
UNCORRECTED P
ROOF

Information Systems 0 (]]]])]]]–]]]

Interactive Example-driven Integration and Reconciliation for
Accessing Database Federations$

Kai-Uwe Sattlera,*, Stefan Conradb, Gunter Saakea

aUniversity of Magdeburg, Department of Computer Science, P.O. Box 4120, D-39016 Magdeburg, Germany
bUniversity of Munich, Department of Computer Science, Oettingenstr. 67, D-80538 M .unchen, Germany

Received 15 April 2001; received in revised form 15 January 2002; accepted 29 March 2002

Abstract

The integration of heterogeneous databases affects two main problems: schema integration and instance integration.

At both levels a mapping from local elements to global elements is specified and various conflicts caused by the

heterogeneity of the sources have to be resolved. For the detection and resolution of instance-level conflicts we propose

an interactive, example-driven approach. The basic idea is to combine an interactive query tool similar to query-by-

example with facilities for defining and applying integration operations. This integration approach is supported by a

multidatabase query language, which provides special mechanisms for conflict resolution. The foundations of these

mechanisms are introduced and their usage in instance integration and reconciliation is presented. In addition, we

discuss basic techniques for supporting the detection of instance-level conflicts. r 2002 Published by Elsevier Science

Ltd.

Keywords: Data integration; Database federation; Instance integration; Reconciliation; Conflict detection; Conflict resolution

1. Introduction

Integrating heterogeneous data sources is still a
current problem, particularly with regard to the
numerous available sources in the Internet. No
matter if we consider virtual integration based on
multidatabase languages, federated database sys-
tems and mediator systems or materialization in
data warehouses, two main tasks have to be solved
as part of the integration process: schema integra-
tion and instance integration. During schema

integration the relevant elements from the local
schemata are identified, homogenized and mapped
into an integrated global schema. In this context,
several conflicts have to be resolved, which are
caused by the heterogeneity of the data sources
with respect to data model, schema or modeling
concepts. Schema integration mainly treats object
types with attributes and relationships as well as
extensional relationships of the local schemata.
In contrast, integration on instance level con-

siders the concrete data in the sources. Here, the
mapping between entities from different sources
representing the same real-world objects has to be
defined. Furthermore, data conflicts caused e.g.,
by contradictory values or different units of
measurement have to be resolved. While several

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

3B2v7:51c
GML4:3:1 IS : 316 Prod:Type: com

pp:1222ðcol:fig::NILÞ
ED:Gracy

PAGN: gns SCAN: Mangala

$Recommended by Maurizio Lenzerinl

*Corresponding author.

E-mail address: kus@iti.cs.uni-magdeburg.de

(K.-U. Sattler).

0306-4379/02/$ - see front matter r 2002 Published by Elsevier Science Ltd.

PII: S 0 3 0 6 - 4 3 7 9 (0 2) 0 0 0 2 3 - 6

UNCORRECTED P
ROOF

methods for schema integration have been pro-
posed in the past, the problem of instance
integration is addressed only partially.
In this paper we present an approach focusing

on conflict resolution and data reconciliation in
federated databases. It is based on the multi-
database query language FraQL [1], which extends
SQL by advanced conflict resolution mechanisms.
In conjunction with an interactive query and design
tool we are able to support a technique, which we
call in the following example-driven integration.
The main idea is identifying relationships and
conflicts at instance level by exploring the existing,
non-integrated data, applying necessary integration
operations and conflict resolutions and receiving
direct feedback from the resulting integrated data.
This approach is intended as supplement — not
replacement — for schema integration methods.
The example-driven integration strategy takes into
consideration the iterative and interactive nature of
the data integration process.
Basically, a wide spectrum of supporting me-

chanisms for instance-level integration is possible,
ranging from simple facing of data and tagging
potential conflicts to applying statistical data
analysis or even machine learning methods.
Because of this, we will focus in this paper on
techniques, which can be realized as part of a
query language.
The remainder of the paper is structured as

follows. In Section 2 we give a short overview to
the FraQL language and its data model. Section 3
defines the semantics of the supported integration
operations and Section 4 introduces the overall
integration process. A detailed discussion of the
various kinds of conflicts is given in Section 5. The
resolution of these conflicts and the reconciliation
is described in Section 6. Section 7 presents a
interactive tool, which is based on the FraQL
language and supports the example-driven inte-
gration. Related work is discussed in Section 8.
Finally, Section 9 concludes the paper.

2. The Federation query language FraQL

Realizing an example-driven integration ap-
proach requires performing integration operations

and querying integrated data in an alternating
fashion. Our approach is based on FraQL, a query
language for object-relational database federations.
It extends SQL by features for defining federations,
accessing meta-data in queries, restructuring query
results, and resolving integration conflicts. This is
comparable with other multidatabase languages
like MSQL [12] or SchemaSQL [3], but in contrast
to these proposals FraQL is extensible by user-
defined data types and functions. FraQL is not
primary intended as an end user language, but an
intermediate language for specifying integrated
views. Therefore, users can query the global in-
tegrated relations with usual SQL operations with-
out knowledge of the FraQL language features.
In FraQL a federation or multidatabase is a set

of data sources consisting of relations. A data
source can be provided by a full-featured DBMS
or even by a Web source encapsulated by a
wrapper [4]. FraQL is based on a simple object-
relational data model: it supports the definition of
object types and object views derived from types in
the spirit of SQL-99 as well as a built-in type
ARRAY for arrays of atomic values. Using object-
relational features simplifies the integration of
post-relational data sources (e.g., ODBMS-based
sources or XML data stores) and provides more
advanced modeling concepts for schema defini-
tion. This simple data model is appropriate for our
intended application domain — the analysis and
fusion of distributed and heterogeneous data [5],
because in this scenario data is mostly available in
relational structures.

Object types describe the structure of objects as
sets of attributes and their domains. Types can be
organized in a specialization hierarchy. An object
type is defined following the SQL-99 standard:

CREATE TYPE product (

vendor VARCHAR(30),

price FLOAT,

prodName VARCHAR(20)

);

CREATE TYPE bike type UNDER product (

orderNo INT,

year INT,

stock INT

);

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

Kai-Uwe Sattler et al. / Information Systems 0 (]]]])]]]–]]]2

IS : 316

UNCORRECTED P
ROOF

Object views represent global virtual relations of
the federation, i.e., data from the sources is not
materialized, except for caching purposes in order
to speed up query evaluation. Here we distinguish
between import and integration views.
An import view is a projection of a local relation

of a data source. The import view is defined by
specifying the source relation and, if required, a
mapping between local attributes (i.e., attributes of
the source relation) and global attributes (attri-
butes of the view).

CREATE VIEW global name OF type name

AS IMPORT FROM source.local name

[(mapping definitions)];
In the view definition given above, the attribute
mapping can be described in the following
variants:

* If there exists a local attribute with the same
name as any of the global attributes and both
are type compatible, an implicit mapping
between the is established.

* The notation g name IS l name means renam-
ing the local attribute to g name. This requires
type compatibility.

* The notation g name IS func(l name) defines
that the global attribute value is calculated by
using the user-defined conversion function func

on the local attribute value.
* The definition g name IS @tbl (l name, src, dest,

default) means that the database table tbl is
used for mapping the values from the local
attribute l name. This value of the global
attribute is obtained by looking for the value
of attribute l name in column src and retrieving
the corresponding value of column dest. The
field default denotes a default value, either as
literal or as local attribute, which is assigned to
the global attribute, if the value of l name is not
found in the table. In fact, this kind of attribute
mapping is evaluated by a left outer join, where
the NULL value is replaced by the default value
default.

* Local attributes without a corresponding global
attribute are ignored.

* A constant literal value for a global attribute is
defined by the notation g name IS literal, e.g.,

for the case where no corresponding attribute
exists in the local relation.

The following example illustrates the usage of
these mapping concepts: Given a source relation
bike (vendor, price, product, orderNo,

stock) an import could be defined, where the
local attribute product is mapped to prodName

and the prices are converted into dollar prices:

CREATE VIEW bikes OF bike type AS IMPORT

FROM src.bike (

prodName IS product,

price IS euro2dollar(price),

year IS 2002

);

The attributes orderNo and stock appear both in
the type of the view and in the local relation. Thus,
they are imported implicitly. Furthermore, the
year value is set to 2002 for all tuples, because this
attribute does not exist in the relation bike. An
alternative solution could involve an computation
of a new value for year using a conversion
function or even a mapping table, e.g., based on
other attributes.
A data source referenced in an import view

definition is specified by the required database
adapter and additional connection information:

REGISTER SOURCE source name AT

’DSN=db;UID=user;PWD=password’

USING ’adaptor name’;
An integration view is a SQL-like view on other
global relations defined by using the standard SQL
operations as well as extended FraQL operations.
Such a view is defined as follows, where the term
table expression denotes a SQL query with
extensions explained later.

CREATE VIEW global name OF type name

AS table expression;
Furthermore, FraQL supports user-defined

functions (UDF) as well as aggregate functions
(UDA), which are stored in the database of the
federation layer (i.e., in the query processing
server) and are callable in queries. These functions
are implemented in Java or C++ and registered
in the query system.
Another feature of FraQL that can be utilized

for resolving integration conflicts is the

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

Kai-Uwe Sattler et al. / Information Systems 0 (]]]])]]]–]]] 3

IS : 316

UNCORRECTED P
ROOF

combination of extended grouping and user-
defined aggregates. The GROUP BY operator sup-
ports grouping on arbitrary expressions: for each
tuple of the input relation a value is computed
from the grouping expression and based on this,
the tuple is assigned to a group. As an example let
us assume for simplicity that the model year of a
product is encoded in the order number as the last
two digits. In this case, we could group products of
the same type independently from the year using
the following query:

SELECT order id

FROM bikes

GROUP BY floor(orderno / 100) AS or-

der id;

As result of the GROUP BY operation each group
consists of tuples representing the same real-world
entity. After this, all the tuples of a group have to
be merged in one item, for example by computing
a value from conflicting attributes or by using the
most up-to-date information. This can be imple-
mented with the help of UDA. A UDA function is
implemented in FraQL as a Java or C++ class
with a predefined interface consisting of the
methods:

* init for initialization purposes,
* iterate invoked for each tuple of the input
relation and

* result for obtaining the final result.

As an extension to the UDA concept available in
Oracle 9, Informix or PostgreSQL, the FraQL
aggregates can be defined with more than one
parameter. This is particularly useful for reconci-
liation function, where the aggregated value of a
column has to be computed depending on values
of another column. There is a set of predefined
reconciliation functions including the following:

* pick where eq (v, col) returns the value of
column col of the first tuple, where the value of
v is true, i.e., a0: In case of a group consisting
of only one tuple, the value of this tuple is
returned independently of the value of v.

* pick where min (v, col) returns the value of
column col of the tuple, where v is minimal for
the entire relation or group, respectively.

* pick where max (v, col) returns the value of
column col of the tuple, where v is maximal.

In these functions v means a value that is
computed from an expression formulated on the
attribute values of the current tuple. As an
example the following query returns the name of
the most expensive bike:

SELECT pick where max (price, prodName)

FROM bikes;

Obviously, this could be formulated also in
standard SQL, but we will show later, that such
aggregation functions simplify conflict resolution
by allowing a kind of transposition operation on
relations.
Another predefined aggregation function is

to array which ‘‘nests’’ the values of the given
column and returns an array containing all values.
In this way, the complete set of instances of an
attribute belonging to a single real-world entity
can be collected and passed to the user or
application for further considerations.
Restructuring of relations is implemented in a

way inspired by SchemaSQL [3]. Variables of a
query can not only be bound to relations as tuple
variables, but also to meta-data, like the set of
attributes of a relation or the set of relations of a
schema. But in contrast to SchemaSQL, where
meta-data access in queries is implemented as a
language extension, in our approach the schema
catalog is used. So, the catalog relation cata-

log.columns contains information about attri-
butes of all global relations, whereas the relation
catalog.tables describes the global relations.
Unlikely SchemaSQL, any global user relation
with information about other relations can be used
as meta-data source.
As an extension to standard SQL, attributes of

tuple variables in queries can be obtained during
evaluation. This means, while in SQL names of
attributes and relations are constants, in FraQL
they can be constructed from current values of
other tuple attributes. This variable substitution is
written in the notation $var and can appear
everywhere in a query, where names of attributes
or relations are expected. For example, the
expression tbl1.$(tbl2.col) means the attribute
value of the current tuple of relation tbl1, whose

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

Kai-Uwe Sattler et al. / Information Systems 0 (]]]])]]]–]]]4

IS : 316

UNCORRECTED P
ROOF

name is obtained from the current value of
tbl2.col.
In the same way, a relation in the FROM clause of

a query can be dynamically determined. The
following query selects product name and price
information from all relations implementing the
object type bike type. So, it is equivalent to a
union of all these relations.

SELECT t2.prodName, t2.price

FROM catalog.tables t1, $(t1.table-

name) t2

WHERE t1.type name = ’bike type’;

In summary, data integration in FraQL follows
the global as view paradigm [6], where the global
(integrated) view is defined by a query over a set of
source relations. Thus, it inherits the advantages of
this approach like a simplified query rewriting and
decomposition. But in contrast to the local as view

approach, adding or removing sources affects the
global view definition and hence is more compli-
cated. However, by using meta-data queries in
combination with variable substitution we are able
to mitigate this problem in a certain way: as
demonstrated in the above query, if a new view or
relation of a given type is created, it can be
automatically included in a global view.
FraQL is implemented as part of a federated

query system and consists of the following main
components: the query parser, the decomposer and
the global optimizer, the query evaluator, the Java
VM for evaluating user-defined functions, and the
catalog. The adapter layer contains the manage-
ment component as well as the individual adapters
providing a uniform access interface to the data
sources. The interface to query processor is
implemented using CORBA, the adapters are
dynamic loadable libraries and thus can be
plugged into the system at runtime. On top of
the query interface we have developed a JDBC
driver and an interactive query tool. Currently,
adapters are available for full-fledged DBMS (e.g.,
Oracle) as well as for flat files, (relational)
structured Web sources and XML documents.
This permits particularly the integration of Web
sources which are generated from relational
databases.

The limited query capabilities of Web and file
sources are taken into account during query
rewriting. So it is possible to specify query
constraints for individual source relations via a
special ALTER VIEW statement. For instance, the
constraints for an import view bikes supporting
only queries on the attribute prodName using the
‘=’ operator are specified as follows:

ALTER VIEW bikes SET QUERY CONSTRAINTS (

PREDICATES (prodName, =),

COMBINATIONS (prodName));

Based on this information queries accessing
limited sources are rewritten in a way, that the
specified query constraints are fulfilled [7].

3. Semantics of Integration operations

Due to the fact that FraQL is an extension of
SQL we can build upon SQL and its semantics. In
order to allow query optimization we base on an
algebraic framework such that the well-known
results for algebraic optimization can be used
without restrictions. In the following, we show
how to integrate advanced concepts of FraQL
into the standard relational algebra, in particular
we consider

* the application of user-defined function,
* the application of mapping tables,
* operators dealing with variable substitution,
and

* the transposition operator.

We omit the description of the semantics of the
extended GROUP BY operator, because allowing
arbitrary expressions as grouping attributes as in a
query like

SELECT a, aggr(b) FROM rel

GROUP BY func(a);

is a shortcut for the following query:

SELECT a, aggr(b) FROM (SELECT func(a) AS

a, b FROM rel)

GROUP BY a;

Therefore, we can build upon the semantics of the
standard GROUP BY operator of the relational
algebra.

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

Kai-Uwe Sattler et al. / Information Systems 0 (]]]])]]]–]]] 5

IS : 316

UNCORRECTED P
ROOF

3.1. User-defined functions

For mapping local attributes onto global
attributes when defining import relations, user-
defined functions can be introduced. A typical
application is the conversion of attribute values
which are represented in a local data source in a
different way than needed in the global system
(e.g., using different units of measurement).
As introduced in the previous section, the

declaration of an import relation in FraQL
consists in principle of four parts (where the third
and fourth part are alternatives not used together)
when we translate it into relational algebra:

* There is a projection determining which attri-
butes of the local relation are mapped onto
attributes of the global import relation.

* Attribute names of the local relation are
mapped onto attribute names of the global
relation by renaming.

* The application of user-defined functions is used
for transforming attribute values.

* Another way of transforming attribute values is
the usage of mapping tables which are stored
like usual tables.

Whereas projection and renaming are already
basic operations of standard relational algebra, the
application of user-defined functions is an addi-
tional concept for which we can fall back upon
several approaches for extended relational alge-
bras, e.g., for extended database models (cf. e.g.
[8–13]). In the following we represent the applica-
tion of (user-defined) functions as algebraic
operation ‘apply’ (using the symbol a):

aA;f ðrÞ;

where r is a relation with schema R; A an attribute
of R; and f : TA-T a function which can be
applied to values of the type TA defined for the
attribute A in R resulting in values of type T :
Please note, that for the moment this is a rather
restricted form for applying functions, which
might later be extended towards functions produ-
cing other result types.
The operation aA;f ðrÞ then produces a relation r0

with schema R0 which is identical to R except of
the type for attribute A in case TaTA (R � R0 if

T ¼ TA). The resulting relation r0 contains all
tuples of r except of the fact that for each tuple the
value of the attribute A has been transformed by
applying f :
For algebraic optimization a collection of rules

expressing the equivalence of terms is needed.
Examples for such rules are:

* aA;f ðaB; gðrÞÞ ¼ aB; gðaA;f ðrÞÞ if AaB;
* aA;f ðaA;gðrÞÞ ¼ aA;g3f ðrÞ
* aA;f ðpA1; y; An

ðrÞÞ ¼ pA1; y; An
ðaA;f ðrÞÞ if

AAfA1; y; Ang

For short, we can omit the attribute to which
the function is applied if it is clear from the context
or if the function f : R-R transforms not only
single attributes but entire tuples of type R: A
function f which transforms only a single attribute
A can always be extended to a function fR : R-R

where fR change the attribute A in the same way as
f does and all other attributes remain unchanged.
We then may write af ðrÞ:

3.2. Mapping tables

A special way for transforming attribute values
from local relations into global relations is the
usage of mapping tables. A mapping table is a
usual global relation which might have been
imported from other local sources if the mapping
information is derivable from some local data. Of
course, we can also directly define a new global
relation only for mapping purposes and explicitly
store the needed mapping information there.
A table tbl is used as mapping table if in the

mapping definition for some import relation an
expression @tbl (l name, src, dest, default) is
given where l name is the name of the local
attribute which has to be transformed, src and
dest are attributes of the mapping table tbl

describing the mapping, and default is an optional
default value which is used if no explicit mapping
is provided for some local values. From an
operational point of view, the transformation of
local values works as follows: taking a value of the
local attribute l name we look for a tuple in tbl

having this local value as value in the attribute src.
If such a tuple exists its attribute dest contains the

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

Kai-Uwe Sattler et al. / Information Systems 0 (]]]])]]]–]]]6

IS : 316

UNCORRECTED P
ROOF

transformed value; otherwise the result is the
NULL value – or the default value if given.
By means of the relational algebra this opera-

tion could be captured by a left or right outer join.
The substitution of NULL values by the default

value (if needed) is a little bit complicated due to
the fact that we do not want to substitute NULL
values which are already given as resulting value in
the dest attribute. A complete algebraic description
of this mapping applied to a local relation r is the
following one:

rdest-l nameðpR�r:l nameþtbl:destðsl name ¼ srcðr
 tblÞÞÞ;

,al name; fdefaultðr � pRðsl name ¼ srcðr
 tblÞÞÞ;

where r is the renaming operation, fdefault is a
function always resulting in the default value (if
given). Although this description looks rather
complex it should be clear that a really efficient
implementation of the mapping operation can
easily be found.

3.3. Operators for variable substitution

Variable substitution or dereferencing comes in
FraQL in two fashions: as column dereferencing as
part of a SELECT or WHERE clause and as table

dereferencing in the FROM clause.
For the first form we define an operator nB’Ai

ðrÞ
that returns a relation r0 with the relation schema
R0 comprising the attributes A1; y; An from R as
well as the newly introduced attribute B: Each
tuple t0Ar0 is derived from a corresponding tuple
tAr as follows: for each tAr there is one and only
one tuple t0 with

t0ðAjÞ ¼ tðAjÞ 8j ¼ 1; y; n and t0ðBÞ ¼ tðtðAiÞÞ;

where we restrict the domain of Ai to alphanu-
meric values only. In case of tðAiÞer the NULL

value is assigned to t0ðBÞ:
For table dereferencing we rely on the expansion

operator of the extended algebra from Ross [14].
This operator1 mkðrÞ expands a set of relation
names obtained from the relational expression r

into a union of the arity-k relation extensions. In
order to apply this operator to relations with more

than one column we add an attribute Ai as a
parameter to this operator. Then, the operator can
be defined as follows:

mk
Ai
ðrÞ ¼

[
sApAi

ðrÞ

ðfsg
 sðA1; y; AkÞÞ

where sðA1; y; AkÞ is a relation with the name s of
arity k: Obviously, this corresponds to a query like

SELECT*FROMcatalog:tablest; $ðt:table nameÞ;

3.4. The transposition operator

Although transposing relations is not explicitly
supported in FraQL by a dedicated operator but
rather through a query pattern exploiting special
aggregation functions, we will give in the following
the semantics of this important restructuring
operation.
For this purpose, we follow the idea of a unfold

operation, that originally appeared in [3], and
denote this operator tAi ;Aj

ðrÞ: This operator pro-
duces a relation r0 with the relation schema R0

consisting of the following set of attributes:

R0 ¼ fA1; y; Ang � fAi; Ajg,S;

where S ¼ pAi
ðrÞ: This means, the additional

attributes in R0 are derived from the set of distinct
values of Ai in r: Let be S ¼ fB1; y; Bmg then the
tuples of r0 are obtained by grouping the tuples of r

based on equal values for the attribute set
fA1; y; Ang � fAi; Ajg: Thus, each of the result-
ing groups consists of krm tuples t1; y; tkAr

where

t1ðAlÞ ¼ t2ðAlÞ ¼ ? ¼ tkðAlÞ 8l ¼ 1; y; n; lai; laj:

Now, for each of these groups there is one and
only one tuple t0Ar0 with

t0ðAlÞ ¼ t1ðAlÞ ¼ ? ¼ tkðAlÞ 8l ¼ 1; y; n; lai; laj

8l ¼ 1; y; m : t0ðBlÞ

¼
tðAjÞ where tðAiÞ ¼ Bl and tAft1; y; tkg

NULL otherwise

(

We will give an example for this operation in
Section 6.

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

951In fact, in the original work a is used for denoting this
operator.

Kai-Uwe Sattler et al. / Information Systems 0 (]]]])]]]–]]] 7

IS : 316

UNCORRECTED P
ROOF

4. The Integration Process

During data integration both levels — schema
level as well as instance level — have to be taken
into consideration. At both levels conflicts can
occur, which are caused by the heterogeneity of the
sources. In the following we sketch the overall
integration process and point out to these steps,
which are particularly supported by our approach.
The core concepts of the FraQL data model

corresponds to the main steps of the integration
process. In the first step — as part of schema
integration — the global object types of the
integrated schema have to be defined. This is done
either top-down — from the requirements of the
application domain — or bottom-up — by
analyzing the local schemata. In case where local
types are not explicitly available, e.g. in classical
relational databases, the type definitions and their
relationships have to be derived from the relation
schema. The goal of the following steps is to map
the local relations onto these types by applying
various integration operations. In this context,
schema-level as well as instance-level conflicts have
to be resolved. But while most schema-level
conflicts are resolvable by examining the local
schemata only, the resolution of instance-level
conflicts requires considering the concrete data
from the sources and applying reconciliation
techniques.

By examining this data and performing appro-
priate queries, the database integrator is able to
identify instance conflicts and to resolve them
with the help of user-defined conversion and
resolution functions, which are applied as part of
importing a relation as well as in form of
aggegration functions. This procedure is shown
in Fig. 1.
First of all, import relations are defined. Here,

we resolve description conflicts by specifying the
mappings of attributes. Second, import relations
representing semantically overlapping extensions
are combined into integration relations by apply-
ing join or union operations. These initially
defined relations are examined now by special
conflict checking queries, which we will describe
later. The query results may indicate possible
instance conflicts. Furthermore, special tools for
data analysis could support this step. For very
large datasets the query response time can be
reduced by using sampling techniques for approx-
imate answers [15].
With knowledge about existing instance con-

flicts the definitions of import and integration
views are refined, i.e., transformation functions are
introduced for attribute mapping, join predicates
or grouping expressions are modified and reconci-
liation functions are applied. In principle, these
steps are repeated until no conflict remains or can
be detected. The final definitions of import and

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95
Fig. 1. Integration process.

Kai-Uwe Sattler et al. / Information Systems 0 (]]]])]]]–]]]8

IS : 316

UNCORRECTED P
ROOF

integration views form the integrated schema of
the database federation.
Considering the overall process we can state that

the integration is driven by the current instances or
example data. The available data is used for
conflict identification as well as evaluating integra-
tion operations. Finally, success of the conflict
resolution strategies is immediately visible in terms
of this data.
However, please note that the absence of

instance conflicts is valid only for the current
instances in the data sources and not necessarily
valid for all possible instances. Moreover, there
may exist further data conflicts which are not
resolvable in this way, because they do not follow
some general rules. Typical conflicts of this class
are for instance typo-errors or outdated values,
which have to be treated separately. In addition,
there could exist discrepancies in data which are
not really conflicts rather representations of
different facts, e.g., different prices for the same
product sold in different shops [16].

5. Integration conflicts

In this section we classify those conflicts which
are particularly addressed by our approach.
Starting with schema-level conflicts for an overall
view, we relate them to instance-level conflicts and
discuss basic techniques for conflict detection.

5.1. Schema-level conflicts

Due to heterogeneities at data model, schema,
and instance level, integration of existing data
sources has to deal with various kinds of conflicts.
For schema-level conflicts several classifications
were proposed in the literature, e.g. [17,18].
As basic classification we use the one which was

introduced in [18]. Following this classification
integration conflicts are divided into four classes:

* semantic conflicts,
* description conflicts,
* heterogeneity conflicts, and
* structural conflicts.

In practice, we often have to face combined
occurrences of these conflict types. In conse-
quence, the conflict resolution needs to take into
account different aspects at the same time. For a
conceptual clarity we explain these four conflict
classes in isolation.

5.1.1. Semantic conflicts

This class of conflicts deals with the semantic
relationship between extensions (possible popula-
tions) of classes where the notion ‘‘class’’ stands
for any modeling construct representing a collec-
tion of real-world objects (depending on the
concrete data model we have to consider classes,
relations, entity and relationship types, etc.).
Integrating existing schemata the overlapping

parts of the local Universes-of-Discourse must be
identified and within these overlapping parts we
have to find out which classes correspond in which
way to each other. Unfortunately, the correspon-
dence between two classes is often not an exact
correspondence in the sense that the two classes
always represent the same set of real-world
objects. If we consider two corresponding classes,
we may find four different kinds of correspon-
dences between them: equivalent extensions, in-
cluding extensions, overlapping extensions, and
disjoint extensions. For each of these kinds of
correspondences there may be different ways to
build corresponding classes in the integrated
schema. An important aspect is to find an
adequate mapping between the classes for which
we have found such a correspondence and the
corresponding classes in the integrated schema.

5.1.2. Description conflicts

The class of description conflicts comprises a
large number of more specific conflicts. Here, we
can only give some examples for typical descrip-
tion conflicts. A detailed discussion on description
conflicts can be found e.g. [19].
Objects belonging to corresponding classes are

often described by different sets of properties
(attributes) in the local schema. This is due to
different requirements of the local applications. In
one system local applications need a certain
property of the objects whereas in another system
no application accesses this property.

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

Kai-Uwe Sattler et al. / Information Systems 0 (]]]])]]]–]]] 9

IS : 316

UNCORRECTED P
ROOF

Other often occurring description conflicts result
from the usage of homonyms and synonyms for
attribute names, class names, etc. In general,
homonyms and synonyms cannot be resolved in
a fully automated way.
Further examples for description conflicts are

that corresponding attributes may have different
data types or ranges in different component
systems. Even if they have the same data type,
different units of measurements or a different
scaling can be used within the component systems.
Furthermore, there can exist conflicts due to
different integrity conflicts.

5.1.3. Heterogeneity conflicts

In this class we can find all conflicts which are
due to the use of different data models for the local
schemata in the participating database systems.
The usage of different data models implies that
different sets of modeling concepts are used. In
particular, in data models having only very few
modeling concepts (like the relational model) other
modeling concepts are simulated by means of the
existing ones. In general, the usage of different
modeling concepts in different data models leads
to the next class of conflicts, i.e., structural
conflicts, which are usually not direct resolvable
by transforming schemata from heterogeneous
data models into a global data model.

5.1.4. Structural conflicts

This kind of conflicts is caused by the usage of
different modeling concepts for expressing the
same real-world fact. All data models offer several
possibilities to model the same real-world fact.
Thereby, database schemata expressed in the same
data model can have different structures although
they describe the same Universe-of-Discourse. In
particular, data models offering a large number of
modeling concepts allow numerous ways of
description.
A special kind of structural conflicts are meta

conflicts occurring when instances of a property
are stored as specific values in one schema,
whereas they are represented as schema objects
(meta-data) in another schema.
Conflict detection at schema level requires

knowledge about the problem domain, the sche-

mata and the extensional correspondences. This
task can be supported by thesauri or ontologies,
but in general an automatic detection can only
succeed in very restricted cases or application
domains.
As we will see in Section 6, FraQL is able to

deal with description, semantic and structural
conflicts. Heterogeneity conflicts are resolved
mainly by the adapters which map the modeling
concepts and hide system-dependent differences.

5.2. Instance-level conflicts

Identifying and resolving schema-level conflicts
does not mean that the instances are homogeni-
zised as well. Different representations of data can
result in different ways dealing with these conflicts,
depending on the semantics and the further usage
of the affected attributes. So, first we introduce a
simple classification and discuss detection strate-
gies for the individual conflict types.
The different kinds of instance-level conflicts

arise not independently from each other. As the
primary kind of conflicts we introduce the notion
of representation conflicts. This refers to different
representation of data values corresponding to the
same real-world fact. This could be caused, e.g. by
different units of measurements (e.g., Dollar vs.
Euro), by different notations (e.g., ‘‘firstname
lastname’’ vs. ‘‘lastname, firstname’’) or simply
different representations (e.g., ISBN with dashes
vs. without dashes).
During integration representation conflicts can

result in key equivalence conflicts as well as
attribute value conflicts. Key equivalence conflicts
arise when instances from different relations refer
to the same real-world object but contain different
object identifiers or keys. Attribute value conflicts
occur when instances, which correspond to the
same real-world object and share an equivalent
key, differ in other attributes. One reason for this
problem could be a situation, where two relations
from different sources overlap semantically and
one of the relation contains older or outdated
data. For data models with richer expressive
power we could add a further conflict class which
refers to relationship conflicts [16].

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

Kai-Uwe Sattler et al. / Information Systems 0 (]]]])]]]–]]]10

IS : 316

UNCORRECTED P
ROOF

In order to get a hint about the kind of conflicts
in the current integration step we have to take into
consideration the integration process discussed in
Section 4. In the first step description conflicts at
schema level are resolved by defining attribute
mappings for import relations. We are also able to
resolve instance-level representation conflicts with
the help of conversion functions or mapping
tables. However, there is no general solution for
detecting these conflicts because we cannot com-
pare the data values of this relation with others at
this stage. Therefore, domain knowledge or
application-specific plausibility checks are required
for conflict detection.

5.3. Instance-level conflicts resulting from schema

level conflicts

In the second step of the integration process
semantically overlapping relations are combined.
This overlapping could be horizontally or verti-
cally. Here, two kinds of schema-level conflicts can
occur: structural conflicts and semantic conflicts.
The resolution of these conflicts is subject of
schema integration. But based on the knowledge
about the affected relations, i.e., the extensional
correspondences, we are able to apply basic
detection strategies for instance-level conflicts.

5.3.1. Structural conflicts

Representing a real-world fact by different
modeling concepts results in structural conflicts.
Depending on the variety of the data model several
kinds of conflicts can arise, but the most frequent
conflicts are partitioning and meta conflicts.
Partitioning occurs, when the relations which have
to be integrated overlap vertically, e.g., represent
different aspects of the global relation, but still
contain semantically equivalent attributes. Meta
conflicts arise, when a concept is represented as
data object in one schema, whereas it is modeled as
schema object (attribute or relation) in another
one. These conflicts are resolved at schema level by
applying join operators for partitioning and
restructuring for meta conflicts (cf. Section 6).
However, on instance level we have to deal with
key equivalence conflicts and attribute value
conflicts.

The existence of key equivalence conflicts is
recognizable by comparing the import relations
with the integration result. If extensional corre-
spondences between the relations are known, a
first indicator could be the sizes of the individual
relations. For the corresponding relations r1; r2
and the integrated relation ri which is computed by
r1r2 we can define the following assertions regard-
ing the size jrj:

* r1 � r2 (equivalence): jrij ¼ jr1j ¼ jr2j
* r1Dr2 (inclusion): jri j ¼ jr1jrjr2j
* r1-r2 (overlapping): 0rjri jrminðjr1j; jr2jÞ
* r1ar2 (disjointness): jri j ¼ 0:

Attribute value conflicts could arise when besides
the key attributes additional common attributes
exist and contain discrepancies. In this case we
have to decide which of the two attribute values
should occur in the integrated relations. This kind
of conflict is detectable by comparing the attribute
values. Obviously, for an given attribute A this can
be checked by the following query expression:

sr1:Aar2:Aðr1r2Þ

This results in the set of tuples containing an
attribute value conflict regarding A:

5.3.2. Semantic conflicts

Semantic conflicts arise, when the relations,
which have to be integrated, overlap horizontally,
i.e., there are tuples from both relations represent-
ing the same real-world entity. First of all, this
kind of conflict is addressed by applying a union
operation. This requires that the two relations are
structurally equivalent, which is achieved by
resolving structural and description conflicts.
However, at instance level we have to deal again
with key equivalence and attribute value conflicts.
As discussed above a first statement about the
existence of key equivalence conflicts can be
formulated based on the knowledge about exten-
sional correspondences between the relations:

* r1 � r2: jrij ¼ jr1j ¼ jr2j
* r1Dr2: jrij ¼ jr2j
* r1-r2: maxðjr1j; jr2jÞrjri jrjr1j þ jr2j
* r1ar2: jrij ¼ jr1j þ jr2j

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

Kai-Uwe Sattler et al. / Information Systems 0 (]]]])]]]–]]] 11

IS : 316

UNCORRECTED P
ROOF

For detecting attribute value conflicts the
approach of comparing attribute values is used.
As shown above the two relations are joined and
tuples containing discrepancies regarding a given
attribute are selected.
Fig. 2 illustrates the dependencies between the

different kinds and levels of integration conflicts.
It should be made clear that there is a tight
connection between schema-level and instance-
level conflicts. This consideration should also
motivate an interactive and iterative approach to
data integration and reconciliation, which ad-
dresses both levels and is supported by an user-
friendly tool for defining mappings and corre-
spondences as well as a query system for exploring
the integration results.

6. Conflict resolution and reconciliation

In section 2 we have introduced the language
FraQL which provides mechanisms for resolving
conflicts. In the following, we discuss the applica-
tion of these features. Due to the tight relationship
we describe the resolution of instance-level con-
flicts in context of the associated schema-level
conflict.

6.1. Description and representation conflicts

As an example for representation conflict
resolution in FraQL please consider the following
scenario. The product database from two moun-
tain-bike dealers shall be integrated. The relations
are structured as shown in Fig. 3. The Relation for
dealer A contains prices in dollar and a separate
vendor attribute, whereas dealer B uses euro prices
and a different order number schema.

Obviously, we can introduce a global type
bike type for both relations (cf. Section 2) which
is structured as relation bikes from dealer A. But
because dealer B uses its own schema for order
numbers, a simple transformation is not possible.
Therefore, we have to map the order numbers by
using the mapping table from Fig. 4.
In addition, the mapping table provides the

vendor information for each bike tuple based on
the product number. With the help of this table
and a conversion function euro2dollar for the
price attribute which converts Euro to Dollar, the
import views are defined as follows:

CREATE VIEW bikes A OF bike type

AS IMPORT FROM dealerA.bikes;

CREATE VIEW bikes B OF bike type

AS IMPORT FROM dealerB.bikes (

price IS euro2dollar (price),

vendor IS @map orderNo(prodNo, pid,

vendor, NULL),

orderNo IS @map orderNo(prodNo, pid,

order, NULL)

);

As mentioned above, not all kinds of representa-
tion conflicts are identifiable in the early steps of
the integration process. Therefore, later steps
could require a refinement of the definitions of
import views.

6.2. Structural conflicts

At schema level structural conflicts are resolved
by applying a join operation (for partitioning) or
by restructuring operations. Because the join
operation is straightforward, we describe only
the resolution of meta conflicts. As an example,
please consider the relations shown in Fig. 5. In

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

Description Conflicts

Representation conflicts

Structural + semantic conflicts

Key equivalence conflicts

Attribute conflicts

Schema level

Instance level

Fig. 2. Integration conflicts.

Kai-Uwe Sattler et al. / Information Systems 0 (]]]])]]]–]]]12

IS : 316

UNCORRECTED P
ROOF

relation bikes 1 the prices of the individual
dealers are stored as an attribute value of the
tuple. In contrast, relation bikes 2 contains a
separate tuple for each dealer.
So, in the first relation, the information about

the dealers is represented as a schema element (an
attribute), whereas it is represented as a data value
in the second relation. Similar to the approach
proposed in [22], the relation bikes 1 can be
transformed in order to match the structure of
bikes 2 with the following query:

SELECT b.prodName, b.orderNo, b.$(c.co-

lumn name), c.column name

FROM bikes 1 b, catalog.columns c

WHERE c.table name = ’bikes 1’ AND

c.column name o> ‘prodName’ and

c.column name o>
‘orderNo’;

This operation is sometimes called ‘‘transposi-
tion’’ because the relation bikes 1 is transposed,
i.e., the columns dealer1 and dealer2 become
rows after applying this operation.
A transposition in the opposite direction which

corresponds to the transposition operator de-
scribed in Section 3 can be performed by the
GROUP BY operator together with the
pick where eq aggregation function described in
Section 2. Here, the idea is to group tuples
representing the same object and apply the
aggregation function in order to project the
different values to the corresponding columns.
Assume we want to transpose relation bike 2

according to the schema of relation bike 1, we can
formulate the following query:

SELECT prodName, orderNo,

pick where eq (dealer = ‘dealer1’,

price) as dealer1,

pick where eq (dealer = ‘dealer2’,

price) as dealer2

FROM bikes 2

GROUP BY prodName, orderNo;

In fact, this query is an implementation of the
operation tdealer;priceðbikes 2Þ:
At instance level both key equivalence conflicts

and attribute conflicts have to be taken into
consideration. For resolving key equivalence con-
flicts, there are two strategies supported in
FraQL: first the standard SQL facilities where
the join operation can be refined, e.g., by defining
additional join conditions or user-defined predi-
cates. Second, the key values for one or both of the
relations can be transformed by a conversion
function or mapping table, which are specified as
part of the definition of an import view as shown
above for representation conflicts.
For resolving this kind of conflicts several

alternatives are possible. The simplest way is to

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

Fig. 4. Mapping relation map orderNo.

Fig. 5. Two relations containing meta conflicts.

Fig. 3. Local dealer relations.

Kai-Uwe Sattler et al. / Information Systems 0 (]]]])]]]–]]] 13

IS : 316

UNCORRECTED P
ROOF

define a projection for the preferred attribute.
However, this is a static solution because this
applies to all tuples. A more viable way is to
compute the value of the resulting attribute
dynamically from the input values or other
attribute values.
In the following example, we want to integrate

the bike relation with a second relation containing
further descriptions for the respective model as
well as most up-to-date prices (Fig. 6). Therefore,
if the entry in the dealer relation refers to an earlier
model year, the dealer price should be used
(perhaps it is a phase-out model), otherwise the
more recently price value from the vendor relation
appears in the integrated result. This query can be
formulated easily using the standard SQL CASE

clause:

SELECT b.prodName, b.orderNo

CASE WHEN b.year o bm.year THEN

b.price ELSE bm.price END AS price

FROM bikes A b JOIN bike models bm ON

b.orderNo = bm.orderNo;

6.3. Semantic conflicts

In general, semantic conflicts are resolved by
applying the union operator. However, as already
mentioned representation conflicts at instance level
could result in tuple identity problems (i.e., key
equivalence conflicts, if key attributes are affected)
or data discrepancies (i.e., attribute conflicts, if
remaining attributes are affected).
In FraQL key equivalence conflicts are resol-

vable in two ways: either by transforming the keys
of one relation with the help of conversion
functions or mapping tables or by using the
extended grouping operator in combination with
aggregate functions for reconciling/merging the
different representatives of a real-world entity.

Considering the bike dealer databases, the
relations could be integrated by the following
definition without conflict resolution for the
moment:

CREATE VIEW bikes OF bike type AS

bikes A UNION bikes B;

However, the result contains several attribute
value conflicts like different product names, years,
prices or stock values. We could solve these for
example by summing up the stock, choose the
most current year and the corresponding price etc.
All these reconciliation tasks can be performed
using aggregation functions. So, for the attribute
stock the usage of sum as well as using max for
attribute year are straightforward. The price for
the most current year is obtained via
pick where max and for picking just any product
name we could use the to array function and take
the first element of the resulting array:

CREATE VIEW bikes OF bike type AS

SELECT vendor, pick where max(year,

price),

element(to array (prodName),

1), orderNo, max(year), sum(-

stock)

bikes A UNION ALL bikes B

GROUP BY vendor, orderNo;

We can conclude that detection and resolution of
instance-level conflicts comprises three phases:

1. Homogenization of representations, i.e. resol-
ving representation conflicts by defining attri-
bute transformations. But because at this stage
the detection of these conflicts is often only
possible for obvious cases, this step is repeated
after conflict detection of the subsequent steps.

2. Dealing with key equivalence conflicts, which
can be resolved by treating them as representa-
tion conflicts (going back to the previous step)
or by refining the predicate for deciding
equivalence (the on clause of the join operation
or the grouping expression).

3. Resolution of attribute value conflicts either by
going back to step 1 or by defining reconcilia-
tion functions for the integration operations.

We have briefly shown how a query language with
special conflict resolution mechanisms supports

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95
Fig. 6. Vendor description relation bike models.

Kai-Uwe Sattler et al. / Information Systems 0 (]]]])]]]–]]]14

IS : 316

UNCORRECTED P
ROOF

data integration and reconciliation. Based on these
facilities a tool for example-driven integration has
been developed, which we present in the next
section.

7. Tool support for an example-driven approach

In the previous sections we have shown, how the
FraQL language extensions support the detection
and the resolution of integration conflicts on
schema level as well as on instance level and
therefore enable data reconciliation. However, the
process of integration is particularly for larger
projects a complex task, so that one-shoot-
strategies are not realistic. Rather we have to
consider integration as an interactive and iterative
process, which requires tool support enabling the
definition and evaluation of integration operations
as well as direct analysis of the — possibly
intermediate — integration results. This includes
especially features likes performing conflict detec-
tion automatically, providing hints on potential
conflicts and applying resolution mechanisms in a
semi-automatic manner, e.g., based on examples
provided by the user or derived from the current
data.
In this section we present the main principles

and components of such a tool. The basic idea of
this approach is the combination of interactive
query features known from Query-by-Example
(QBE) [20] and facilities for data integration and
reconciliation. A prototype of this tool called
VIbE has been developed by using the FraQL
language for accessing different data sources in an
homogeneous way, for defining and retrieving
schema elements as well as for performing queries.
Integration and reconciliation with the VIbE

system works according to the process discussed in
Section 4: A first coarse application model

represented as a set of object types and their
relationships establishes the starting point of the
process. This model could be developed either
bottom–up — as result of a schema integration
process — or top–down by using given concepts,
e.g. from a standardized domain model [21]. Next,
the database integrator selects the required
sources, browses the available local relations and
imports the appropriate relations by defining
FraQL import views. For this purpose an existing
pre-defined object type can be chosen or a new one
has to be defined. If the structure of the local
relation does not exactly match the type, a
mapping between local and global attributes must
be defined. The graphical representation for this
step is shown in Fig. 7.
In this table view the imported relation is

displayed together with the mapping information.
In the heading the global attribute names defined
by the specified type of the relation are shown. The
second row contains the mapping definition. Here,
the name of the corresponding local attribute is
given. If a mapping function or a mapping table is
required, the name is inserted into the appropriate
column. In addition, an expression can be entered,
that is automatically translated into an user-
defined function. For example, for term ‘‘*
0.91’’ of column price the following Java class
for a FraQL function is generated:

class Func

public static double func (double p)

{ return p * 0.91; }

After compiling and registering this function in
the FraQL system, it is automatically applied as
part of the mapping.
In the rows following the mapping row the

database integrator can specify QBE-like selection
queries. These queries are evaluated and the
mapping is applied to the results. In this way,

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95
Fig. 7. Import table view.

Kai-Uwe Sattler et al. / Information Systems 0 (]]]])]]]–]]] 15

IS : 316

UNCORRECTED P
ROOF

one receives direct feedback of the defined map-
ping by inspecting the data.
In the next step, the import relations are

integrated using the ordinary join and union
operators possibly in combination with grouping
for resolving attribute value conflicts. This results
in an integration graph specified as a view
definition of an integration relation. A stepwise
construction of this graph simplifies the detection
and resolution of conflicts. So, based on the
visualization of the integration graph, for each
node the intermediate results can be inspected.
There are two kinds of views for the results:

* a detailed data view in a tabular representation,
where the data is displayed as result of a QBE-
like query and

* a so-called conflict map — a special view which
visualizes data discrepancies in a colored map
(Fig. 8).

This map is constructed as follows: For a union as
integration operation an outer join is computed
and for each tuple appearing in both input
relations (which is determined by comparing the
primary keys) the corresponding attribute values
are compared. Both values are presented in a
single cell of the map, where the color depends on
the comparison result. If both values are equal the
color of the cell is white, otherwise red. Therefore,
a red cell denotes an attribute conflict.
For a join operation the map is constructed by

applying an outer join, too. In addition to the
coloring for the union operation, a further kind of

conflict is considered. Null values of attributes
appearing in only one input relation are presented
as yellow cells. So, these cells indicate key
equivalence conflicts. In fact, not the actual values
of the resulting tuples are important, but the
colors. Therefore, a compact representation of
conflict spots is possible. The user can zoom into
the overview map and select points of interests for
further examinations.
In addition, the conflict detection techniques

described in Section 5 can be applied, if the
extensional correspondences are known. In this
case, comparing the cardinalities of input and
result relations could give a hint about possible
conflicts. Of course, more advanced techniques
based on data analysis are possible, too.
Finally, if conflicts were detected, the integra-

tion operations have to be refined. As already
shown in Section 6 there are two ways supported
in FraQL: first modifying the comparison condi-
tion for joins or the grouping criteria for unions in
combination with GROUP BY and second by adding
a reconciliation function. Because specifying a
condition is straightforward, we will focus in the
following on support for applying reconciliation
functions.
Basically, the integrated and possibly intermedi-

ate relation containing conflicts is visualized in a
view similar to the conflict map, but with
comboboxes in the cells where a conflict occurs
(Fig. 9). The view contains an additional row for
entering reconciliation functions for the respective
columns. The specified functions are applied
instantly to the integration operations and the
view of the result relation is updated. There are
three ways for defining these functions:

1. implementing and registering a function by
hand and applying it as an aggregation func-
tion,

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95
Fig. 8. Conflict map. Fig. 9. Integration table view.

Kai-Uwe Sattler et al. / Information Systems 0 (]]]])]]]–]]]16

IS : 316

UNCORRECTED P
ROOF

2. entering expressions into the reconciliation row
of the table,

3. deriving the reconciliation strategy from user-
given examples.

For the second approach, a set of pre-defined
primitives is available: min, max, sum and avg

representing the standard SQL aggregate functions
as well as pmin, pmax and peq (as short-cuts for
pick where min etc.) for choosing a value depend-
ing on the minimum, the maximum or a certain
value of another attribute. So, the term
‘‘pmax(A2)’’ in column A1 has the following
meaning, assuming r1yrn are the input relations
which are integrated in the view v by a UNION ALL

operation and r1yrm overlap semantically, i.e.,
share tuples with the same key:

tvðA1Þ :¼ tri
ðA1Þ for tri

ðA2Þ ¼ maxðtr1ðA2Þ; y; trm
ðA2ÞÞ

For example, this is used in the view bikes from
Section 6 for resolving price conflicts, where year
corresponds to A2 and price to A1.
A third approach is to mark desired attribute

values in tuples from the input relations. For the
following basic but frequent cases the system is
able to propose an appropriate reconciliation
strategy. We assume r1yrn to be the input
relations with relation schema R which are
integrated in the view v with the following
properties: PK is the primary key and the source
is explicitly given as an attribute SRC in each
input relation. This can be achieved by defining a
literal value for this attribute as part of the input
view definition, e.g. as in the following example:

CREATE VIEW r1 OF R AS IMPORT FROM db.src1

(

src IS ’src1’,
?

);

In fact, this approach simulates a source-aware
model as proposed in [22].
Let be further tAr a tuple from relation r; tðAÞ

the value of attribute A for the tuple t; si;ADri the
set of tuples of ri where examples for attribute A

are selected by the user, cgA;ti
a so-called conflict

group for a tuple tiAv with regard to attribute
AAR where it holds: cgA;ti

¼ fti;r1 ðAÞ; y; ti;rm
ðAÞg

and 8j; k ¼ 1; y; m; jak : ti;rj
ðPKÞ ¼

ti;rk
ðPKÞ4ti;rj

ðAÞati;rk
ðAÞ: This means the set of

conflicting values of tuple ti for the attribute A that
are caused by semantic overlapping of r1?rm:
Finally, we denote the set of all conflict groups of
an attribute A as CGA:
Regarding an examined attribute A we can

define the following heuristics:

1. If jsj j > 0 4 8i ¼ 1yn; iaj : jsij ¼ 0
Choose peq(SRC ¼ j)

i.e., if all selected examples of attribute A are
from relation rj ; then choose always the values
from this relation in case of conflict.

2. If 8gACGA : tsðAÞAg is the selected example
4tsðAÞ ¼ minj AgftjðAÞg
Choose min
This means, if the given examples are from

different relations and the selected values of
attribute A is always the smallest of its conflict
group, then choose the minimum of these values
in case of conflict.

3. If 8gACGA : tsðAÞAg is the selected example
4tsðAÞ ¼ maxj AgftjðAÞg
Choose max
This means the same as rule 2 but for the

maximum.
4. Let BiAR � fA;PKg

If 8gACGA : tsðAÞAg is a selected
example 4
for the corresponding value of Bi it holds:

tsðBiÞ ¼ minðcgts;Bi
Þ4

jCGBi
j ¼ maxjfjCGBj

jg
Choose pmin(Bi)

i.e., check, if the value of an attribute Bi of a
tuple, which is selected as an example for
reconciling conflicts of A; is always the mini-
mum of its own conflict group. If this condition
is satisfied, choose pmin(Bi), where Bi is the
attribute with the largest number of conflict
groups.

5. Let BiAR � fA;PKg
If 8gACGA :

tsðAÞAg is a selected example 4
for the corresponding value of Bi it holds:

tsðBiÞ ¼ maxðcgts;Bi
Þ4

jCGBi
j ¼ maxjfjCGBj

jg
Choose pmax(Bi)

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

Kai-Uwe Sattler et al. / Information Systems 0 (]]]])]]]–]]] 17

IS : 316

UNCORRECTED P
ROOF

As shown in rule 4 but only for the
maximum.

These rules are evaluated in the given order. If a
precondition is fulfilled, the corresponding recon-
ciliation primitive is applied to the column. As an
example please consider Fig. 9. If we select
‘‘Grizzly’’ and ‘‘Wannabee’’ in the column prod-

Name, the reconciliation expression peq (src =

’bikes A’) is derived according to rule (1) under
the assumption of source-aware import views as
described above. If we select ‘‘1750’’ and ‘‘750’’ in
column price, the primitive pmax(year) is
derived by rule (5). Obviously, these are rather
simple cases, but for larger relations and more
user-given examples the system is able to propose
useful reconciliation expressions which can be
directly mapped to FraQL aggregation functions.
The described steps of conflict detection and —

if necessary — conflict resolution are performed
for each node along the integration graph. The
result of the integration process provided by the
VIbE tool is the integrated schema for FraQL.
This schema definition contains all required
mapping information for schema translation and
conflict resolution which are performed by the
FraQL query processor. At this stage, an applica-
tion can query the integrated and (hopefully)
conflict-free data.

8. Related work

The problem of schema integration is addressed
by several approaches, which are surveyed for
example in [23,24]. For describing conflicts arising
in the integration phase various classifications
were developed, e.g. in [17,25,18].
Structural conflicts and resolution strategies are

discussed in detail in [26]. Techniques for mana-
ging schematic heterogeneity (meta conflicts)
based on SchemaSQL features are presented in
[27]. Resolving description conflicts by using a
rule-based data conversion language is described
in [28,29] present a schema-based data translation
solution. In [30] solving domain and schema
mismatch problems with an object-oriented data-
base language is discussed.

For problems of instance integration several
solutions have been proposed. The work in [31]
examines the entity identification problem, for-
mulates it as a matching problem and defines
soundness as well as completeness as important
properties of the entity identification process.
An approach for resolving attribute value

conflicts based on Dempster–Shafer theory, which
assigns probabilities to attribute values is de-
scribed in [32]. In [16] an object-oriented data
model is introduced where each global attribute
consists of the original value, the resolved value
and the conflict type. These individual values are
accessible by global queries. In addition, for each
attribute a threshold predicate determining toler-
able differences, and a resolution function for an
automatic conflict resolution can be defined. In
[33,22] approaches are proposed, where the origin
of integrated data is included as an additional
tuple attribute in order to improve the interpreta-
tion of global data. Another approach, presented
in [34], introduces the notion of semantic values
enabling the interoperability of heterogeneous
sources by representing context information. In
contrast, the intention of our approach is to
support conflict detection and resolution based
on the analysis of data in order to provide a
conflict-free global view.
An advanced application of statistical data

analysis for deriving mapping functions for
numerical data is described in [35]. The integration
of similar techniques in our tool could improve the
usability for more complex scenarios. In [36] a
data cleaning framework consisting of operators
like mapping, view, matching, clustering, and
merging is presented. These operators are em-
bedded in a declarative language, which allows to
specify the flow of logical transformations. An-
other data cleaning system is Potter’s Wheel [37],
an interactive tool for building transformations to
clean data. In contrast to these both systems our
approach focuses on integration and basic clean-
ing operations as primitive of a multidatabase
query language. However, we share the idea of an
example-based approach for specifying data trans-
formations in combination with a query system.
A totally different approach for dealing with

instance heterogeneity during integration is

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

Kai-Uwe Sattler et al. / Information Systems 0 (]]]])]]]–]]]18

IS : 316

UNCORRECTED P
ROOF

presented in [38]. Here, textual similarity is used for
computing joins between relations from different
sources. This permits integration without normal-
ization of values, but is restricted to textual data.
Several approaches are dedicated to declarative

integration based on answering queries using
views. In data integration systems like the one
described in [39] the contents of the sources are
specified as views over the global schema (the so-
called local-as-view approach). Therefore, queries
on the global schema have to be rewritten into
queries referring to the source schemas. A good
survey on this problem is given in [6]. In [40]
several declarative language techniques for de-
scribing the content of sources are described.
Another declarative approach addressing the
integration problem in Data Warehousing is
presented in [41]. It is based on the specification
of reconciling correspondences between data in
different sources which are used for query rewrit-
ing.
Query languages supporting the integration of

heterogeneous sources are multidatabase lan-
guages like MSQL [2], SQL/M [42] and Sche-
maSQL [3]. MSQL provides basic features for
accessing schema labels and converting them into
data values. SQL/M addresses mainly description
conflicts by providing mechanisms for scaling and
unit transformation. More advanced conflict
resolution is addressed for example by the
restructuring techniques proposed in SchemaSQL
supporting the specification of relations with data
dependent output schemata. Our language FraQL
extends these by additional resolution techniques
for description and structural conflicts as well as
instance-level conflicts. An algebra for data
integration operations in federated database sys-
tems, which are similar to our language extensions
is presented in [43].
Examples of system implementations addressing

reconciliation of heterogeneous data are federated
database system like Pegasus [44] or IBM Data-
Joiner [45] as well as mediator-based systems like
TSIMMIS [46] or Information Manifold [39].
Pegasus uses a functional object-oriented data
manipulation language called HOSQL with non-
procedural features, DataJoiner is based on DB2
and therefore provides essentially standard SQL

features for conflict resolution. In mediator
systems such as TSIMMIS the mediator is
specified by a set of rules. Each rule maps a set
of source objects into a virtual mediator object. In
this way, conflicts are resolved by defining appro-
priated rules. The special problem of combining
objects from different sources (object fusion) in
mediators is addressed in [47]. Another interesting
mediator system concerning with conflict resolu-
tion is AURORA [48]. It supports so called
conflict tolerant queries by allowing predicate
evaluation parameters as part of the selection,
e.g., ‘‘high confidence’’, which means that if
an inconsistent value exists, the selection condition
is satisfied only if all sources agree or ‘‘possible
at all’’, if for at least one source the condition is
satisfied. Conflict resolution is performed similar
to our approach using aggregation functions.
Several tools supporting database integration

are available, e.g. [49–51]. However, these mainly
address schema integration and the resolution of
schema-level conflicts. Our approach comprising
the tool VIbe and the query system FraQL
supplements these systems by considering the
instance level and providing an more interactive
and data-centered method.

9. Conclusion

Modern information infrastructures are based
on distributed systems with several independent
data sources. In such an environment, the inte-
grated access to distributed data stored in several
more or less autonomous component databases
remains an important problem. Experiences with
building such information federations have shown
that the integration process is the bottleneck for
building a federation and that it is impossible to
automatise all aspects of integration because of the
involved semantic heterogeneity.
This paper proposes an interactive and example-

driven integration process combining automatic
support with interactive choice of integration
steps. Such conflict resolution and data reconcilia-
tion steps are important aspects of integrating
heterogeneous data sources. Our approach is

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

Kai-Uwe Sattler et al. / Information Systems 0 (]]]])]]]–]]] 19

IS : 316

UNCORRECTED P
ROOF

based on the multidatabase query language
FraQL providing advanced conflict resolution
mechanisms being an upward compatible exten-
sion of standard SQL. The main issue of the
presentation is the combination of this query
language providing advanced conflict resolution
mechanisms with an interactive query and defini-
tion tool with extensible support for conflict
detection. For the advanced features of FraQL
we present an integration into the framework of
relational algebra, thereby, providing a basis for
adopting and extending standard techniques for
query optimization.
The integration process following our method is

a tight coupling of data inspection on the instance
level and conflict resolution on the schema level.
The inspection of the instance level guides the
schema level conflict resolution by presenting
sample conflicts and partly generating proposals
for conflict resolution functions. Such an
interactive, example-based approach with immedi-
ate feedback may be better suited for smaller
integration tasks than learning and using a new
integration formalism as proposed by other
approaches.
The FraQL query processing system has been

implemented in C++. The current prototype
supports all the features presented in this paper
and provides access to Oracle and MySQL
databases as well as to structured, file-based
sources like XML documents and Web pages.
The VIbE prototype as an interactive design and
query frontend to the FraQL system has been
developed in Java using JDBC. Besides the
available basic facilities for conflict detection and
reconciliation it is extensible by more advanced
techniques which can be plugged into the system.
Current work includes the extension of the

framework towards the full object-relational mod-
el of SQL-99, the handling of new conflict
situations resulting from this extension and the
support of more advanced data cleaning tasks.
First results of this work are presented in [52]. The
proposed integration methodology can be trans-
ferred to other canonical data models like ODMG
or XML. Our approach is applied in a digital
library scenario, where bibliographical data from
heterogeneous libraries has to be integrated [53], as

well as in a data preparation and analysis
environment for information fusion.

References

[1] K. Sattler, S. Conrad, G. Saake, Adding conflict resolution

features to a query language for database federations, Aus.

J. Inform. Sys 8 (1) (2000) 116–125.

[2] J. Grant, W. Litwin, N. Roussopoulos, T. Sellis, Query

languages for relational multidatabases, VLDB J. 2 (2)

(1993) 153–171.

[3] L.V.S. Lakshmanan, F. Sadri, I.N. Subramanian, Sche-

maSQL — A language for interoperability in relational

multi-database systems, in: T.M. Vijayaraman, A.P.

Buchmann, C. Mohan, N.L. Sarda, (Eds.), VLDB’96,

Proceedings of 22th International Conference on Very

Large Data Bases, 1996, Mumbai (Bombay), India,

Morgan Kaufmann, 1996, pp. 239–250.

[4] M.T. Roth, P.M. Schwarz. Don’t scrap it, wrap it! a

wrapper architecture for legacy data sources, in: M. Jarke,

M.J. Carey, K.R. Dittrich, F.H. Lochovsky, P. Louco-

poulos, M.A. Jeusfeld, (Eds.), VLDB’97, Proceedings of

23rd International Conference on Very Large Data Bases,

Athens, Greece, August 25–29, 1997, Morgan Kaufmann,

1997, pp. 266–275.

[5] K. Sattler, G. Saake, Supporting Information Fusion with

Federated Database Technologies, in: S. Conrad, W.

Hasselbring, G. Saake, (Eds.), Proceedings of secnd

International Workshop on Engineering Federated Infor-

mation Systems, EFIS’99, K .uhlungsborn, Germany, May

5–7, 1999, infix-Verlag, Sankt Augustin, 1999, pp. 79–184.

[6] A. Halevy, Answering queries using views: a survey,

VLDB J. 10 (4) (2001) 270–294.

[7] M. Endig, M. H .oding, G. Saake, K. Sattler, E. Schallehn,

Federation services for heterogeneous digital libraries

accessing cooperative and non-cooperative sources, in:

Proceedings of Kyoto International Conference on Digital

Libraries: Research and Practice, IEEE Computer Society

Press, 2000, pp. 314–321.

[8] G. Jaeschke, H.-J. Schek, Remarks on the algebra of non

first normal form relations, in: Proceedings of the ACM

Symposium on Principles of Database Systems, Los

Angeles, CA, March 29–31 1982, ACM, 1982, pp. 124–

138.

[9] S. Abiteboul, N. Bidoit, Non first normal form relations:

an algebra allowing data restructuring, J. Comput. Syst.

Sci. 33 (1986) 361–393.

[10] G.M. Shaw, S.B. Zdonik, An object-oriented query

algebra, IEEE Data Eng. 12 (3) (1989) 29–36.

[11] S. Cluet, C. Delobel, C. Lecluse, P. Richard, RELOOP, an

algebra based query language for an object-oriented

database system, in: W. Kim, J.-M. Nicolas, S. Nishio,

(Eds.), Deductive and Object-Oriented Databases, Pro-

ceedings of the 1st International Conference DOOD’89,

Kyoto, Japan, December, 1989, Amsterdam. North-Hol-

land 1990, pp. 294–313.

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

Kai-Uwe Sattler et al. / Information Systems 0 (]]]])]]]–]]]20

IS : 316

UNCORRECTED P
ROOF

[12] G. Saake, R. Jungclaus, C. Sernadas, Abstract data type

semantics for many-sorted object query algebras, in: B.

Thalheim, J. Demetrovics, H.-D. Gerhardt (Eds.), Pro-

ceedings of the third Symposium on Mathematical

Fundamentals of Database and Knowledge Base Systems,

MFDBS’91, Rostock, Germany, Lecture Notes in Com-

puter Science, Vol. 495 Berlin, Springer, 1991, pp. 291–307.

[13] M.H. Scholl, H.-J. Schek, M. Tresch, Object algebra and

views for multi-objectbases, in: M.T. .Ozsu, U. Dayal, P.

Valduriez (Eds.), Distributed Object Management, Kauf-

mann Publishers, San Mateo, CA, Morgan, 1994, pp. 353–

374.

[14] K.A. Ross, Relations with relation names as arguments:

algebra and calculus, in: Proceedings of the 11th ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, San Diego, CA, ACM Press, 1992, pp.

346–353.

[15] S. Chaudhuri, R. Motwani, and V. Narasayya, On random

sampling over joins. in: A. Delis, C. Faloutsos, S.

Ghandeharizadeh, (Eds.), SIGMOD 1999, Proceedings of

the ACM SIGMOD International Conference on Manage-

ment of Data, Philadelphia, PA, USA, June 1–3, 1999,

ACM Press, New York, 1999, pp. 263–274.

[16] E.-P. Lim, R.H.L. Chiang, A global object model for

accommodating instance heterogeneities, in: Tok Wang

Ling, S. Ram, Mong-Li Lee, (Eds.), Conceptual Modeling

– ER ’98, 17th International Conference on Conceptual

Modeling, Singapore, November 16–19, 1998, Proceed-

ings, Lecture Notes in Computer Science, Vol. 1507,

Springer, Berlin, 1998, pp. 435–448.

[17] W. Kim, J. Seo, Classifying Schematic and Data Hetero-

geneity in Multidatabase Systems, IEEE Computer 24 (12)

(1991) 12–18.

[18] S. Spaccapietra, C. Parent, Y. Dupont, Model independent

assertions for integration of heterogeneous schemas,

VLDB J. 1 (1) (1992) 81–126.

[19] G. Saake, S. Conrad, I. Schmitt, Database design, in: J.G.

Webster (Ed.), Wiley Encyclopedia of Electrical and

Electronics Engineering, Vol. 4, Wiley, New York, 1999,

pp. 540–567.

[20] M.M. Zloof, Query by example: a data base language,

IBM Sys. J. 16 (4) (1997) 324–343.

[21] W. Hasselbring, Top–down vs bottom–up Engineering of

Federated Information Systems, in: S. Conrad, W.

Hasselbring, G. Saake, (Eds.), Proceedings of the second

International Workshop on Engineering Federated Infor-

mation Systems, EFIS’99, K .uhlungsborn, Germany, May

5–7, 1999, infix-Verlag, Sankt Augustin, 1999, pp. 131–138.

[22] E.-P. Lim, R.H.L. Chiang, Y. Cao, Tuple source relational

model: a source-aware data model for multidatabases,

Data & Knowledge Engineering 29 (1) (1999) 83–114.

[23] C. Batini, M. Lenzerini, S.B. Navathe, A Comparative

analysis of methodologies for database schema integration,

ACM Comput. Surv 18 (4) (1986) 323–364.

[24] E. Pitoura, O. Bukhres, A.K. Elmagarmid, Object

orientation in multidatabase systems, ACM Computing

Surveys 27 (2) (1995) 141–195.

[25] F. Saltor, M. Castellanos, M. Garcia-Solaco, Overcoming

schematic discreprancies in interoperable databases, in:

D.K. Hsiao, E.J. Neuhold, R. Sacks-Davis, (Eds.),

Interoperable Database Systems, Proceedings of the IFIP

WG 2.6 Database Semantics Conference DS-5, Lorne,

Victoria, Australia, November, 1992, North-Holland,

Amsterdam, 1993, pp. 191–205.

[26] W. Kim, I. Choi, S. Gala, M. Scheevel, On resolving

schematic heterogeneity in multidatabase systems, in: W.

Kim (Ed.), Modern Database Systems, ACM Press, New

York, NJ, 1995, pp. 521–550 chapter 26.

[27] R.J. Miller, Using schematically heterogeneous structures,

in: L.M. Haas, A. Tiwary (Eds.), SIGMOD 1998,

Proceedings ACM SIGMOD International Conference

on Management of Data, Seattle, Washington, USA, June

2–4, 1998, ACM Press, 1998, pp. 189–200.

[28] S. Cluet, C. Delobel, J. Sim!eon, and K. Smaga. Your

mediators need data conversion!, in: L.M. Haas, A.

Tiwary, (eds)., SIGMOD 1998, Proceedings of the ACM

SIGMOD International Conference on Management of

Data, Seattle, Washington, USA, June 2–4, 1998, ACM

Press, 1998, pp. 177–188.

[29] T. Milo, S. Zohar, Using schema matching to simplify

heterogeneous data translation, in: A. Gupta, O. Shmueli,

J. Widom, (Eds.), VLDB’98, Proceedings of 24rd Interna-

tional Conference on Very Large Data Bases, New York,

NY, USA, August 24–27, 1998, Morgan Kaufmann, 1998,

pp. 122–133.

[30] W. Kent, A rigorous model of object reference, identity,

and existence, J. Object-Oriented Programming (1991) 28–

36.

[31] E.-P. Lim, S. Prabhakar, Entity identification in database

integration, in: Proceedings of the Ninth International

Conference on Data Engineering (ICDE’93), Vienna,

Austria, April 19–23, 1993, 1993, pp. 154–163.

[32] E.-P. Lim, J. Srivastava, S. Shekhar, Resolving attribute

incompatibility in database integration: an evidential

reasoning approach, in: Proceedings of the 10th IEEE

International Conference on Data Engineering, ICDE’94,

Houston, Texas, USA, Los Alamitos, CA, 14–18 February

1994, IEEE Computer Society Press, 1994, pp. 154–163.

[33] Y. Richard Wang, Stuart E. Madnick, A polygen model

for heterogeneous database systems: the source tagging

perspective, in: D. McLeod, R. Sacks-Davis, H-J Schek,

(Eds.), Proceedings of 16th International Conference on

Very Large Data Bases, Brisbane, Queensland, Australia,

August 13–16, 1990, Morgan Kaufmann, 1990, pp. 519–

538.

[34] E. Sciore, M. Siegel, A. Rosenthal, Using semantic values

to facilitate interoperability among heterogeneous infor-

mation systems, ACM Trans. Database Syst. 19 (2) (1994)

254–290.

[35] H. Lu, W. Fan, C. Goh, S. Madnick, D. Cheung,

Discovering and reconciling semantic conflicts: a data

mining perspective, in: Proceedings of the seventh IFIP 2.6

Working Conference on Data Semantics (DS-7), Leysin,

Switzerland, 1997.

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

Kai-Uwe Sattler et al. / Information Systems 0 (]]]])]]]–]]] 21

IS : 316

UNCORRECTED P
ROOF

[36] H. Galhardas, D. Florescu, D. Shasha, E. Simon, C. Saita,

Declarative data cleaning: language, model, and algo-

rithms, in: VLDB’01, Proceedings of 27th International

Conference on Very Large Data Bases, 2001, Roma, Italy,

2001, pp. 371–380.

[37] V. Raman, J.M. Hellerstein, Potter’s wheel: an interactive

data cleaning system, in: VLDB’01, Proceedings of 27th

International Conference on Very Large Data Bases, 2001,

Roma, Italy, 2001, pp. 381–390.

[38] W.W. Cohen, Integration of heterogeneous databases

without common domains using queries based on textual

similarity, in: L.M. Haas, A. Tiwary (Eds.), SIGMOD

1998, Proceedings of the ACM SIGMOD International

Conference on Management of Data, Seattle, Washington,

USA, June 2–4, 1998, ACM Press, 1998, pp. 201–212.

[39] A.Y. Levy, A. Rajaraman, and J.J. Ordille, Querying

Heterogeneous Information Sources Using Source De-

scriptions, in: T.M. Vijayaraman, A.P. Buchmann, C.

Mohan, N.L. Sarda, (Eds.), VLDB’96, Proceedings of 22th

International Conference on Very Large Data Bases, 1996,

Mumbai (Bombay), India, Morgan Kaufmann, Los Alios,

CA, 1996, pp. 251–262.

[40] A. Levy, Logic-based techniques in data integration, in: J.

Minker (Ed.), Logic Based Artificial Intelligence, Kluwer

Publishers, 2000.

[41] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R.

Rosati, Data integration in data warehousing, Int. J.

Cooperative Inform. Syst. 10 (3) (2001) 237–271.

[42] W. Kelley, S. Gala, W. Kim, T. Reyes, B. Graham,

Schema architecture of the UniSQL/M multidatabase

system, in: W. Kim (Ed.), Modern Database Systems,

ACM Press, New York, NJ, 1995, pp. 621–648 chapter 30.

[43] C. Wyss, D. Van Gucht, A relational algebra for data/

metadata integration in a federated database system, in

Proceedings of the 2001 ACM CIKM International

Conference on Information and Knowledge Management,

Atlanta, Georgia, USA, 2001, pp. 65–72.

[44] R. Ahmed, P. De Smedt, W. Du, W. Kent, M.A. Ketabchi,

W. Litwin, A. Rafii, M.-C. Shan, The Pegasus hetero-

geneous multidatabase system, IEEE Comput. 24 (12)

(1991) 19–27.

[45] S. Venkataraman, T. Zhang, Heterogeneous database

query optimization in DB2 universal dataJoiner, in: A.

Gupta, O. Shmueli, J. Widom, (Eds.), VLDB’98, Proceed-

ings of 24rd International Conference on Very Large Data

Bases, 1998, New York, New York, USA, Morgan

Kaufmann, 1998, pp. 685–689.

[46] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A.

Rajaraman, . Sagiv, J.D. Ullman, V. Vassalos, J. Widom,

The TSIMMIS approach to mediation: data models and

languages, J. Intell. Inform. Syst. 8 (2) (1997) 117–132.

[47] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-

Molina, Object fusion in mediator systems, in: T.M.

Vijayaraman, A.P. Buchmann, C. Mohan, N.L. Sarda,

(Eds.), VLDB’96, Proceedings of 22th International

Conference on Very Large Data Bases, 1996, Mumbai

(Bombay), India, Morgan Kaufmann, 1996, pp. 413–424.

[48] L.L. Yan, M. Tamer .Ozsu, Conflict Tolerant Queries in

AURORA, in: Proceedings of the fourth IFCIS Interna-

tional Conference on Cooperative Information Systems

(CoopIS), Edinburgh, Scotland, 1999, pp. 279–290.

[49] S. Castano, V. De Antonellis, A schema analysis and

reconciliation tool environment for heterogeneous data-

bases, in: Proceedings of 1999 International Database

Engineering and Applications Symposium, IDEAS 1999,

Montreal, Canada, 2 – 4 August, 1999, 1999, pp. 53–62.

[50] J.-L. Hainaut, P. Thiran, J.-M. Hick, S. Bodart, A.

Deflorenne, Methodology and case tools for the develop-

ment of federated databases, Int. J. Cooperative Inform.

Sys. 8 (2–3) (1999) 169–194.

[51] K. Schwarz, I. Schmitt, C. T .urker, M. H .oding, E.

Hildebrandt, S. Balko, S. Conrad, G. Saake, Design

support for database federations, in: J. Akoka, M.

Bouzeghoub, I. Comyn-Wattiau, E. M!etais, (Eds.), Con-

ceptual Modeling – ER’99 (18th International Conference

on Conceptual Modeling, Paris, France, November 15–18,

1999, Proceedings), Lecture Notes in Computer Science

Vol. 1728, Springer, Berlin, 1999, pp. 445–459.

[52] K. Sattler, E. Schallehn, A data preparation framework

based on a multidatabase language, in: M. Adiba, C.

Collet, B.P. Desai, (Eds.), Proceedings of International

Database Engineering and Applications Symposium

(IDEAS 2001), IEEE Computer Society, Grenoble,

France. 2001, pp. 219–228.

[53] E. Schallehn, M. Endig, K. Sattler, Citation Linking in

Federated Digital Libraries, in: M. Roantree, W. Hasselbr-

ing, S. Conrad, (Eds.), Proceedings of the third Interna-

tional Workshop on Engineering Federated Information

Systems, EFIS’00, Dublin, Ireland, June, Verlagsge-

sellschaft, Berlin, Akadem, 2000, pp. 53–60.

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

Kai-Uwe Sattler et al. / Information Systems 0 (]]]])]]]–]]]22

IS : 316

	Interactive Example-driven Integration and Reconciliation for Accessing Database Federations
	Introduction
	The Federation query language FraQL
	Semantics of Integration operations
	User-defined functions
	Mapping tables
	Operators for variable substitution
	The transposition operator

	The Integration Process
	Integration conflicts
	Schema-level conflicts
	Semantic conflicts
	Description conflicts
	Heterogeneity conflicts
	Structural conflicts

	Instance-level conflicts
	Instance-level conflicts resulting from schema level conflicts
	Structural conflicts
	Semantic conflicts

	Conflict resolution and reconciliation
	Description and representation conflicts
	Structural conflicts
	Semantic conflicts

	Tool support for an example-driven approach
	Related work
	Conclusion
	References

