaults are tackled in [BL91a).

This paper is arranged as follows. In the next section 2, we introduce application
scenarios with which we motivate our approach. The formal framework for handling
hierarchical defaults in general specifications is introduced in section 3; it is specialized to
object specifications in the IS-CORE calculus in section 4. In section 5, we briefly study
morphisms between specifications and their composition. Finally, conclusions are drawn
in section 7.

181

2 Applications of Defaults in Specifications

The key idea for the correct handling of defaults in object specification is that the context
in which an object is placed can affect the range of behaviour it exhibits. This is an
extension of the idea of inheritance in object-oriented specification such as that adopted
by IS-CORE, where the context may restrict the behaviour, but does not introduce new
behaviour. With defaults, the context may introduce new behaviour because it may cause
the object to behave in a way which violates its defaults.

Aggregation and specialisation

The handling of defaults is given by the structure of the specification. One of the spec-
ifications with which we illustrate our approach in this paper is the bank auto-teller,
introduced in [RFM91]. There, a screen and a keypad are two of the components which
make up the auto-teller; of course there are many others. Part of the structure of the
specification is therefore: '

keypad screen

N

user-interface other components. ..

e

auto-teller

The objects in this diagram are specification modules, that is, objects in the IS-CORE sense.
The arrows are object morphisms; that is, signature morphisms with some additional
properties to do with preserving the validity of formulae. The standard condition is that
the validity of all formulae is preserved, but this is not appropriate when we have defaults
which may be violated. The precise condition for morphisms between objects with defaults
is given later in this paper.

The object user-interface thus comprises the screen and the keypad, and one of its
defaults is that when characters are typed on the keypad they are echoed on the screen.
The meaning of this is that if the user-interface is taken in isolation, this is the behaviour
it will exhibit. However, this is only a default and the society of objects in which the
user-interface is placed may cause this default to be overridden. For example, it may be
a desirable feature of the auto-teller as a whole that when the user is entering his or her
Personal Identification Number, these characters are not echoed to the screen. Thus, in
certain contexts, the object exhibits behaviour unavailable to it in others.

The key idea in such examples is that axioms or defaults in wider contexts can over-
ride defaults in smaller ones. This is the specificity principle from A.I. for priorising
defaults [Tou86, Eth88, Bre9l]. A wider context may be created from a smaller one by
aggregation, as in the above example, or by specialisation, in the example which follows.
In IS-CORE terminology, both aggregation and specialisation give rise to morphisms from
specifications with small signatures to specifications with bigger ones; thus semantically,
there is no difference. Therefore, defaults too are handled in the same way for aggregation
as for specialisation.

182

The specialisation example concerns the behaviour of the command-line interface on
a computer, the so-called shell. Different shells may exhibit different behaviour owing to
the fact that they may carry different authorisations. The basic shell, say the ‘user-shell’,
has the authority to update certain files (the relevant user files for example) and to read
most files on the system. There are two specialisations of this which we will consider.,
The first is the ‘su-shell’ (the super-user’s shell), which has a more extended authority; it
can update and read any file on the system. The second specialisation is the ‘guest-shell’,
which has very few rights; all it can do is read guest files (for the purpose of transferring
them to other systems, for example); as these guests are anonymous they are not allowed
to update anything.

Structurally we have the following situations:

user-shell user-shell

su-shell guest-shell

Here, the morphisms denote specialisations.

This kind of example might hitherto been handled in 1S-CORE logic by means of deontic
axioms; that is, axioms which determine the permissions and obligations of events. Thus,
su-shell is permitted to do everything, user-shell to so some things and guest-shell has
hardly any permissions at all. Indeed, this is a satisfactory approach, but an approach
using defaults has the following advantage. In guest-shell, for example, there is nothing
which stops the user from attempting to update a file. What differs in this case from a
case in which authorisation is granted are the results of such an attempt. The system
may respond with “Permission denied”, for example, or the editor may go into ‘read-only’
mode. The key point is that the behaviours of these shells differ from one another on
certain actions—although, of course, the behaviour of one shell is mostly the same as that
of another; that is why it is appropriate to speak of inheritance, albeit with exceptions.

However, the question of what kinds of normativity are best handled by deontic axioms
and what kinds by defaults is a very interesting one. One of the morals we hope can be
drawn from this paper is that defaults are (until now) very underutilised.

Explanations

There is another class of defaults which is prevalent in ordinary every-day specification,
which we call explanatory defaults. We can illustrate this by means of command shells
again, but this time we are not concerned with differing authorisations; rather, we are
interested in the process by which the behaviour of a shell is explained. Typically, initial
explanations will include statements like “rm file removes the named file”, but these
statements should be regarded as defaults because they only hold most of the time. Such
explanations are quickly followed by provisos, like “you must be in the same directory as
file”, “you must be the owner of file”, and so on. These are the exceptions to the default.
On small systems the list of such exceptions may be small enough to enumerate, but
systems which interact in wider contexts need more and more exceptions to be catered
for. The file system must be mounted read-write, for example; the network must have the
right authorisations, and so on. All we can really say in the last analysis is that rm file
tends to remove file, provided a multitude of other conditions are satisfied.

183

It turns out that such explanatory defaults can be viewed as defaults arising from
specialisation, and are thus amenable to analysis by our method. The first stage of the
explanation, in which the axiom “rm file removes file” is given, should be thought of as
the specification of the ‘naive shell’. Ultimately, after many elementary exceptions and
specifications of variant behaviour have been given, we may arrive at the specification of
the ‘simple shell’. It specifies the way shells used to work, in the good old days before
networks, and it is a specialisation of the naive shell in which some of the defaults have
been overridden. Then, dozens of further exceptions and variations are given, until a
supposedly exact description of the behaviour of unix shells in a networked setting is
obtained. This in turn is a specialisation of the simple shell. The morphism diagram is
then:

naive-shell — ... —— simple-shell — ... — networked-shell

Thus, explanatory defaults can be viewed as specialisation defaults.

3 Semantics of Hierarchical Defaults

In this section, we will formally define the semantics of specifications with hierarchical
defaults.

Our approach has an “extended institution” as a parameter, so that it is applicable
to different logics. The extension of the institution as introduced in [GB84] was necessary
since we additionally need the notion of formula instances to handle the partial satisfaction
of defaults.

Logics

Different logics can be applied in the specifications, e.g. one can use predicate logic, an
action logic as usual in IS-CORE, or a temporal logic. The parameters determined by a
logic are clarified by the category theoretic notion of institutions [GB84, EM90].

On the syntactical side, a logic determines a set X of signatures which allows the
specification of the non-logical symbols needed in the application. When composing spec-
ifications, we also need embedding and renaming mappings between such signatures, so
Y is in fact a category.

Furthermore, for each signature X' € X, the logic defines a language Ls (a set of
formulae). With respect to the morphisms, each signature morphism f: ¥; — X, extends
to a mapping Ls: Ly, — Lyx,. So in category theory terms, L is really a functor from the
category X of signatures into the category Sets of sets.

On the semantical side, the logic determines a set Zx of interpretations for each
signature X' € X. Again, the signature morphisms have a counterpart in this structure,
here by translating the interpretations in the reverse direction. but since our specification
morphisms are purely syntactical (see section 5), we do not need interpretation morphisms
here (and we can also simplify our handling of default instances correspondingly).

Finally, the logic determines a satisfaction relation between the interpretations and
the formulae, i.e.

I= 5 C T » X L 53

which usually is compatible with the morphisms. Apart from signature morphisms, we,
however, will not yet utilize the full category theoretic aspects of institutions, i.e. we will
consider the underlying objects only.

184

Default Instances

In the context of defaults, this knowledge of the underlying logic is not yet sufficient.
For instance, a typical default might be

university(z) — discount(z,20)

(“universities get 20% discount by default”). If this were an axiom, then we would demand
that it be satisfied for all — if it is not satisfied for a single = in an interpretation, then
this interpretation is not a model. But since it is a default, we can only expect that it
holds for as many z as possible — for instance, there might be more specific facts about
some universities that they get a bigger discount. This means that we are interested in
the set of instances of this default which are valid in the interpretation.

So we need the notion of instances of a formula. As an example, we can syntacti-
cally replace the variables (i.e. z) by constants (e.g. univ_hannover). But this is not the
only possible instantiation mechanism. For instance, the natural consequences introduced
in [Rya91b] go further in allowing partial satisfaction of defaults. Given the default p A q,
p and ¢ would be natural consequences (instances) of it. Therefore, if it is not possible to
satisfy p, we are still interested to get at least ¢. If, instead, we used only the replacement
of variables by constants to produce instances of defaults, then the inability to satisfy p
would block the default completely (since on the level of default instances, the “all or
nothing”-principle applies). So the default instances determine the granularity of accept-
ing or rejecting the default. As a last example, if we let the only instance of a default be
the default itself, then we can assume the above default only for all = or for none.

But such syntactical instances are not the whole story. For example, if we do not as-
sume the DCA (domain closure axiom) and if we use the “replace variables by constants”-
mechanism for instantiation, then we can have the situation that all instances of the for-
mula are satisfied, but the formula does not hold for all domain elements. Obviously,
instead of replacing the variables by constants, one could also specify a default instance
by using an assignment of values for the variables in the default. Then unnamed domain
elements pose no problems. So, in this case, a default instance is a pair consisting of
a formula (the default) and a variable assignment. This is a semantical instantiation
mechanism.

The problem with this approach is that we want to compare different interpreta-
tions, but now the default instances depend on the domains of the interpretation. [t
is quite usual, however, to treat interpretations with different domains as incomparable
with respect to the satisfaction of defaults (e.g., in circumscription [McC80]). In fact, the
interpretation of constants is generally also not allowed to vary when trying to maximize
the satisfaction of the defaults.

Generalizing a notion of [L1087], we assume that the logic defines a set Py of pre-
interpretations for each signature X € ¥. In our example, these would interpret the sorts
and the constants, but not the predicates. For each pre-interpretation P € Py, there
is a set Ip C Ty of interpretations based on this pre-interpretation. In the example,
these would interpret the sorts and the constants as given by the pre-interpretation, but
additionally interpret the predicates. So by defining the pre-interpretations, one chooses
which part of the interpretation must remain fixed when maximizing the satisfaction of
the defaults. Of course, we allow the special case that there is only one pre-interpretation,
i.e. that this mechanism is not used and everything is allowed to vary in order to maximize
the satisfaction of the defaults.

185

Now we can define the instances of a default § € Ly to be arbitrary sets Instp(9),
possibly depending on a pre-interpretation P € Pyx. The syntactical instances introduced
above are a special case with Instp(8) C Ly and such that Instp(§) is independent of P.

Finally, we also need a satisfaction relation between interpretations and default in-
stances. If the default instances are formulae (syntactical instantiation), then the satis-
faction relation |=5 can obviously be used.

In summary, the parameters of our approach are:

Definition 3.1 (Extended Institution) An extended institution consists of
o 5, the set of signatures,

Ly, the set of X-formulae (language) for each signature X € ¥,

Iy, the set of interpretations for each signature ¥ € ¥,

|=x € Iy x Ly, the satisfaction relation between interpretations and formulae,

Px, the set of pre-interpretations for each signature X € ¥,

o Ip C Iy, the set of interpretations based on a given pre-interpretation P € Py,

o Instp(6), the set of instances of a formula 6 € Ly, given a pre-interpretation
P e Py,
o |=p CIp x U Instp(6), the satisfaction relation between interpretations and de-
Sely
fault instances.
Specifications

A specification defines a signature X, a set of axioms I" C Ly and a hierarchy of defaults,
which are also formulae. The difference between axioms and defaults is that axioms must
be fully satisfied, whereas defaults need only be satisfied as much as possible (given the
axioms and the other defaults). To define the hierarchy of the defaults, we allow the
specification of a (finite) set H of priority levels with a strict partial order < on it, and
for each node H € H a set of defaults Ay € Ly. H' < H should mean that then Apy
contains the exceptions to the rules in Ay, i.e. the defaults in Ay have higher priority
than those in Ay.
In summary, this means:

Definition 3.2 (Specification) A specification S consists of
e a signature ¥ € ¥,
e a set of axioms I' C Ly,

e a finite set H to define the hierarchy of the defaults,

a strict partial order < on 'H (transitive and irreflexive),

a set of defaults Ay C Ly for each H € H.

186

Intended Models

A model of a specification is an interpretation of the signature X' which satisfies all the
axioms (the defaults are only relevant for the intended models defined below).

Definition 3.3 (Model) Let a specification be given. An interpretation I € Iy is a
model of this specification iff for each v € I', I |=5 ~ holds.

Now we have to select the intended models from all models of a specification. The
intended models are those which satisfy the defaults to the maximal possible degree
(respecting the priorities between them). This maximality criterion suggests the definition
of a preference relation between the interpretations (i.e. Iy C I; means that I, is preferable
to (or as good as) I in satisfying the defaults). Then we could define the intended models
to be the maximally preferred ones.

If we had only a single priority level H, the preference relation would be: “I; C [, iff
the set of default instances true in I; is a subset of those true in ,”; more formally

e the two interpretations are based on the same pre-interpretation P, and
o for each instance d € Instp(6) of a default § € Ay holds: I; |=p d implies I, |=p d.

We will use the notation Ag s for the instances of defaults of a priority level H € H
which are true in an interpretation I € Zp, i.e.

AH‘[= {d € U Instp(é) | I ‘:p d}

SEA

Thus, the condition can be written as Ay, C Ay p,.

To respect the priorities between the defaults, we allow a violation of this inclusion
if there is a higher priority level H’' where the condition holds (with a strict superset
relation). Equivalently, we look at all paths H; < --- < H, through the hierarchy and
require the strict superset condition for the minimal ¢ (i.e. highest priority level) such that
I and I differ in the truth value of at least one instance of a default from A

Definition 3.4 (Preference Relation) For any two interpretations I, and I, I, is
preferable to (or as good as) I (written I C I,) iff

e [y and I, are based on the same pre-interpretation, i.e. there is a P € Ps such that
I e€Ip and I, € Ip,

o for each priority level H € H such that Ay, € Ap g,
there is a higher priority level H' € H, H' < H such that Al r AT

Definition 3.5 (Intended Model) A model I of the specification is intended iff there
is no other model I' which is strictly preferred, i.e. [T I' and I' Z I.

Obviously, we should verify that the preference relation is transitive:

Lemma 3.6 If [y C I, and I, C I3, then I, C I.

187

Proof: Let H € H with Ap 5, € Anr, be given. We have to show that there is H' € H,
H' < H such that Agr;, C App,.

The precondition entails that Agy € App or Ap, € App (since otherwise
Ap1, € Ag,r, would hold because of the transitivity of C).

But since I; C I, and I, C I3, there must be a H € H, H' < H such that
Apgry, C Aprg, or A, C Apgrp,. Choose a minimal H’ which satisfies one of these
two conditions.

This minimality condition entails that we have “C” in the other case: Assume that
Agnr, C Agrp,. Since H' was chosen minimal, it is not possible that Agi;, € Ap g,
since then there must be a H” < H' with Agw 1, C Agwuy, in order to satisfy I C I3,

So we can compose “C” with “C” to get A, C Ay y,.]

Properties

Of course, it is important to know under what conditions the existence of minimal models
can be guaranteed. For instance, in predicate circumscription [McC80] there can be
infinite chains of better and better models, so there is no intended one [Dav80, EMRS3].
And circumscription is a special case of our approach (with semantical instances and
defaults of the form —p(ay,...,2,)).

It turns out that we need a property which looks like the compactness theorem of
predicate logic (“if each finite subset of a set of formulae has a model, then the whole set
has a model”). We only have to generalize this to default instances:

Definition 3.7 (compact) An extended institution is called compact iff for each pre-
interpretation P € Px, each set of azvioms I' C Ly, and each set of default instances

D C U Instp(6) the following holds:
6€Ly

° .Iffor each finite D' UI" C DU there is a model I' € Ip of D' U I" then there is
amodel €Ip of DUT.

If we use syntactic instantiations (D C Ly) and no pre-interpretation (i.e. Py is a
singleton), then this is just the usual compactness property, so it holds for predicate logic.

On the other hand, if we use the semantic instantiation with variable assignments,
this condition is not satisfied for full predicate logic:

Example 3.8 Let the pre-interpretation have any infinite domain, e.g. IN. Let I" consist
of Jy: p(y), and D be the instances of the default -p(z), i.e. {-p(n) | n € N}. Now
DU is clearly inconsistent since D would require that the extension of p is empty, while
I' enforces that it contains at least one element. But each finite subset of D only requires
that finitely many natural numbers are not contained in the extension of p, and there are
infinitely more to satisfy the existential constraint. So this extended institution is not
compact. (]

It has been shown in [EMRS5, Lif86] that circumscription is consistency-preserving if
one considers only universal formulae (or even “almost universal” ones which contain no
positive occurrences of predicates in the scope of existential quantifiers). The proof idea
in [Lif86] can be generalized to a proof that the extended institution based on predicate
logic and semantical instantiation is compact:

188

Theorem 3.9 The extended institution based on predicate logic with Ly restricted to
universal formulae and instantiation by variable assignments is compact.

Proof: Our goal is to apply the usual compactness theorem of first order logic. So we
have to code all the constraints, the model has to fullfill, in first order logic. To do this,
we first have to extend the signature with a constant ¢, for each domain value v. Then
we consider the set Ap composed of the following formulae:

® ¢, # ¢y, for each two different domain elements vy, v,.

® w(Cy,-..,Cy,) = ¢, for each function symbol w in the original signature, and each
domain elements vy, ..., v,,v with P[w](vy,...,v,) = v.

o 6{z1/cus...,2n/cy, }, for each default instance (6, {1/v1,...,%./v,}) € D (in this
way, we constructed syntactic default instances corresponding to the semantic ones).

e [, the set of axioms.

By our precondition, every finite subset of Ap has a model. Now the compactness theorem
of first order logic guarantees that there is a model I of Ap. By the construction, this
model contains a substructure isomorphic to the given pre-interpretation. And since we
have only universal formulae, this substructure is a model by itself. So the isomorphic
image of this substructure is the model of D U I we looked for. O

Theorem 3.10 If the underlying extended institution is compact, then for each model I
of the specification (i.e. of the axioms) there is an intended model I, with I, C 1.

Proof: Let 75 := {I € Iy | I, C I}. We have to show that Z5 contains a maximal
element. We do this by applying Zorn’s lemma, i.e. we only have to show that for every
chain Z, C I3 there is a upper bound Ij.

We construct this upper bound in the following way: Consider the set of default
instances defined by

D:={de U U Instp(d) | thereis I € T,, with I I=p d and
HeH SeAy i
for all I' € .4 with IC I', holds I’ |=p d}.

Obviously, every finite subset D'U I of DUT" has a model: By definition of D, there is a
model I of each default instance d € D' (which also satisfies I'). Let I, be a maximal one
among these finitly many / (they are comparable since Z,4 is a chain). By construction
of D, Iy is a model of all d € D'. So, since every finite subset has a model, the compactness
property guarantees that there is a model Iy, of the whole set D U I".

It remains to prove that I, is indeed a upper bound of Z,;, i.e. that I C I, for
each I € T,;,. This means, that for each H € H with Ay ; ¢ Ap,1, we have to show that
there is a H' € H, H' < H with Apnr C Agrp,. We do this by induction on <, i.e. we
can assume that this has already been proven for all priority levels H € H with H < Hy
(where Hy is the level for which we have to prove this now).

So let Apy,r € Amy,1y,, i-e. there is a default instance d € Apy,r with Iy [ep d. By
construction of Ij;, we have d ¢ D, so there must be an I’ € Z,; with T E I’ and I |£p d.
But this entails Ay, ; € Ap,,r, so there must be a H' € H with H' < H such that
Agrr C Agrp. Choose a minimal such H’, so for all H” < H' we have Agng = Agnp.
Now there are two possibilities:

189

o Ay € Ap g, Then we directly have Ay 1 C Apy,py, (which was to be shown).

e Otherwise, Agy € Apig,: Since we inductively assumed the condition for H'
and I’ (instead of H and I) we can conclude that there is a H” < H' with
AHu‘[f (& AHM,]”). Together with AHM,[= AHH,[r we get AH”,I (5 AH".IH;' O

This theorem has the following obvious corollary:

Corollary 3.11 There is an intended model of a specification iff the axioms I' are con-
sistent.

But theorem 3.10 is slightly stronger since it guarantees that for any model of the
axioms, there is a comparable intended model. This is just the “minimal modelability”
of [BS84].

Another property which we would expect to hold for any reasonable notion of “in-
tended model” is cumulation [Gab85, Mak89]: Assume that some formula A holds in all
intended models, so this formula is a consequence of the specification. Then it should
be possible to “materialize this view” and add A to the axioms I" without changing the
semantics of the specification, i.e. without changing the set of intended models. This is
also a corollary of the last theorem:

Theorem 3.12 If the underlying extended institution is compact, and A\ € Lx holds in
all intended models, then the specification 8’ with I'" := I' U {\} has the same intended
models as the original specification S.

Proof: By the precondition, we know that every intended model of S is a model of S’.
They are also maximally preferred, since no new competing models are introduced.
Conversely, an intended model I' of 8" is a model of §. Assume that it is not maximally
preferred as a model of S, i.e. there is a model I of S with I’ C I and I [Z I’. Then,
by theorem 3.10, there is an intended model Iy of § with I C ;. Thus, by lemma 3.6,
I'C Iy and Iy & I’ (since Iy C I’ together with I C I would imply I T I’ which we
know to be false). Since every intended model of S satisfies A, I, is a model of S’. But
this means that /' is not an intended model of &". O

4 Application to IS-CORE-Logic

The goal of this section is to show how our framework can be applied to the IS-CORE object
calculus of [FM91]. This logic contains attributes which can be changed by events. The
logic is fully treated in [FM91] (and in the references cited there), but we have to repeat
the definitions here, since we have to identify pre-interpretations and default instances
(and also since our notation is slightly different). Technically, what we are doing here,
is to work out a non-standard example of an extended institution. With respect to the
instantiation mechanism, we have chosen a semantical one. '
So we first define the signatures, which allow to specify the non-logical symbols needed
in an application. Beside the normal (state-independent) function symbols, we have
(state-dependent) attribute symbols and (state changing) event symbols:

Definition 4.1 (Signature) AnIS-CORE-signature is a quadruple ¥ = (S,Q, A, E) such
that

190

o S is a finite set (of sorts), not containing the special (event) sort s,
o §) is a finite S* X S-indezed family (of function symbols or operators),
o A is also finite a S* x S-indezed family (of attribute symbols), disjoint to Q,
o E is a finite S*-indezed family (of event or action symbols), disjoint to) and A.
In addition, S, , A, and E must be disjoint to the logical symbols (the usual connectives
and punctation symbols, and a set X of variables).
P

Next, we have to define the language given by a signature X' = (S, Q, A, F), i.e. the
set of formulae. This is done in the usual way — from terms over literals to formulae

(clauses).
We must be a bit cautious with the exact quantification, since if we quantify over an

empty domain, the formula has no instances, i.e. is trivially satisfied (see below). So each
formula needs its own variable declaration:

Definition 4.2 (Variable Declaration) A wvariable declaration = is a partial function
from X to SU {sg}, which is defined only for finitely many « € X. We write |Z| for the
domain of =.

Definition 4.3 (Terms) The terms T(X, =), of sort s € S U {sg} can be constructed
by the following rules:

e e T(X,5); for each x € X with =(z) = s,
Wty anstn) € T(X, B), for-each € Wy, s and tee T(Y, =2)s,,

altiss . ita) ET(X; E)sfor each '@ € A y.s ondit; € T(X, 5);,

e(t1y...ytn) ET(X;Z);s for each e € . 4, and t; € T(X,5),,; if s = sg,
[t1)t: € T(Z, =), (‘t2 after t1”) for each t, € T(X,2),, and t, € T(X, Z),,

o [t e T (5, E), (“first t”) for eacht € T(X,E),.

Definition 4.4 (Literals) The literals A(X, =) can be constructed as follows:
ot =t e A(X,2)ift1 €eT(X,Z), and t, € T(X, =), with s € SU {sg}
e Per(t) € A(X,Z) (‘t is permitted”) if t € T(X,Z)s,.
o Obl(t) € A(Z,Z) (¢ is obliged”) if t € T(X, Z)s.
o [J(\) € A(Z,3) ift € T(Z, 5),, and A € A(Z,).

We will use the shorthand ¢ for the literal { = true (if term is of sort bool). The
intention of the permissions and obligations is to restrict the occurrences of events in
“normative traces” (see [FM91]).

Definition 4.5 (Formulae) A formula A has the following structure:

o (z1:51) ... (@risk) MA- - AXy = At Voo Vdm with 2; € X, s; € S, and
Ai € A(X, Z) where = is the variable declaration defined by =(z;) = s;.
(If n =0, “-” may be left out.)

191

We write Ly for the set of these formulae.

Example 4.6 To give a short impression of IS-CORE formulae, let us consider the user-
‘nterface of the auto-teller. In this example, we use the sorts digit and digit”, the at-
tribute display of sort digit*, an event press (with an argument for the digit) and the
(datatype) functions append and length.

First we state that after pressing a key, the corresponding digit appears on the display:

(key: digit) [press(key)]display = append(display, key).

Now this is obviously not true in full generality, since the display has some fixed number
of digits (e.g., 8). Therefore we add the axiom

length(display) < 8

which gives the above formula the status of an (explanatory) default. As it stands, we
do not know anything about the new value of the display-attribute when the axioms
contradicts the default. But this can be corrected by adding the default that display does
not change unless specified otherwise (the usual frame rule):

(e: event) [e]display = display.

Of course, this default must have lower priority than the one above, which describes the
effect of a more specific event. Finally, we might want to reuse this specification in a
specification of a secret user-interface with a “no echo” status. Here we would add the
default (with highest priority)

status = no_echo — display = empty.
Of course, this example still has to be completed. a

Now that we know the syntax of IS-CORE logic, let us look at the semantics. First we
have to define the interpretations and pre-interpretations.

A pre-interpretation interprets the sorts, the functions and the event symbols. This
is of course a somewhat arbitrary definition, it entails that one cannot use defaults to
specify these things, but is also entails that the defaults will not interfere with these basic
(state-independent) specification elements, since they are considered as fixed when the
satisfaction of the defaults is being maximized. Also, our notion of instances (see below)
requires that the pre-interpretations contain at least the domains including that for the
events.

Definition 4.7 (Pre-Interpretation) The set Px consists of the pre-interpretations P
defining

e a set P[s] for each sort s € S U {sg},
e a function P[w]: P[si1] x -+ x P[s,] — P[s] for each function symbolw € Qs 5,5

e a function P[e]: P[s1] x - -+ x P[sn] — P[sg] for each event symbole € E;, _,.

Now an interpretation extends a pre-interpretation by defining additionally the se-
mantics of attributes, as well as permissons and obligations. So this is what can be
specified by means of defaults.

192

Definition 4.8 (Interpretation) The set Ip of interpretations based on P consist of
the interpretations I definining

o I[s], I[w], I[e] as given by P,

o a function I[a]: P[si] x - -+ X P[s,] x P[sg]* — P[s]
for each attribute symbol a € A, s, s,

o a set I[Per] C P[sg] x P[sg]*,
o a set I[Obl] C P[sg] x P[sg]*.

Definition 4.9 (Variable Assignment) A variable assignment o defines a value afz]
from P[s] for each variable z € X with Z(z) = s. We write Ap(Z) for the set of these
variable assignments.

Traces define the state of the system by listing all the events which occurred in the
past:

Definition 4.10 (Trace) A trace T is a finite sequence of elements of P[sg]. We write
Tp for the set of all traces based on P.

By defining the instances of a formula, we define the granularity of acceptance or
rejection of the defaults. It seems natural to split a formula into instances with respect
to different variable assignments and different traces (states). So a default may not be
satisfied for all variable assignments and all states, but we still want that it holds for as
many as possible. If this logic were translated to predicate logic, then there would be a
variable for the current state. Therefore, this definition of instances is compatible with
the corresponding definition for predicate logic.

Definition 4.11 (Instance) The set of instances of a formula A € Lz is
Instp(X) := {2} x Ap(Z(X)) x Tp.

The next thing to do is to define the satisfaction relation between interpretations and
formula instances. This is usually done by considering terms, literals, and formulae one
after the other. Given an interpretation, a variable assignment, and a trace, we can define
the evaluation of terms:

Definition 4.12 (Evaluation of Terms) The value (I,c,7)[t] of a term t € T(X, =),
is defined as follows:

o (I,a,7)[z] := afz]

for each variable z € |=]|.

o (I,o,m)[w(ts,... ta)] := I[w({L, e, 7)[t1]; - . . (L, 0, T} [£n])
for each function symbolw € s, 5.5 and terms t; € T(X, Z),.

o (I,a,7)[e(t1,...,tn)] := I[e)J({L, e, T)[ta],- .. (I, , T}tn])
for each event symbole € Ey, s, s and terms t; € T(X, =Z),.

o (I,a,7)[a(ty,...,t,)] := Ial({(I, e, 7)[t1], . . . (I, e, 7)[t0], 7)
for each attribute symbol a € As, s, s and terms t; € T'(X, Z)s.

193

o (I,a,7)[[t]t2] := (I, e, 7 o (I, e, 7)[t1]) 2] 5
for each terms t; € T(X,Z)sp and t2 € T(X, =

o (I,a,7)[[Ita] = (I, 0, €)[t1]
for each term t; € T(X, Z),.

Definition 4.13 (Satisfaction of Literals) The satisfaction of a literal X € A(X,Z)
in (I, e, 7) is defined by

o (I,a,7) ==t <= (I, 7)h] = ({L;0,7)[t:]
fort, t, € T(X,2);

o (I,a,7) |= Per(t1) <= ({I,a,7)[t:1],7) € I[Per]
fort; € T(X,Z)s.

o (I,a,7) F Obl(t)) <= (({,c,7)[ta],7) € I[ObI]
forty € T(X,2);

o (I,a,7) |= [ti]M &= (L,,To(l,a,7)[ta]) F M
forty € T(X,5)s and s € A(X, E).

Definition 4.14 (Satisfaction of Instances) An interpretation I € Ip satisfies a for-
mula instance { (zy:81)...(Tg:sk) MA - AXs = A VeV agm o .7) iff
(I,a,7) = A fori=1,...,n implies (I,a,T) |= Any; for at least one j € {1,...,m}.

An interpretation satisfies a formula iff it satisfies all its instances, i.e. the formula is
true under all variable assignments and in each trace:

Definition 4.15 (Satisfaction of Formulae) An interpretation I € Ix based on a pre-
interpretation P satisfies a formula A € Ly iff I |=p [for each | € Instp(])).

Now we have to prove the supercompactness of this logic in order to guarantee the
existence of intended models:

Theorem 4.16 The extended institution with these components (“IS-CORE logic”) is
compact.

Proof: We apply the same method as in the proof to theorem 3.9, i.e., we introduce
formulae for the conditions the required model has to fullfill, and then apply the com-
pactness theorem of first order logic. The only additional complication is that we have to
code the quantification over traces in predicate logic, i.e. we have to make the additional
trace argument of attributes and permissions and obligations explicit.

We will not give the details of this translation here — it is easy if we introduce the
two sorts s and sg. for events and traces, a new function symbol append(sg+, sg): sg+ (to
append an event to a trace), and predicates Per(sg, sg+) and Obl(sg, sg+) for permissions
and obligations. The translation takes a term for the current trace as additional parameter
and recursively descends into the formula/literal/term to be translated.

We again introduce constants for the domain elements given by the pre-interpretation.
Additionally, we introduce constants for the traces, and define the append-function by
a complete set of equations of the form append(c.,c;) = croe. In the same manner,
we enforce the interpretation for the function and event symbols, as given by the pre-
interpretation. We add inequalities for each two distinct constants. Finally, we add the

194

translated axioms and the syntactic instances of the translated defaults (corresponding
to the given semantic instances).

Any finite subset of these set of formulae surely has a model — the 1S-CORE logic
model which we know to exist can be easily translated to predicate logic. So we can
conclude by the compactness of predicate logic that the whole set has a model. And,
since we have only universal formulae, we can project the model on the explicitly named
constants (this set is closed under the functions, since we defined them by the equations).
Note that this construction especially guarantees that the traces are exactly the finite
sequences of the events. Therefore, it is easy to translate this model back to IS-CORE
logic. O

5 Composition of Specifications with Defaults

When specifying nontrivial objects, rather soon a need for stepwise development (exten-
sion, refinement, composition, etc.) of specifications arises. To explain, however, which
composed specification is meant by a structure of interrelated specification pieces it is
helpful to have a category of specifications that introduces morphisms between specifica-
tions (to explain relationships) and colimits (to explain compositions).

For classical axiomatic specifications (X, I) (2 = 1,2), each consisting of a signature
X and a set of formulae I'; over X;, a specification morphism from (X, I7) to (X, %)
is a signature morphism f:X; — X, which preserves axioms, i.e. I3 = Ly(71) for each
T E Fl.

In our context, a specification denotes not a just set of axioms, as described above,
but a set of axioms together with a family of defaults indexed by a partially ordered set
of levels. It seems reasonable to require a morphism to preserve the level hierarchy and
the set of defaults at each level. Instead of the partial order < we consider its generating
part <, i.e. the smallest relation < whose transitive closure is <.

Definition 5.1 (Morphism) Let S; = (X}, I3, (Hi, <i), A;) be specifications as defined
in definition 3.2. A specification morphism from S to Sy is a signature morphism
f: X1 — X, together with a mapping h: Hy — Hy tff:

1. f preserves axioms, i.e. Iy |= f(m1) for each v, € Iy
2. h preserves order, i.e. H' <y H implies h(H') <2 h(H) for each pair H',H € H

3. f preserves defaults, i.e. f(Ary) C Agpyy for each H € 'H.

Please note that due to respecting the generating subrelation <, the given level hi-
erarchy <; is protected to a far extent: no intermediate levels can be introduced, and
no levels directly related under < or indirectly related under < can be identified; only
unrelated levels (in that sense) may be identified such that the union of the corresponding
default sets is preserved. Of course, new levels may be added above, below, or beside the
given hierarchy.

Theorem 5.2 The category of specifications with defaults together with morphisms as
introduced above is cocomplete.

195

Proof: (Sketch) As known from category theory, it is sufficient to show the existence. of
initial objects and pushouts. As in the case of classical specifications, the specification with
only empty components is initial. A pushout of signatures in the category of signatures
together with a pushout of level hierarchies in the category of sets can be lifted: utilize
the union of the given axiom sets and the union of the given default sets at each hierarchy
level as the new set of axioms or defaults, respectively. Of course, renamings under

the signature morphisms and the level mappings must be taken into account within this

construction. 0

Now, we can characterize typical structuring situations of specifications by special
cases of morphisms or colimits:

e disjoint aggregation: coproduct of two specifications (in which two separate hierar-
chy levels and default sets are put side by side to form one)

e extension: addition of signature elements and of axioms, leaving levels and default
sets unchanged

e specialisation: addition of one level with higher priority than all given levels, to-
gether with a new set of defaults, but leaving signatures, axioms, and other defaults
unchanged

Each aggregation as discussed in section 2 can be described as a sequence of disjoint
aggregation, extension, and specialisation. Pushouts are needed to combine non-disjoint

specifications, e.g.:

general operating system

multi-process system virtual memory system

multi-process system with virtual memory

Further restrictions on such special systems can only be introduced by an additional
specialisation; this leads to a situation with multiple inheritance. Another typical ap-
plication of pushouts lies in the application of parameterized (generic) specifications to
actual parameter specifications. The pattern for such a situation is as follows:

formal parameter —— body, e.g. generic specialisation

actual parameter —— result: concrete specialisation

As part of parameter passing morphisms, even non-injective level mappings might appear.

196

6 Examples

In this section we work through the details of a situation typical of many of the examples
discussed in section 2. The situation is the following one: an object A in isolation has
the property that after a certain action takes place, a certain attribute is set. But, when
placed in the context of other objects B which interefere with it, this natural (“default”)
behaviour is overridden in some circumstances. That is to say, there are circumstances in
which the action happens but the attribute is not set.

In section 2 we discussed the example of the autoteller and the operating system
example with the rm action.

e In the autoteller example, A is the combination of the screen and the keyboard. The
action is pressing a key and the setting of an attribute is the echoing of the character
on the screen. The context B is formed by the other objects in the example. The
special circumstance which defeats the screen-keyboard’s default behaviour is the
circumstance of entering the personal identification number.

e In the operating system example, A is the naive shell. The action is the rm action,
whose usual effect is to remove the relevant file. But in the context of the more
realistic shell B formed by adding directories, the defeating circumstance is that of
the file being in a directory other than the current one.

Buttons and indicator lights on electrical equipment also form a large class of exam-
ples of this kind. Typically, buttons come with lights; together, they form an object with
the default axiom that pressing the button illuminates the light. But, circumstances such
as the inappropriateness of the request being made can defeat this behaviour. Lifts (ele-
vators) in buildings have many instances of this situation, as discussed in [Rya91a). When
the user presses the button to call the lift, the indicator light illuminates to acknowledge
the request. But of the request is inappropriate (because, for example, the lift is already
at the user’s floor) then the light does not illuminate.

We will extract the essence of these examples in the following way. We specify two
objects, A and B. Object A is essentially the button-light object, with the default that
the light comes on after pressing the button. B is the society of objects in which the
button object is included, and certain states of B override A’s default behaviour. There
1s a morphism from A to B in the sense of definition 5.1.

The button object A consists of

e A signature ¥, with the sorts {bool}; the (nullary) function symbols ¢ and f on the
sort bool; the attribute lit of sort bool; and the action press.

e No axioms.
* A default hierarchy H = {1}, with < = 0.
* A single default, given by A; = {[press]iit = t}.

Compare with definition 3.2. This specification will be called S,4. It should be noted that
neither the action press nor the attribute /it take parameters. This simplifies matters
when it comes to comparing interpretations.

The context object B consists of

197

e A signature ¥ g which includes at least the sorts {bool} and the function symbols ¢
and f; at least the attributes lit and accepting of sort bool; and at least the actions

press, accept and ignore.
e The axioms [accept]accepting = t, [ignore]accepting = f and lit =t — accepting = t.
o A default hierarchy H = {1}, with < = 0.
o Defaults, given by Ay = {[press]iit = t}.

This specification is Sp. We intend the attribute accepting to determine whether requests
made by pressing the button should be accepted or not. Its value is changed by the
actions accept and ignore in the way described by the first two axioms. The third axiom
states that the attribute /it is false if the system is not in the state of accepting requests.

There is the obvious signature morphism ¥4 — Y5 which takes all of the signature
elements of A to their counterparts with the same name in B. Moreover, this is a specifica-
tion morphism in the sense of definition 5.1 when conjoined with the mapping {1} — {1}
which takes 1 to 1; for it is easy to see that this mapping meets the stipulations of that
defintion.

Since the colimit of the diagram

A— B

is simply B, it is B’s behaviour which we need to investigate. A pre-interpretation P of
Yp fixes P[bool] and gives us a set {press,accept,ignore} to interpret the action terms
{press, accept, ignore}. We will restrict our attention to the pre-interpretations such that
Plbool] = {t,f} with P[t] =t and P[f] =f. Let P be such a pre-interpretation, and let
ZIp be the interpretations based on P. As before, we let 7p be the set of traces for this
pre-interpretation:

Tp = {press, accept, ignore}*.

An interpretation I based on this interpretation further specifies the functions

I[lit] = Tp — {t,f}
I[accepting] : Tp — {t,f}

that is to say, for each of the boolean attributes there is a function on traces which tells
us the value of that attribute after the actions in the trace have taken place.
Interpretations which satisfy the axioms (in the sense of definition 4.15) are ordered
by the defaults according to definition 3.4. Thus, the first thing to do is to look at the
instances of the axioms accoring to definition 4.11. Let A be one of the axioms. We have
that
I?’LStP(/\) = {()\, ',T) | T-E TP}

The assignment - is the empty one, since there are no variables in the specification to which
values need to be assigned. Thus, instances of a formula are really pairs, the formula and
a trace. This omission of the assignment parameter is a considerable simplification of the
general setting, which is convenient for illustrative purposes.

An interpretation I € Zp satisfies A if all tuples (I,-,7) (really: interpretation-trace
pairs) satisfy the instance (),-,7) (defs. 4.14 and 4.15). Thus (using defs. 4.12 and 4.13)
we arrive at the following informally stated constraints on models I € Zp of Sg:

1. If[accepting](- - - o accept) = t;

2. I[accepting](--- oignore) = f;

198

3. If I[lit](7) = t then I[accepting](T) = t.

Let I be an interpretation in Zp satisfying these properties, and let 7 be any trace.
The task now is to order the family of such interpretations according to how well they
satisfy the defaults in Sg. Let I, I, I3, and I be identical with I except that

o I[lit](7 o accept o press) = f;

o L[lit](7 o accept o press) = t;

o I[lit](r o ignore o press) = f;

o Iy[lit](7 oignore o press) = t;
Then we obtain:

o [} C I, because Ay, C Ay p; and

e I3 C I4for the corresponding reason, but I does not satisfy the axioms. The axiom
[ignore]accept = f means that I[accepting](r o ignore) = f, and locality constraints
therefore imply that I[accepting](r o ignore o press) = f. But,
14[lit](7 o ignore o press) = t and by the axiom lit = t — accepting = t we know
that I[accepting](r o ignore) = t, a contradiction.

The maximal models in the set {Iy, I5, I3} are therefore I, and I5. Of course, these might
not be maximal in the whole set of models of Sg.

7 Conclusions

In this paper we have introduced a general framework for the semantics of hierarchical
defaults in specifications. It is parameterized on institutions, which describe the basic ele-
ments of logical calculi, and on instantiation mechanisms, which allow to derive syntactic
or semantic instances of formulae. The latter was needed to explain the partial (instance-
wise) overriding of default formulae when axioms or defaults of higher priority are added
to a specification. Moreover, we have proposed a notion for specification morphisms which
preserve not only axioms, but also default hierarchies.

What remains to be done here is to confirm that this morphism notion is as canon-
ical as the classic specification morphism which can be characterized equivalently by an
inclusion of the corresponding model classes (in the reverse direction). Such an analysis
might help to extend institutions even with respect to their category-theoretic structure.

The application of our framework to the object calculus of the IS-CORE project pro-
vides a basis for utilizing default hierarchies in formal object-oriented system design, as
motivated in the beginning. Pragmatically, one can imagine several scenarios for applying
defaults in specifications:

e Hierarchical specification: Defaults for general objects are implicitly inherited by
more specific objects; but defaults applying to more specific objects override those
applying to less specific, because of the specificity principle. Such situations include
specialisations of single objects as well as aggregations of several objects into a
composite object. In the latter case, the behaviour rules for the ob jects in isolation
are overridden by context restrictions in the composite ob ject.

199

e Incremental specification: The idea is to specify the overall behaviour first, and
then give the details later. Overall behaviour axioms are defaults, overridden by
the details when they contradict. Typically, such defaults may have an explanatory
character.

e Update semantics: The frame problem is treated by introducing default frame rules
which require all state components to remain invariant under arbitrary updates. By
considering the actual update specifications to be formulae of higher priority, our
general semantics should imply that updates change each state only to a minimal
extent. This solution, which works in the institution of dynamic or modal action
logic, will be studied in a forthcoming paper in detail.

o Fault tolerance: The default is correct (normative) behaviour, but one also specifies
what happens when this default fails. Here, the relationship to specifications in
deontic logic are to be clarified [Rya91a).

e Specification re-use/revision: One has a library of specifications which have to be
modified (not just enriched) for the application at hand. Classical refinement meth-
ods will often lead to inconsistencies which cause the original specifications to be
replaced by more complicated ones. Revision of defaults, however, supports a much
smoother way of stepwise system design since exceptional cases need not be foreseen
from the beginning, but can be postponed to later phases.

Acknowledgement

The discussion with other members of the Esprit BRA working group IS-CORE (“Information
Systems — Correctness and Reusability”; coordinated by Amilcar Sernadas) has been of great
benefit to us. In particular, we would like to thank José Fiadeiro, Gerhard Koschorreck, Tom
Maibaum, and Robert Meersman for helpful comments.

We have used Paul Taylor’s macros for drawing the diagrams.

References

[Abi90] S. Abiteboul: Towards a deductive object-oriented database language. Data & Knowi-
edge Engineering 5 (1990), 263-287.

[Bee90] C. Beeri: A formal approach to object-oriented databases. Data & Knowledge Engi-
neering 5 (1990), 353-382.

(Bes88] P. Besnard: An Introduction to Default Logic. Springer-Verlag, Berlin, 1988,

[BL89] S. Brass, U. W. Lipeck: Specifying closed world assumptions for logic databases. In
J. Demetrovics, B. Thalheim (eds.), Second Symposium on Mathematical Fundamen-
tals of Database Systems (MFDBS’89), 68-84, LNCS 364, Springer-Verlag, Berlin,
1989.

[BL91a] S. Brass, U. W. Lipeck: Generalized bottom-up query evaluation. Submitted for
publication, 1991.

[BL91b] S. Brass, U. W. Lipeck: Semantics of inheritance in logical object specifications.
To appear in: Proc. of the 2nd International Conference on Deductive and Object-
Oriented Databases (DOOD’91), 1991.

[Bra90]

[Bra91)
[Bre91]

[BS84]

[Dav80]

[EM90]

[EMRS5]

[Eth88]
[FMO1]
[Gab85]

[GB84]

[HS89)]

[KNN8Y]

[Lif86]

[L1087]

[Mak89]

[McC80]

[Min82]

200

S. Brass: Beginnings of a theory of general database completions. In S. Abite-
boul, P. C. Kanellakis (eds.), Third International Conference on Database Theory
(ICDT’90), 349-363, LNCS 470, Springer-Verlag, Berlin, 1990.

S. Brass: Deduction under closed world assumptions. Submitted for publication, 1991.

G. Brewka: Nonmonotonic Reasoning: Logical Foundations of Commonsense. Cam-
bridge University Press, Cambridge, 1991.

G. Bossu, P. Siegel: Nonmonotonic reasoning and databases. In H. Gallaire, J. Minker,
J.-M. Nicolas (eds.), Advances in Database Theory Vol.2, 239-284, Plenum, New York,

1984.

M. Davis: The mathematics of non-monotonic reasoning. Artificial Intelligence 13
(1980), 73-80.

H. Ehrig, B. Mahr: Fundamentals of Algebraic Specification 2. EATCS Monographs
on Theoretical Computer Science 21. Springer-Verlag, Berlin, 1990.

D. W. Etherington, R. E. Mercer, R. Reiter: On the adequacy of predicate circum-
scription for closed-world reasoning. Computational Intelligence 1 (1985), 11-15.

D. W. Etherington: Reasoning with Incomplete Information. Pitman, London, 1988.
J. Fiadeiro, T. Maibaum: Towards object calculi. This volume, 1991.

D. M. Gabbay: Theoretical foundations for non-monotonic reasoning in expert sys-
tems. In K. R. Apt (ed.), Logics and Models of Concurrent Systems, 439-457, Springer,
Berlin, 1985.

J. Goguen, R. Burstall: Introducing institutions. In E. Clarke, D. Kozen (eds.),
Proc. Logics of Programming Workshop, 221-256, LNCS 164, Springer-Verlag, Berlin,
1984.

A. Heuer, P. Sander: Semantics and evaluation of rules over complex objects. In
W. Kim, J.-M. Nicolas, S. Nishio (eds.), The First International Conference on De-
ductive and Object-Oriented Databases, Proceedings, 439-458, Kyoto, Japan, 1989.

W. Kim, J.-M. Nicolas, S. Nishio (eds.): The First International Conference on
Deductive and Object-Oriented Databases, Proceedings. Kyoto, Japan, 1989. See also:
Special Issue on Deductive and Object-Oriented Databases of Data & Knowledge
Engineering 5(4), (Okt. 1990).

V. Lifschitz: On the satisfiability of circumscription. Artificial Intelligence 28 (1986),
17-2F.

J. W. Lloyd: Foundations of Logic Programming, second edition. Springer-Verlag,
Berlin, 1987.

D. Makinson: General theory of cumulative inference. In Non-Monotonic Reasoning
(2nd International Workshop), 1-18, LNAI 346, Springer-Verlag, Berlin, 1989.

J. McCarthy: Circumscription — a form of non-monotonic reasoning. Artificial
Intelligence 13 (1980), 27-39.

J. Minker: On indefinite databases and the closed world assumption. In D. W. Love-
land (ed.), 6th Conference on Automated Deduction, 292-308, LNCS 138, Springer-
Verlag, Berlin, 1982.

2

[Poo88] D. Poole: A logical framework for default reasoning. Artificial Intelligence 36 (1988),
27-47.

[Rei78] R. Reiter: On closed world data bases. In H. Gallaire, J. Minker (eds.), Logic and
Data Bases, 55-76, Plenum, New York, 1978.

[Rei80] R. Reiter: A logic for default reasoning. Artificial Intelligence 13 (1980), 81-132.

[RFM91] M. Ryan, J. Fiadeiro, T. Maibaum: Sharing actions and attributes in modal ac-
tion logic. In Proc. of the Int. Conf. on Theoretical Aspects of Computer Software
(TACS’91), Tokio, 1991.

[Rya9la] M. Ryan: Defaults and normativity in specifications. Submitted for Publication, 1991.

[Rya91b] M. Ryan: Defaults and revision in structured theories. In Proceedings of the IEEE
Symposium on Logic in Computer Science (LICS’91), 362-373, 1991.

[Tou86] D. S. Touretzky: The Mathematics of Inheritance. Research Notes in Artificial Intel-
ligence. Pitman, London, 1986.

202

Object Oriented System Development; An Overview

Egon Verharen

Abstract
1. Introduction
1.1. Goal

1.2. Object-orientation
1.3. Advantages of using Object-Oriented Concepts
1.4. Problems with the Use of Object-Oriented Concepts
2. History of Object-Oriented System Development
3. System Development
3.1 Engineering and Methodologies
3.2 Life-cycle Approaches
3.3 Development Perspectives
3.4 Top-down vs. Bottom-up
4. Object-Oriented System Development
4.1. Object-Oriented System Development, What is it
4.2. Today's OO System Development Methodologies
5. The Object-Oriented Life-cycle
5.1. Object-Oriented (Requirements) Analysis
5.2. Object-Oriented Design
5.3.0bject-Oriented Implementing
5.4. Tools
6. Findings
Literature

203

Object Oriented System Development; An Overview

ABSTRACT

In recent years object-oriented technology has been given much attention. However the large
part of this attention was paid to object-oriented programming languages and techniques. This
paper does not deal with that but attention is focused on system development methodologies.
Questions like "what are the underlying concepts and techniques of object-oriented system
development?" and "what are the advantages of applying such an approach to system
development ?" are tried to be answered. From the advantages of object-orientation like
improved extensibility, reusability, maintainability, the easier modeling of reality and
complexity and at the end higher productivity it can be concluded that the application of this
technology which is advertised as the solution to the software crisis is promising. Of course,
there is no new technique that comes without drawbacks. However the drawbacks of object-
oriented systems (and development) are the consequence of immaturity and decrease with every
paper written about it and the extensive research carried out on it.

Originated from the ADA community object-oriented system development now gets a lot of
attention from the traditional development society as well. Several people try to enhance
traditional development techniques to come to new object-oriented development methodologies.
It is believed however that this is not the proper way to act when devising a new methodology
based on object-oriented concepts. In this paper a recursive/parallel approach to system
development is replicated, devised by Grady Booch and enhanced by Ed Berard and others,
which is believed to be a better basis for developing new methodologies. The recursive/parallel
approach can be described as cycles of an "analyse a little, design a little, implement a little and
test a little"-process, where each step within a cycle is performed as soon as it is appropriate.
The "little" in the steps mentioned does not imply a "sloppy" or "rapid prototyping" approach.
It merely emphasizes that some decisions in the development process can be postponed to a
later time and only the details that are appropriate to a certain level of abstraction have to be
considered. For this a cycle of the development process is followed.

Not many available methods today of which some are mentioned follow this approach.
From the descriptions and the underlying concepts of the recursive/ parallel approach it can be
concluded that basing an object-oriented system development methodology on existing
traditional techniques is a mistake. The biggest problem with this is the problem of localization.
Traditional (often functional or process-oriented) approaches tend to localize information
around functions whereas object-oriented approaches localize information around objects. A
functional decomposition front-end to an object-oriented process of realisation, in effect, breaks
up objects and scatters their parts which, later, must be retrieved and relocalized around objects.

Concluded can be said that basing a system development methodology on object-oriented
concepts is a new and promising way to go and brings the advantages of object-orientation as
known from the programming society into the development process. It is shown that proven
object-oriented development methodologies do exist. Unfortunately they are few and far
between. We believe that the discussed recursive/parallel approach originated by Booch is a
fruitful base to build object-oriented system development methodology.

An extensive literature list is added with many, many books and papers on object-
orientation (concepts, techniques and languages), system development and (object-oriented)
system development methodologies for those who want to step into the new and intriguing
world of object-oriented system development.

204

1. Introduction

1. INTRODUCTION

This paper is for a large part a compilation of discussions going on in the object-oriented and
software engineering communities about Object-Oriented System Development. It will not only
give an overview of existing object oriented system development methodologies but also we
will attempt to provide answers to questions like: “what are the underlying concepts and
techniques of O(bject)-O(riented) S(ystem) D(evelopment) 7”, and “what are the advantages we
can expect from using these techniques ?”.

1.1. GOAL

The goal of this paper is to give an overview of he field of object-oriented system development.
We will try to answer questions like:
- Are object-oriented software engineering approaches substantially different from the more
traditional (e.g. functional decomposition) approaches ?

- What methods (methodologies) are being used for object-oriented system development ?
- How can one define ones method/methodology of choice ?

Today ‘Object-Oriented’ is the magic word. For a product to be interesting and
commercially successful it seems that it has to be ‘object-oriented’. This can be compared to
things happening to many products in the previous decade when success was dependent on the
word “relational” in the product's name. First we will take a look at what Object-Orientation
really means. All in the perspective of this paper. This means that this paper will not give an
introductory course on object-orientation, but we will take a closer look at what aspects of
object-orientation are of interest for system development. Furthermore we will look at the
advantages of using o(bject)-o(riented) concepts in system development methodologies, but
also the problems that rise when using them will be given attention. Chapter 2 describes briefly
the history of object-oriented system development. Chapter 3 will be about System
Development, its definitions, and perspectives to system development. Chapters 4 and 5 will be
the kernel of this paper and deals with Object-Oriented System Development (OOSD). First we
will describe what should be understood by OOSD. We will also look here at the possible
merits of using OO concepts in System Development in somewhat more detail than in the first
chapter. We will further look at some existing OOSD Methodologies. Chapter 5 provides a
description of an Object-Oriented Life-cycle. We will take a closer look at the different stages of
this life-cycle, concentrating on the Analysis, Design and Coding stages. This paper will be
concluded by some Findings.

1.2. OBJECT-ORIENTATION

In this section we will take a look at the most commonly used definitions of object-oriented
concepts. It is not the intention of this paper to be an introductory course on object-orientation.
But for an understanding of the contents of this paper we have to describe some concepts
hereof. For a thorough treatment of object-orientation and object-oriented programming
languages we refer to [Wegner,1987], [Wegner,1989], [Cardelli,1985], [Zdonik and
Wegner,1986], [Stefik and Bobrow,1986], [Goldberg and Robson,1983], [Nierstrasz,1989],
[Snyder,1986], [Cox,1986], [Stroustup,1986], [Meyer,1988], [Cardelli and Wegner, 1985],
and, for instance, the OOPSLA proceedings. For object-oriented modelling definitions and
concepts we refer to, for instance, [Booch, 1991], [Rumbaugh et al, 1991]. For a discussion
on the semantics of object-oriented concepts and for the use of the object-oriented paradigm in
developing information systems we refer to the papers in this book.

Originated in the late '60s with the programming languages Modula and Simula, the
handling of data and operations working on that data as objects really gets attention in the '70s

205

Object Oriented System Development; An Overview

with the large Department of Defence's of the US (DoD) projects on ADA. After this many
people recognized the advantages of applying object-oriented concepts to their research. All
kinds of different Object-Oriented Programming Languages are being developed. Even more,
until the mid-'80s much of the work in the object-oriented arena focused mainly on ‘object-
oriented programming’. Now object-oriented concepts are also used in other disciplines. The
first commercial Object-Oriented Database Systems become available and also attention is paid
to applying object-orientation concepts to the system development process.

Lack of a standard data-model

However, until this day there is not a standard object-oriented (data—)mode_l, there are only a lot
of propositions for it. It is striking to see that those different propositions come from the
different fields where object-orientation has a major impact. There are propositions for a
standard object-oriented model from the programming community (of which we follow some
ideas below), from the Object-Oriented Database crowd and also from the information systems
development side. (An example of this last one is the effort done in the ESPRIT-II BRA
WG3023 project IS-CORE (Information Systems COrrectness and REusability) as described
in this book.)

To answer the question how many of this “object-oriented” products are really object-
oriented, we consider in academic society widely accepted definitions as given in the next

paragraph.
Object-oriented concepts

In this paper we use the term ‘object-oriented systems’ (0o-systems) to include all programming
languages, methods, tools and techniques that support this technology. The emphasis however
will be on the methods. It will be clear from the context what the use of the term is.

In defining object-orientation we of course first have to define what an object is. First a
generally accepted definition coming from the object-oriented programming crowd is given.
After that we will take a short look at how an object is viewed in the IS-CORE project.

We follow [Wegner,1989] who says: “An object has a set of operations and a local shared
state(data) that remembers the effect of operations. The value that an operation on an object
returns can depend on the object’s state as well as the operation’s arguments. The state of an
object serves as a local memory that is shared by operations on it. In particular, other
previously executed operations can affect the value that a given operation returns. An object can
learn from experience, storing the cumulative effect of its experience - its invocation history - in
its state”. '

This says that an object is an entity showing some behaviour reflected by its operations and
in its state. Or in other words, objects are the physical and conceptual things we find in the
world around us. An object may be hardware, software, or a concept (e.g. velocity). Objects
are complete entities, e.g. they are not “simply information”, or “simply information and
actions”. Finally, objects are ‘black boxes’, i.e. their internal implementations are hidden from
the outside, and all interactions with an object take place via a well-defined interface.

An oo-system is defined as one that supports all of the following properties:

- data and procedures are combined in software objects. This refers to what is called
‘encapsulation’. Encapsulation is the technical name for information hiding. It also means
that the object's state can be manipulated only by the object's operations. By information
hiding applications don't see how data and operations are implemented. In the section
“Advantages”, the benefits of this way of grouping data and procedures are being
discussed.

- messages are used to communicate with these objects. This is called ‘message passing’. A
message is the specification of an operation to be performed on an object. As with
encapsulation, message sending supports an important principle in programming: data
abstraction. Data abstraction is the principle that programs should not make assumptions
about implementation and internal representations.

206

1. Introduction

- similar objects are grouped into ‘classes’. A class is a description of one or more similar
objects. A class is a place where the attributes and procedures common to all objects of the
same kind are stored. A single appearance of a class is called an ‘instance’. Often the
concepts object class and object type are used in an integrated way. Object class then
denotes the collection of existing objects (extensional classification), whereas an object
type describes the possible instances of an object description (intensional description).

- “inheritance’. Objects and object classes can be ordered in class-hierarchies. There is still a
lot of confusion which kinds of inheritance should be supported by an object-oriented
approach. Most common is the distinction between syntactic inheritance, i.e. the
inheritance of structure or method definitions and therefore related to reuse of code (and to
overriding of code for inherited methods), and semantic inheritance, i.e. the inheritance of
object semantics, the objects themselves, known from semantic data models. We use
inheritance for the concept that data and operations defined on a type are automatically
defined on its subtypes. Or simply said, this is the ability to define a new object that is just
like an old one except for a few minor differences.

message |/

&
e \
N
—
—
=
=)

\

method

\

method selectors

L

\

Any system (language, tool or methodology) is called ‘object-oriented’ if it supports all
four of these concepts. If it supports only the first two concepts, i.e. encapsulation of data and
methods, and message passing, it is called ‘object-based’. If it supports the first three, i.e. also
classes of objects, it is called ‘class-based’ [Wegner,1989]. The difference can be of
importance as we will see in later chapters.

Fig.1. An object (free after fig.B1.1 [Ovum,1989]).

[Note: For instance, in a next paragraph we speak of Ada-based object-oriented design and development, in fact
it is Ada-based object-based design and development, because Ada is by most object-oriented purists not
considered to be an object-oriented programming language.]

207

Object Oriented System Development; An Overview

Another basic idea of object-orientation is ‘polymorphism’. Real world objects respond in
different ways to the same message. Messages sent to objects may share this property. A
polymorphic function is one that can be applied uniformly to a variety of objects, or differently
said: it is the capability for different classes of objects to respond (in their own way) to exactly
the same message. As an example (from [Nierstrasz,1989]) consider the addition operation: the
same notation may be used to add two integers, two floating-point numbers or an integer and a
float. The addition function may also be able to cope with the addition of a programmer-defined
complex number to integers and floats, provided that the handling of these combinations is
defined. In these cases the same operation maintains its behaviour transparently for different
argument types.

An excellent paper on polymorphism is [Cardelli and Wegner,1985]. For further treatment
of object-oriented concepts like ‘late-binding’ vs. ‘early-binding’, garbage collection, and
persistence we refer to the articles of [Wegner,1989], [Nierstrasz,1989] or one of the many
excellent books and papers about object-oriented programming languages.

As stated before there are a number of other approaches to objects. One of them is the
previous mentioned ISCORE project. In ISCORE an object also consists of a state and a
behaviour part. However they are described differently. State changes correspond to the
happening of events and can be observed through attributes (the changing of the values of the
attributes). An object therefore consists of a set of attributes (the data or structure part
determining the state the object is in) a set of events, a set of life-cycles (finite or infinite
sequences of events) and a valuation map that maps each finite sequence of events into a
valuation of the attributes (the behaviour part that changes the state) [Sernadas et al.,1989],
[Jungclaus and Saake,1989], and other papers in this book.

Still other approaches to what objects are are possible, look for instance at
[Liebermann,1986], or [Agha,1986].

Engineering concepts

Not only do we deal with object-orientation but also with engineering issues. The emphasis
here is on system development methods. In a later section we will pay some more attention to
the differences (of which we are aware) between the development of information systems and
general software development. We feel however that this technique (object-oriented
development) can be applied to both. For now we will not make that distinction. For this reason
we will also not talk about “software engineering” but rather about “system engineering”.
Furthermore we have to stress that when we talk about system development methods we focus
more on development methods and their ways of modelling than on project management
methods. Also should be mentioned that we cannot provide answers to all problems that come
with the development of a large information or software system. Problems omitted include: the
design of a business environment, the management of a design team, estimating the cost of the
development process and the design of application programs. These problems have been
consciously omitted, not because they are irrelevant, but rather to place a clear boundary round
the problem area considered in this paper.

1.3. ADVANTAGES OF USING OBJECT-ORIENTED CONCEPTS

In this section we will replicate some of the well-known advantages of using object-oriented
concepts. Oo-systems have been depicted as the latest answer to the ‘software crisis’. Such
claims however have been made before for other technologies and methodologies. We will see
to which extent oo-systems can fulfil their promises.

Some of the advantages concern the concepts ‘encapsulation’, and ‘data abstraction’
mentioned in the previous section. The advantages stated in this section are general advantages.

The intent of the object-oriented paradigm is to provide a natural and straightforward way
to describe real-world concepts, allowing the flexibility of expression necessary to capture the
variable nature of the world being modelled and the dynamic ability to represent changing

208

1. Introduction

situations. A fundamental part of the naturalness of expression provided by the object-oriented
paradigm is the ability to share data, code and definition.

It is claimed that OO-technology is attractive because its use increases'pr.oductivigy
throughout the development life-cycle, offering a real return on investment. This increase in
productivity is achieved through four main features of object-oriented systems and the benefits
that correspond to these features:

* the use of objects as basic modules assists the designer to model complex real-world
systems (0o-systems model complexity)

* the flexibility of object-oriented code allows a rapid response to changes in user
requirements (0o-systems are designed for change)

* the reuse of standard components reduces both the development time for new applications
and the volume of code generated (objects are reusable)

* the increased maintainability of software makes it more reliable and reduces maintenance
costs (0o-systems are maintainable).

This improvement in productivity arises naturally out of these benefits. The following figure
shows how they are related to the basic oo-ideas:

Productivity

Clear Reliable Reusable \ Flexible

Encapsulation Inheritance Polymorphism

Fig.2. Benefits and basic ideas of object-oriented systems ({rce after fig.B2.1 from [Ovum,1989]).

The oo-approach to development reduces the conceptual gap between the real world and the
computer model. It helps analysts and designers to think clearly about the structure of a system.

The flexibility of oo-systems is a particular advantage for developers in rapidly changing
fields such as computer-aided system engineering. One of the major benefits of using oo-
technology is that it helps the developers to respond rapidly to trends in a highly competitive
market. The reuse of code reduces development time and enables designers to tackle difficult
areas with increased confidence. In the past libraries of subroutines have been available to
system developers to handle standard tasks, such as mathematical calculations. Oo-systems
provide scope for reuse on a much wider scale. Maintenance accounts for anything up to 80 %
of the total life-cycle cost of a software or information system. Developers with large complex
systems in need of frequent modification are turning to oo-systems as a way of reducing
maintenance costs and improving the reliability of their products.

209

Object Oriented System Development; An Overview

These benefits arise from the way in which oo-software is packaged. Traditional software
is made up of data, and procedures that access and modify the data. Data and procedures are
packaged separately, so that a change in data structure will affect many different modules,
written by several different programmers. In an oo-system, data and procedures that work on
that data are treated together, as part of one package - the object. If the data is changed, all the
procedures affected are easily identified and changed at the same time. Because change is
limited to one area of the system, its impact is reduced.

The OVUM-report [Ovum,1989] discusses these advantages in more detail. Although
somewhat controversial, the OVUM-report can be very interesting for those interested in the
meaning and thoughts of those who work with object-oriented products (or products that say
they are object-oriented) in larger companies.

We will not elaborate more on these advantages for they are not the topic of this paper. We
only want to illustrate why object-oriented concepts and techniques are applied to the field of
system development. In the section about the role of object-oriented concepts in system
development we will come back to this and also see how the oo-concepts are used in system
development, namely how the above mentioned features also correspond to requirements of a
new development methodology.

1.4. PROBLEMS WITH THE USE OF OBJECT-ORIENTED CONCEPTS

Although the advantages in the previous section promise a great deal, to give an objective
overview we also have to consider the limitations and problems of using oo-concepts.

Immaturity

The limitations of present-day oo-systems are largely problems of immaturity. The major
handicap faced by oo-systems at present is a resistance to change from management and
technical staff, because of the immaturity of many of the oo-products currently on the market:

- limited availability across a range of standard platforms. Some of the early suppliers of 0o-
systems have added to their problems by choosing non-standard proprietary languages as
the basis of their products. The current user requirements for portability, open systems and
standards are already being tackled by most suppliers of oo-systems, and in order to be
acceptable to users, the main oo-languages and programming environments must be
available on all major hardware platforms. This is already true for, for example, C++ and
Smalltalk. But conflicting standards pose a problem for suppliers that may have to provide
compatibility and portability across several different systems. For example, a software
product that is available on all the standard hardware platforms will have to run under
several different user interfaces.

- the need for integration with existing systems and databases. As with all new software, oo-
systems have to fit into the existing universe of procedural systems and traditional
(relational) databases. New applications written in oo-languages must be able to
communicate with those already existing.

- lack of support for large-scale system development. While most available environments are
excellent for individual programmers, the present generation of oo-systems on the market
available provides little support for development-in-the-large (the development of large-
scale, multiple-developers, conventional projects). Existing tools for computer-aided
system engineering (case), on the other hand, do not support oo-concepts, languages or
methodologies. At the time of writing, the first tools to support oo-analysis and design in
technical applications are starting to appear on the market.

~ Success for oo-technology must mean absorption into the mainstream of the computer
industry. We dare to say that oo-concepts are fundamental to the computer industry of the
future, but they are relatively new to most people in the industry and may take time to
assimilate, e.g. management training is required, accompanied by the development of
appropriate methodologies, and technology transfer.

210

1. Introduction

Technical issues

In addition to the problems of immaturity described above, there are two technical issues that
must be resolved before oo-technology can become widely adopted. The first and most
significant technical limitation of the present generation oo-systems is that data is contained in
objects that cannot easily be shared by several users and that may be lost when the program that
created them terminates. Objects that continue to exist are said to be ‘persistent’: they are stored
in an oo-database. Therefore the OODBMSs are essential. Because of this the development of
such databases is an area that has attracted considerable activity the past few years.

Secondly, although suppliers of the different systems claim otherwise, implementations of
oo-languages vary considerably in the demands that they make on the underlying computer
system. At present, increased systems overheads leading to performance problems may arise in
three areas:

- if the connection or binding between a message sent to an object and the corresponding
procedure has to be made dynamically by the system at runtime, rather than statically by the
compiler (‘late-binding’ vs. ‘early-binding’. Many purists say that for a programming
language to be truly object-oriented it has to support late-binding);

- if storage space for unwanted objects has to be freed automatically by a ‘garbage collection’
system, rather than by the programmer;

- if the system contains many small objects that have to be swapped between primary
memory and secondary storage as they are required by the program (memory
management).

The importance of these problems and the best methods of tackling them are currently topics for
discussion and research.

However, these limitations should not hold back the developers of using object-oriented
techniques to develop information or software systems. There is still a lot of research going on
in the object-orientation field. Furthermore, it should be considered whether the advantages do
not compensate for the present limitations.

211

Object Oriented System Development; An Overview

2. HISTORY OF OBJECT-ORIENTED SYSTEM DEVELOPMENT

As mentioned in the previous chapter object-oriented techniques have existed since the late '60s
(most people cite the work of Nygaard and Dahl in Simula) and until the rq1d—‘805 much of the
work in the object-oriented area focused on ‘object-oriented programming’. The history of
object-oriented development begins only as late as the beginning of the '80s. Almost all of the
carlier work in the object-oriented development field has taken place within the Ada community.
In the summer of 1979, the U.S. Department of Defense (DoD) began to seek people who
could provide Ada training. Major Dick Bolz, USAF and (then) Lt. Grady Booch, USAF were
given the task of developing a DoD-wide Ada training course. Booch set out to find some
mechanism for introducing software engineering into the Ada training efforts. He identified the
work of Russell J. Abbott at California State University as being relevant (e.g. [Abbott,
1983]). Abbott had described a simple approach to design using nouns and verbs. Booch
slightly formalized Abbotts approach, and referred to it as ‘object-oriented design’ (see e.g.
[Booch, 1982]). By the time his first book ([Booch, 1983]) was released Booch had a number
of working examples.
[Note: Many people think that object-oriented design always requires that one write a paragraph, and then
underline nouns and verbs. That was not the intention of Booch, he viewed the paragraph as a ‘crutch’, i.e. one
technique out of many which could help identify and define objects. In chapters 4 and 5 some other techniques
will be mentioned.]

In February of 1986, Booch wrote an article ([Booch, 1986]) describing his revised (more
correctly: evolving) thinking on object-oriented approaches. Realizing that object-oriented
thinking is not limited to design and coding, Booch began to refer to his approach as ‘object-
oriented development’’, from which thought we derived the title of this paper. By 1986, other
ideas of how to approach object-oriented design began to emerge. The impact of these ideas let
Booch to write his latest version of ‘object oriented design’, see [Booch,1991]. There have also
been many attempts to somehow reconcile object-oriented approaches with the more traditional
approaches, e.g. [Alabiso,1988], [Bailin,1989], [Bulman, 1989], [Colbert, 1989], [Gray,
1987], [Gray, 1988], [Khalsa,1989], [Masiero and Germano, 1988], [Ward, 1989],
[Wasserman et al, 1989] and many others, some of which will be discussed in a next chapter.

So, while the significant history of object-oriented technology in general dates from at least
1966, the history of object-oriented design is much more recent. And the object-oriented
programming (OOP) crowd did not pay much attention to design issues until very recently.
(See, for example, [Beck and Cunningham, 1989], [Rosson and Gold, 1989], and [Wirfs-
Brock and Wilkerson, 1989]).

Having described the history and background of (oo)system development we will take a
look at system development itself and the role object-oriented concepts can play in it.

212

3. System Development

3. SYSTEM DEVELOPMENT

In this chapter we will describe the process of system development. Not only will we look at
the system life-cycle and traditional system development methodologies, but we will also point
out where object-oriented concepts could play a significant role.

Like with the definitions of the object-oriented concepts we will not give an introductory
course on system development concepts in this chapter, see [Birell and Ould,1985],
[Boehm,1984], [Jones,1980], [Royce,1970], [Jackson,1983], and/or [Olle et al.,1983,1988]
for this. For a thorough discussion of traditional system development methodologies we refer
to [Olle et al.,1982] and [Olle et al.,1983]. But we will give a short description of the theory of
(traditional) system development methodologies and techniques where attention is paid to those
aspects object-oriented concepts can play a role in. In this chapter we concentrate on phase
systems and especially the life-cycle approach to systems development is paid attention to. In
the Scandinavian School [Bemelmans, 1987] a different approach is taken in describing aspect
systems and the systological, infological datalogical and technological aspects and models that
are highlighted there.

Years ago, the state-of-the-practice was to “write a bunch of code, and then test and debug
it into a product”. Once all the code was written, and ‘debugged’, it was often necessary to
document (the so-called ‘design’ of) the product. In short, the idea was to “code first, and think
later”. In an attempt to improve the quality of both the product and the process, the concept of a
software life-cycle with explicit analysis and design phases emerged. First we will take a look
at life-cycle approaches in general. By understanding how system engineering projects have
been tackled in the past, we will be able to better discuss and understand object-oriented system
development and the object-oriented life-cycle as dealt with in the next section.

3.1 ENGINEERING AND METHODOLOGIES

The most important idea behind engineering is that one can systematically and predictably arrive
at pragmatic, cost-effective, and timely solutions to real world problems. The most worthwhile
engineering techniques are those which, among some other criteria concerning efficiency,
effectiveness and costs:

- can be described quantitatively, as well as qualitatively;

- can be used repeatedly, each time achieving similar results;

- can be taught to others within a reasonable timeframe;

- can be applied by others with a reasonable level of success;

- achieve significantly, and consistently, better results than either other techniques, or an ad
hoc approach;

- are applicable in a relatively large percentage of cases.

In this paper we will discuss some development methodologies that all are designed with this in
mind. We will even argue that by using object-oriented concepts the methodologies devised are
very worthwhile engineering techniques.

As argued in [Jones, 1986a,b], [DeRemer and Kron, 1976] and [Neuman, 1988], we can
say that:
1. the need for a methodology increases with both the size and critical nature of the system
to develop.

2. a given methodology must decrease the overall complexity of the system engineering
effort - thus increasing the chances of a good quality product. Improper introduction of a
methodology, or the use of an inappropriate methodology, can have a negative impact on a
project.

213

Object Oriented System Development; An Overview

3.2 LIFE-CYCLE APPROACHES

When we take a look at life-cycle approaches in somewhat more detail we can identify three
general types:

- Sequential

- Iterative

- Recursive

In a sequential approach, once one has completed a step, one never returns to that step, or
to any step previous to that step. This is only practical with powerful tools (e.g. fourth
generation languages) or on small, non-critical projects.

In an iterative approach one may return to a previously completed step, introduce a change,
and then propagate the effects of that change forward in the life-cycle, but only if there is
sufficient reason to do so. Most of the life-cycle approaches used today are iterative.

A recursive approach is one where the entire approach may be re-applied to the end
products of the approach. All recursive life-cycle approaches are iterative, but not all iterative
approaches are recursive,

We mention here some examples of life-cycle approaches:

* The “Flowchart Model” ([Naur and Randell, 1969]). This approach is still in use today,
except that people seldom draw flowcharts.

* The “Sequential Waterfall” ([Benington, 1956] and [Boehm, 1986]). Where each step
must be “signed off” and it is against the rules to go back or jump ahead.

* The most common life-cycle approach today is the “Iterative Waterfall” or “Cascade™ life-
cycle. This approach requires that one completes an entire step, verify the results of the
step, and then continue on to the next step. One may, however, at any time, return to some
previously completed step, introduce a change, and then propagate the effects of that
change. The Waterfall life-cycle also usually implies that all/ requirements analysis is
completed before going on to design, and that all design is completed before coding starts.

* The “Spiral life-cycle” ([Belz, 1986], [Boehm, 1986], [Boehm et al, 1984], [Boehm and
Belz, 1986)). A “typical cycle of the spiral’:

1. begins with the identification of the objectives of the product, the alternative means of
implementing this portion of the product, and the constraints imposed on the application
of the alternatives;

2. evaluates the alternatives. The evaluation may involve “prototyping, simulation,
administering user questionnaires, analytic modelling, or a combination of these and
other risk-resolution techniques’;

3. may involve in a next step “a minimal effort to specify the overall nature of the
product, a plan for the next level of prototyping , and a development of a much more
detailed prototype...” ;

4. completes each cycle by a review, with go/no-go plans made for the next cycle.

The “spiral” moves outward from the centre. The overall cost of the product is determined
by the radius of the spiral, and the progress is determined by ‘angular displacement’.

Life-cycle Steps

As the system software programming technology has matured, demand has built up for support
of the higher levels of functionality needed in the development and delivery of computer-based
systems. The need for methods and tools to cover the phases of the system development life
cycle is crucial when dealing with programming-in-the-large, i.e. when an application is too
large to be totally understood by one person to the level of detail required for implementation.
The usual steps taken in any of the approaches comprises a first phase of (requirements)
analysis, followed (sometimes partly parallel) by a design phase and concluded by a
implementation or coding phase and a test phase. In development methods, given (or obtained
in an early phase) a general statement of requirements, the analysis phase consists of building

214

3. System Development

up a detailed description of the application in terms that can be understood by the client, end-
users and developers. The design phase takes the results of the analysis phase, which are
described in terms of the real-world domain, and defines the internal architecture of the system
(e.g. the module definitions and their interconnections). It is a transformation from logical to
physical architecture. The first design phase defines the first-level subsystems. There may then
be several further layers of design as subsystems are broken down into components that are
small enough to be mapped onto program modules which are implemented in the coding phase.

[Note: We will not pay attention to expansions of the development process upwards like feasibility study or
organization analysis, or -in the case of information system development- information systcm planning,
although it could be an vital part of the life-cycle. Also this paper is not concerned with the last phases of a full
life-cycle like integration and maintenance, although some remarks will be made about this. We concentrate on
the bare development process, the analysis-design-coding cycle.]

Towards an object-oriented life-cycle

So far we have been looking at traditional life-cycles and the possible steps that could be taken
in these life-cycles.The Object-Oriented Paradigm brings with it a new way of looking at the
development life-cycle.

To utilize the advantages of object-oriented concepts people like Brooks [Brooks,1987]
extended the Cascade development life-cycle somewhat. The foundation for the following
string of thoughts is that with any large project, the analyze— design—implement—test structure
eventually delivers code that can be a year or more out of date. While the programmers were
doing the designsimplement—test phases of the project the requirements may have changed.
So instead of waiting the previous phase to end, it is preferable to change phases as soon as
possible. That is, as soon as an outline of the requirements analysis is done a prototype design
is started. The design will, of course, point out areas where the requirements have to be
modified or added to. Once a design is sketched out it is time to do a prototype implementation.
Of course, the implementation will point out shortcoming of the design. The sooner as there is
something to show the end-user the better. Until a prototype gets into the end-users hands the
feedback loop is not complete. Testing is from this point of view not a separate step. It is more
a validation. The design validates the requirements, the implementation validates the design and
the user ultimately validates the implementation, Programmers test their code as it is written. By
bringing the ultimate user into the process as soon as possible the chances of delivering a usable
program/system are much improved. This is what Brooks called ‘growing a program’.

In the chapter about the object-oriented life-cycle we will look at a life-cycle adapted to
object-orientation as proposed by Grady Booch and others.

3.3 DEVELOPMENT PERSPECTIVES

A development method indicates how one can come to a sound and complete knowledge
acquisition, knowledge representation and specification of the desired models within the model
cycle. Beside the place in this model cycle design philosophies and method of realisation
determine which subaspects should be represented during the development process.

There are many traditional methods of analysis and design. However, the majority has a
common underlying approach: they call for the separate identification of data and processes.

Methods that concentrate on identifying data, and then specifying the operations that are
performed on that data, are generally preferred for information system applications. Methods
that concentrate on identifying processes, and then look at the data flow between the processes,
are generally preferred in real-time applications. However, both approaches are heavily
influenced by considering the machine that will be used to implement the systems as consisting
of stored data and a process that will manipulate that data.

More general, traditional information system methodologies tend to be biased to one of the
three basic information system perspectives: the process, the data or the behaviour oriented
perspective.

Methodologies based on specifying the supposed functions of an information system are
regarded as having a process oriented perspective.

215

Object Oriented System Development; An Overview

Methodologies derived from database technology, which place emphasis on a complete and
thorough analysis of the data and its representations, are referred to as having a data oriented
perspective. The starting point of this approach is not a specification of the functions the system
has to fulfil but a model of the real world.

There has been a further realization that the time dependent (or temporal) aspects of an
information system have not been given proper consideration in methodologies emphasizing the
data and process perspectives. These new methodologies focus on the dynamic nature of the
data and the need to analyse and understand events in the real world which impact data recorded
in the information system. A third perspective has therefore developed, which is referred to as
the behaviour oriented perspective [Olle et al.,1988].

More recently the need for addressing all three perspectives explicitly in the formalisms and
techniques incorporated in these methodologies has been increasingly recognized. While the
individual techniques themselves are reasonably formal, the interconnections or interfaces at
conceptual level however are mostly poor and highly informal. (like [Olle et al.,1988]
says:“The behavioural perspective is often difficult to combine in a single methodology with the
process oriented perspective”). We can say here that to achieve a satisfactory consistency, it is
necessary to distinguish carefully between system activities and events happening in the real
world that can trigger a requirement for appropriate action in the information system.

As has been said above and also in [Olle et al.,1988], until now much attention is paid to
the process and data perspectives and only recently more attention is paid to the behaviour
perspective, in for instance the ISCORE project.

3.4 TOP-DOWN VS. BOTTOM-UP

Many life-cycle approaches employ some form of decomposition. The concept is simple
enough:

- select a piece of the problem (initially, the whole problem);

- determine its components (using the mechanism of choice);

- show how the components interact;

- repeat the previous steps on each of the components until some completion criteria are met.
The most familiar example of this approach is classic functional decomposition.

It is possible to decompose a system in an object-oriented manner, e.g.:
- view the problem as an object or system of objects;
- identify its major parts in terms of interacting objects;
- show how the component parts (objects) interact to provide the characteristics of the
composite object (or system of objects);
- repeat the previous steps on each of the component objects until some completion criteria
are met.

We note that object-oriented decomposition differs from functional decomposition primarily in
the way information is localized, i.e. around objects instead of around functions. Another
difference is that objects are typically more complete abstractions than are functions, in that they
abstract both from the data and the operations working on it.

At the other end most conventional object-oriented programming (OOP) approaches are
compositional approaches:

- survey the problem attempting to identify necessary components;

- select components from an existing “library of components” and/or create new components
as necessary;

- assemble the components to form larger components.

If the larger component satisfies the complete problem, then stop, otherwise continue to
assemble and merge components until the problem is (or appears to be) solved. (Obviously, in
OQP, the components will be objects).

216

4. Object-Oriented System Development

4. OBJECT-ORIENTED SYSTEM DEVELOPMENT

Many companies are highly interested in enhancing, evaluating and facilitating the use of
representative and state-of-the-art formalisms and/or techniques for systems development in
such a way that their use and results are in harmony with each other in a formal way, without
having too much of an overlap. As we have seen object-oriented system development
methodologies conform more to this idea than do the traditional methodologies. Moreover,
these results should be highly accessible at the construction stage, preferably by means of
schema and code generation for various environments and standards. In this chapter we will
take a closer look at what an object-oriented system development methodology looks like, what
features it has and what impact these characteristics have on the development process.

If the implementation of the computer system is to be by oo-programming techniques a
different view than the one described in the previous chapter of data and processes is required.
The program must be built of objects that encapsulate both data and operations. When analysis
and design have been done using conventional methods, there is a paradigm shift between the
decomposition arrived at and the low-level design needed for the program. The Ovum report
[Ovum,1989] gives the results of a survey of the use of oo-techniques in several large
companies. It reports that companies that have tried to make this transformation from traditional
analysis and design to oo-programming have experienced great difficulties and this has led to
the demand for the extension of the oo-approach to methods for analysis and design. Thus, the
existence of oo-programming languages has produced a demand for oo-system engineering
methods and tools. The demand for full life-cycle support for 0o-systems is built on two needs.
Firstly, the scaling up of oo-programming to larger applications and, secondly, the
transformation of system models into implementations.

Methodologies to support oo-analysis and design are at an early stage. The evolution of a
new technology for implementing computer-based systems starts with the emergence of
concepts. As these concepts are understood, methods are produced that build on them and
finally tools are developed to support the methods. A methodology draws together a set of
related methods to cover the implementation life cycle. With oo-systems, the concepts are now
mature and well understood. There are languages to support programming in the small with
these concepts and there are tools that support individual programmers. Most people applying
oo-concepts to programming-in-the-large in general have had to develop their own
methodology and support it with adhoc tools.

The first section of this chapter will deal with what object-oriented system development is,
the concepts and techniques. In the second section we will take a look at some existing OOSD
methodologies that have made name outside the field or company they were developed in.

[Note: For this chapter we draw heavily from the excellent remarks made and ideas given by Ed Berard in
[Berard,1990a,b]].

4.1. OBJECT-ORIENTED SYSTEM DEVELOPMENT, WHAT IS IT.

With the design of an information system two main aspects can be recognized clearly, namely
the active aspect (the activities, and functions of the information system for the benefit of these
activities) and the passive aspect (the data structures that are necessary to make the functions
work properly). Although later in this section decomposition at top level is condemned by some
persons the traditional development process can be described as follows. “Both the activities
and functions of the information system are during analysis decomposed into small logical units
that in the design are joined to form components of the information system. With the analysis
the decomposition is the central issue and with the design steps the composition to
implementable units is emphasized” [Essink and Romkema,1989]. To develop open
information systems (systems that are not geographically bound, can work on heterogeneous
hardware and software platforms and can evolve with a changing environment

217

Object Oriented System Development; An Overview

[Tsichritzis,1989]), to decrease development costs and maintenance Costs, qnd to increase
reusability we need a development method in which the two design philosophies can be used
together at all stages and on all levels of the development process. A method also in which
useful representation techniques are supported that can represent the needed subaspects.

As we have seen in the section about advantages of using oo-concepts object-oriented

techniques can satisfy these needs. : : A .
At this point we would like to say something about the differences between traditional life-

cycle approaches and object-oriented life-cycle approaches. This will not be the only place this
matter is discussed, but before going on to object-oriented system development methodologies
the following must be made clear.

analysis-design gap

An important difference with traditional models concerns the differences between analysis and
design in an object-oriented development project, that are far less than in a structured
development project. In traditional structured methods vastly different techniques, graphics,
and evaluation criteria are used in the analysis and design phase. It is fairly easy to tell when
one is doing analysis, and when doing design. The gap between analysis and design is very
wide. And although there are systematic ways to convert, for instance, low-level data flow
diagrams into structure charts (e.g. transform analysis and transaction analysis), few people
seem comfortable with these techniques.

In object-oriented methods the chasm between analysis and design is very narrow. Overall,
object-oriented thinking is much more uniform than structured thinking. It is more difficult to
separate “analysis concerns” from “design concerns”. The thinking, tools, techniques, and
guide-lines have much more in common, than they have differences.

recursive/parallel approach

In the section about system development we already pointed forward to an approach taken by
Booch and others. In this section we will take a closer look at this approach that is adapted to
object orientation. By taking this approach as an example we will discuss the concepts and
techniques an object-oriented system development method should occupy.

An approach to object-oriented life-cycles which seems to have much success is the
“Recursive/Parallel Model”. [Booch,1982,1983,1986], and others, have described this
approach as:

- Analyze a little

- Design a little
- Implement a little

- Test a little

Instead of doing “all of the analysis”, followed by “all of the design” as in the waterfall
approaches, the recursive/parallel model suggests that one does analysis where it is appropriate,
design where it is appropriate, etc. This is a generalization of the ideas of Brooks we gave in
the section about system development.

In the light of the discussion about decompositional (top-down) vs. compositional (bottom-
up) approaches we can say in general, the recursive/parallel approach (a top-down approach)
stipulates that:

- a problem is decomposed into highly-independent components;

- the process is re-applied to each of these components to decompose them further (if
necessary) -- this is the “recursive” part;

- this re-application of the process is accomplished simultaneously on each of the
components -- this is the “parallel” part;

- this process is continued until some completion criteria are met.

218

4. Object-Oriented System Development

The process that will be applied, in whole, or in part, to each of the components is “analysis,
followed by design, followed by implementation, followed by testing”.

From the above it can be deduced that the recursive/parallel approach can also be used with
functions, but it is recommended that it be used with objects. For the recursive/parallel
approach to be effective, the components must be as highly-independent of each other as
possible. Well-designed objects tend to be much more independent of each other (in an overall
system) than are well-designed functions.

In the recursive/parallel approach one of the major benefits of object-orientation, namely
reusability, is emphasized. Reusability implies that although the recurswe/para_llel. approach is a
decompositional approach compositional techniques must be used at some point in the (object-
oriented) life-cycle. One may arrive at the composition process in one of two ways:

- Initially select reusable components and combine them to solve a problem (bottom-up
approach).

- Decompose a problem to a point where existing reusable components can be easily and
accurately identified, and then select these components (top-down approach).
One could also say that the larger the product (or component) the more “top-down” (and
decompositional) will be the approach and the smaller the product (or component) the more
likely it will be that compositional techniques are used.

The “lirtle” in each step of the recursive/parallel approach does not imply a “sloppy” (or an
inappropriate amount of) analysis, design, implementation or testing. As with any other life-
cycle approach, some decision must be made at the beginning of the project as to which details
must be considered first, and which can be considered later. Also with the recursive/ parallel
life-cycle. If we take a look at for instance the analysis phase, we see that in a project of
significant size requirements are not all at the same level of abstraction. Some are broad and
high-level, others are very detailed. This means that, once the entirety of the requirements are
examined, the handling of some requirements may be deferred until a later time. In this light
“Analyze a little” means that one must identify the details which are appropriate to the current
level of abstraction, Further, the analyst must make sure that details which are left for later, can
truly be ignored until later. Likewise, some design, implementation, and testing concerns can
be deferred until later. To make the recursive/parallel process work, several criteria have to be
met: ‘

- The information available for a projecf must be examined carefully to determine which
decisions can safely be left until later. (This is a recommended practice even for traditional
life-cycle approaches)

- The interfaces of the system components (i.e. objects, classes, and systems of objects)
must be well-defined, and kept fairly constant. (Or as Berard says:“Walking on water and
developing software from a specification are easy if both are frozen™)

- The components of the system must be loosely coupled and highly cohesive (common
development approach).

- Verification and software quality assurance must be part of the overall process. (We will
not elaborate on this point any further).

Below some general guide-lines for what is meant by each part of “analyze a little, desi gna
little, implement a little, and test a little” are given.

In the “analyze a little” step:
- the requirements for the product (or component) must be examined and understood;

- @ “high level” solution for these requirements which involves identification of the major
components (or subcomponents) is proposed;

- it can be demonstrated that the proposed solution meets the “client's” needs.

219

Object Oriented System Development; An Overview

In the “design a little” step: _
- the interfaces to the components (or subcomponents) have to be precisely defined;

- decisions about how each component (or subcomponent) will be implemented in the
selected programming language are made;

- any necessary additional program units are identified;

- any necessary programming language relationships, e.g. nesting and dependency, are
described.

In the “implement a little” step:
- the programming language ‘interfaces’ for each of the components (or subcomponents)
will be implemented. [Note: this substep, and the next one, allow one to use a programming language
in the form of a design language],

- the algorithm which describes the interactions among the components (or subcomponents)
is implemented;
- the internals of components which will not be further decomposed are implemented.

[Note: It is usually either in the “design a little” step or the “implement a little” step that a previously-existing
component for the implementation may be identified (selected).]

In the “test a little” step:
- any code produced (or selected) as a result of the “implement a little” step is compiled. This
should check things like syntax, some semantics, and some interfaces;

- any dynamic testing (machine-executable testing) which is possible is carried out;
- any necessary (or required) static testing is performed.

It should be mentioned that it is not necessarily to perform an entire “analyze a little, design
a little, implement a little, test a little” process with each new component. For example, if the
size of the component is “small”, and the project is non-critical analysis or design need not be
performed. A component may be recognized as being one which is already in the reuse library,
or is a relatively simple modification of a pre-existing component. In this case, the pre-existing
component may simply be reused (or slightly modified).

There is a strong tendency to confuse the recursive/parallel life-cycle with rapid prototyping
approaches (e.g. [Boehm,1986]). While rapid prototyping sometimes is the best solution |
sometimes it is the wrong choice. One reason for this is that without a formal design it would
be impossible to tell how much work a project would take and whether the developers are on
target or not. When people don't have such goals with which to measure success, nobody will
give them the money to do anything. Of course, there are also alternate ways of measuring their
success, a usual technique is to take an initial list of features that the system is to support and to
assign a date to each.

We feel that the recursive/parallel life-cycle approach is a fruitful base to build an object-
oriented development methodology and we hope by paying attention to the recursive/parallel
life-cycle the confusion of the recursive/parallel life-cycle approach with the rapid prototyping
approach can be reduced, if not eliminated. In following sections we will take a closer look at
the different phases of this approach.

Although we will still have life-cycles, in object-oriented system development, we will
have to change the way we view the software life-cycle. For a few years a lot of people have
already given this a great deal of thought, and the ideas have been tried on a good number of
projects. In any event, proven object-oriented methodologies do exist.Unfortunately, they are
few and far between. In the next section we will take a look at these object-oriented
methodologies.

220

4. Object-Oriented System Development

4.2. TODAY'S OO SYSTEM DEVELOPMENT METHODOLOGIES

As mentioned in the section about the history of 0o system development it took until 1986 for
the first ideas of how to approach object-oriented design to emerge. Until that time there were
no generally accepted and available methodologies to support co-analysis and design. Examples
of ‘oo-system development methodologies evolved the last five years are given below.

[Seidewitz and Stark, 1986] and [Stark and Seidewitz, 1987] introduced what they_ referred
to as “general object-oriented development” (GOOD) GOOD addressqs the requirements
specification and design phases of an Ada-oriented system development life-cycle. Data flow
diagrams are used in the specification phase to identify abstract entities. By performing
“abstraction analysis”, those entities are transformed into objects in the design phase. Those
initial design objects are mapped back to the requirements to identify the operations. Object
diagrams are used in the design phase to show communication among objects. Detailed design
is done by decomposing and annotating objects with an object description.

MOOD (Multiple-view Object-Oriented Design methodology) is under development by
Kerth [Kerth,1988]. MOOD is a method for structured object-oriented design and supports the
construction of programs from an analysis model developed with Ward and Mellor's Structured
Analysis with Real-Time Extensions [Ward and Mellor,1985]. The method supports the object-
oriented paradigm, but allows concurrent processes to be expressed as tasks rather than objects.
MOOD addresses different levels of issues, including identification of objects and tasks, how
objects and tasks influence other objects and tasks, implementation of objects, and sequential
execution of a routine.

CiSi (in France) began talking about their “hierarchical object-oriented design” (HOOD)
method ([Heitz, 1988], [Heitz and Labreuille, 1988], and [Vielcanet, 1989]).

However, all these methods are based on Ada, and therefore not truly object-oriented. A
more “O0” example is ObjectOry [Jacobson,1987].

There are many approaches to object-oriented development based on traditional (structural)
approaches. Here we only look shortly at approaches to object-oriented analysis. Most
efforts to develop an object-oriented analysis method so far use either “classic” structured
analysis, a real-time version of structured analysis, or a combination of either of these
approaches with entity-relationship diagrams, Jackson-diagrams (data-oriented approach), or
data-flow diagrams (functional-oriented approach) as a starting point. (See e.g. [Alabiso,1988],
[Anderson et al, 1989], [Bailin, 1989], [Coad and Yourdon, 1989], [Khalsa, 1989],
[Sanden,1989a,b], [Seidewitz and Stark,1986], [Shlaer and Mellor, 1988], [Smith and
Tockey, 1988], [Stoecklin et al, 1988], [Teorey et al.,1986], [Wasserman et al.,1989], and
[Ward, 1989].).

For instance, Wasserman et al. found that above mentioned methods offer valuable
concepts, but that none of them is ideal. According to Wasserman et al. the object-oriented
methods have largely abandoned Structured Design, which is well established and includes
most of the necessary concepts and notations. They defined a new method, called Object-
oriented Structured Design (OOSD, not to confuse with our object-oriented system
development). Their method adapts the structure charts from SD to support object-oriented
concepts. The authors do not propose any new “rules” for conceptualizing or evaluating a
design. They note that heuristics as used in traditional methodologies, like high fan-in, minimal
coupling, etc., are useful as guide-lines, but are hard to implement as hard and fast rules.

For a thorough treatment of the different approaches and their problems see [Wieringa,
1991], or [Verharen, 1990]. For instance, according to the study by [Wieringa,1991]
Structured Analysis mixes information about the communication between objects as well as
about the life cycle local to an object. Also is shown that the heuristics in SA are data-oriented,
which leads to quite different modularization decisions than the object-oriented heuristics proper
to OO-analysis. Furthermore, SA organizes the tasks to perform to produce a conceptual model
virtually opposite to OO-analysis as described below. Trying to integrate old methods with new
ones is a typical example of one of the approaches to devise a new methodology. People like

Object Oriented System Development; An Overview

Ward try to adapt traditional methodologies, by incorporating OO-analysis in SA so they can be
used as object-oriented system development methodologies. Others try this by incorporating SA
in OO-analysis, see [Bailin,1989], or try using the output of SA as the input to OODesign, see
[Alabiso,1988], [Seidewitz and Stark,1986]

Here we can say that, for instance, the object-oriented purists mean that attempting to base
an object-oriented analysis method on conventional requirements analysis techniques is a
mistake. The major problem is that of localization. A functional decomposition “front end” to an
object-oriented process, in effect, breaks up objects and scatters their parts. Later, these parts
must be retrieved and relocalized around objects. Furthermore they ignore virtually all aspects
of object-oriented technology, like inheritance, aggregation, and encapsulation.

We feel that an approach taken by [Rumbaugh et al, 1991] in OMT much more follows the
principles of the object-oriented paradigm. OMT supports the whole system development life-
cycle of analysis, design and implementation. In the analysis phase an object model, a dynamic
model and a functional model are made resulting in an analysis document. The design phase is
split into system design, delivering a structure of basic architecture for the system as well as
high level strategy decisions; an object design, which takes the models from the analysis phase
and provides a detailed basis for the implementation phase. In this book also a comparison is
made between different and OMT, like SA/SD (functional model most important, organizes
system around functions, difficult to extend, difficult to response to changing requirements,
arbitrary decomposition of processes resulting in hardly any reuse of components, analysis-
design-implementation gap), JSD (no difference between analysis and design, little structure in
very few entities, complex and specifically designed for real-time problems, heavy reliance on
pseudocode, emphasis on actions, hardly any database support), Information modeling
notations, like ER (hardly any support for activities), and object-oriented work like Booch
(emphasis on design, not analysis; hardly any support for associations), Shlaer and Mellor
(oriented towards relational database tables and keys, more analysis than design), OOA [Coad
and Yourdon, 1989] (no support for design, leans on structured techniques), ObjectOry .

227

5. The Object-Oriented Life-Cycle

5. THE OBJECT-ORIENTED LIFE-CYCLE

In this section we will pay attention to the different phases of an object-oriented system
development methodology. For the remainder of this paper we will take the recursive/parallel
life-cycle approach as a basis. With this model as a baseline we will take a look at the for this
paper most significant phases of the life-cycle namely (requirements) analysis, design and
coding. We do not give here well-defined methods for the development of information or
software systems but rather a summary of concepts a methodology should include.

5.1. OBJECT-ORIENTED (REQUIREMENTS) ANALYSIS

What is “analysis” ?

While there have been attempts at standard definitions for ‘analysis’ or ‘requirements analysis’
(e.g. [IEEE, 1983)), it is difficult to precisely define the process. Still, in (studies of) system
development methodologies (e.g. [Birrell and Ould, 1985], [Blank et al, 1983], [Dol, 1981],
[Firth et al, 1988], [Freeman and Wasserman, 1982], and [Freeman and Wasserman, 1983])
certain trends begin to emerge. A comparative study of system development methodologies will
show that the following things are usually expected from an analysis effort:

- an examination of a concept, system, or phenomenon with the intention of accurately
understanding and describing that concept, system, or phenomenon;

- an assessment of the interaction of the concept, system, or phenomenon with its existing or
proposed environment;

- the proposal of two to three alternative solutions for the client with an accurate and
complete analysis of the alternatives;
Note that the results include not only “an ‘analysis’ of the client's problem”, but also an
accurate and complete description of the system to be delivered. In effect, an adequate
understanding of the original problem must be demonstrated, and the solution that will be
delivering to the client must be precisely and concisely described.

Second, a requirements analysis should end with the description of the ‘user interface’. The
user interface is a detailed description of the product as the user will see (interact with) it.
Further, ‘user’ can be a human user, other software products, or computer hardware.

Third, while design activities tend to be programming language specific, most approaches
to requirements analysis strive to be independent of (implementation) language considerations.

Fourth, user visibility is very high during analysis, and very low during design. User
visibility is used to describe the level of client involvement during the software life-cycle. User
visibility is highest during the ‘analysis’ and ‘use’ phases, and lowest during the ‘design’ and
‘coding’ phases. During analysis, engineers must accurately extract the client's requirements
and state them in terms which can be easily verified by the client.

Before we describe (the process of) Object-Oriented (Requirements) Analysis (OO(R)A)
we have to stress that even though we may talk about OO(R)A as if it were performed at only
one place during development, in reality, it may be accomplished at many places, following the
recursive/parallel approach. Second, although it may be preceded by such things as a feasibility
study or organization analysis, we will treat OO(R)A as if it were the first thing to be
accomplished during system development. During the recursive/parallel life-cycle, if OORA is
used, it is the first process accomplished during each recursive application of “analyze a little,
design a little, ...”.

Why OORA ?

Object-Oriented requirements analysis was virtually unheard of in the object-oriented

programming community until very recently. There are two main reasons why it is now being
seriously considered:

223

Object Oriented System Development; An Overview

- When oo-technology is applied to large and/or critical projects, the bottom-up approach

often proves insufficient. Very few people can contemplate a project of 100,000 lines of
code or more, and adequately identify low-level components without some form of
analysis. As oo-thinking comes into the picture, people realize that OOP techniques alone 18

very inadequate for large, critical efforts.

- Object-Oriented technology is being seriously considered by people who are accustomed to
thinking in terms of life-cycle methodologies. Include those developing large business
applications, critical real-time applications, and large, complex software.

As is outlined in a previous section by 1986 object-oriented design was common practise in

system development efforts. However, there were some serious problems reported, €.g.:

- Traceability was difficult. Traceability is the degree of ease with which a concept, idea or
requirement may be followed from one point to either a succeeding, or preceding, point in
a process. E.g., one may wish to trace a requirement through the system engineering
process to identify the delivered source code which specifically addresses that requirement.
Contractors were often furnished with functional requirements, and encouraged to develop
object-oriented code. Tracing functional requirements to functional code was relatively easy
since the localization (i.e. around functions) remained constant. Changing localizations
(ie. from functional to object-oriented) in the middle of development made tracing
requirements (and, hence, acceptance testing by the client) very difficult.

- Testing and integration became a nightmare. It is common practice in developing large
systems to divide the effort into more manageable functional pieces each given to a team
that would designe and code the piece in an ‘object-oriented’ manner. Since objects are not
localized in a functional manner, it meant that the characteristics of a given object were
distributed unevenly among the functional pieces. This meant that each team had a very
small probability of gaining a complete understanding of any particular object. E.g., one
team might see object X as having attributes A, and B, while another team would see object
X as having attributes B, and D. The differences became apparent only when one team
attempted to hand off their version of object X off to another team for integration. Since
integration occurs late in development, it made the required changes cumbersome.

- Needless to say, there was also a great deal of duplicated effort, since each separate team
often (re-)developed (parts of) objects which were already in use by other teams.

- Engineers found working with two, vastly different paradigms difficult. They had
problems with “bridging the gap” between SA and oo-design ([Gray, 1988]).

Because of these problems it had become obvious that some form of object-oriented
requirements analysis was needed. As shown most efforts to develop an OORA methodology
used either “classic” structured analysis, a real-time version of it, or a combination of either of
these approaches with entity-relationship diagrams as a starting point, but that does not work
well, as shown. It does not say that conventional techniques cannot be used in specific parts of
the process, but only that it is wrong to base a OORA methodology on these techniques.

Things to be and have

A ‘good’ OORA methodology should include the following (based on [Berard, 1990a]):
- all methods have, of course, to accurately reflect object-oriented thinking.

- some form of graphical techniques. A purely textual approach is undesirable. Most of the
time people relate better to pictures than they do to words. It is not clear which graphics to
use, but one of the most important criteria is that the graphics are object-oriented, or
directly support object-oriented thinking.

- a mechanism for creating a specification for objects of interest is needed. SA, has a “data
dictionary”. One possibility is to have an ‘object dictionary’. Its major purpose is to
encapsulate the specifications for the objects (small and large) which populate the models:
specifications for small objects, i.e. classes, meta-classes, and instances, specifications for
subsystems, and specifications for systems of interacting objects.

- merely specifying the objects is not enough. Some (preverably graphical) mechanism(s) for
showing how they are related, and how they will interact is needed.

224

5. The Object-Oriented Life-Cycle

- reusability is a key issue of OORA. OOD methodologies have evolved which emphasized
reusable objects, and plan to extend this thinking into OORA. Some engineering activities
may have already been accomplished, or may be on-going, by the time one attempts to
establish the oo-requirements for a given project. ‘Object-oriented domain analysis’
(OODA) is an activity which identifies, documents, and manages configurations of
reusable object-oriented components within a given application domain. During OORA,
engineers will both solicit reusable oo-components from the OODA effort, and contribute
new candidate components to the OODA system. In reuse-conscious installations, there is a
highly symbiotic relationship between the OODA effort and individual projects. (See, e.g.
[Arango, 1989], [Booch, 1987], and [Prieto-Diaz, 1988] for a general discussion of
domain analysis, and, e.g. [Shlaer and Mellor, 1989] for one view of OODA). [Note: that
one does not have to wait until coding begins to consider software reusability].

- the methodology has to be implementation programming-language-independent to the
highest degree possible. Developing a methodology which “recked of Smalltalk” might not
be all that applicable, for example, to projects which were going to be implemented in
Eiffel, Objective-C, C++, CLOS, Self, or another object-oriented programming language.

Problems with requirements

Even with careful identification of sources of information and characterization of these sources,
it is possible (even very likely) that there are problems with the requirements information.
Typical problems with requirements information include:

- omissions: Very often the initial set of (user-supplied) requirements is incomplete. This means
that, during the course of analysis, new information will have to be either located, or generated.
This new information is, of course, subject to the approval of the client.

- contradictions: Contradictions may be the result of incomplete information, imprecise
specification methods, a misunderstanding, or lack of a consistency check on the requirements.

- ambiguities: Ambiguities are often the result of incompletely defined requirements, or lack of
precision in the specification method. Resolution of ambiguities may require some
“requirements design” decisions on the part of the engineers.

- duplications: Duplications may be the outright replication of information in the same format,
or the replication of the same information in several different places and formats. Engineers
must be careful when identifying and removing unnecessary duplications.

- inaccuracies: It is not uncommon for engineers to uncover information which they suspect is
incorrect. These inaccuracies must be brought to the client's attention, and resolved. Often, it is
not until the client is confronted with a precisely-described proposed solution that many of the
inaccuracies in the original requirements come to light.

- too much design: One of the greatest temptations in engineering is “to do the next guy's job”,
i.e. to both define a problem and to propose a (detailed) solution. One of the most difficult
activities during analysis is the separation of “real requirements” from arbitrary (and
unnecessary) design decisions made by those supplying the requirements.

- failure to identify priorities: An engineer must have some basis for making decisions. Without
a clearly-defined, comprehensive set of priorities, it will be difficult to select from a number of
alternatives.

- irrelevant information: Engineers are often reluctant to throw away any information. Their
clients often feel it is better to supply too much information rather than too little. Without some
clear cut mechanisms to identify and remove irrelevant information, it will be difficult to
develop accurate, cost-effective, and pragmatic solutions to a client's problems.

Concluding OORA

To conclude this section it can be said that oo-analysis starts by looking at the statement of
requirements for a computer-based system and the real world in which it will operate. However
when developing systems in an object-oriented way our view of requirements has shifted:

225

Object Oriented System Development; An Overview

- While functionality is still important, emphasis is on the “functionality of a component”. In
software-engineering the component and functionality are often seen as one and the same.

- Focus is on how the components will interact to affect a solution, as opposed to “what
functions will be invoked”. Instead of describing an invocation hierarchy, components
interacting with each other (without the necessity of some “master routine” supervising
these interactions) are described.

- Models make virtually no mention of “flow of data” and “flow of control”. Mentioned are
“components controlling other components”, or “‘components communicating with other
components”. One should not be troubled by the fact that there may be many simultaneous,
independently executing threads of control.

“Functionality” is still important in object-oriented requirements, but it is now localized within
objects and within descriptions of the interactions among objects.

An object-oriented approach will be a mixture of composition (examining the available
requirements information, identifying as many different objects as possible) and decomposition
(identify the objects at the highest levels of abstraction, and begin constructing object-oriented
models of the problem (and potential solutions)) strategies. However, for small, easily-
understood problems, a purely compositional approach may suffice. For larger, more complex
problems, the initial approach will be more of an object-oriented decomposition process.

In an analysis process the analyst has to identify the objects in this domain that are relevant
to the system, the relations and operations that these objects will take part in, and the interfaces
between the objects. During analysis no consideration is paid to constraints and requirements of
the physical implementation, such as response times or storage limitations (although some
people like to see this happen). The general steps to be taken in OO-analysis, as extracted from
the work of [Booch,1986], [Booch,1991], [Shlaer and Mellor,1989], [Alabiso,1988],
[Jacobson,1987], [Bailin,1989], [Berard,1990], [Coad and Yourdon, 1989], could be
described as follows:

The first stage is the identification and characterization of the sources of requirements
information. After this we can start with identifying objects. Group objects with similar
underlying characteristics to form classes and class hierarchies, and group the operations as
methods associated with particular object classes. In addition, these object classes will be
identified as either passive or active. The interactions between the objects can be analyzed by
considering scenarios of use of the system that conform to the requirements. Iteration between a
static analysis of objects and operations and a dynamic analysis of scenarios finally produces an
oo-model or oo-description of the system in terms of the application domain. OO-analysis stops
when components (or subcomponents) are identified that are small, non-critical or if the
components or subcomponents are recognized as (simple variations of) pre-existing library
components. OO-analysis results in an oo-requirements specification, possibly formal.

As said, this can be done textual or with a mixture of text and graphics. It may also be
supported by a prototyping tool that can animate the scenarios. The analysis is used as a basis
of understanding between the client and the development team. Once agreed, it is used as input
to the design phase. Despite what has been said about techniques, object-oriented approaches to
analysis share much in common with more traditional methods of analysis. E.g., OORA
analysts can construct models of both the problem and solution space, and the OORA analyst
can support these models with an “object dictionary”. Regardless of the starting point, €.g. with
or without functional requirements, a set of object-oriented requirements can be produced.

5.2. OBJECT-ORIENTED DESIGN

Before we start a discussion of object-oriented design (OOD), we must provide the same
information concerning the time of use of OOD as we did with OORA. For most of this section,
OOD is referred to as if it were a separate, contiguous life-cycle phase. In reality, it is more
appropriately handled in a recursive/parallel life-cycle approach. In short, one may accomplish
OOD at many different points in the development part of the life-cycle.

226

5. The Object-Oriented Life-Cycle

For a thorough understanding we also point out where OOD might fit in a more
conventional (e.g. waterfall) life-cycle. As could be seen in the previous section OORA defines
both the client's needs and a proposed solution to the client's problem in an object-oriented
manner. Design, traditionally, is the phase in which the internal architecture of the system (e.g.
the module definitions and their interconnections) is accomplished. It usually occurs before
coding takes place. Design calls for the transformation of the logical structure of a system,
identified during analysis, into a physical structure that can be implemented on the target
computer system. In OOD the physical structure is built up of objects. In this stage each logical
object is mapped into physical objects. It is likely that several physical objects (design objects,
see below) will be required to implement each logical object and that objects of the same
physical object class will be used to support different logical objects. It is at this stage that
consideration is given to constraints such as performance or the need to use existing facilities.
Design is an intellectual activity requiring trade-offs to be made such as response time against
elegance of design. In the remainder of this section we will adopt this viewpoint. In essence we
will assume that an OORA effort has occurred before we begin our OOD, and we will also
assume that some form of coding (i.e. object-oriented programming) will follow the OOD
process. As seen before, in the recursive/parallel life-cycle these distinctions become somewhat
blurred, but the general flavour is preserved.

Differences between OORA and 00D

00D and OORA are more consistent in their thinking than are, say, structured analysis and
structured design. This also means that this higher level of consistency makes it harder to
differentiate between the two. When we study the state of the art in both OORA and OOD,
however, we notice several things, including:
- Despite a good deal of overlap, there are differences between the graphics for OOD and
OORA. E.g. OOD has graphics for program units, OORA does not (and should not).

- Programming language issues should generally be avoided in OORA, whereas they must
be specifically addressed in OOD.

- There is high client visibility during OORA, and low client visibility during OOD.

- Not all objects identified during analysis would become code software. Those objects
which were used only to describe the context during analysis, but do not become code
software are often referred to as ‘analysis objects’ in literature, whereas many (if not all) of
the objects identified during OOD will become code software.

- New objects (i.e. objects which were never mentioned previously) may be introduced in
the OOD process. We call such objects ‘design objects’.

- The larger the overall project, the higher the ratio of design to analysis objects. (very
probably OORA does not uncover all system objects, except for simple examples).

An 00D approach

In OOD, engineers find themselves just inside of the “black box” for which the OORA analysts
have specified the external interface. The job of OOD is to specify the internal architecture of
this “black box”. This means the OOD process will involve identifying internal (i.e. inside the
black box) objects, and specifying their interactions. The first part of the OOD process requires
that the engineer accomplishes two different goals: identify the objects of interest, and specify
how these objects will effect a solution to the problem. One might say that the engineer must
construct an (implementable) object-oriented model (strategy) of the proposed solution.

The next major step requires the designer to identify suffered and required operations for
each object. A ‘suffered’ operation is something which happens to a given object. A ‘required’
operation is an operation for an object other than the encapsulating object, and is necessary to
ensure the correct and desired behaviour of the object. E.g., if we wish a list object to be
ordered, it will require that the items contained in the list furnish a “<” (less than) operation. It
is primarily (but not exclusively) through operations that objects are coupled. Unnecessary
object coupling reduces both the reusability and reliability of our objects. The identification and

227

Object Oriented System Development; An Overview

separation of required operations is a means of reducing object coupling. Operations can be
identified directly from the object-oriented model, or they may come indirectly from the
suggested interactions and possible behaviour scenarios in the model. In either case, the
designer should associate attributes with each operation (suffered and required).

At this point in the OOD process, the designer can begin identifying complete objects. By
combining objects and their respective suffered operations, a more complete picture of each
object begins to emerge. Several things may happen, 1e::

- The engineer may recognize an object which is already available in the object library
maintained by his or her organization. If this is the case, the library object will be extracted.

- The desired object may be recognize as a variation on an object currently in the object
library. The existing object will then be used as the basis for the creation of a new object.

- There may not be found any existing object in the object library which closely meets the
criteria for the needed object. In this case, a new object specification will be created.

In any case, we must validate that we have chosen, or created, a correct and appropriate object.
If we create a new object, or modify an existing object, these objects will have to be tested and
quality assured, and then placed in the library (as well as being used for this specific project).

Before any object can be considered usable, it must be examined for completeness. We do
not want to have to modify any object (other than supplying parameters) when we reuse it. E.g.
our immediate application may only require that we add items to a list, but never delete them. If
we place an add operation in the interface to the list, but no delete operation, the object is
incomplete. It is very important that every object (either entirely new, or as a variation on an
existing object) be examined for completeness. Completeness entails more than just operations.
For example, we may wish to add exportable constants and exceptions to our object definition.

The next major step in the OOD process is deciding on OOP implementations for our
objects. This step involves both the objects identified during design, and analysis that has to
become software objects. Some programming languages are rather limiting in the way one can
implement objects. Other languages, e.g. Ada provide a variety of options. [Note: We will not
take part in the discussions whether Ada is or is not object-oriented -see the definitions sections and form your
own opinion-, that is left to oo-languages purists, but we include Ada as one of the possible implementation
languages because many successful projects have been done in Ada and because without the Ada community we
would not have anything like OORA and OOD. For now it is sufficient to know that Ada is at least object-
based. We should also mention that Ada is almost exclusively a major implementation language for object-
oriented systems in the United States, in Europe it is hardly used, except for some projects with multi-nationals,
space-agencies or work done for the DoDs]. The designer may wish to implement classes, instances,
meta-classes, unencapsulated non-primitive operations, meta-operations, and parallel program
units, depending on the capabilities furnished by the implementation language of choice.

The designer may then wish to show programming language relationships, €.g. access to
capabilities (dependencies), nesting, and message sending among the objects of interest. The
designer may then use the implementation language to precisely define the interfaces among the
objects in the system. At this point, we have two main choices available to us:

- switch to OOP and implement the internal structures of our objects

- If the system is large enough, we may wish to re-apply the object-oriented development
process (i.e. “analyze a little, design a little, ...”) to the products of our design effort.
Test cases to be used to test the system as it is implemented should be specified during the
design phase. These can be generated from for instance use scenarios.
We leave the OOD phase with this choice. In the next section some remarks will be made
about the OOP phase.

5.3.0BJECT-ORIENTED IMPLEMENTING

This section deals with the implementation phase of the development process. This phase
introduces a major problem, to the extent that, in practice, it is highly dependent on the
hardware and also software tools chosen to do the job. This set of tools is often referred to as

228

5. The Object-Oricnted Life-Cycle

implementation environment and would typically include: (oo-)database management system,
screen design aid, application generator and an (0o-)programming language. We will not pay
attention to the first mentioned tools and we think that most readers will be familiar with object-
oriented programming (OOP) and that we cannot add substantial differences to what has been
published in all the fine literature about object-oriented programming and programming
languages. Therefore we refer to this literature which is given in the literature list of this paper,
we only mention here the excellent books about object-oriented programming (that also give
different opinions about this topic) of [Meyer,1988], [Stroustrup,1986], [Cox,1986],
[Goldberg and Robson,1983], and [Stefik and Bobrow,1986]. These books and paper are also
recognized as the standards for respectively Eiffel, C++, Objective-C, Smalltalk-80, the most
common object-oriented languages. Also the introductory articles in the Byte of March 19889
about object-oriented programming with work of Wegner ([Wegner,1989], see also
[Wegner,1987]) are an excellent starting point for those who want to step into the world of
OOP. For a totally different approach we refer to the work of Lieberman [Lieberman,1983].

The choice of implementation environment is ideally made after completion of the system
design phase. This means that one chooses the tools to build the system after the system has
been fully designed. Again should be mentioned that in the recursive/parallel approach OOP is
not a separate life-cycle step following the OOD phase. It is best used in the “implement a little”
way. During implementing (part of) the design some omissions in the design specifications can
be discovered.

We also belief that the most important other remarks about the place and function of object-
oriented coding with respect to the topic of this paper have been made within other sections, for
instance when describing the object-oriented life-cycle and the previous section about object-
oriented design.

5.4. TOOLS

Like in traditional system engineering the development of object-oriented systems will also
benefit from the usage of case tools. The market for case-tools to support oo-development is
currently limited by the need to develop and agree upon suitable methodologies. But additional
support tools for computer-aided system engineering are now being developed that will enhance
the overall program environment. These case-tools will support the use of oo-concepts at all
stages in system development, from requirements analysis to configuration management. They
will be combined with the existing simple support tools to form integrated program
environments.

As with object-oriented system development methodologies it is hard to give examples of
existing tools. All the methods mentioned in the section about existing object-oriented system
development methods are supported by tools and also a considerable effort is put in enhancing
traditional CASE tools to support the object-oriented development process. Furthermore, every
newly defined methodology (whether based on traditional methods or not) is supported by new
tools, see e.g. [Shlaer and Mellor,1989], [Coad and Yourdon, 1989].

229

Object Oriented System Development; An Overview

6. FINDINGS

In this paper we have tried to shed some light on what object-oriented system development is
and what the advantages of using object-oriented concept for system development are.
About the use of object-orientation we found that:
- the mapping of real-world objects onto software objects helps to bridge the conceptual gap
between domain and model. Conceptual clarity in the design makes it easier to model
complex systems;

- the encapsulation of data and procedures within objects makes the system more robust,
thus increasing reliability and decreasing maintenance costs;

 the inheritance within a class hierarchy encourages reuse of software and the adoption of
standards, thus speeding development time and reducing the volume of code;

- the use of polymorphic operators increases flexibility by supporting disparate elements,
and allowing a rapid response to changes in requirements.

00-analysis and design methods and tools are bringing the benefits of co-systems to large-
scale applications. The benefits experienced are:
- descriptions of system requirements in terms that model the real world and so are easier to
understand for both analyst and client;

- significant reduction in mistakes during requirements analysis, thus reducing faults that are
expensive to correct when detected later in the life-cycle;

- objects provide a natural way of modelling the description of concurrent activities;

- encapsulation of data and operations in objects localises the effects of change and hence
reduces the cost of modifying systems;

- improved productivity, because developers can understand the system quickly, and
because there is no discontinuity in the design process caused by the paradigm shift
between conventional design methods and oo-programming languages;

_ it is easier to change the development staff because new staff can readily understand the
design and purpose of the system;

- the major benefits of oo-concepts can even be combined with languages that do not fully
support these concepts;

- if combined with the use of oo-programming languages, the maximum benefits of these
languages are realised.

It is also claimed that systems produced with o0o-design will be longer lived because:
- they will start by being a close representation of requirements;

_ the effects of change will be localised and so successive modifications will not make the
system less robust and more difficult to maintain, as is the case with conventional systems.

About object-oriented system development methods we found that experience has shown
that simply attempting to integrate object-oriented thinking into the more traditional

methodologies (e.g. structured) is a mistake. The major problem is that of localization.

In any event, we have shown that proven object-oriented methodologies do exist.
Unfortunately, they are few and far between. We discussed the recursive/parallel approach
originated by Booch and advocated by Berard. We feel that the recursive/ parallel life-cycle
approach is the most fruitful base to build an object-oriented development methodology upon.

230

Literature

ACKNOWLEDGEMENT

I would like to thank Olga De Troyer and prof. Robert Meersman for the guidance, useful
discussions and the suggested improvements to earlier drafts of this paper. I also would like to
thank the colleagues from INESC, TUBraunschweig, Imperial College and UNIDO, our

partners in the ISCORE Esprit-Bra project, for the hints and discussions about the topic of this
paper.

Further I would like to thank Ed Berard for his excellent work and bibliographies provided to
the system engineering and object-orientation communities through electronic mail. A great part
of this work is a compilation and quotation of his contributions to the net.

LITERATURE

[Abbott,1983]. R. J. Abbott, “Program Design by Informal English Descriptions,” Communications of the
ACM, Vol. 26, No. 11, November 1983, pp. 882 - 894. '

[Agha,1986). G. Agha, Actors: A model of concurrent computation in distributed systems, MIT Press,
Cambridge, Mass., 1986.

[Alabiso,1988]. B. Alabiso, «Transformation of data flow analysis models to object-oriented design”, ACM
SIGPLAN Notices vol.23, no.11, November 1988, pp. 335 - 353.

[Anderson et al,1989]. J.A. Anderson, J. McDonald, L. Holland, and E. Scranage, “Automated Object-Oriented
Requirements Analysis and Design,” Proceedings of the Sixth Washington Ada Symposium, June 26-29, 1989,
pp. 265 - 272.

[Arango, 1989]. G. Arango, “Domain Analysis: From Art to Engineering Discipline,” Proceedings of the Fifth
International Workshop On Software Specification and Design, May 19-20, 1989, Pittsburgh, Pennsylvania,
IEEE Computer Society Press, Washington, D.C., May 1989, pp. 152 - 159.

[Bailin,1989]. S. C. Bailin, “An Object-Oriented Requirements Specification Method,” Communications of the
ACM, Vol. 32, No. 5, May 1989, pp. 608 - 623.

[Beck and Cunningham,1989]. K. Beck and W. Cunningham, “A Laboratory for Teaching Object-Oriented
Thinking,” OOPSLA '89 Conference Proceedings, Special Issue of SIGPLAN Notices, Vol. 24, No. 10,
October 1989, pp. 1 - 6.

[Belz,1986]. F.C. Belz, “Appling the Spiral Model: Observations on Developing System Software in Ada,”
Proceedings of the 1986 Annual Conference on Ada Technology, Atlanta, Georgia, 1986, pp. 57 - 66.

[Bemelmans, 1987]. T. Bemelmans, Bestuurlijke informatie systemen en automatisering, Stenfert Krocse, 3¢
druk, 187. (in dutch)

[Berard,1990a]. Private correspondence, discussions and netwerk contributions.

[Berard,1990b]. Lecture notes from the course on “Object-Oriented software engineering”, March 12-16, 1990 at
the University of California at Irvine.

[Boehm,1986). B. W. Boehm, “A Spiral Model of Development and Enhancement,” Software Engineering
Notes, Vol. 11, No. 4, August, 1986.

[Boehm and Belz,1988]. B.W. Boehm and F.C. Belz, “Applying Programming to the Spiral Model,”
Proceedings of the 4th International Software Process Workshop, May 1988, Special Issue of the ACM SIGSoft
Software Engineering Notes, Vol. 14, No. 4, June 1989, pp. 46 - 56.

231

Object Oriented System Development; An Overview

[Booch,1982]. G. Booch, “Object-Oriented Design,” Ada Letters, Vol. I, No. 3, March- April 1982, pp. 64 - 76.

[Booch,1983]. G. Booch, “Object-Oriented Design,” IEEE Tutorial on Software Design Techniques, Fourth
Edition, P. Freeman and A.l. Wasserman, Editors, IEEE Computer Society Press, IEEE Catalog No. EHO205-
5, IEEE-CS Order No. 514, pp. 420 - 436.

[Booch,1986]. G. Booch, “Object-Oriented Development,” IEEE Transactions on Software Engineering, Vol.
SE-12, No. 2, February 1986, pp. 211 - 221.

[Booch, 1987). G. Booch, Software Components With Ada, Benjamin/Cummings, Menlo Park, California,
1987.

[Booch,1991]. G. Booch, Object-Oriented Design with Applications, Benjamin/Cummings, Redwood City,
California, 1991.

[Brooks,1987]. F. P. Brooks, Jr., “No Silver Bullet: Essence and Accidents of Software Engineering,” IEEE
Computer, Vol. 20, No. 4, April 1987, pp. 10 - 19.

[Bulman,1989]. D.M. Bulman, “An Object-Based Development Model,” Computer Language, Vol. 6, No.8,
August 1989, pp. 49 - 59.

[Cardelli and Wegner,1985]. L. Cardelli and P. Wegner, “On understanding types, data abstraction, and
polymorphism”, Computing Surveys, December 1985.

[Coad,1988]. P. Coad, “Object-Oriented Requirements Analysis (OORA): A Practitioner's Crib Sheet,”
Proceedings of Ada Expo 1988, Galaxy Productions, Frederick, Maryland, 1988, 9 pages.

[Coad and Yourdon,1989]. P. Coad and E. Yourdon, OOA -- Object-Oriented Analysis, Prentice-Hall, Englewood
Cliffs, New Jersey, 1989.

[Cox,1986]. B.J. Cox, Object-oriented programming : An evolutionary approach, Addison-Wesley, Reading,
Mass.,1986.

[De Troyer,1990]. O. De Troyer, Schema Object Types: A new approach to complex object types in conceptual
modelling, yet to appear, 1990.

[De Troyer and Meersman,1987]. O. De Troyer and R.A. Meersman, Transforming conceptual schema semantics
to relational data applications, in Information Modelling and Database Management, H. Kangassallo (ed.),
Springer-Verlag, 1987.

[DeRemer and Kron,1976). F. DeRemer and H. H. Kron, “Programming-in-the-Large versus Programming-in-
the-Small,” IEEE Transactions on Software Engineering, Vol. SE-2, No. 2, June 1976, pp. 80 - 86. Reprinted
in [Freeman and Wasserman,1983], pp. 321 - 327.

[Dol,1981]. Report on the Study of an Ada-based System Development Methodology, Volume 1, Department of
Industry, London, England, 1981.

[Essink and Romkema,1989]. L. Essink and H. Romkema, Ontwerpen van informatiesystemen, Academic
Service, 1989. (in Dutch).

[Freeman and Wasserman,1980]. P. Freeman and A. I. Wasserman (Eds.), Tutorial on Software Design
Techniques, Third Edition, Catalog No. EHO161-0, Institute of Electrical and Electronic Engineers, New York,
New York, 1980.

[Freeman and Wasserman,1983]. P. Freeman and A. I. Wasserman (Eds.), Tutorial on Software Design
Techniques, Forth Edition, IEEE Catalog No. EHO205-5, IEEE Computer Society Press, Silver Spring,
Maryland, 1983.

[Goldberg and Robson,1983]. A. Goldberg and D. Robson, Smalltalk-80: The language and its implementation,
Addison-Wesly, Reading, Massachusetts, 1983.

232

Literature

[Gray,1987]. L. Gray, “Procedures for Transitioning from Structured Methods to Object-Oriented Design,”
Proceedings of the Conference on Methodologies and Tools for Real-Time Systems IV, National Institute for
Software Quality and Productivity, Washington, D.C., September 14-15 1987, pp. R-1 to R-21.

[Gray,1988]. L. Gray, “Transitioning from Structured Analysis to Object-Oriented Design,” Proceedings of the
Fifth Washington Ada Symposium, June 27 - 30, 1988, Association for Computing Machinery, New York,
New York, 1988, pp. 151 - 162.

[Heitz,1988]. M. Heitz, “HOOD: A Hierarchical Object-Oriented Design Method,” Proceedings of the Third
German Ada Users Congress, January 1988, Gesellschaft fur Software Engineering, Munich, West Germany, pp.
12-1 - 12-9.

[Heitz and Labreuille,1988]. M. Heitz and B. Labreuille, “Design and Development of Distributed Software
Using Hierarchical Object-Oriented Design and Ada,” in Ada In Industry: Proceedings of the Ada-Europe
International Conference Munich 7-9 June, 1988, Cambridge University Press, Cambridge, United Kingdom,
1988, pp. 143 - 156.

[Hull et al.,1989]. M.E.C. Hull, A. Zarea-Aliabadi and D.A. Guthrie, “Object-Oriented design, Jackson system
development (JSD) specifications and concurrency”, Software Engineering Journal, March 1989, pp. 79 - 86.

[IEEE, 1983]. IEEE, Standard Glossary of Software Engineering Terminology ANSI/IEEE Std 729-1983,
Institute of Electrical and Electronics Engineers, New York, New York, 1983.

[Jackson,1983]. M. A. Jackson, System Development, Prentice-Hall, Englewood Cliffs, New Jersey, 1983.

[Jacobson,1987]. 1. Jacobson, “Object-Oriented development in an industrial environment”, ACM SIGPLAN
Notices vol.22, no.10, Proc. of OOPSLA,87, pp. 183 - 191

[Jones,1980]. C. B. Jones, Software Development A Rigorous Approach, Prentice-Hall, Englewood Cliffs, New
Jersey, 1980.

[Jungclaus and Saake,1990]. R. Jungclaus and G. Saake, “Formal Concepts for Object-Oriented Specilication”,
in 7, 1990.

[Kerth,1988]. N. Kerth, MOOD: a Methodology for Structured Object-Oriented Design, Tutorial presented at
OOPSLA'88, San Diego, 1988.

[Khalsa,1989]. G.K. Khalsa, “Using Object Modelling to Transform Structured Analysis Into Object-Oriented
Design,” Proceedings of the Sixth Washington Ada Symposium, June 26-29, 1989, pp. 201 - 212.

[Lieberman,1986]. H. Lieberman, Using prototypical objects to implement shared behaviour in object-oriented
systems, ACM SIGPLAN Notices vol.21, no.11, proceedings OOPSLA'86.

[Loomis et al, 1987]. M.E.S. Loomis, A.V. Shaw, and J.E. Raumbaugh, “An Object Modeling Technique for
Conceptual Design,” Proceedings of ECOOP '87: European Conference on Object-Oriented Programming,
Springer Verlag, New York, New York, 1987, pp. 192 - 202.

[Masiero and Germano,1988]. P. Masiero and F.S.R. Germano, “JSD As An Object-Oriented Design Method,”
Software Engineering Notes, Vol. 13, No. 3, July 1988, pp. 22 - 23.

[Meyer,1987]. B. Meyer, “Reusability: the case of object-oriented design”, IEEE Software vol.4 , no.2 , March
1987, pp. 50 - 64.

[Meyer,1988]. B. Meyer, Object-oriented software construction, Prentice Hall, New York, 1988.
[Nierstrasz,1989]. O. Nierstrasz, “A survey of object-oriented concepts”, Object-Oriented concepts, databases, and
applications, Won Kim and F.H. Lochowsky (eds.), ACM Press Book, Addison-Wesley, New York, 1989, pp. 3
- 21, :

[Nierstrasz and Tsichritzis,1988]. Nierstrasz and Tsichritzis, “Integrated office systems”, Active object
environments (Tsichritzis, ed.), Univ. of Geneva, '88.

233

Object Oriented System Development; An Overview

[Olle et al.,1982]. T.W. Olle, H.G. Sol and A.A. Verrijn-Stuart (eds.), Information Systems Design
Methodologies: A comparative review, Elsevier Science Publ.,1982.

[Olle et al.,1983]. T.W. Olle, H.G. Sol and C.J. Tully (eds.), Information Systems Design Methodologies: A
feature analysis, Proc. of the IFIP WG 8.1 Working Conference, York, UK, 5 - 7 July, 1983, Elsevier Science
Publ., 1983.

[Olle et al.,1986]. T.W. Olle et al. (eds.), Information Systems Design Methodologies: improving the practice,
Elsevier Science Publishers BV (North-Holland), IFIP, 1986.

[Olle et al.,1988]. T.W. Olle et al. Information Systems Methodologies: A Framework for understanding,
Addison-Wesley Publ. Co., Wokingham, England, IFIP, 1988.

[Ovum,1989]. J. Jeffcoate, K. Hales and V. Downes (cds.), Object-Oriented systems: the commercial benefits,
OVUM Bussiness Report, 1989.

[Prieto-Diaz, 1988]. P. Pricto-Diaz, “Domain Analysis for Reusability,” Proceedings of COMPSAC '87, 1987,
pp. 23 - 29, reprinted in IEEE Tutorial: Software Reuse: Emerging Technology, Edited by W. Tracz, IEEE
Catalog No. EH0278-2, IEEE Computer Society Press, Washington, D.C., 1988, pp. 347 - 353.

[Rumbaugh et al, 1991]. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-oriented
modelling and design, Prentice-Hall International Editions, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1991.

[Sanden,1989a]. B. Sanden, An entity-life modelling approach to the design of concurrent software, CACM 32:3
(March 1989), pp. 330-343.

[Sanden,1989b]. B. Sanden, Entity-life modelling and structured analysis - comparison of approaches to real-time
software design, CACM 32:12 (Dec. 1989).

[Seidewitz and Stark,1986]. E. Seidewitz and M. Stark, General Object-Oriented Software Development,
Document No. SEL-86-002, NASA Goddard Space Flight Center, Greenbelt, Maryland, 1986.

[Sernadas et al.,1989]. A. Sernadas, J. Fiadeiro, C. Sernadas & H.-D. Ehrich, “The basic building blocks of
information systems”, in Information System Concepts, E. Falkenberg and P. Lingreen (eds.), North-Holland,
1989.

[Shlaer and Mellor,1988]. S. Shlaer and S.J. Mellor, Object-Oriented Systems Analysis: Modelling the World In
Data, Yourdon Press: Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

[Shlaer and Mellor,1989]. S. Shlaer and S.J. Mellor, “An Object-Oriented Approach to Domain Analysis”,
ACM SIGSOFT Software Engincering Notes vol.14, no.5, July 1989,pp. 66 - 77.

[Shriver and Wegner,1987]. Shriver and Wegner (eds.), Research Directions in Object-Oriented Programming, ,
MIT Press, Cambrigde, 1987.

[Shumate,1988). K. Shumate, “Layered Virtual Machine/Object-Oriented Design,” Proceedings of the Fifth
Washington Ada Symposium, June 27 - 30, 1988, Association for Computing Machinery, New York, New
York, 1988, pp. 177 - 190. -

[Smith and Tockey,1988]. M. K. Smith and S.R. Tockey, “An Integrated Approach to Software Requirements
Definition Using Objects,” Proceedings of Ada Expo 1988, Galaxy Productions, Frederick, Maryland, 1988, 21

pages.

[Snyder,1986]. A. Snyder, “Encapsulation and Inheritance in object-oriented programming languages”, ACM
SIGPLAN Notices vol.21, no.11, Proc. OOPSLA'86, pp. 38 - 45.

[Stark and Seidewitz,1987]. M. Stark and E.V. Seidewitz, “Towards a General Object-Oriented Ada Life-Cycle,”
Proceedings of the Joint Ada Conference, Fifth National Conference on Ada Technology and Washington Ada
Symposium, U.S. Army Communications-Electronics Command, Fort Monmouth, New Jersey, pp. 213 - 222.

[Stefik and Bobrow,1986). M. Stefik and D.G. Bobrow, “Object-Oriented programming: Themes and variations”,
The Al Magazine, January 1986, pp. 40 - 62.

234

Literature

[Stein et al.,1989]. L.A. Stein, H. Lieberman, D. Ungar, “A shared view of sharing: The treaty of Orlando”,
Object-Oriented concepts, databases, and applications, Won Kim and F.H. Lochowsky (eds.), ACM Press Book,
Addison-Wesley, New York, 1989, pp. 31 - 48.

[Stoecklin et al,1988]. S.E. Stoecklin, E.J. Adams, and S.Smith, “Object-Oriented Analysis,” Proceedings of
the Fifth Washington Ada Symposium, June 27 - 30, 1988, Association for Computing Machinery, New York,
New York, 1988, pp. 133 - 138.

[Stroustrup,1986]. B. Stroustrup, The C++ Programming Language, Addison-Wesley, Reading, Mass., 1986.

[Teorey et al.,1986]. Toby J. Teorey, Dongging Yang and James P. Fry, “A Logical Design Methodology for
Relational Databases Using the Extended Entity-Relationship Model”, ACM Computing Surveys, 18:2, June
1986, pp. 197-222.

[Tsichritzis,1989]. D. Tsichritzis, “Object-Oriented development for open systems”, Proc. of the IFIP world
conges on Information Processing '89, G.X. Ritter (ed.), Elsevier Science Publ., North Holland, 1989, pp. 815 -
820.

[Verharen, 1990] E.M. Verharen, Object-oriented system development: An overview. Technical report, Infolab,
Tilburg University, January 1990.

[Vielcanet,1989]. P. Vielcanet, “HOOD Design Method and Control/Command Techniques fo the Development
of Realtime Software,” Proceedings of the Sixth Washington Ada Symposium, June 26-29, 1989, pp. 213 -
219.

[Ward,1989]. P.T. Ward, “How to Integrate Object-Orientation with Structured Analysis and Design,” IEEE
Software, Vol. 6, No. 2, March 1989, pp. 74 - 82.

[Ward and Mellor,1985]. P. T. Ward and S. J. Mellor, Structured Development for Real-Time Systems,
Volumes 1, 2 and 3, Yourdon Press, New York, New York, 1985.

[Wasserman et al,1989]. A.I. Wasserman, P. Pircher, and R.J. Muller, “An Object-Oriented Design Mcthod for
Code Generation,” ACM SIGSOFT Software Engineering Notes vol.14, no.1, January 1989, pp. 32 - 55.

[Wegner,1989). P. Wegner, “Learning the language”, Byte vol.14, no.3, March 1989, pp. 245 - 253.

[Wegner,1987]. P. Wegner, “Dimensions of Object-Based Language Design”, ACM SIGPLAN Notices vol.22,
no.10, Proc. of OOPSLA,87, pp. 168 - 182.

[Wieringa,1991]. R.J. Wieringa, “Object-Oriented Analysis, Structured Analysis, and Jackson System
Development”, to be published in the proceedings of the IFIP WG8.1 Working Conf. on The Object-Oriented
Approach in Information Systems, Quebec, Canada.

[Wirfs-Brock and Wilkerson,1989]. R. Wirfs-Brock and B. Wilkerson, “Object-Oriented Design: A
Responsibility-Driven Approach,” OOPSLA '89 Conference Proceedings, Special Issue of SIGPLAN Notices,
Vol. 24, No. 10, October 1989, pp. 71 - 76.

[Wirth,1971]. N. Wirth, “Program Development by Stepwise Refinement,” Communications of the ACM, Vol.
14, No. 4, April 1971. (Reprinted in Communications of the ACM, Vol. 26, No. 1, January 1983, pp. 70 -
73).

235

Schema Object Types:
A New Approach to Modularization in Conceptual Modelling.

O. De Troyer
Tilburg University
Infolab
P.O. Box 90153
5000 LE Tilburg
The Netherlands.

Abstract.

In this paper we introduce (in the context of conceptual modelling) an
extended notion of the complex object type concept, called schema object
type, which is more general then the one usually found in Object-Oriented
data models. A schema object type is a higher level object type which is, at a
lower level, further described by a (conceptual) schema giving the object
types and the associations which compose the object type.

In this way a hierarchy of schemas is created and the concept of schema
object type allows for a semantic decomposition of large schemas.

Special to the concept of schema object type is that it allows an abstraction
from context.

The paper defines the semantics of such a schema hierarchy and
presents an algorithm to transform the schema hierarchy into a schema
without schema object types.

1. Introduction.

Well known examples of conceptual models are Entity-Relationship
model [e.g. 5], Binary Relationship model [e.g. 23, 32], Object-Role model [e.g.
11], Functional models [e.g. 27]. These models allow to translate the user's
information requirements into a supposedly precise, complete and
unambiguous description, the so-called conceptual schema (CS).

One of the important functions of such a conceptual schema is to serve
as a tool to communicate among all parties involved, the semantics of the
Universe of Discourse (UoD, the application domain containing the given
situation). Therefore this description should ideally only deal with
conceptual issues; i.e. the various object types of the UoD, their associations
and the integrity constraints.

Later on in the development of an information system, the conceptual
schema becomes input to the design of a database schema (also called logical
schema), which usually is expressed in terms of record types, key fields and
relationships between records.

* This work was supported by the Basic Research Action IS-CORE of the
Commission of the European Communities.

236

A frequent and important criticism of these conceptual models are
their lack of modularity. All object types and relationships are described at
the same level of aggregation abstraction. Since the conceptual schema of
realistic databases will generally be of considerable size and complexity,
modularization techniques become a necessity. This necessity 1is
strengthened by the growing need in practice to integrate already existing
information systems. In principle, integration of information systems
means that the conceptual schemas of the different databases should be
integrated into one. This integration process may cause the discovery of new
interrelationships between the different subschemas and thus may become
very complex without the support of an underlying modularization
technique. Also, the reuse, extension and maintenance of parts of the
system become considerable more awkward without a notion of modularity.

In the literature to date, several proposals have been suggested that
perform a semantic modularization of a conceptual schema, e.g. [3, 26, 28, 31,
33]. The techniques suggested in [33] and [28] try to reduce the size of the
original schema by removing “non-key concepts” at a more abstract level
(the notion of “non-key concept” is differently defined in the two papers).
To create the i+1-th level of abstraction the non-key concepts of the i-th
level are removed. In this way a hierarchy of conceptual schemas is created.
The disadvantage of this technique is that first the complete conceptual
schema is to be constructed and afterwards it is split up into a hierarchy of
smaller schemas.

In [31] the concept of “information domain” is introduced to split up
the UoD into a number of surveyable parts. For each information domain a
schema is constructed or if the domain still is too complex it may be split up
in term. References to objects of different domains are replaced by references
to objects in an “overview schema”. The information domains can be
compared with modules. However, a module is a purely syntactic construct
used to group logically related concepts, but it is not itself a meaningful
schema concept such as an object type or a link with its own semantic
denotation.

In [3,4] Batory and Buchmann introduce the concept of molecular
object. Molecular objects are objects that have the property that they are
given different representations at different levels of abstraction. At higher
levels, a molecular object is represented by a single tuple. At the lower level
it is represented by a set of interrelated tuples from different relations. Thus,
as argued by the authors, molecular objects are in some sense analogous to
the well-known (object-oriented) complex objects. We also have made use
of the well-known concept of complex object [17, 19] to introduce levels of
abstraction in a conceptual schema. However our approach is different from
the one of Batory and Buchmann. We will discuss the differences after
presenting the main principles of our approach.

As indicated, we have used the principles of the well-known (object-
oriented) concept of complex object [17, 19] to introduce levels of abstraction
in a conceptual schema. The concept complex object is also known under
the names composite object [16, 29] or aggregation hierarchy [1]. Usually, in

237

the OO-approach, this concept is used to capture the is-part-of relationship
between an object and its constituent objects. For example, an fRirplane might
contain several objects like the Engines, Wings, Fuselage, and so on. Each
Engine object can be broken down further into objects like the Turbines, the
Pumps, and so on. Together these objects form an aggregation hierarchy that
describes the part-of structure of the top level Rirplane object.

Some conceptual models have already incorporated the notion of
aggregation hierarchy, e.g. [14]. However the conventional notion of
complex object, representing an aggregation hierarchy, cannot be used as a
modularization technique in general. It is not able to reflect (possible
complex) relationships that may exist between the constituent objects
themselves. For example, the fact that “inside” an Rirplane an Engine object
is connected to exactly one of the Wing objects cannot be expressed using the
concept of complex object type. This information has to be represented in
another way. Depending on the selected approach, a 1-to-many relationship
between the Engine- and the Wing object type is defined or e.g. in an OO-
method, the state of an Engine object will refer to the Wing object to which it
is connected.

In this paper, we propose a concept, called Schema Object Type (SOT),
that is more general than the concept of complex object type. The concept of
schema object type enables to describe the complete structure of the
"complex" object (i.e. not only the part-of structure). As such, a schema
object type does not merely list the object types which constitute the
composite or complex objects but also gives a precise and complete
description of the existing relationships between the constituent object types
and the related integrity constraints. To achieve this, we define a schema
object type as an object type which, at a lower level, is further described by a
conceptual schema. Doing this has a number of important advantages:

(1) We still capture the concept of the is-part-of relationship and therefore
the properties specific to this kind of relationships (e.g. dependency of
the constituent objects) can be provided as built-in semantics.

(2) SOTs introduce levels of abstraction in a conceptual schema; at higher
levels a SOT is seen as an atomic object type while at the lower level the
object types and their relationships which "compose" the object type are
seen.

(3) SOTs can be used in a modular way, allowing a SOT to be built from
other SOTs. In this way a hierarchy of conceptual schemas may be
constructed, reflecting different levels of abstraction. This will meet the
frequent and important criticism of many current conceptual models,
namely their lack of modularity.

(4) The conceptual schemas constructed using the technique of SOTs
become smaller, simpler and easier to understand. This is because we
perform an abstraction from the context when modelling the conceptual
schema of an SOT.

(5) The reuse, extension and maintenance of a conceptual schema become
considerably less awkward.

238

Further in this paper, we establish the semantics of a SOT and a set of
rules which control their use in a conceptual schema. These rules also
regulate the use of the same object type at different levels of the schema
hierarchy. We also show how SOTs can be combined into a hierarchy and
how to transform a conceptual schema with SOTs into an “equivalent” flat
conceptual schema (a schema without SOTs). The definitions and
procedures are given for the Binary Relationship Model (BR model), as
described in e.g. [10]. However, the principles could also be applied on other
conceptual models, e.g. the Entity-Relationship Model.

The approach described in this paper differs from the one of Batory and
Buchmann as follows. Our work deals extensively with constraints which
was not the case in [3] or [4]. We also establish a set of rules that controls the
use of SOTs in a conceptual schema and we define their semantics. Formal
definitions are given. Furthermore, in [3] four types of molecular objects
were identified: disjoint vs non-disjoint and recursive vs non-recursive.
We don't need to make such a distinction. Furthermore, in [3] the
interpretation of a molecular object type, in the context of the E-R model,
was given by defining the equivalent relational schema. We will define it in-
terms of the chosen model itself.

The paper is organized as follows: In section 2 we briefly describe the
BR model. In section 3 we introduce the SOT concept and we illustrate how
to use it. In section 4 we give a more elaborate discussion about the
advantages of the technique. Section 5 defines the transformation of a
conceptual schema hierarchy into a flat conceptual schema’and section 6
presents conclusions. Formal definitions are given in the appendix.

2. The Binary Relationship Model (BR model).

Descriptions of the BR model (under different names) appear in
several forms in the literature ([10], [13], [15], [20], [21], [22], [23], [32], [34] ...).

Its main characteristics are :

a. objects are classified into Object Types (OT), there is an explicit
distinction between Non-Lexical and Lexical objects, the latter standing
for strings in the UoD;

b. all information is stored as links, called Fact instances involving two
Objects - hence the quantifier “binary”;

c. (Non-Lexical) Object Types may be organized into subtypes (e.g. because
of additional Fact properties) using Sublinks;

d. it supports the specification of Constraints, rules and other forms of
“semantics” using e.g., some functional language ([32], [9], ...).

We adopt the well known “NIAM” graphical notation [10], [32] for the
BR concepts :

239

a NOLOT -- (NOn-Lexical Object Type)

a LOT -- (Lexical Object Type). A LOT may be
involved in one fact only, with a NOLOT.

a Fact. The “boxes” are called Roles. Each Fact
involves exactly two Object Types (which may be
the same).

a Sublink - the subtype occurrences implicitly
inherit all properties of the supertype. Subtypes
need not be disjoint and not all of a NOLOT's
occurrences need to be in one of its

subtypes.

Certain constraint types occur so frequently and are so fundamental
that they have a graphical representation as well. We only introduce the
graphical representation of the constraint types used further on in this

paper:

OO

%

The Identifier constraint (simple functional
dependency) is drawn as a line over the key-role.

A Total Role constraint stating that each instance
of an OT should participate in a given Role is
represented by a “V” sign.

A Total Union constraint is a generalization of a
Total Role constraint. Each instance of the OT
should participate in at least one of the indicated
Roles or Sublinks.

The Exclusion constraint expresses the mutually
exclusion of a number of Subtypes.

240

A Uniqueness constraint is a generalization of the
Identifier constraint. An instance of an Object Type
is identified by an instances-combination of the
indicated Object Types.

3. Schema Object Types (SOTs) and Schema Hierarchies.
3.1. Introduction.
We first introduce our example UoD, which is a part of the CRIS-88

Conference case study [25]. The flat BR schema describing this UoD is given
in figure 3.1 and was derived from [10].

P Conf_RAcronym
’ \ FTT
| paper_Id A
\ per_Id, 1 1
¥ - - ‘ — - !
= Conference N L. /
Sponsor_Id
l ’ PR
. PN
Paper H 1 i \
) @ ot !
submitted for i N /
-~
or ized by
author_of ™" Accept _Papﬂ':' —
$pons
held i
Person | IIII
l . External nsor
Lecture IFIP_Unit
Country N
| in IFIP |Sponsor
“during*-
R ‘ located_in
PREEREN
/! \ /
l\ : s S External_ Body
\ .
N L4
=~ - Session of

]
\ Sessioch _Title
~ -

-~

Person_Name

figure 3.1: flat BR schema for CRIS-88.

Informally, the diagram reads as follows:

(1) conferences are organized by one or more IFIP sub-organizations, called
IFIP-units; they are held in some country.

(2) Each conference is given a unique conference acronym.

(3) A conference may have one or several sponsors. A sponsor of a
conference is either an IFIP-unit or an external body. Within a
conference, each sponsor is given a unique sponsor identification.

241

(4) For external bodies known to the IFIP organization, the country in
which they are located is maintained.

(5) Papers may be submitted to a conference, they receive a paper
identification number which is unique for the conference.

(6) The persons being the authors of a paper are registered as such.

(7) Some of the papers submitted to a conference are accepted by the
program committee of this conference. In that case they will be
presented at a lecture given during a session of the conference.

(8) For all persons related in some way to some conference, the name of the
person is registered.

A straightforward way of introducing complex object types in a BR
schema is by defining a complex object type (COT) as a sub-schema or view
(satisfying a number of conditions). This is illustrated in figure 3.2; a
possible (sub-schema) definition of the COT Conference is indicated by a
black border-line.

figure 3.2: COT Conference defined as sub-schema.

However, this form of COT does not introduce a new level of
abstraction. It just would allow piecewise treatment of larger schemas.
Therefore its added value as a modelling enhancement remains limited.

3.2. Schema Object Types.

In our approach, a schema object type (SOT) is an object type which
itself is described (at a lower level of abstraction) by a (BR) schema.
Although also in the previously mentioned approach the complex object
type is "defined" by a BR schema it is essentially different from a SOT. The
distinction is in the scope of the UoD used to model the schema. In the COT

242

approach the scope is the complete UoD. In the SOT approach, the scope is
limited to scope of the SOT itself. This means that the schema of an SOT
describes only (and nothing more than) any arbitrary instance of the SOT.
For example, in the CRIS-88 UoD we will consider Conference as a SOT.
When modelling the schema of the SOT Conference , the UoD under
consideration is limited to any arbitrary IFIP conference; we do not take into
account the context in which those conferences will occur (the result is
given in figure 3.3.). We call this abstraction from context.

figure 3.3: flat BR schema describing the conference UOD.

Because we limit the scope of the UoD when modelling the schema
describing a SOT, this schema will in general be simpler and easier to
understand than the corresponding sub-schema in the flat schema (compare
figure 3.2 and figure 3.3). But note that this schema is only relevant and
correct within the context (scope) of the SOT. For example, the sublink that
exists between the OTs Author and Person in the schema describing the SOT
Conference (figure 3.3) is not valid outside, e.g. Ruthor is only a relevant
subtype of Person in the context of a Conference. A person who is an author
in one conference need not to be an author in all conferences.

A SOT can be seen as an abstraction of a set of object types and their
relationships into a higher level object type. At this higher level the SOT is
considered as an ordinary object type which may be used in combination
with other object types to model the scope of UoD associated with this
higher level. For our example this means that we may consider the SOT
Conference as an ordinary OT for the next higher level. In this next higher
level we will model the context in which IFIP-conferences are organised.
The result is given in figure 3.4. A SOT is graphically represented by a
double circle.

243

figure 3.4: CRIS-88 schema with SOT.

3.3. SOT-hierarchies, UP-OTs, DOWN-OTs and LOCAL-OTs.

When inspecting the CRIS-88 schema (figure 3.4) and the Conference
SOT schema (figure 3.3) we observe that some OTs (Person, IFIP_Unit and
External_Body) appear (with the same intuitive meaning) in both schemas.
In contrast with the other OTs of the Conference SOT schema (Paper, Author,
sponsor, Lecture, ...) the OTs Person, IFIP_Unit and External_Body have a
more global meaning. This is because the existence of their instances is not
dependent on the existence of a particular conference (see (1), (4) and (8) of
the UoD description). To indicate this situation we mark these NOLOTs at
the Conference level by a dotted box labelled with an 'U" (see figure 3.5), and
we call them upwardly defined object type (UP-OT) for the Conference
level. Intuitively this means that their main description is given at some
higher level.

\ PR i !
’ A ; Extecnal_Body

figure 3.5: schema for the SOT Conference in CRIS-88

Notice that in figure 3.5. Session is now modelled as SOT. Figure 3.6
shows the schema of Session. Notice also that Accepted_Paper is an UP-OT
for the Session schema but not for the Conference schema. This means that

244

the NOLOT fccepted_Paper is not known outside the scope of the SOT
Conference.

i

Accepted_Paper

figure 3.6: schema for the SOT Session.

In this way we have created a (strict) hierarchy of schemas. The CRIS-88
schema of figure 3.4 is the top level schema, next lower is the Conference
SOT-schema of figure 3.5, followed by the Session SOT-schema of figure 3.6.
The top level schema of a hierarchy may also be considered as the BR
schema of some SOT, namely of the UoD under consideration. Instead of
using the term "schema hierarchy" we prefer to use the term SOT hierarchy.

As already explained, NOLOTs defined at a higher level may be used
(marked as UP-OT) in a lower level of the SOT hierarchy. It seems natural
for a hierarchy to require that NOLOTs defined at a lower level in the
hierarchy cannot be used at a higher level. However such a rule would
cause modelling problems as explained in the following example.

Suppose we want to extend the CRIS-88 example and maintain a list of
all events of a conference. Lectures are also considered as events. For each
event the start time is maintained. This extension of the UoD naturally
results in the extension of the Conference schema as given in figure 3.7
(ignore for the moment the dotted box marked with a ‘D’ around Lecture).

figure 3.7: extended Conference schema.

245

However this schema now violates the proposed rule; Lecture is an OT
defined at (i.e. local to) the lower level schema Session. On the other hand
trying to model the sublink between Lecture and Event in the Session
schema (Event would then be an UP-OT) is too weak. It would incorrectly
imply that a lecture is only an event in the context of a session and not
necessarily in the context of a conference.

In general we need to be able to define links between object types
(actually NOLOTS) defined at different levels of the SOT hierarchy because
the scope of validity of a link and its meaning is different when defined at
different levels in the hierarchy. To indicate that we use an OT defined at a
lower level in the hierarchy we mark this OT with a dotted box marked
with the label ‘D’ (see figure 3.7) and call it downwardly defined object type
(DOWN-OT) for this level.

OTs which are neither UP-OTs nor DOWN-OTs for a given schema
level are called locally defined object types (LOC-OTs) for that level. One
important difference between an UP-OT and a DOWN-OT is that the
existence of an instance of a DOWN-OT is (directly or indirectly) dependent
of the existence of an instance of one of the SOTs of this schema level, e.g.
the existence of a Lecture instance is dependent of the existence of a Session
instance. This is not the case for an UP-OT, e.g. an IFIP_Unit instance may
exist independent of the fact that it may also act as a Sponsor for some
Conference.

The instances of the LOC-OTs of a SOT schema are always dependent
on the existence of an instance of this SOT. '

3.4. Properties of a SOT hierarchy.
We will now list the rules a SOT-hierarchy should satisfy.

(0) The SOT schemas in a SOT hierarchy form a tree-structure.

(1) The LOC-NOLOTS of a node may be used as UP-OTs in all descendant
nodes.

(2) The LOC-NOLOTSs of a node may be used as DOWN -OTs in all nodes of
the hierarchy except in the descendant nodes.

(3) Each instance of a LOC-NOLOT of a node (SOT) will refer (implicitly) to
exactly one instance of this SOT. This instance is called the owner-
instance.

For example, for the conference SOT schema of figure 3.5, an instance
of paper refers to (i.e. is submitted for) exactly one instance of
Conference.

(4) The existence of any instance of a LOC-NOLOT of a node (SOT) is
dependent on the existence of its owner instance. This means in
particular that the dependent instance cannot be created if the owner-
instance does not exist. Analogously, when the owner-instance is
deleted all its dependent instances must also be deleted in order to
preserve referential integrity.

246

In our example, a Paper instance cannot exist without its Conference
owner-instance.

(5) Instances of the LOC-NOLOTSs of a SOT-schema may only be related to
each other (by facts or sublinks) if they share the same owner-instance.
For instance, for the SOT Conference in figure 3.5, the Author instances
related to a Paper instance will share the same Conference owner-
instance.

Formal definitions and rules are given in the appendix.

4, Discussion.

In this section we will illustrate the use of SOTs and demonstrate the
modelling power of SOTs as claimed in the introduction.

On purpose the examples are small and non-relevant details are
omitted.

Claim (1): SOTs allow to capture the is-part-of relationship.
Disjoint is-part-of relationship where each constituent object belongs to
only one composed object is modelled as in figure 4.1. Wings, Engines and

Fuselages are part of exactly one Airplane. These are LOCAL-OTs for the
Airplane Schema.

Airplane

TOP LEVEL Schema Rirplane Schema

figure 4.1: example of disjoint part-of relationship

An example of a non-disjoint is-part-of relationship where constituent
objects may be shared between the composed objects is given in figure 4.2. A
person may be member of several committees. The OT Person is an UP-OT
for the Committee Schema. Therefore, the existence of an instance of Person
is not dependent of a Committee and the same Person-instance may be in
several Committees

247

TOP LEVEL Schema Committee Schema

figure 4.2: example of non-disjoint part-of relationship

To illustrate that also recursive structures can be modelled using SOTs

we give the bill of material example:

"A part is either an elementary part or an assembly. An assembly is

composed of parts".
Although this example can be easily modelled with the classical BR model
(see figure 4.3), it is also possible to model this recursion with SOTs. The
needed SOT hierarchy is given in figure 4.4. The top level schema models
Part. A Part-instance is either an Elementary _Part- or an Assembly-instance.
The Assembly SOT schema models an assembly. An Assembly instance is
composed of a number of Part_in_Assembly instances, each
Part_in_Assembly is in exactly one Assembly. The fact thata
Part_in_Assembly is actually a Part is expressed by the sublink between
Part_in_Assembly (as DOWN-OT) and Part in the top level schema. In this
way a part can only be used in one other part. '

figure 4.3: flat BR schema for the Bill of Material.

248

Part_in_Assembly

Assenmbly

Bllmnntary__Eart

TOP LEVEL Schema Assembly Schema

figure 4.4: SOT hierarchy for the Bill of Material.

Claims (2), (3) and (4) (introduction of levels of abstraction, a hierarchy
of schemas and ease of understanding) are, in our opinion, sufficiently
illustrated in section 3.

Note that the SOT technique can be applied both in a top down and in
a bottom up design strategy. Also a combination of top down and bottom up
design is possible (probably this will be the one most frequently used). In a
top down design, we start by modelling the top level, identify SOTs and
afterwards model each of the SOTs separately. In the bottom up approach,
different conceptual schemas are considered as SOTs, which are then
combined into new ones until the desired top level is reached.

Claim (5): ease of reuse, extension and maintenance.

Reuse of SOTs. ‘

In general, to reuse a SOT defined in one SOT hierarchy in an other
hierarchy, first all UP-OTs and DOWN-OTs must be resolved. In case the
schema levels in which those UP- and DOWN-OTs are defined can also be
taken over, nothing has to be done (usually this is the case for the DOWN-
OTs). Otherwise, depending on the UoD of the new hierarchy, the UP- and
DOWN-OTs will become LOCAL-OTs in the appropriated levels of the new
hierarchy.

Extending SOT hierarchies.

As an example, suppose we want to integrate the structure of the IFIP-
organization into the CRIS-88 schema hierarchy (figure 3.4 to 3.6.). The IFIP-
organization is structured as follows (see also figure 4.5):

(1) IFIP has a number of Technical Committees, each having a unique
number.

(2) Each Technical Committee may have 2 number of Working Groups,
which have an id-number unique for each Technical Committee.

(3) A Working Group may have a number of Special Interest Groups and
a number of Task Groups. They have names unique for a Working
Group.

249

Technical_ Committe TC_Number
7 . P
Y
° : g l
\ !
Y ~ - 4
TOP LEUEL Schema
Special_Interast_Group SIG_Name
, T TN
Working_Group WG_Hurbex 4 SN
. b . [-
\II \\ o 7
7 ! Task_Group TG_Name
i s T L= }__.-
k / Y
S
(D7)
N ’
Technical Committee Schema Working_Group Schema

figure 4.5. : SOT-hierarchy for IFIP-organization

Furthermore we know that :
(4) Each of these IFIP sub-organizations is to be called an IFIP-unit and
may organize conferences.

(4) will be used to integrate the CRIS-88 hierarchy with the IFIP hierarchy.
This is done by defining Technical_Committee, Working_Group,
spec_Interest_Group and Task_Group (OTs of the IFIP hierarchy) as subtypes
of IFIP_Unit in the top level schema of the CRIS-88 hierarchy. This results
in a new top level schema (see figure 4.6).

Since Technical_Committee is the top level of the IFIP hierarchy it becomes a
local (S)OT of the new top level schema. Working_Group,
spec_Interest_Group and Task_Group are DOWN-OTs for the top level
because they are defined in lower level schemas.

ji =

S Workiag_Group
Spec_interest_Group

figure 4.6. new top level of CRIS-88.

250

An overview of the complete schema hierarchy is depicted in figure 4.7.
CRI1S-88
Conference Technical_Committe

Session Working_Group

figure 4.7.: overview of SOT hierarchy of CRIS-88.

Another easy way to extend a hierarchy is by adding a new (top) level.
As an example, consider the schema of figure 4.8 describing the following

UoD: :

"In a particular supermarket, the manager wants, at each moment in
time, to keep track of which employee is serving which cashier station,
and of the number of clients in the queue of this station. He will use this
information to decide to open a new cashier station if too many clients
are waiting."

s

Queue_Length

served_by CashierStation

figure 4.8: supermarket example.

Later on, the manager wants to maintain this information during
some time period (e.g. a week) because this will give him in advance an
indication of the optimum number of cashier stations to open at a certain
moment during a particular day.

Without SOTs the schema of figure 4.8 has to change considerably (see
figure 4.9). Using SOTs this extension is much easier; only a new top level,
Time, should be added to the hierarchy. The original schema moves one
level down but remains the same; only CashierStation and Employee need
to become UP-OTs because they are Time independent objects; see figure 4.10.

251

Erployee

TOP LEVEL Schema Time Schema

figure 4.10: extended supermarket example with SOTs.

Maintenance.

Because each SOT schema is a schema by itself and because the links
with the other schemas in the hierarchy are well defined, it can be
maintained independently. This also offers the possibility to adapt it by
replacing the schema of a SOT by a new version. Also several design
alternatives can be tried out in this way.

5. Transformation into a flat BR schema.

In this section, we give an algorithm to transform a SOT hierarchy into
a flat BR schema. The BR schema obtained by applying this algorithm is in
general not optimal; it may contain redundancies. However, after this
transformation, other (classical) transformations [8] may be applied to
remove the redundancies.

The reason for giving this transformation is twofold.
(1) By defining this transformation we establish the meaning of a SOT in
terms of the concepts of the classical BR model.

252

(2) All existing techniques for the BR model (e.g. verifications, mappings,
etc) can still be applied and need not be extended for SOT-hierarchies.

The algorithm defines a mapping 'g' from a SOT hierarchy into a flat
BR schema. Roughly speaking, it defines a correspondence between the
symbols of the languages of the SOT hierarchy and the language of the BR
schema and a mapping which maps each valid database instance of the SOT-
hierarchy into a valid database instance of the flat BR schema (for the
definitions of language and valid database instance see appendix). To
indicate the language correspondence, the BR schema symbol corresponding

with a SOT hierarchy symbol X will be denote XE.

The formal definition of the transformation will be omitted because of
lack of space. It will be given in a forthcoming paper. Instead, we will
illustrate the most important steps of the algorithm by means of examples
taken from the transformation of the CRIS-88 SOT hierarchy.

It is important to notice that in this algorithm all constraints of the
SOT hierarchy are transformed; more attention will be given to this part of
the algorithm.

Step (1): let the output schema be equal to the schema of the root SOT; SOTs
and DOWN-OTs are considered as ordinary NOLOTs (in what
follows we will refer to them as former SOTs or former DOWN-
OTs).

The OTs, sublinks and relationships defined in the top level schema can
be kept in the flat schema. The distinction between LOCAL- and
DOWN-OTs does not apply in a flat schema.

Step (2): for each SOT schema different from the root schema apply the
following steps:
Each SOT schema will now be ‘added” to the flat schema derived so

far.

Step (2.1): add each LOC-NOLOT as a NOLOT to the output schema (if
not yet added in a previous step in its function as DOWN-OT) and
add (in any case) for this NOLOT a total one-to-many fact (called
reference fact) to its former SOT.

gnferance
o L 1]
z

figure 5.1: example of step (2.1)

253

First the LOC-NOLOTs are added. The reference fact expresses
property (3) of section 3.4.; each instance of a LOCAL-OT refers
(implicitly) to exactly one owner-instance.

Step (2.2): all LOC-LOTSs are taken over in the output schema.

-
- T

s » 277N
II \‘ ¥ \
\Paper_;d’ i?lper_ld:

N I = \ ’

. - - ~ -

figure 5.2: example of step (2.2)

LOC-LOTs do not need an explicit reference fact to their former SOT
because there will always be a reference path (combination of facts) in
the schema that relate those LOT-instances with there owner-instance.

Step (2.3): for each UP-OT, a new NOLOT is added to the output
schema. Connect this new NOLOT by a fact with the OT which
corresponds with this UP-OT (already added in a previous step and
in this step refered to as former UP-OT). Connect this new NOLOT
also by a fact with the former SOT. Both are total one-to-many facts
(reference facts). Each instance of this new NOLOT must be
uniquely defined by the combination of an instance of the former
UP-OT and an instance of the former SOT. Therefore a uniqueness
constraint on these two facts is also added.

Person_in_ponfereﬂsg

: Person
H =

Conference

figure 5.3: example of step (2.3).

Relationships involving UP-OTs cannot be take over as such. Therefore
for each UP-NOLOT a new NOLOT, representing instances of this UP-
OT but considered in the role they play in the context of the SOT, is
introduced. These new NOLOTs will later replace the UP-NOLOTs
when we map the relationships of the SOT schema (step 2.5). These new
NOLOTs have reference facts to the former SOT and also to the NOLOT
corresponding with the UP-NOLOT.

254

Step (2.4): all DOWN-OTs are taken over in the output schema as
NOLOTs (if not yet included).

»
=>

Working_ Group Weorking_Group

figure 5.4: example of step (2.4)

Former DOWN-OTs will receive their reference fact to their owner-
instance in step (2.1) when the SOT-schema in which they are defined is
considered.

Step (2.5): all relationships (facts and sublinks) not involving an UP-OT
are taken over in the output schema.

Paper Author Paper l

Accepted Paper Accepted_Paper

figure 5.5: example of step (2.5).

Relationships between LOCAL-OTs and DOWAN-OTs can be taken
over.

for each relationship involving an UP-OT, the relationship is
taken over but the UP-OT is replaced by the new NOLOT defined
for it in step (2.3).

Person_in_Conf

i Person f

figure 5.6: example of step (2.5)

255

Relations involving an UP-OT cannot be taken over as such because the
role played by the UP-OT in this relationship is only valid in the context
of the SOT. Therefore the UP-OT is replaced by the NOLOT introduced
in step (2.3) which represents this role.

Step (3): for each SOT schema S different from the root schema apply the
following steps:

Step (3.1): for each fact corresponding to a fact between two NOLOTs in
the SOT schema S, add in the output schema two path subset
constraints, one for each NOLOT, which ensure that instances
related through this fact will share the same owner instance.

Confarence

if ¢ is Conference (via R4) of Author (via R1) of Paper p
then c is Conference (via R3) of same Paper p

~if ¢ is Conference (viaR3) of Paper (via R1) of Author a
then c is Conference (via R4) of same Author a

figure 5.7: example of step (3.1).

These path subset constraints will guarantee property (5) of section 3.4.;
instances can only be related to each other by means of facts if they
share the same owner-instance.

Step (3.2): transform each constraint C of the SOT schema S into an
equivalent constraint for the output schema as follows (for the
used notation see appendix): ;

(1) replace each symbol in C by its corresponding symbol. We note
the result as C'.

(2) for each Wff w in C' of the form "®Q x : wl(x)" where © stands
for V or 3 and O € Otg replace w by:

a

256

Oogs x : wl(x) A (IN(x) = P(x,s))
where OB is the corresponding OT for O for the SOT schema S
and P is the (reference) path starting in 085 and ending in the
former SOT S. (This reference path always exist because of step
(2.1)). The result of this step is noted C85.

(3) finally, C8 is defined as
Vggs:IN(s) = C85

This transformation is based on the following observation. Each
constraint of the SOT schema is wvalid (but only valid) for each
database-instance of this SOT schema. Therefore, in the output schema
this constraint can only Rold if it is considered in relation with an instance
of the former SOT. This done by constructing C85. 4 condition expressing
that if x is an instance in the current database it must be related to a
certain instance s of its former SOT, is added. In addition the constraint
should hold for each existing instance of this former SOT (3).

Consider the following example. In the SOT schema of Conference, the
identifier constraint stating that a Paper_Id identifies a Paper holds
(see figure 5.8., part A). This is not the case in the output schema; a
Paper_Id only identifies a Paper within the context of a conference or
i.ow. a Paper_Id identifies a Paper only in combination with a
Conference instance. Therefore the identifier has to become a uniqueness
constraint in the output schema (see figure 5.8., part B).

Conference

Part A.

figure 5.8.

So far, this algorithm only transform the schema part of a SOT hierarchy. In
order to show that this schema transformation is "lossless" (for a definition
see e.g. [8, 18]) we also have to define how the db-instances of the input- and

257

the output schema relate. This as well as the proof of correctness of the
algorithm is omitted and will be given in a forthcoming paper.

6. Conclusions.

In this paper, we have presented (in the context of conceptual
modelling) an extended notion of the complex object type concept known
from OO formalisms. This new concept, called schema object type, still
covers the concept of part-of relationship. In addition, it allows for a
semantic modularization or hierarchical decomposition of conceptual
schemas. The individual schemas created in this way are in general simpler
and easier to understand because we perform an abstraction from context.
We have illustrated that the extension of a schema hierarchy is quite simple
and we believe it will be the same for the reuse and maintenance of 2
conceptual schema. Formal definitions and rules are presented in the
appendix. A transformation algorithm to convert a schema hierarchy with
schema object types into a schema without schema object types is presented.
Important to this algorithm is that it also transform the constraints and
therefore it is a lossless transformation.

Several topics remain to be investigated. For example, how are
schemas of two schema object types related if one object type is the subtype
of the other object type? What do we do if more than one decomposition is
possible? Do we need to deal with non-hierarchical structures as well, and if
yes, how?

Acknowledgements.

I would like to thank the Egon Verharen and especially Prof. Robert
Meersman for the useful discussions and the suggesting improvements to
earlier drafts of this paper.

Bibliography and References.

[1] Atwood T.M., "An Object-Oriented DBMS for Design Support Applications”. In
Proceedings IEEE COMPINT 85, Montreal Canada, pp- 299 - 307.

[21 Banerjee J., Chou H.T., Garza J.F. , Kim W., Woelk D., Ballou N., Kim H.J., "Data
Model Issues for Object-Oriented Applications”. In ACM Trans. On Office Information
Systems, Vol 5, N 1, 1987.

[3] Batory D.S. Buchmann A.P., "Molecular Objects, Abstract Data Types, and Data
Models: A Framework". In Proceedings of the tenth VLDB Conference, 1984.

[4] Batory D.S., Won Kim, "Modeling Concepts for VLSI CAD Objects". In ACM Trans. on
Database Systems, Vol. 10, No. 3, Sept 1985, pp 322-346.

[5] Chen P.P., "The Entity-Relationship Model - Towards a Unified View of Data". In
ACM trans. on Database Systems 1(1) pp.9-36 (1976).

(7]

(81

[9]

(10]

(1]

(12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

(21]

258

Copeland G., Maier D., "Making Smalltalk a Database System". In Proc. ACM
SIGMOD Intl. Conf. on Management of Data, Boston, Mass., June 1984.

De Troyer O., Meersman R., "Transforming Conceptual Schema Semantics to Relational
Data Applications". In Information Modelling and Database Management. Ed H.
Kangassallo. Springer Verlag (1987).

De Troyer O., "RIDL*: A Tool for the Computer-Assisted Engineering of Large
Databases in the Presence of Integrity Constraints". In Proceedings of the ACM-
SIGMOD "International Conference on Management of Data", Oregon 1989.

De Troyer O., Meersman R., Ponsaert F., "RIDL User Guide", Control Data DMRL
Research Memorandum (1983) [available from the authors].

De Troyer O., Meersman R, Verlinden P., "RIDL* on the CRIS Case: A Workbench for
NIAM". In [24].

Falkenberg E., "Concepts for Modelling Information”. In "Modelling in Data Base
Management Systems", Proceedings of IFIP TC-2 Conference, North Holland, 1976.

Fishman D., et al., "IRIS: an Object-Oriented Database Management System”. In ACM
Trans. on Office Information Systems, Vol. 5, N. 1, 1987.

Gadre S., "The Enterprise and Information Model". In "Database Programming and
Design", Volume 1 (1), 1987.

Hohenstein U., Gogolla M., "A Calculus for an Extented Entity-Relationship Model
Incorporating Arbitrary Data Operations and Aggregate Functions". In "Entity-
Relationship Approach”, ed. C. Batini, Elsevier Science Publ. (North Holland), 1989.

International Standards Organisation, "Concepts and Terminology for the Conceptual
Schema and the Information Base". ISO TR#9007 (also as: N695; Ed.].J. van
Griethuysen) (1982).

Kim W., Bertino E., Garza J.F., "Composite Objects Revised". In Proceedings ACM
SIGMOD 1989, SIGMOD Record Vol. 18 (2), June 1989.

Kim W., Chou H.T. and Banerjee J., "Operations and implementation of Complex
Objects". In Proceeding of 3rd Intl. Conf. on Data Engineering’, Los Angeles California,
1987.

Kobayashi 1., "Losslessness and Semantic Correctness of Database Schema
Transformations: Another Look on Schema Equivalence". In Information Systems Vol.
11, No. 1, pp 41-59 (1986).

Lorie R., Plouffe W., "Complex Objects and Their Use in Design Transactions”". In
Proceedings Databases for Engineering Applications, Database week (ACM), May
1983, pp.115-121.

Mark L., "What is the Binary Relationship Approach?”. In "Entity-Relationship
Approach to Software Engineering", Ed. Davis, North Holland 1983.

Meersman R., "Towards Formal Models for Reasoning about Conceptual Database
Design”. In "Data and Knowledge", Proceedings of the IFIP Working Conference DS-2,
Eds: R. Meersman, A. Sernadas, North Holland (1988).

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

(34]

[35]

259

Nijssen G.M., "A Gross Architecture for the Next Generation Database Management
Systems". In Modelling in Database Management Systems; proceedings of the IFIP TC-2
Conference, Ed. G.M. Nijssen. North Holland (1976).

Nijssen G.M., Halpin T.A., "Conceptual Schema and Relational Database Design”,
Prentice Hall 1989.

Olle T.W., Verrijn-Stuart A.A., Bhabuta L., "Computerized Assistence During the
Information System Life Cycle". Proceedings IFIP CRIS-88 Conference, North-Holland
(1988).

Olle T.W.: "Design Specifications for the Conference Organization", In appendix B of
[24].

Schiel U., Furtado A., Neuhold E., Casanova M., "Towards Multi-Level and Modular
Conceptual Schema Specifications”. In Information Systems Vol. 9, No. 1 pp. 43-57,
1984.

Shipman D.W., "The Functional Data Model and the Data Language DAPLEX". In
ACM trans. on Database Systems 6(1), pp. 140-173, March 1981.

Shoval P., "Essential Information Structure Diagrams and Database Schema Design”.
In Information Systems Vol. 10, No. 4 pp. 417-423, 1985.

Stefik M., Bobrow D.G., "Object-Oriented Programming: Themes and Variations". In
"The AI Magazine", Jan. 1986, pp.40-62.

Stonebraker M., Rowe L., "The Design of POSTGRES". In Proc ACM SIGMOD Intl. Conf.
on Management of Data, Washingthon D.C., May 1986.

Vanparys R., "Modulaire decompositie van informatiestructuren”. In Informatie Vol.
29, No. 6 pp.493-568, 1987.

Verheijen G., van Bekkum J., "NIAM: An Information Analysis Method". In Proceedings
of IFIP TC-8 Conference on Comparative Review of Information Systems Methodologies
(CRIS-1), Eds. Verrijn-Stuart A., Olle T.W., Sol H., North Holland (1982).

Vermeir D., "Semantic Hierarchies and Abstractions in Conceptual Schemata". In
Information Systems Vol. 8, No. 2 pp. 117-124, 1983.

Wintraecken J.J. "NIAM in Theorie en Praktijk", Academic Service, 1986 (Book in
Dutch).

Nicolas J.M., Gallaire H. “Database: Theory vs Interpretation” in Logic and Databases
Eds. Gallaire H. and Minker J., Plenum, New York 1978.

260

Appendix: Formal Definitions.

In this section, we give the formal definition of a SOT hierarchy. The
definition is based on the definition of BR schema which will be given first.

For our method of description we adopt a model theoretic view [35] of
databases. A (database) schema is regarded as a first order theory and the
models of the theory represent the possible database states.

The formalism has the following characteristics beyond those of first-
order predicate logic:
a. it supports sorts or types; i.e. it is a many sorted logic;
b. it has sub-sorts or subtypes and supports inheritance;
c. it supports static types of relationships, called relations between sorts
or types describing the structural format of the database.

Definition 1.

A (flat) BR schema S is a tuple (L, I') where L is the language and I'is a finite
set of axioms, the constraints of the BR schema which are wif of the
language L.

L, the language, contains:

(1) a non-empty finite set Ot = {O1, ..., Onj of Object Tvpég, each Object
Type denoting a particular type of object. The set Ot is partitioned into
two disjoint sets Lot and Nolot, being respectively the set of Lexical

Object Types and Non-Lexical Object Types;

(2) < is a partial order relation (transitive and irreflexive), called subtype

relation, on Nolot. If T1 < T2 then T1 is called the subtype of T2 and
T2 is the supertype of T1.

(3) a non-empty finite set of Relationships
Rel = { Rj(rjl:Oh, er:sz) | OjLszE Ot,j=1. m}. The rjl:Ojl and
rj,:0jj are called roles. The rj; and rj, are called the role names. The

set Rel is partitioned into two disjoint sets Fact and Sublink,
_respectively the sets of Facts and of Sublinks.

For each R(r1:01, r2:02) € Fact holds:
01 € Nolot or O2 € Nolot

R(r1:01, r2:02) € Sublink iff O1 < O2

For each O € Lot holds: 3! R(r1:01, r2:02) € Fact:
01=00r02=0"

(4) logical connectives A, v, -, =, < and punctuation signs: () ,

261

(5) for each O € Ot there is the usual set of constant symbols, variable

symbols, the existential and universal quantifier (30 and VO)

(6) the usual set of predicate symbols and function symbols.

(7) for each O € Ot there are the special predicate symbols, the equality
symbol =0 and the existence symbol INg, The existence symbol
allows to test if an object is present in a particular database state as
opposed to belonging to the set of all potential objects over which
variables actually range.

Notational conventions.
- We will use the symbol = instead of =Q.
IN instead of INQ,

V instead of VO,

3 instead of 30,
if the Object Type O is clear from the context.

- Usually , the order of the Roles in a Relation is not important.
Therefore, if R(r1:01, r2:02) is in Rel, then R(r2:02, r1:01) is also said to
be in Rel.

- If the Object Types in a Relation are distinct or if we use the same order
as the one given in the definition of the Relation, we will omit the role
names. We will write R(O1, O2) instead of R(r1:01, r2:02).

Definition 2.

The well formed formulae (wff) are defined in the usual way for many
sorted logics but with an additional rules:

- any variable or constant of type O', where O' < O is an O-term
-if R(r1:01, r2:02) € Rel and t1 and t2 are O1- and O2-terms then
R(t1, t2) is a wff.

The following set of axioms is always in I':
For each R(r1:01, r2:02) € Rel the following wif is in I':
(A1) VO;x1, VOx2 : Rx1,x2) = IN(x1) A IN(x2)
For each R(r1:01, r2:02) € Sublink the following wifs are in I™:
(A2) Volx: IN(x) = R(x,x)

(AS) Volxi VOZY: R(x;y) = X= y

262

(A1) states that instances involved in a Relationship satisfy the IN predicate,
i.e they occur in the database state.
(A2) and(A3) guarantee that each subtype instance is also an instance of the

supertype.

We next introduce the concept of database state or database instance
(db-instance) for a BR schema.

Definition 3.

A database instance (db-instance) I for a BR schema S = (L, I') is an
interpretation for L over a Universe U where:

- U=V Oje Ot Dom(0Oj)
Dom(0Oj) is a non-empty set, called the domain of the object type Oj.
If Oj < Oj then Dom(Oj) < Dom(O;j)

- Each constant symbol c of type O is assigned an element I(c) of Dom(O).

- Each predicate symbol P of type (O1,...,On) is assigned an n-ary relation
I(P) ¢ Dom(O1) x ... x Dom(On) .

- Each function symbol F of type (O1,...,0On,0On+1) is assigned a function
I(F) : Dom(O1) x ... x Dom(On) -> Dom(On+1).

- Each Relationship symbol R of type (O1, O2) is assigned a binary
relation I(R) ¢ Dom(O1) x Dom(Q2) .
O

The definitions of truth or validity are the standard ones.

Definition 4.

A db-instance I for a BR schema S = (L, I') is a valid db-instance if I is a
model for S.

a

An interpretation I is a model for a theory if each axiom of the theory is TRUE under I.

Definition 5.

Let S be a BR schema, O an object type of S and I a db-instance for S, then the
extension of O in I ,noted Ext (I, O), is defined as follows:

{x | xe Dom(O) A IN(x) }

263

The constraint types mentioned earlier can be defined formally. We will
omit this part.

In a SOT hierarchy, we have to deal with several BR schemas at the
same time. Therefore, to distinguish among the languages of the different
schemas, the components of the language will be indexed by the name of
the schema, e.g OTs,

We suppose the concept of tree to be predefined in some convenient
way.

Definition 6.

A SOT hierarchy is a tree T=(N,E) where N is the set of nodes and E is the
set of edges. ,

Each node Ni is of the form (Oi = Si) and is called a Schema Object Type
(SOT). Qi is the object type of the SOT and Si is called the SOT schema for Oi.
A SOT schema is defined below.

Each edge is of the form (Ni,Nj) where Ni and Nj are nodes in N. Ni is the
parent node, Nj is the child node.

The SOT schema S of a node N is a BR schema defined as in definition 1
except for part (1) of the language which is extended as follows:

The set Ot is partitioned into three disjoint sets Up-Ot, Down-Ot and Loc-
Ot, being respectively the set of upwardly defined OTs, downwardly
defined OTs and Locally defined OTs.

Up-Ot and Down-Ot are both subsets of Nolot.

S-Ot is the set of schema OTs and is a subset of Loc-Ot n Nolot.
Furthermore, the following conditions hold:

(C1) For each two SOT schemas S1 and S2 of T holds:
Loc-Ots; N Loc-Otg, = &
Rels; NRelg, = &

(C2) For each edge (Ni,Nj) of T, Nj = (Oj =5j) holds:
Oj e S-Otg;

(C3) For each SOT schema S; of a node Ni of T holds:
(C3.1) for each O € Up-Otg,, there exist exactly one ancestor node Nj
with SOT schema S; such thatO € Loc-Otsjn Nolotsj

(C3.2) for each O € Down-Otg,, there exist exactly one node Nj with
SOT schema S; such that Nj is not an ancestor node of Nj and O

€ Loc-Otsj N Nolotsj

264

In both cases, the SOT schema Sjis called the defining schema of O, noted
S(O).

O

Convention.

Usually the name of the SOT and the name of the SOT schema of a node
will be the same, therefore if no confusion is possible the name of the SOT
will also be used to refer to the SOT schema.

Condition (C1) requires that the set of LOC-OTs as well as the set of
Relationships for each two SOT schemas are disjoint. By condition (C2)
LOC-NOLOTS may be SOTs, there schema is given at the next lower level.
Conditions (C3.1) and (C3.2) express respectively properties 1 and 2 given in
section 3; only NOLOTs from an ancestor SOT schema may be used as UP-
OTs and only NOLOTs from a non-ancestor SOT schema as DOWN-OTs.

We next introduce the notion of database instance for a SOT hierarchy.
This definition will express the remaining properties given in section 3.

The definitions of db-instance and (valid) db-instance for a SOT schema
are similar to those given for a flat BR schema.

Definition 7.

For a given universe U a (valid) SOT-instance for a SOT (O = S) is a tuple (x
= Ig) where Ig is a (valid) db-instance for S and x € DOM(O).
O

Informally, an SOT-instance is a tuple. The first element is an element of
the domain of the object type, the second element is a db-instance for the
schema of the SOT.

Definition 8.

For a given universe U, a (valid) SOT-extension EN for a SOT N defined as
(O =9) is a finite set of (valid) SOT-instances {(xj=Ig) | i=1..m } such that
for each two SOT-instances (xj =1I1g) and (x2 = 12g) holds:

X1 <> X2
and V O e Loc-Otg N Nolotg : Ext(I15,0) n Ext(125,0) =&

O

Informally, a SOT-extension is a collection of SOT-instances. The SOT-
instances in a SOT-extension are uniquely identified by the elements of the
domain of the object type of the SOT. The second condition ensures that the

265

db-instances for different SOT-instances are disjoint as far as they concern
the instances of the locally defined NOLOTs.

Definition 9.

A (valid) database-instance It for a SOT hierarchy T=(N,E) where N = { N1,
... , N} where N; = (Oi = Si) is a set {Eny, ... , ENy} of (valid) SOT-extensions
for the SOTs Ny, ... , Ny over a universe U, where

U =Use (s1,..,5n (Y 0je Loc-Otg Dom(0j))
where Dom(Oj) is a non-empty set, being the domain of Oj.

furthermore the following conditions hold:
(C1) For the root SOT, the SOT-extension is a singleton.

(C2) For each edge (Ni,Nj) holds:
(xj= Ij) is an instance in the SOT-extension of the child node
Nj=(0j= Sj) iff there exists a SOT-instance (xj = I;) in the SOT-
extension of the parent node Ni=(O; =S;) such that x; € Ext(I;, O]-).

(C3) For each node N=(O = S), for each SOT-instance (x =Ig) in the
SOT-extension of N, and for each O; € Up-Ots U Down-Otg holds:

for each instance o € Ext(Ig, Oj), there exist a SOT-instance (y =
Is(0i)) in the extension of the defining schema of Oi, S(0Oj), such

that o € Ext(Is(0i), Oi)._
O

By condition (C1) the root schema has only one db-instance.

By condition (C2) each instance in the extension of a schema object type
(and no other instances then those belonging to this extension) is further
described by a db-instance of its corresponding SOT schema.

Condition (C3) ensure that the instances of Up-Ot and Down-Ot used at
some level also appear in the db-instance of the SOT-schema in which
those object types are actually defined (i.e. their defining schema).

	1-50
	51-99
	100-129
	130-159
	160-189
	190-219
	220-249
	250-265

