Exercise 2: Optimization I & DB Architecture

Task 1: Query Optimization I

Given the following relations:

- Customer (cusNr, name, PLZ, city, street) with 10000 entries, allocated in 20 cities
- Products (prodNr, description) with 5000 entries
- DeliveryScope (delNr -> Delivery, prodNr -> Products) with 200 000 entries and 5 products per delivery
- Delivery (delNr, cusNr -> Customer, Date) with 40000 entries, 100 deliveries per day (in average)

a) Formulate the following query with SQL: „Select all customer names, who received a delivery containing the product with number 101."

b) Create at least 3 different equivalent relational algebra expressions for this query.

c) Find out how many operations are required for the database system to execute every single query (cf. slide 1-15ff). Which (algebra) expression is the optimum?

d) Optimize the query „Select all customer names from Leipzig, who received a delivery on 01.03.2004. The product descriptions of this delivery should be selected as well. “ like exercise a to c.

e) Assume additionally, that the relations Customer and Delivery are ordered by the customer number (cusNr). Analyze the costs (number of operations) for the Nested-Loop-Join and the Merge-Join operation respectively.

Exercise 2: DB Architecture

Depending on the administration level, different representations for database system architectures exist. Here, we want to compare the both best known. Furthermore, the 5-Layer architecture will be checked against the „Rules of Codd“.

1. Point out similarities (intersections) and differences between the ANSI-SPARC-architecture (slide 1-2) and the 5-Layer Architecture (slides 2-3ff).
2. „How does it fit to the Schema Architecture (logical/physical data independence from DB1)?
3. Regarding the architectures, where are the following objects/components situated:
 - physical storage,
 - tables in form of relations,
 - access structures and
 - views on a database schema
4. Describe at which positions in the 5-Layer architecture (and how) the following „Rules of
Codda are realized or have to be realized respectively.

- Integration (ensures uniform, non-redundant management of data),
- Operations,
- Catalog (contains data definition and description),
- Multi user views (extract use-oriented views on data),
- Consistency/Integrity (enforces keeping defined constraints),
- (Data) Privacy (in form of access control),
- Transactions,
- Synchronization (for multi user mode),
- Data Backup.