

SPLConfig: Product Configuration in Software Product Line

Lucas Machado, Juliana Pereira, Lucas Garcia, Eduardo Figueiredo

Department of Computer Science, Federal University of Minas Gerais (UFMG), Brazil

{lucasmdo, juliana.pereira, lucas.sg, figueiredo}@dcc.ufmg.br

Abstract. Software product line (SPL) is a set of software systems that share a

common set of features satisfying the specific needs of a particular market

segment. A feature represents an increment in functionality relevant to some

stakeholders. SPLs commonly use a feature model to capture and document

common and varying features. The key challenge of using feature models is to

derive a product configuration that satisfies all business and customer

requirements. To address this challenge, this paper presents a tool, called

SPLConfig, to support business during product configuration in SPL. Based

on feature models, SPLConfig automatically finds an optimal product

configuration that maximizes the customer satisfaction.

Demo Video. https://www.youtube.com/watch?v=QLHtIY8oHT8

1. Introduction

The growing need for developing larger and more complex software systems demands

better support for reusable software artifacts [Pohl et al., 2005]. In order to address these

demands, software product line (SPL) has been increasingly adopted in software

industry [Clements and Northrop, 2001; Apel et al., 2013]. SPL is a set of software

systems that share a common set of features satisfying the specific needs of a particular

market segment [Pohl et al., 2005]. It is built around a set of common software

components with points of variability that allow product configuration [Clements and

Northrop, 2001]. Large companies, such as Hewlett-Packard, Nokia, Motorola, and

Dell, have adopted SPL practices
1
.

 The potential benefits of SPLs are achieved through a software architecture

designed to increase reuse of features in several SPL products. An important concept of

an SPL is the feature model. Feature models are used to represent the common features

found on all products of the product line (known as mandatory features) and variable

features that allow distinguishing between products in a product line (generally

represented by optional or alternative features) [Czarnecki and Eisenecker, 2000; Kang

et al., 1990]. Variable features define points of variation and their role is to permit the

instantiation of different products by enabling or disabling specific SPL functionality. In

practice, developing an SPL involves modeling features to represent different

viewpoints, sub-systems, or concerns of the software system [Batory, 2005].

 A fundamental challenge in SPL is the process of enabling and disabling features

in a feature model for a new software product configuration [Pohl et al., 2005]. As the

number of features increase in a feature model, so does the number of product options in

1
 http://splc.net/fame.html

an SPL [Benavides et al., 2005]. For instance, an SPL where all features are optional can

instantiate 2
n
 different products where n is the number of features. Moreover, once a

feature is selected, it must be verified to conform to the myriad constraints in the feature

model, turning this process into a complex, time-consuming, and error-prone task.

Industrial-sized feature models with hundreds or thousands of features make this

process impractical. Guidance and automatic support are needed to increase business

efficiency when dealing with many possible combinations in an SPL.

 This paper presents a tool, called SPLConfig
2
, to support automatic product

configuration in SPL. The main goal of the SPLConfig tool is to derive an optimized

features set that satisfies the customer requirements. The primary contribution of this

tool is to assist businesses during product configuration, answering the following

question: What is the set of features that balances cost and customer satisfaction, based

on available budget? By resolving this problem, industries can more effectively achieve

greater customer satisfaction.

The rest of this paper is organized as follow. Section 2 describes the problem.

Section 3 presents the SPLConfig architecture. Section 4 discusses the design and

implementation of this tool. Examples are used to validate the tool main functionalities

in Section 5. Section 6 presents some related work. Finally, Section 7 concludes and

points out directions for future work.

2. Problem Description

Feature models represent the common and variable features in SPL using a feature tree

[Kang et al., 1990]. In feature models, nodes represent features and edges show

relationships between parent and child features [Batory, 2005]. These relationships

constraint how the features can be combined. As an example, the mobile phone industry

uses features to specify and build software for configurable phones. The software

product deployed into a phone is determined by the phone characteristics. Figure 1

depicts a simplified feature model of an SPL, called MobileMedia [Figueiredo et al.,

2008], inspired by the mobile phone industry. It was developed for a family of 4 brands

of devices, namely Nokia, Motorola, Siemens, and RIM.

Figure 1. Example of a Feature Model for a Mobile Phone Product Line

2
 SPLConfig is available at https://sourceforge.net/p/splconfig/

 A key need with SPL is determining how to configure an optimized feature set

that satisfies the customer requirements. In Figure 1, features refer to functional

requirements of the MobileMedia SPL. However, feature may also be associated with

non-functional requirements. Kang et al. [1990] suggest the need to take into account

non-functional requirements since 1990. For instance, considering the MobileMedia

SPL, it is possible to identify non-functional requirements related to each feature, such

as cost and benefit of each feature to the customer. It means that every product differs

not only because of its functional features, but also because of its non-functional

requirements. Therefore, we propose to extend feature models with non-functional

requirements by adapting the proposed notation in Benavides et al. [2005] to our

problem.

 Figure 2 illustrates the non-functional requirements in feature model of Figure 1.

In Figure 2, all features (mandatory and optional features) have the cost attribute, and

only optional features have the benefit attribute. For example, the optional feature

Favourites has cost and benefit attributes, while the mandatory feature MediaSelection

has only the cost attribute. Note that the benefit attribute is classified into six qualitative

levels: none, very low, low, medium, high and very high. Our goal is to find an optimal

solution by means of an objective function that maximizes customer satisfaction

(benefit/cost) without exceeding the available budget (in the lower right corner of the

Figure 2). As a motivating example, given a mobile phone product line that includes a

variety of varying features, what is the product that best meets the customer

requirements limited by a given budget? The challenge is that with hundreds or

thousands of features, it is hard to analyze all different product configurations to find an

optimal configuration.

Figure 2. A Feature Model Decorate with Non-Functional Requirements

 Therefore, the main goal of the SPLConfig tool is to propose an automatic

product configuration method based on search-based software engineering (SBSE)

techniques [Harman & Jones, 2001]. Figure 3 presents an abstract overview of our

method. As shown in Figure 3, from a feature model we use search-based algorithms to

derive an optimized product configuration that maximizes the customer satisfaction,

subject to business requirements (cost), customer requirements (benefit and budget),

composition constraints, and cross-tree constraints. It is noteworthy that these

algorithms are minutely detailed in Pereira (2014).

Figure 3. Overview of the Method to Automatic Product Configuration

3. SPLConfig Architecture

SPLConfig is an Eclipse plugin implemented in Java. It requires one additional plugin,

named FeatureIDE, in order to support product configuration. Figure 4 presents the

architecture of SPLConfig and its relationships with FeatureIDE and Eclipse platform.

The decision of extending FeatureIDE is particularly attractive for two reasons. First,

FeatureIDE is an open source, extensible, modular, and easy to understand tool. Second,

our motivation in extending FeatureIDE occurred because we could reuse the key

functionalities of typical feature modeling tools, such as to create and edit a feature

model, to automatically analyze the feature model, product configuration basic

infrastructure, code generation, and import/export feature model. FeatureIDE is a

development tool for SPL largely used and it supports all phases of feature-oriented

software development of SPLs: analysis and application domains and code generation.

Figure 4. SPLConfig's Architecture

 Automatic product configuration allows the customization of different products

according to the business and customer requirements, composition, and cross-tree

constraints of the feature model (SPLConfig in Figure 4). Two important activities are

performed in the SPL lifecycle, domain engineering and application engineering,

described below:

Domain Engineering. This process is represented by a feature model and is supported

by FeatureIDE (feature model editor in Figure 4). Common and variable requirements of

the product line are elicited and documented. The developers create reusable artifacts of

a product line in such a way that these artifacts are sufficiently adaptable (variable) to

efficiently derive individual applications from them.

Application Engineering. From meetings, the developers identify and describe the

requirements prioritization of customer (SPLConfig in Figure 4). SPLConfig prioritize

and create reports to aid the product builder when defining a product configuration for a

specific customer. Our product configuration algorithm uses an optimization scheme

and provides a valuable decision support to product configuration within the SPL. The

product configuration result is visualized in FeatureIDE (product configuration module

in Figure 4). It is important to observe that the tool can be easily extended - by means of

new algorithms - to support additional non-functional features.

 As show in Figure 4, feature modeling in early stages enables to decide which

features should be supported by an SPL and which should not. This result is a feature

model represented in FeatureIDE. In a second stage, during the product configuration, it

is necessary to choose the features that appropriately fulfill the business and customer

requirements. This stage allows a single product configuration to be created through

search-based algorithms in SPLConfig. This product configuration is presented by

FeatureIDE in the product configuration module. Note that the current implementation

of SPLConfig randomly picks up one of the optimal solutions. However, we are

working on a new version that presents a sorted list of the top best solutions. Therefore,

the customer is going to have several options of products to choose from. In a third

stage, SPLConfig allows manual configuration of features if necessary. In a fourth stage,

it also allows compiling and building the product.

4. Design and Implementation Decisions

This section discusses some design and implementation decisions we made in the

development of SPLConfig. Figure 5 shows a screenshot of SPLConfig view in the

Eclipse IDE. Figure 5 shows the package explorer view typical of Eclipse IDE (a). It

also illustrates the FeatureIDE model editor (b) and outline view (c). Figure 5 (d) show

details of the SPLConfig view.

Figure 5. SPLConfig View in the Eclipse IDE

 Figure 5 (d) presents the main view of SPLConfig integrated with the Eclipse

IDE. At the top of the view, we have two fields named Budget and Customer that should

be filled by the customer with the available budget and with the customer identification,

respectively. Each feature in the feature model is presented in a row of this view.

Columns give additional information, such as the feature name, the level of importance

of the feature to the customer (Benefit), and the cost of development of each feature

(Cost). The tool is supposed to be used by developers who are expected to translate

qualitative information from customers into quantitative ones. Moreover, this view

includes typical buttons, such as Refresh and Execute, which trigger their respective

actions. Refresh is used to update data being presented in this view, while Execute

selects the most appropriate product configuration that best satisfies the customer

requirements.

 In addition to this view, we extend Eclipse with a preference page presented in

Figure 6. Industries can set specific preferences, as the cost of development of each

feature that makes up the SPL. Therefore, for the same SPL, several products can be

generated according to needs and constraints specific of each customer, but keeping the

cost of each feature fixed. Note that the FeatureIDE view can be used to show the

product configuration that best satisfies the customer requirements, but it does not

prevent other features from being included or excluded in the final product (i.e., manual

tuning).

Figure 6. SPLConfig Preference Page

5. Preliminary Evaluation

We reviewed a large number of research works in the field of SPL and selected a set of

ten feature models that were used as benchmark instances to evaluate SPLConfig:

MobileMedia [Figueiredo et al., 2008], Email System [Thüm et al., 2014], Smart Home

[Alferez et al., 2009], Devolution [Thüm et al., 2014], Gasparc [Aranega et al., 2012],

Web Portal [Mendonça et al., 2008], FraSCAti [Seinturier et al., 2012], Model

Transformation [Czarnecki & Helsen, 2003], Battle of Tanks [Thüm & Benduhn, 2011],

and e-Shop [Lau, 2006]. We found that the time spent in the configuration of a feature

model with 213 features (e-Shop) is about 6 milliseconds. However, so far, SPLConfig

has scaled well for all evaluated feature models (up to 3 hundreds features). It is

noteworthy that evaluation details are available in Pereira (2014).

6. Related Tools

Automated reasoning is a challenging field in SPL engineering. Mendonça et al. (2009)

and Thüm et al. (2014) have proposed visualization techniques for representing staged

feature configuration in SPLs. However, industrial-sized feature models with hundreds

or thousands of features make a manual feature selection process hard. Moreover, these

approaches focus on functional features of a product and their dependencies; neglecting

non-functional requirements. To the best of our knowledge, we still lack tools to deal

with non-functional features.

7. Conclusions and Future Work

This paper presented SPLConfig, a tool developed for product configuration in SPL by

the use of search-based algorithms. We described the problem handled by the tool

(Section 2) and summarized the method behind the tool and its main functionalities

(Sections 3 and 4). Our results so far are, in general, satisfactory. Nevertheless, our

goals for future work include the improvement of SPLConfig tool in order to (i) include

others non-functional requirements [Kang et al. 1998] and (ii) consider the difficulties

of developing and maintaining of the product for the industries, in order to minimize the

development effort integrating features to compose a product. Further work should also

address case studies in industries in order to ensure that realistic instances of

requirements are being used, through direct contact with the business and customers.

Acknowledgment

This work was partially supported by CNPq (grant Universal 485907/2013-5) and

FAPEMIG (grants APQ-02532-12 and PPM-00382-14).

References

Apel, S., Batory, D., Kästner, C., and Saake, G. (2013). Feature-Oriented Software

Product Lines: Concepts and Implementation. Springer-Verlag.

Alferez, M., Santos, J., Moreira, A.and Garcia, A., Kulesza, U., Araujo, J., and Amaral,

V. (2009). Multi-view composition language for software product line requirements.

In International Conference on Software Language Engineering (SLE), p. 136–154.

Aranega, V., Etien, A., and Mosser, S. (2012). Using feature model to build model

transformation chains. In 15th international conference on Model Driven Engineering

Languages and Systems (MODELS), pages 562–578.

Batory, D. S. (2005). Feature models, grammars and propositional formulas. In 9th

International Software Product Lines Conference (SPLC), pages 7–20.

Benavides, D., Martin-Arroyo, P. T., and Cortes, A. R. (2005). Automated reasoning on

feature models. In 17th Conference on Advanced Information Systems Engineering

(CAiSE), pages 491–503.

Clements, P. and Northrop, L. (2001). Software product lines: Practices and patterns.

Addison-Wesley.

Czarnecki, K. and Eisenecker, U. W. (2000). Generative programming: Methods, tools,

and applications. Addison-Wesley.

Czarnecki, K. and Helsen, S. (2003). Classification of model transformation approaches.

Available at: http://www.ptidej.net/course/ift6251/fall05/presentations/

050914/Czarnecki_Helsen.pdf/.

Figueiredo, E. et al. (2008). Evolving software product lines with aspects: An empirical

study. In 30th International Conference on Software Engineering (ICSE), p. 261-270.

Harman, M. and Jones, B. F. (2001). Search based software engineering. Journal

Information and Software Technology, 43(0):833–839.

Kang, K., Cohen, S., Hess, J., Novak, W., and Peterson, S. (1990). Feature-oriented

domain analysis (FODA) feasibility study. Technical Report. CMU/SEI-90-TR-21.

ESD-90-TR-222.

Kang, K., Kim, S., Lee, J., Kim, K., Shin, E., and Huh, M. (1998). Form: A feature-

oriented reuse method with domain-specific reference architectures. Annals of

Software Engineering, 5(1):143–168.

Lau, S. Q. (2006). Domain analysis of e-commerce systems using feature-based model

templates. Master’s thesis. University of Waterloo, Canada.

Mendonça, M., Bartolomei, T., and Donald, C. (2008). Decision-making coordination in

collaborative product configuration. In ACM Symposium on Applied Computing

(SAC), p. 108–113.

Mendonça, M., Branco, M., and Cowan, D. (2009). S.p.l.o.t.: Software product lines

online tools. In 24th Conference on Object-Oriented Programming Systems,

Languages, and Applications (OOPSLA), pages 761–762.

Pereira, Juliana A. Search-Based Product Configuration in Software Product Lines.

April 2014. Federal University of Minas Gerais. Belo Horizonte - April 2014.

Pohl, K., Böckle, G., and Van der Linden, F. J. (2005). Software product line

engineering: Foundations, principles and techniques. Springer-Verlag.

Seinturier, L., Merle, P., Rouvoy, R., Romero, D.and Schiavoni, V., and Stefani, J.

(2012). A component-based middleware platform for reconfigurable service-oriented

architectures. Software Practice and Experience, 42(5):559–583.

Thüm, T. and Benduhn, F. (2011). Spl2go: An online repository for open-source

software product lines. Available at: http://spl2go.cs.ovgu.de/projects. [Online;

accessed 10-December-2013].

Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., and Leich, T. (2014).

Featureide: An extensible framework for feature-oriented software development.

Journal Science of Computer Programming, 79(0):70–85.

