
AN EXTENSIBLE STORAGE MANAGER FOR MOBILE
DBMS

Erik Buchmann
Otto-von-Guericke-University of Magdeburg

P.O. Box 4120, D-39016 Magdeburg

Germany

buchmann@iti.cs.uni-magdeburg.de

Hagen Höpfner∗

Otto-von-Guericke-University of Magdeburg

P.O. Box 4120, D-39016 Magdeburg

Germany

hoepfner@iti.cs.uni-magdeburg.de

Kai-Uwe Sattler
Otto-von-Guericke-University of Magdeburg

P.O. Box 4120, D-39016 Magdeburg

Germany

kus@iti.cs.uni-magdeburg.de

Abstract The increasing usage of mobile devices like PDAs, laptops, or embedded devices results in a new type
of application which must especially consider the strict limitations of the used mobile hardware. One as-
pect of the application development is the storage and retrieval of data. For non-mobile application this
is often efficiently realized with database management systems, which offer standardized interfaces and
can be easily integrated into the applications. For mobile devices DBMS are also already available. But
existing solutions are not extensible, and therefore, limited to the builtin functionality. That means also,
that they include functions which are not always necessary. The optimal DBMS for mobile database
systems must allow for the special requirements of its applications in order to reduce the hardware re-
quirements. Thus, it must offer core funtionality which can be extended by additional required features.
In this paper, we present a core component of such a customizable DBMS – the storage manager – and
describe the architecture as well as the main modules. Furthermore, we show how this modules can be
combined in order to address different requirements.

Keywords: Mobile Computing, Storage Management, Customizable DBMS

1. Introduction and Motivation

Due to the increasing usage of mobile computer equipment a new type of application – mo-
bile applications – emerges in importance in comparison to the classical desktop and client server
applications. Software for mobile devices must especially consider the limitations (e.g. less mem-
ory, small display size, limited power supply) of the mobile devices. On the other hand, users and

∗Research supported by the DFG under grant SA 782/3-1.

1



2

application developers of such systems want to get nearly the same functionality and comfort like
working with non-mobile systems.

An important issue in many applications is efficient data management. Though modern oper-
ating systems for mobile devices provide some kind of database support by allowing applications
to store records in permanent Flash ROM, often more advanced techniques are required. This
includes standard interfaces like JDBC or ODBC, a declarative query and manipulation language,
index support for fast access and replication with an enterprise database. Therefore, most DBMS
vendors offer smaller versions of their systems for mobile devices, e.g. Oracle 9i lite and IBM
DB2 Everyplace. These products mostly provide reduced but fixed functionality, i.e., they are not
extensible and customizable. So, some of the offered functions are not necessary for a specific
application, and others – non-implemented functions – would be essential.

Specific requirements of mobile database applications exist at several levels of a DBMS. For
instance, some applications require query processing. In other applications encryption of stored
data is needed, which could be performed transparently by the DBMS. Further examples are trans-
action support, synchronization with a central database and support for special data types (e.g.
geographical objects). If the device offers different types of storage, e.g. Flash ROM or a Mi-
crodrive, specific adaptable access modules could increase the performance and reduce the power
consumption at the same time.

Obviously, a general “all in one” DBMS cannot fulfill all these requirements, in particular for
small devices with limited resources. A viable approach could be a customizable DBMS allowing
to choose and combine required modules from the set of available components. Although this idea
is not really new – database generators and toolkits have been studied in database research since
several years – it plays an important role for mobile DBMS. However, this requires rethinking the
functionality of the individual components of a DBMS considering the requirements of the mobile
devices.

In this paper, we present first results of our work towards an extensible and customizable DBMS
for small devices. We describe the storage manager component of ELORDESS – our extensible
lightweight object-relational DBMS for embedded and small systems. This storage manager con-
sists of a set of modules which can be combined depending on the requirements of the application.
In addition, new modules can be easily plugged in without affecting the application. In this way,
storage management functionality can be customized in a wide range and even for individual rela-
tions.

The remainder of this paper is structured as follows: After briefly presenting related work,
we discuss in section 3 the specific requirements and in section 4 the different approaches for
customizable DBMS. Section 5 presents the architecture of the storage manager and section 6
describes the combination of the individual modules for a given example configuration. Finally,
we summarize our approach and outline future work.

2. Related Work

There are different approaches to solve the challenges of limited resources, extensibility, mod-
ularity and flexibility. Many problems are already addressed in other contexts. Researches in
respect of a storage manager providing the features described above overlap with main memory
DBMS, extensible database systems, and mobile applications in general.

A hierarchical memory architecture with fast RAM on top and slower harddiscs as secondary
storage media have been established on stationary workstations or servers. In contrast embedded
or mobile devices often use battery-backed RAM or Flash-ROM in various architectures [Douglis
et al., 1994]. Therefore, technologies used in modularized main memory storage managers [Bo-
hannon et al., 1997, Cha et al., 1997] are playing a prominent role. Some hardware components
differ in speed, quantity and in their handling. Especially Flash devices need dedicated writing
policies to achieve maximum lifetime [Chiang and Chang, 1999]. Variable power requirements of
components used in mobile or embedded devices lead to new problems for query processing. For



An Extensible Storage Manager for Mobile DBMS 3

instance, queries can be executed on external servers [Rudenko et al., 1998] or can be optimized
considering the energy consumption [Alonso and Ganguly, 1993].

Most applications do not use the whole, but a reduced, varying function set. This kind of
applications can be supported by a general purpose database management system which is heavy-
weight, feature-laden and costly in installation and maintenance, or otherwise by a lightweight,
customized system. On lightweight appliances the resource requirements forbid the use of general
purpose DBMS.

The classical way extends a DBMS by inserting external supplementary layers on top of the
external layer of the three tier architecture presented in [Database Architecture Framework Task
Group (DAFTG) of the ANSI/X3/SPARC Database System Study Group, 1986]. But neither
requirements of application-specific access methods nor hardware-specific optimizations are sat-
isfied by extending the external layer. Therefore, other approaches introduce a widespread range
of extensible architectures allowing the customization of both, internal and external database man-
agement system layers by introducing new data types [Stonebraker, 1986] or storage methods.

KIDS [Geppert et al., 1997] uses a broker/services model. A service represents a task or a part
of it, which has to be provided by the DBMS. A broker reacts on events and satisfies requests
for services. Add-ons for services or brokers provide the extensibility. Another concept intro-
duces a RISC-style DBMS library [Chaudhuri and Weikum, 2000]. A DBMS consisting of an
application specific set of RISC-style lightweight components will be faster and needs a smaller
amount of memory (like RISC-processors) than other system concepts. Some approaches use
small, lightweight database cores like ”Single Schema DBMS” [Batory et al., 1992] and offer in-
terfaces to enhance the core features. DBMS suppliers like Oracle or IBM, which are established
with well known products in the database server market, prefer the not extensible and not cus-
tomizable concept of a small ”general purpose” DBMS for lightweight appliances [Karlsson et al.,
2001].

The integration [Geppert and Dittrich, 1994] of these approaches into database systems is a rel-
evant challenge. One solutionr is to use transformations or generator systems [Batory and Thomas,
1995, Sybase, 2000]. Another way is the use of toolkits of reusable components [Chaudhuri and
Weikum, 2000] with the ability to be assembled with custom software modules to an application
specific system.

This requires to identify different functionality domains which are needed or can be omitted.
[Thomas and Batory, 1995] describes – without the claim of completeness – the distinct function-
ality domains concurrency control, checkpoints and recovery, the ability to use raw devices instead
OS files, persistence, databases larger than primary storage, the support for the client/server model
or distributed databases, and the computing of dynamic queries, set-oriented queries or joins.

Recapitulating, there are several applicable approaches dealing with extensibility, limited re-
sources and modularity. But none tries to transfer the suitable concepts to an open, lightweight,
mobile database management system. We try to close this gap with ELORDESS.

3. Requirements on a Storage Manager for Mobile DBMS

Beyond the general needs for a DBMS, both technical and application specific demands come
up for a storage manager applicable on mobile or embedded devices. As shown in section 2,
highly different applications need many varying functions in all layers of a DBMS. Database-
driven mobile applications can be distinguished between two distinct fields:

Personal information management This field of activity means the “classical” applications for
PDA or organizers. Mostly, there is no cooperative work with other users on the same piece
of data. The amount of data on the mobile device is usually small, and is at most edited on
the mobile device itself. The main challenge for mobile databases for personal information
management is flexibility.



4

Replication of large databases The replication of large databases or parts of them – large in the
context of mobile, lightweight appliances, e.g. not more than 1 GB – is characterized by
the cooperative use of the same data by numerous users. Data are mainly managed and
manipulated by DBMS on stationary servers, only a few or no changes are performed on the
mobile device. Business applications, geographic information systems or multimedia are
typical applications. The most important challenges for mobile databases in this field are
specializability performance.

Technical requirements result from quality and quantity of the relevant ressources CPU, mem-
ory, network and power supply. The differences between stationary and mobile devices can be
described by the following issues:

Quantity In order to meet restictions in weight, size and price, mobile devices are offering signif-
icantly less ressource capacities. Therefore, programs for small, lightweight devices must
not depend on consuming large amounts of CPU-, memory-, battery- or network resources.
Otherwise, if large quantities of some resources are available, they can be used to enhance
the quality of service.

Customizability Stationary devices are customizable for the needs of their applications with a
broad range of exchangeable hardware components. In contrast mobile devices are at most
upgradable with an expansion slot.

Heterogenity Mobile devices are equipped with very heterogeneous resources. For instance, a
personal computer uses a x86-CPU, and harddiscs as secondary storage devices. In contrast,
mobile devices use completely different central processing units like MIPS, StrongARM or
DragonBall, and as secondary storage battery-backed RAM, Flash-ROM, hard discs, net-
work interfaces and so on. The use of heterogeneous hardware requires a flexible, portable
architecture that can be customized to deal in an optimal manner with most different devices.

In order to achive a compact system architecture, an ideal storage manager must offer abstract,
generalized interfaces which are specializable to any kind of application and hardware component,
providing interoperability of existing modules.

4. Approaches for Customizable DBMS

In our approach we decided to create a toolkit system to obtain a sufficient compromise between
flexibility, extensibility, adaptability and maintainability. A DBMS implementor will be able to
assemble a few existing modules very quick to a running system, but also to enhance all modules
with extended functionality.

Other concepts lack some features needed by lightweight appliances. The add-on layer ap-
proach uses a nearly complete DBMS and maps all functionality added to a layer on top of the
system with the underlying DBMS. This leads to poor runtime performance and large memory
consumption.

Customizable approaches to create database management systems utilize a parameterizable
DBMS which can be adjusted by parameters or modified on code level to change its behavior.
For this reason very detailed knowledge concerning the specific DBMS and DBMS technology in
general is mandatory.

Kernel systems offer a public interface supporting common functionality and hide all other
system architectures. Extending the system has to be done by implementing new layers on top of
the kernel. New functionality cannot be included in the kernel. Therefore, kernel systems leads to
suboptimal database systems.

Generator systems should always produce code which uses resources and satisfies application
needs at its best. But unfortunately, generator systems are unable to support a broad range of
applications, and extending generator systems itself is a hard task.



An Extensible Storage Manager for Mobile DBMS 5

We introduce a concept consisting modules. Every module implements one or more distinct
services which provide a part of database management system functionality. Because communi-
cation across module boundaries leads to some inevitable resource consumption, the suggested
modularized architecture offers the option to implement more than one service in a single module.

A module may depend on distinct methods implemented in other modules. For instance an
access path module that provides tries needs attributes which implements access on designated
parts of the key value. Therefore, a module is characterized by its methods – realized as a Java
class – and some interfaces.

The set of modules must be small but applicable to a broad range of DBMS appliances. Compo-
nents have to be reusable in most usecases. Hence, components are not allowed to be too complex
and specific, but rather generally adaptable. Using a large amount of very small modules leads
straightforward to reduced CPU performance because extensive parameter passing and method
calling. In contrast, defining only a few modules implies poor reusability. For this reason, the only
applicable way is obtaining an acceptable compromise.

5. The Storage Manager of ELORDESS: Architecture

Key:

optional

required

control flow

B
yt

eL
ev

el
In

te
rf

ac
e

StorageManager

Application Level Interface

AccessPathManager

CachingManager

CryptoManager

PackingManager

PersistenceManager

CachingManager

CryptoManager

PackingManager

PersistenceManager

Storage
Device

Figure 1. System Architecture

Some tasks of general purpose DBMS should be taken into distinct modules, others have to be
implemented in all modules. Meta-data management is often described as special task performed
by the database catalog. But it is a cross section task that is used by most other tasks. Therefore,
we decided to put this functionality in all affected modules.

In a similar way, transaction management is utilized in a couple of different tasks and cannot
be realized as a separate module. Mobile or distributed transaction management requires flags or
time stamps attached on every internal record to solve the concurrent transaction problem. For
local transaction processing, every storage module has to be thread-safe and needs methods to
delay or release writing of internal records concerned with commit and abort commands. Because
of this, we currently do not implement transaction support.

The architecture is based on three major module interfaces, which are adequate to describe any
kind of service supported by ELORDESS. These interfaces are shown as bold-boxed classes in
Figure 2 and described as follows:



6

StorageManager The StorageManager-Module has two distinct tasks: first the module trans-
forms data objects of StorageElement containers passed through application level to
untyped data bytes, which are written to ByteLevelInterface, and vice versa. Meth-
ods for storing, retrieving and removing data objects perform this task.

Every object held by ELORDESS is typed as StorageElement. These objects provide
functionality for reading and writing their content from a byte stream. This arrangement
is sufficient to obtain the needs of object-oriented database models. For providing object-
relational or relational database models, the StorageElement class is extended by an
array of Attribute-objects.

unimd.elordess

+getFirst(c: Condition): int
+getNext(): int

<<Interface>>
IteratorInterface

+attributes: Attribute[]
+isChanged: boolean
+isDeleted: boolean

+readFrom(stream: DataInputStream): void
+writeTo(stream: DataOutputStream): void
+getType(): byte

StorageElement

+readData(recordId: int, data: byte[], offset: int): int
+writeData(data: byte[], offset: int, length: int): int
+modifyData(recordId: int, data: byte[], offset:int, length: int): int
+deleteData(recordId: int): void
+close(): void
+getRecordSize(recordId: int): int
+reserveRecordId(recordIdArray: int[], offset: int, length: int): int

<<Interface>>
ByteLevelInterface

<<Interface>>
Attribute

+readFrom(stream: DataInputStream): void
+writeTo(stream: DataOutputStream): void
+getType(): byte
+compareTo(c: Condition): boolean

<<Interface>>
Condition

+attribute: Attribute
+operation: byte

SimpleCondition

<<Interface>>
AccessPath

1 1

1

1...n

1

+addToAccessPath(recordId: int, a: Attribute): void

+close(): void
+getType(): byte

1

+attributetype: byte[]
+attributename: String[]

StorageManager

+getStorageElement(recordID: int, storageelement: StorageElement): void

+changeStorageElement(recordId: int, storageelement: StorageElement): int
+putStorageElement(storageelement: StorageElement): int

+close():void
+dropStorageElement(recordID: int): void

+attributeIndex: AccessPath[]
+relationname: String

+removeFromAccessPath(a: Attribute): void 1

0...n

Figure 2. Main Classes

Second, the StorageManager holds the catalog information. In the case of relational database
architectures the module manages relation names, relation types, attribute names and at-
tribute types. Object-oriented or object-relational DBMS architectures provide names and
types for root- and dependent objects. Furthermore, index information has to be accessible.

Stored database objects are only handed out by RecordID or in undetermined order for
sequential scans. To fetch an object with specified content, an access path defined on the
distinguished attribute is required.

AccessPathManager The AccessPathManager describes an interface that allows to apply
hash-tables, trees, tries or other index-structures to the storage system. The interface speci-
fies abstract methods for adding and removing Attribute objects to the access path and



An Extensible Storage Manager for Mobile DBMS 7

retrieving RecordID’s for a given condition. The module itself stores all hash-buckets or
tree-nodes like other modules using the ByteLevelInterface.

Each AccessPathManager requires Attribute objects implementing special inter-
faces. The methods specified by these interfaces are used to integrate keys into access paths.
For example, B-trees need lower-than comparison methods. Hash-indexes require every key
independent of its type to be transformed to an integer value which can be used as input for
hash function. Tries are unable to perform their job without the ability to obtain a part of
the key. Figure 3 shows an example which extends two attributes by supporting methods for
hash- and trie-based indexes.

ByteLevelInterface The ByteLevelInterface describes an API which works on untyped
byte arrays. Methods for reading, writing, deleting and modifying records are provided.
Because under certain circumstances – for caching purposes, in disconnected network state,
etc. – scheduled or delayed computing of requests will be required, a method for reserving
recordID enables transparent time-shifted writing.

Every implementor of ByteLevelInterface has the permission to split or join given
byte pages, as long as it performs the repartitioning transparently for other modules. This
may be necessary for cryptographic algorithms which are vulnerable when handling a small
amount of data, for mass storage devices with a static block size, or for network protocols
with a fixed frame length.

In order to decrease the number of interfaces, tasks like caching, cryptography, or compression
working directly on data bytes are specified by the same interface. The interface defines methods
for reading, writing, updating and deleting byte arrays. These arrays are read and written to the
stable memory by a PersistenceManager-class and handled by a couple of different modules
like CachingManager, CryptoManager and PackingManager.

CachingManager As described above, supported storage devices show a broad range of char-
acteristics. A CachingManager module can be used to support devices with slow read
or write speed. Some devices like IBM’s microdrive consume a lot of energy by waking
up from suspend mode, but sometimes less on normal operations afterwards. This suggests
to safe energy by collecting read- or write-requests and performing them in batch mode.
In such cases, a special CachingManager implementation can be chosen to maximize
battery power utilization.

CryptoManager Some applications manage private data which are not allowed to be read by
everyone. Particularly mobile devices are vulnerable to be lost or stolen. Hence data se-
curity becomes a prominent task on such kind of devices. In this approach an optional
CryptoManager module supports security management by encrypting and decrypting all
written or read data. Varying modules with the same interface can be used to implement dis-
tinct security levels by the use of different cryptographic algorithm or different encryption
key lengths.

PackingManager On most mobile, lightweight devices only a small amount of memory and low
bandwidth network connections are available. Therefore, data compression is an emerging
task which will be realized by a separate PackingManager module. This module packs
the volume of bytes while storing and unpacks it while receiving from other modules. Data
compression depends on the processed data and uses different amounts of computing power
and main memory. This leads to the need for different compression algorithms performed
by different PackingManager-modules.

PersistenceManager The secondary storage interface at operating system level is hold by the
PersistenceManager-Module. This module reads and writes internal records typed



8

StringAttribute

+data: String

+toString(): String

+data: int

IntegerAttribute

+toString(): String

−root: TrieNode

−split(node: TrieNode): void
−traverse(node: TrieNode): void

TrieAccessPath

+readFrom(stream: DataInputStream): void
+writeTo(stream: DataOutputStream): void
+getType(): byte

<<Interface>>
Attribute

HashAccessPath

−computeHashValue(n: int): int

<<Interface>>
TrieableAttribute

<<Interface>>
HashableAttribute

<<Interface>>
AccessPath

+addToAccessPath(recordId: int, a: Attribute): void
+removeFromAccessPath(a: Attribute): void
+close(): void
+getType(): byte

unimd.elordess.hashindex

unimd.elordess.trieindex

unimd.elordess

+getPartOfKey(n: int): byte

+getHashValue(): int

Figure 3. Implementing different access paths.

as ByteArray from or to persistent memory. Due to heterogeneity of supported hard-
ware, the PersistenceManager is the only direct hardware dependent module class.
The PersistenceManager offers methods for reading, writing and updating internal
records identified by numerical keys named RecordID. Operations for opening and clos-
ing databases are implicitly invoked by creating or destroying the object instance. Various
PersistenceManager modules realize persistent storage on networks, disc files, main
memory blocks or expansion cards.

The complete set of system modules is shown in Figure 1. Optional modules are depicted as dotted
boxes, required modules as solid ones. A minimal configuration required for a working system,
consists only of objects of classes derived from StorageManager and PersistenceMan-
ager.

The module configuration is built by the database implementor at design time. At startup,
assembling modules is done by the process using the services offered by the modules. This can
be performed on static information “hard-wired” in the code. Otherwise, information stored into a
designated schema information relation may be used to build up the modules architecture.

6. System Configuration

Using the same interface for compression, cryptography and buffering enables some extended
features. If not required, omitting modules is fully transparent on other levels. No request for
non-existing functions will be performed on each operation. Secondly, some customization can
be done only by changing the order, in which modules are connected among each others. For
example, security-challenged applications are able to encrypt the content in the buffer by using the
CryptoManager “above” to the CachingManager.

If used as a service requester to the CachingManager, the CompressionManager packs
the buffer content and saves main memory space, but stresses the CPU resource. Otherwise, under
equal circumstances more main memory is needed, but the CPU is utilized less than before. Every



An Extensible Storage Manager for Mobile DBMS 9

StorageManager StorageManagerAccessPathManager AccessPathManagerAccessPathManager

battery−backed
RAM

PersistenceManager PersistenceManager

PackingManager

CachingManager

PersistenceManager

PackingManager

CachingManager

PersistenceManagerPersistenceManager

Microdrive

Figure 4. Example system architecture

module is serving only one relation or one access path. If more than one is needed, more object
modules have to be created. This concept was chosen to reduce the management complexity.

Figure 4 shows an example system architecture. The hypothetical device offers a large amount
of slow, energy-expensive memory on a small harddisc and a little but quick amount of battery-
backed RAM. This is a typical constellation for PDAs with expansion slot. All data – in our
example represented as two relations – were stored on the Microdrive. To save storage space
and achieve better throughput, data will be packed and temporarily buffered. Because storing on
harddiscs causes slow access times, indexes are put on battery-backed RAM without any buffering
or packing.

[...]

CachingManager
PersistenceManager

getFirst(c: Condition): int

new

AccessPathManager
StorageManager

getNext(): int

readData(recordID: int, data: byte[], offset: int): int
getElement(recordID: int): StorageElement

readData(recordID: int, data: byte[], offset: int): int

(Cache−Miss)

readData(recordID: int, data: byte[], offset: int): int
getElement(recordID: int): StorageElement

(Cache−Hit)

Figure 5. Set-up and performing sample request.

To explain the functionality of the described system, the processing of a common request is
shown. We assume a query on a given attribute using a system with B-tree based access struc-
ture. At first, the application process creates the object instances required by the storage man-
ager. Then the application instantiates a condition object describing the requested data items and
an empty StorageElement object. The condition object is taken as input for the Access-
Manager object. As far as objects exist which match the condition, every call of the get-
Next() method of this module returns a record identifier. This ID is given to the StorageM-
anager. The StorageManager recursively gets the byte array associated with the record id
from a ByteLevelInterface module. In fact the PersistenceManager is the last called
ByteLevelInterface and returns the requested byte array. In this way, each module per-
forms its own special task. Finally, the StorageManager transforms the given data bytes into



10

typed variables stored in the obtained empty StorageElement. Figure 5 shows this process by
a sequence diagram.

7. Conclusion and Outlook

In many cases the specific requirements of mobile applications with regard to database support
cannot be fulfilled by general purpose database management systems which either try to offer all
potentially required functionality or provide only a limited set of functions due to the resource
restrictions. One promising approach for solving this problem is an extensible and customizable
data management solution enabled to plug in or omit certain modules.

Following this idea, we presented in this paper the storage management component of our
DBMS for small and embedded devices. We discussed the overall architecture of this compo-
nent, which comprises several composable modules implementing specific functions like caching,
exploiting access paths or encryption.

In addition, we are currently working on a query engine following a similar approach of cus-
tomization. In future work, we plan to study techniques for configuration/customization by allow-
ing developers to specify requirements as well as dependencies and using these informations for
generating the final system.



References

Alonso, R. and Ganguly, S. (1993). Query Optimization for Energy Efficiency in Mobile Environments. In Proceedings
of the Fifth Workshop on Foundations of Models and Languages for Data and Objects.

Batory, D. and Thomas, J. (1995). P2: A Lightweight DBMS Generator. Technical Report TR-95-26, University of
Texas at Austin, Department of Computer Sciences.

Batory, D. S., Das, D., Singhal, V., Sirkin, M., and Thomas, J. (1992). Database Challenge: Single Schema Database
Management Systems. Technical Report CS-TR-92-47, University of Texas, Austin.

Bohannon, P., Lieuwen, D. F., Rastogi, R., Silberschatz, A., Seshadri, S., and Sudarshan, S. (1997). The Architecture of
the Dali Main-Memory Storage Manager. Multimedia Tools and Applications, 4(2):115–151.

Cha, S. K., Park, J., and Park, B. D. (1997). Xmas: An Extensible Main-Memory Storage System. In Golshani, F. and
Makki, K., editors, Proceedings of the 6th International Conference on Information and Knowledge Management
(CIKM-97), pages 356–362, New York. ACM Press.

Chaudhuri, S. and Weikum, G. (2000). Rethinking Database System Architecture: Towards a Self-Tuning RISC-Style
Database System. In El Abbadi, A., Brodie, M. L., Chakravarthy, S., Dayal, U., Kamel, N., Schlageter, G., and
Whang, K.-Y., editors, VLDB 2000, Proceedings of 26th International Conference on Very Large Data Bases,
September 10–14, 2000, Cairo, Egypt, pages 1–10, Los Altos, CA 94022, USA. Morgan Kaufmann Publishers.

Chiang, M.-L. and Chang, R.-C. (1999). Cleaning policies in mobile computers using flash memory. The Journal of
Systems and Software, 48(3):213–231.

Database Architecture Framework Task Group (DAFTG) of the ANSI/X3/SPARC Database System Study Group
(1986). Reference Model for DBMS Standardization. ACM SIGMOD Record, 15(1):19–58.

Douglis, F., Kaashoek, F., Li, K., Cceres, R., Marsh, B., and Tauber, J. A. (1994). Storage Alternatives for Mobile Com-
puters. In First Symposium on Operating Systems Design and Implementation, pages 25–37, Monterey, Californie,
US.

Geppert, A. and Dittrich, K. R. (1994). Constructing the next 100 database management systems: like the handyman or
like the engineer? SIGMOD Record (ACM Special Interest Group on Management of Data), 23(1):27–33.

Geppert, A., Scherrer, S., and Dittrich, K. R. (1997). KIDS: Construction of Database Management Systems based on
Reuse. Technical Report ifi-97.01, Department of Computer Science, University of Zurich.

Karlsson, J., Lal, A., Leung, C., and Pham, T. (2001). IBM DB2 Everyplace: A Small Footprint Relational Database
System. In 17th International Conference on Data Engineering (ICDE’ 01), pages 230–234, Washington - Brussels
- Tokyo. IEEE.

Rudenko, A., Reiher, P., Popek, G., and Kuenning, G. (1998). Saving Portable Computer Battery Power through Remote
Process Execution. Mobile Computing and Communications Review, 2(1):19–26.

Stonebraker, M. (1986). Inclusion of New Types in Relational Data Base Systems. In Proceedings of the International
Conference on Data Engineering,, volume IEEE Computer Society Order Number 655, pages 262–269, Los Ange-
les, CA. IEEE Computer Society Press.

Sybase (2000). The Next Generation Database for Embedded Systems. Whitepaper.
Thomas, J. and Batory, D. (1995). P2: An extensible lightweight DBMS. Technical Report CS-TR-95-04, The Univer-

sity of Texas at Austin, Department of Computer Sciences, Austin, Texas.

11


