Avoiding Variability of Method Signatures in Software
Product Lines: A Case Study

Marko Rosenmuller, Martin Kuhlemann,

Norbert Siegmund
School of Computer Science,
University of Magdeburg

{rosenmue, mkuhlema, nsiegmun}@ovgu.de

ABSTRACT

Software product lines (SPLs) are used to build tailor-made
applications based on the features of a domain. Optional
and alternative features introduce variability into an SPL
that is needed for customization. Variability of method sig-
natures is sometimes necessary to provide additional argu-
ments for optional features. However, this complicates the
development of SPLs and is the source of incompatibility
between client applications and products of an SPL. In this
paper we analyze two techniques to avoid variable method
signatures in SPLs and evaluate the solutions in a non-trivial
case study.

1. INTRODUCTION

Tailor-made software is needed to fulfill diverse require-
ments on applications in a domain. Software product lines
(SPL) are used to build such customizable applications and
allow to generate different variants of a software. Feature-
oriented programming (FOP) [13, 3] and aspect-oriented pro-
gramming (AOP) [9] are paradigms that allow to implement
SPLs based on features as extensions to a base program [3].

Client applications communicate with products of an SPL
via the SPL interface. This interface has be variable to allow
access to the varying functionality of different instances of
the SPL. On the other hand, stability of the interface is
crucial for communication with other software [12, 4]. This
was summarized by Parnas: “Additional capabilities require
adding interface programs but do not require modifications
to existing ones” [11]. Thus when adding new functionality
to a software, modifications of the interface have to preserve
the existing interface to allow stable communication. This
ensures that clients can interact with the SPL independent
of additionally configured features.

Features of SPLs can extend existing methods and may
also introduce additional arguments. This leads to variabil-
ity of method signatures if the according feature is optional.
Client applications as well as the SPL itself cannot han-
dle this variability since existing method invocations have
to be adapted if the signature of a method changes. In
this paper we compare two techniques that are promising
to reduce negative effects of variability in SPLs by avoiding
method signature extensions. We evaluate the techniques in
a non-trivial case study and analyze the effects on SPL de-
velopment and client applications. In the remainder of this
paper, we concentrate on FOP, but the presented solutions
also apply to other paradigms (e.g., AOP) that are used to
develop SPLs.

Horst Schirmeier
Department of Computer Science XII,
University of Dortmund,

Horst.Schirmeier@udo.edu

DB

= DB,
Composition> [~ |

concrete database
applications

BAsE

TRANSACTION

REPLICATION

features in the
DBMS domain

Figure 1: Generating database applications from
modularized features.

2. METHODOLOGY

In the following, we give a short introduction to FOP
and the importance of interfaces in SPL development. We
furthermore present two solutions to avoid variability of
method signatures. In our case study and in examples we
will use a product line of database management systems
(DBMS) based on Berkeley DB.*

2.1 Feature-Oriented Programming

Feature-oriented programming [13, 3] treats features of
software as basic elements of the development process. Fea-
tures represent concerns that are of interest to the stake-
holder of a software [5] and are the basis for building SPLs.

Feature Modules Feature modules implement features as
increments in functionality [3]. These modules are kept sep-
arate from each other to comply with the principle of separa-
tion of concerns [12]. Tailor-made software can be generated
by composing selected feature modules.

A simplified example of a feature-oriented design is given
in the left part of Figure 1. It shows module BASE and
modularized features TRANSACTION and REPLICATION of a
DBMS. Basic database functionality is implemented in mod-
ule BASE and is extended by modules TRANSACTION and
REPLICATION that provide transaction processing and repli-
cation functionality. Based on this decomposition, different
variants of concrete database applications (right part of Fig-
ure 1) can be generated by composition of modules.

Decomposition of Classesilasses are the basic imple-
mentation units when using FOP. However, usually only a
fraction of a class belongs to one feature and the rest of
the class to other features. Figure 2 shows a decomposition

"http:/ /www.oracle.com/database/berkeley-db

——— = == — = == ———n

BASE

TRANSACTION

Figure 2: Decomposition of classes (vertical bars)
with respect to features (horizontal bars) in feature-
oriented designs.

1 | //Basic implementation of class DB

2 | class DB {

3 bool Put (Key& key, Value& val) { ... }

4 |}

5 | //Exztensions needed for feature Transaction
6 | refines class DB {

7 TXN* NewTxn() { ... }

8

9 bool Put (Key& key, Value& val) {

10 //Transaction specific code

11

12

13 //Invocation of refined method

14 return super::Put (key,val);

15 };

16 | };

17 | //Extensions needed for feature Replication
18 | refines class DB {

19 int BeginReplication() { ... }

20 | };

Figure 3: FOP source code of class DB based on the
programming language FeatureC++-.

of classes DB, Cursor, and B-tree (dashed bars) along the
features of Figure 1 (vertical bars). In this design, basic
functionality is separated from feature-specific functionality
for every class. The classes are refined to implement features
TRANSACTION and REPLICATION, which is denoted with an
arrow. For example, class Cursor is refined to implement
the feature TRANSACTION, whereas class DB is refined for
features TRANSACTION and REPLICATION.

In Figure 3 we show the simplified source code for class DB
for the design presented in Figure 2. The example is imple-
mented using FeatureC++2, a feature-oriented extension to
the C++ programming language [1]. The basic implemen-
tation (Lines 1-4) includes functionality needed for every
DBMS. Class refinements in feature modules TRANSACTION
and REPLICATION (Lines 5-20) extend the basic functional-
ity, which is indicated by the keyword refines. Such refine-
ments can introduce new members (Lines 7 and 19) and ex-
tend existing methods (Lines 9-15). In method extensions,
the refined method is invoked using the keyword super (Line
14). Classes are composed based on the selection of needed
features and include only according functionality. For ex-
ample, the code in Lines 5-16 of Figure 3 is omitted if the
feature TRANSACTION is not used.

2http://wwwiti.cs.uni-magdeburg.de/iti_db/fcc/

2.2 Interfaces of Software Product Lines

Interaction with a product of an SPL is possible through
the external interface of that product [7, 2], i.e., the interface
for communicating with the external world. Besides external
interfaces, there are also internal interfaces within software
products. These are used for communication between parts
of a software [7, 2] and are only visible internally.

In the context of SPLs we refer to internal and external
interfaces as the merged respective interfaces of all features
of an SPL. In the scope of this paper, it is sufficient to
use the simplified definition of an interface as the merged
signatures of classes with their methods. A precise definition
of interfaces of software components that includes semantics
of usage can be found in [10].

Variability of Interfaces.Access to additional function-
ality of different variants of products of an SPL is usually
provided by extending the external interface. As described
for components [12], also modifications of SPLs (e.g., in-
troduced by optional features) have to preserve the existing
interface to allow stable communication with other software.
Hence, modifications of interfaces should only include addi-
tion of classes or class members and removal or modification
should be avoided. In SPLs those changes not only occur
when a new version of an SPL is released but also if the
configuration of a software changes.

Besides changes over time there is another critical effect
of variability of external interfaces. When developing an
application that has to communicate with a product of an
SPL it may be not clear what configuration that SPL in-
stance will have. Other applications, communicating with
the same product, may have special requirements that result
in a specific configuration. This can lead to incompatibility
between clients and the SPL even if there is only one inap-
propriate extension of the interface (e.g., a modification of a
method). As a consequence, the interface of the SPL has to
be completely stable except from addition of new elements
(e.g., methods).

Variability of internal interfaces causes problems due to
SPL-internal method invocations. The SPL thus has to rely
on a stable internal interface. Otherwise, dependencies be-
tween features arise that prevent, or at least hamper, exten-
sion of the SPL.

Passing ArgumentSn contrast to object-oriented pro-
gramming, in AOP and FOP arguments are also passed be-
tween method extensions, i.e., between features that extend
the same method. Features can add arguments to existing
methods and cause a variable method signature if the fea-
ture is optional, i.e., a method can have different arguments
depending on the used features.

This variability of method signatures causes problems:
First, it introduces dependencies to other features that ex-
tend methods with a variable signature and thus addition-
ally have to provide the extended signature. Second, classes
that are defined within an optional feature, and are thus
optional themselves, cannot be used as arguments because
they are undefined in the absence of the optional feature.

Figure 4 shows a client application (Lines 8-18) that uses
Berkeley DB with transactions (Lines 1-7) to store data.?

3All presented code samples are based on C++ / Fea-
tureC++ and are slightly modified for simplicity.

class Database {
//create new transaction
TXN* NewTxn() { ... }

//store data
bool Put (TXN* txn, Key& k, Value& v) { ... }

O U W N

}

8 | void store_data(Data& di, Data& d2) {

9 //create new transaction

10 TXN* txn = database.NewTxn();

11

12 //store data

13 if (database.Put(txn,dl.key,dl.value)
14 && database.Put(txn,d2.key,d2.value))
15 txn->Commit () ; //commit transaction
16 else

17 txn->Abort (); //abort transaction
18 |}

Figure 4: Transactional storage of data in Berkeley
DB (Lines 1-7) by a client application (Lines 8-18).

A new transaction is created by invoking database.NewTxn
(Line 10). Data is stored by calling database.Put (Lines
13 and 14) which receives an argument txn to provide the
transaction to use for storage. If the operations can be fin-
ished without an error the used transaction is committed
(Line 15) and aborted otherwise (Line 17).

Assuming that feature TRANSACTION is optional, the ar-
gument txn is only needed if the feature is present in a
concrete instance of Berkeley DB. It is thus only available
in method Put of class Database if the feature is configured.
Calls to this method have to provide the argument only
if it is actually available. This applies for method calls in
client applications as well as for method calls inside the SPL.
Method signatures have to be stable to avoid such problems.

2.3 Avoiding Variability in M ethod Signatures

In the following we focus on two solutions to prevent vari-
ability of method signatures in SPL development: Forward
declarations and a modified SPL design. There are a lot
more solutions that provide means to avoid variability of
method signatures by using other mechanisms to pass argu-
ments (e.g., variable argument lists). These provide a stable
external interface but cannot handle SPL-internal method
invocations in an appropriate way: Varying arguments have
to be considered in calls to other methods which leads to
complex solutions to provide arguments needed for optional
features.

Forward Declarations.Arguments introduced in method
extensions in optional features lead to variability in the sig-
nature of methods. This can be avoided by providing the
arguments in all method extensions. If the argument type
is a class that is defined in an optional feature it can be de-
clared outside this feature (e.g., in the base application) as
an empty class which is known as forward declaration. All
methods, independent of the enclosing feature, can use the
declared but undefined class as an argument in methods.
Access to class members is only possible if the according
feature, and thus the class itself, is actually defined.

If supported by the programming language, forward dec-
larations can be implemented directly (e.g., in C++) or em-
ulated by defining empty classes to be implemented subse-

quently in the according feature.

Modified SPL DesignThe second approach avoids vari-
ability of method signatures by an appropriate design of
SPLs. Instead of providing additional arguments in method
extensions these are passed to initialization methods that
store the data within classes of the feature. Methods exe-
cuted in the following can access this stored data. For ex-
ample, storing global configuration in configuration classes
avoids passing this data as arguments.

This solution comes with two problems: First, in multi-
threaded applications modifications of those variables have
to be synchronized to handle concurrency. Second, data that
is only valid for single operations (e.g., a single method call)
differs for each thread and thus cannot be simply stored in
members of classes.

Storing data within the context of a thread, also known
as Thread Local Storage (TLS), overcomes both limitations.
It is supported by most C++ compilers by using keyword
__thread and in Java by using the class ThreadLocal. Nev-
ertheless, it can also be implemented in other programming
languages. Like static variables, also per thread data should
be stored within classes to increase modularity of the source
code and to avoid wrong usage. In SPLs this data should
furthermore be stored within the according feature to in-
crease feature modularity and to further restrict access.

3. CASE STUDY

In this section we apply the presented solutions to Berke-
ley DB. We evaluate them with respect to criteria important
to SPL development as well as technical criteria.

Berkeley DB is written in the C programming language
and contains about 96 thousand lines of code.* The devel-
opers used C preprocessor statements to allow static config-
uration. Based on this C version of Berkeley DB we applied
a transformation into feature-oriented code (implemented in
FeatureC++) and further decomposed the DBMS, including
features like transaction management (TRANSACTION) that
were not optional before. Our feature-oriented refactoring
consists of 36 features with 24 of them being optional.’

In the refactoring process of Berkeley DB we recognized
84 interactions between features where 11 are interactions
of feature TRANSACTION with other features. Because of
this strong interaction and the massive use of additional
arguments in method signatures we decided to use feature
TRANSACTION for our case study.

3.1 Forward Declarations

The transaction management in Berkeley DB makes use
of arguments of type TXN in many methods. These argu-
ments provide the transaction to be used for accessing and
storing data. When extracting transaction management as
a feature we needed to handle these arguments in some way.
Introducing a forward declaration of class TXN was part of
this extraction process and not a separate refactoring. The
use of forward declarations allowed us to avoid methods with
varying arguments. Thus we could still use the argument af-
ter extracting feature TRANSACTION into a separate module.

Figure 5 shows the use of forward declarations in Berkeley

4We use the C version 4.4.20 of Berkeley DB.
5The source code used in this case study is available under
http://wwwiti.cs.uni-magdeburg.de/iti-db/BerkeleyDB/.

1 | //Forward declaration of class TXN

2 | class TXN;

3

4 class Database {

5 //read data

6 bool Get (TXN* txn, Key& k, Value& v) {
7 Cursor* c¢ = Cursor::NewCursor (txn);
8

9 }

0

J—

};

11 | //Feature Transaction
12 | class TXN { ... }

14 | //Refinement of class Database
15 | refines class Database {

16 TXN* NewTxn() { ... }

17

18 bool Get (TXN* txn, Key& key, Value& val) {
19 //Transaction specific code

20 TXN* txn = TXN::getCurrent ();

21 L

22 //Invocation of refined method

23 return super::Get (txn,key,val);

24 };

25 | };

Figure 5: Forward declarations to support argu-
ments of unknown type in Berkeley DB.

DB with the basic implementation (Lines 1-10) and parts of
feature TRANSACTION (Lines 11-25). Class TXN is declared
outside the feature (Line 2) in the base of the SPL and its
implementation is postponed (Line 12). The empty decla-
ration of class TXN can be used in method signatures within
arbitrary features. For example, class Database (Lines 4-10)
is defined in the base application and method Get receives
an argument of type TXN (Line 6) which is only needed for
feature TRANSACTION. The argument is then forwarded to
other methods, e.g., to method NewCursor (Line 7). Refine-
ments of method Get rely on the stable signature including
the argument of type TXN (Line 18). Instead of providing
two variants of the method, with and without argument TXN,
there is only one variant that includes the transaction argu-
ment. Invocations of such methods in client applications
have to provide a transaction object or pass NULL if trans-
actions are not used.

3.2 Maodifying the Design

The extraction of feature TRANSACTION using forward
declarations did not change the method signatures in Berke-
ley DB. Thus we could apply the design oriented approach
based on this refactoring. Applying it to Berkeley DB with-
out extracted transactions we would have to use the same
refactoring steps again. Hence, it does not affect the result
of the case study.

We removed arguments of type TXN from all methods in
features that are not related to transactions. This required
to store transactions on a per thread basis by using TLS
(cf. Section 2.3). In case of Berkeley DB, transactions can
be nested and we had to use a stack of active transactions
per thread that stores transactions in order of creation. In
other use cases special solutions might be needed to store
the data in an appropriate way.

Figure 6 shows the basic implementation of class Database
(Lines 1-7) and feature TRANSACTION (Lines 8-30) with

class Database {
//read data
bool Get(Key& k, Value& v) {
Cursor* c = Cursor::NewCursor ();

}
};

N O U W

8 | //Feature Transaction
9 class TXN {

10 | public:

11 TNX() { curTxn.push(this); }
12 “TNX() { curTxn.pop(); }

13

14 static TXN* getCurrent () {
15 return curTxn.top();

16 }

17 | private:

18 static __thread TxnStack curTxn;
19 | };

20

21 | //Refinement of class Database
22 | refines class Database {

23 bool Get (Key& k, Value& v) {

24 //Transaction specific code
25 TXN* txn = TXN::getCurrent ();
26 -

27 //Invocation of refined method
28 return super::Get (k,v);

29 }

30 | 3};

Figure 6: Storing transactions in Berkeley DB in
Thread Local Storage implemented in FeatureC+-+.

class TXN and a stack of nested transactions (Line 18). These
are protected by using a private declaration (Lines 17-18).
In our implementation transactions are stored on creation
and removed from storage on destruction (Lines 11-12). The
current transaction object can be accessed from methods
within feature TRANSACTION (Line 25).

We also removed the argument from methods of the exter-
nal interface of the SPL. When invoked, these methods auto-
matically use the currently active transaction in the context
of the calling thread. Transactions are initialized as usual
by calling method Database: :NewTxn. Thus there is no ad-
ditional initialization needed.

We observed that access to the currently active transac-
tion (as shown in Line 17 of Figure 6) causes problems (1)
if an SPL-internal method should not use the current trans-
action for special calculations and (2) if a different trans-
action than the one currently stored has to be used within
a method. In the first case, it has to be ensured that no
transaction is used what we achieved by setting the current
transaction to NULL before method invocation. The latter
case is similar and the correct transaction has to be stored
temporarily. In both cases the last active transaction has to
be restored after method execution.

3.3 Evaluation

Comparison of SPL Designihe presented solutions are
opposite approaches in the sense of handling additional ar-
guments of optional features. Using forward declarations
leads to the union of all arguments in the interface of an
SPL. The second approach, storing parameters within their
according feature, removes additional arguments that belong
to optional features from all methods.

777777777777777777777777777777777777

I
‘REPLICATION ! H Get(Key)

1
} TXN } } Database | } Cursor |
, |
] f t
‘ BASE | 11| Get(key, TXN) || |[NewCursor(TxN) | ! ‘
Il 4 }
T T T
f T T
(a) ! i1[Get(key, TXN)] 1] NewCursor(rxn)]!
I I
VRAREETE {[XN i1 [NewTxn0 i }
| il
n t - i
u] T]
‘ REPLICATION | 1| Get(key, TXN) |1} | ‘
- JL,,,77777J L,,,,,,,,,J
,,,,,,,,,,,,,,, oSS SIIITD ZTTTTIIICCC
} TXN | } Database } } Cursor }
I Il y
I f
I i I |
BhoE | 1l ‘ Get(Key) “ | ‘ NewCursor() “
I I I
T N 1 LI T
(b) ! o~ K SN [
__thread TxnStack curTxn ‘ }‘ ‘ Get(Key) ‘ NewCursor() |
TRANSACTION 1l I
T TXNQ Ji1] NewTxn ‘ !
| 1l .
! T
]
|
I

Figure 7: Collaboration of classes TXN, Database, and
Cursor using forward declarations (a) and a modified
design with TLS (b).

Figure 7 summarizes the design of Berkeley DB when us-
ing forward declarations (a) and the TLS approach (b). It
shows the collaboration of classes TXN, Database, and Cursor
where features are displayed as horizontal bars that cut
across the classes (vertical dashed bars). Methods, method
extensions, and member variables of classes are displayed
within their according features. Access to stored transac-
tions is indicated with arrows.

By using forward declarations, the parameter TXN has to
be provided in methods Get and NewCursor as well as in
their refinements (Figure 7a). In contrast, the design ori-
ented approach completely modularizes feature TRANSAC-
TION (Figure 7b). Arguments of type TXN can be omitted in
the signatures of both methods. Transactions are stored on
creation of class TXN in the context of the calling thread and
are accessed only from methods in feature TRANSACTION.

The TLS approach introduces a higher complexity and
leads to an increased development effort since a design is
needed that allows to store data instead of passing it as ar-
guments. The refactorings that we used can be partially
automated but a large amount of the work are design modi-
fications. We argue that the modified design can be of great
benefit for development and maintenance since it provides
complete feature modularity. A problem that is inherent to
the TLS design is a difficult debugging process: When using
forward declarations the transactions passed as arguments
can be easily inspected and their origin can be determined.
This is problematic for the TLS approach.

Memory ConsumptionWhen using forward declarations,
arguments of type TXN are stored on the stack in method
calls. This results in additional memory consumption for
each method call. Since there are usually more method invo-
cations, because of argument forwarding to other methods,
the totally used memory depends on the call graph. Us-
ing the TLS approach, transactions are stored on the heap.
Furthermore, there is a stack of transactions needed for each
thread that consumes additional memory. For a small num-
ber of threads this is negligible.

Comparing both approaches, forward declarations may
lead to a higher memory consumption on the stack and TLS
approach increases the use of heap memory. Considering the
overall memory consumption both approaches do not differ

significantly.

Performance.The overhead for passing arguments to an-
other method in C++ is very small. Using TLS to store
transactions avoids argument passing but increases CPU
utilization due to access to TLS. In the TLS approach fur-
ther CPU time is used to allocate memory for the stack
of transactions (highly depending on the implementation)
and to store and read transactions. The estimated overhead
needed for the TLS approach is small compared to the time
needed to store data in Berkeley DB using transactions (<
1%) but can be a problem for other use cases. The TLS
approach utilizes more CPU time compared to the use of
forward declarations.

Impact on Client ApplicationsBoth approaches reduce
modifications of client applications through a stable exter-
nal interface. Forward declarations provide the union of
additional arguments of optional features. This leads to
complex method signatures which might be confusing for
programmers, especially if there are many additional argu-
ments. Clients that invoke such methods have to provide
the arguments even if not needed. Another deficit of for-
ward declarations is missing support for the evolution of an
SPL: When new features are developed and introduce addi-
tional arguments the method signatures have to be extended
and may break existing clients.

By removing additional arguments from the external in-
terface in the TLS approach client applications do not have
to provide these arguments. This also holds for the evo-
lution of the SPL if new features are added. All available
arguments of optional features of an SPL are moved to ini-
tialization methods. This is error-prone and leads to in-
correct behavior of a feature if it is forgotten. In Berkeley
DB we did not need additional initialization methods since
initialization of transactions is needed independent of our
refactoring.

Summary.Before extracting the transaction management,
189 methods in Berkeley DB used arguments of type TXN.
After refactoring by using forward declarations 185 methods
and 42 method extensions used the argument. Using an ap-
propriate design and TLS we removed TXN-arguments from
94 (51 %) methods. The remaining 91 methods (49 %) still
use arguments of type TXN but are only called from feature
TRANSACTION or depending features. 61 (33 %) methods
were only forwarding the argument to other methods. We
also removed the argument from 15 methods of the external
interface of the SPL.

Table 1 compares both approaches. Better results or ful-
filled requirements are indicated with a plus and worse re-
sults or not fulfilled requirements with a minus. The design-
based solution outperforms the use of forward declarations
with respect to criteria important for SPL development.
Comparing technical criteria forward declarations are su-
perior. These criteria are critical and can render the design
based solution unusable for some scenarios.

Both solutions reduce variability of SPL interfaces for dif-
ferent variants of products. Since they also have substan-
tial deficiencies better solutions are desired. However, nei-
ther FOP nor AOP provide means to appropriately support
variable method signatures in SPLs. Additionally, external
variability of method signatures does not allow for stable

Forward TLS
Declaration

SPL development
Separation of concerns -
Signature complexity —
Stable signature:

e in SPL evolution —
e for different configurations
Reduction of interactions

H -+
++ 4+ ++

Technical criteria
Performance
Development effort
Debugging
Fault avoidance

|+ 4+ +
!

Table 1: Comparison of forward declarations and
modified SPL design using TLS.

communication of clients with instances of an SPL.

4. RELATED WORK

There are numerous mechanisms that allow to add ar-
guments to method signatures. Zdun summarizes support
for integration of components with varying interfaces [14]
and patterns to pass a variable number of arguments [15].
Applied to SPL development the patterns lead to several
problems. For some of the patterns provided in [15] this re-
sults in an undefined number of arguments (e.g., in variable
argument lists) and thus a poorly defined interface of a soft-
ware. Other patterns like context objects avoid this problem.
However, passing different argument objects (e.g., context
objects or variable argument lists) to other methods within
an SPL leads to complex solutions since the arguments differ
between methods. Using a global argument object for the
whole SPL adds undesired complexity to all method calls.

The adapter pattern [6] can be used to support integration
of components with variable method signatures by wrapping
incompatible component interfaces [14]. However, manual
implementation of adapters is not possible for an undefined
number of products of an SPL. Code generation might be
used but does not provide a stable internal interface.

Research on service-oriented architectures also handles
variability of services using wrappers and dynamic adap-
tion [8]. However, at the moment there is no approach avail-
able that completely automates the generation of wrappers
to connect varying services.

5. CONCLUSION AND FUTURE WORK

Variability is naturally found in SPLs. Sometimes vari-
ability of method signatures might be used to provide ad-
ditional arguments for optional features. This kind of vari-
ability complicates design and degrades usability of an SPL.
In a case study we have shown that forward declarations as
well as an appropriate SPL design can avoid variability in
signatures of methods. Forward declarations have shown to
be inappropriate because of missing separation of concerns,
unneeded complexity of method signatures, and missing sup-
port for the evolution of an SPL. On the other hand, a design
based approach avoids these problems but increases devel-

opment effort and can degrade performance.

In future work we will analyze combinations with other
approaches to avoid the deficiencies of the presented solu-
tions. Furthermore, we investigate in a generative solution
to allow variability of the external interface of SPLs.

6. REFERENCES

[1] S. Apel, T. Leich, M. Rosenmiiller, and G. Saake.
FeatureC++: On the Symbiosis of Feature-Oriented
and Aspect-Oriented Programming. In Proceedings of
the International Conference on Generative
Programming and Component Engineering, 2005.

[2] T. Barros, L. Henrio, and E. Madelaine. Behavioural
Models for Hierarchical Components. In Proceedings of
the International SPIN Workshop on Model Checking
of Software. Spinger Verlag, 2005.

[3] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Transactions on
Software Engineering, 30(6):355-371, 2004.

[4] K. H. Britton, R. A. Parker, and D. L. Parnas. A
procedure for Designing Abstract Interfaces for Device
Interface Modules. In Proceedings of the International
Conference on Software Engineering, 1981.

[5] K. Czarnecki and U. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[7] P. Hnétynka. Component Model for Unified
Deployment of Distributed Component-based
Software. Technical Report TR 2004/4, Charles
University, Praha, 2004.

[8] A. Ketfi and N. Belkhatir. Dynamic Interface
Adaptability in Service Oriented Software. In
Proceedings of the International Workshop on
Component-Oriented Programming, 2003.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In Proceedings of the
European Conference on Object-Oriented
Programming, 1997.

[10] D. Parnas. Information Distribution Aspects of Design
Methodology. In Proceedings of IFIP Congress, 1971.

[11] D. Parnas. Software Product-Lines: What To Do
When Enumeration Wont Work. In Proceedings of the
1st Workshop on Variability Modelling of
Software-intensive Systems, 2007.

[12] D. L. Parnas. Designing Software for Ease of
Extension and Contraction. IEEE Transactions on
Software Engineering, SE-5(2):264-277, 1979.

[13] C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In Proceedings of the European
Conference on Object-Oriented Programming, 1997.

[14] U. Zdun. Some Patterns of Component and Language
Integration. In Proceedings of the European
Conference on Pattern Languages of Programs, 2004.

[15] U. Zdun. Patterns of Argument Passing. In
Proceedings of the Nordic Conference of Pattern
Language of Programs, 2005.

